Treewidth

Dániel Marx

Recent Advances in Parameterized Complexity
Tel Aviv, Israel, December 3-7, 2017

Treewidth

- Treewidth: a notion of "treelike" graphs.
- Some combinatorial properties.
- Algorithmic results.
- Algorithms on graphs of bounded treewidth.
- Applications for other problems.

The Party Problem

Party Problem

Problem: Invite some colleagues for a party.
Maximize: The total fun factor of the invited people.
Constraint: Everyone should be having fun.

The Party Problem

Party Problem

Problem: Invite some colleagues for a party.
Maximize: The total fun factor of the invited people.
Constraint: Everyone should be having fun.
Do not invite a colleague and
his direct boss at the same time!

The Party Problem

Party Problem
Problem: Invite some colleagues for a party.
Maximize: The total fun factor of the invited people.
Constraint: Everyone should be having fun.
Do not invite a colleague and his direct boss at the same time!

- Input: A tree with weights on the vertices.
- Task: Find an independent set of maximum weight.

The Party Problem

Party Problem

Problem: Invite some colleagues for a party.
Maximize: The total fun factor of the invited people.
Constraint: Everyone should be having fun. Do not invite a colleague and his direct boss at the same time!

- Input: A tree with weights on the vertices.
- Task: Find an independent set of maximum weight.

Solving the Party Problem

Dynamic programming paradigm:
We solve a large number of subproblems that depend on each other. The answer is a single subproblem.

Subproblems:

T_{v} : the subtree rooted at v.
$A[v]: \quad$ max. weight of an independent set in T_{v}
$B[v]$: max. weight of an independent set in T_{v} that does not contain v

Goal: determine $A[r]$ for the root r.

Solving the Party Problem

Subproblems:

T_{v} : the subtree rooted at v.
A[v]: max. weight of an independent set in T_{v}
$B[v]$: max. weight of an independent set in T_{v} that does not contain v
Recurrence:
Assume v_{1}, \ldots, v_{k} are the children of v. Use the recurrence relations

$$
\begin{aligned}
& B[v]=\sum_{i=1}^{k} A\left[v_{i}\right] \\
& A[v]=\max \left\{B[v], w(v)+\sum_{i=1}^{k} B\left[v_{i}\right]\right\}
\end{aligned}
$$

The values $A[v]$ and $B[v]$ can be calculated in a bottom-up order (the leaves are trivial).

Generalizing trees

How could we define that a graph is "treelike"?

Generalizing trees

How could we define that a graph is "treelike"?
(1) Number of cycles is bounded.

good

bad

bad

bad

Generalizing trees

How could we define that a graph is "treelike"?
(1) Number of cycles is bounded.

good

bad

bad

bad
(2) Removing a bounded number of vertices makes it acyclic.

good

good

bad

bad

Generalizing trees

How could we define that a graph is "treelike"?
(1) Number of cycles is bounded.

good

bad

bad

bad
(2) Removing a bounded number of vertices makes it acyclic.

good

good

bad

bad
(3) Bounded-size parts connected in a tree-like way.

bad

bad

good

Treewidth — a measure of "tree-likeness"

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:
(1) If u and v are neighbors, then there is a bag containing both of them.
(2) For every v, the bags containing v form a connected subtree.

Treewidth — a measure of "tree-likeness"

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:
(1) If u and v are neighbors, then there is a bag containing both of them.
(2) For every v, the bags containing v form a connected subtree.

Treewidth — a measure of "tree-likeness"

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:
(1) If u and v are neighbors, then there is a bag containing both of them.
(2) For every v, the bags containing v form a connected subtree.

Treewidth — a measure of "tree-likeness"

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:
(1) If u and v are neighbors, then there is a bag containing both of them.
(2) For every v, the bags containing v form a connected subtree. Width of the decomposition: largest bag size -1 . treewidth: width of the best decomposition.

Treewidth — a measure of "tree-likeness"

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:
(1) If u and v are neighbors, then there is a bag containing both of them.
(2) For every v, the bags containing v form a connected subtree. Width of the decomposition: largest bag size -1 .
treewidth: width of the best decomposition.

Each bag is a separator.

Treewidth — a measure of "tree-likeness"

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:
(1) If u and v are neighbors, then there is a bag containing both of them.
(2) For every v, the bags containing v form a connected subtree. Width of the decomposition: largest bag size -1 . treewidth: width of the best decomposition.

A subtree communicates with the outside world only via the root of the subtree.

Treewidth

Fact: treewidth $=1 \Longleftrightarrow$ graph is a forest

Exercise: A cycle cannot have a tree decomposition of width 1.

Treewidth — outline

(1) Basic algorithms
(2) Combinatorial properties
(3) Applications

Finding tree decompositions

Hardness:

Theorem [Arnborg, Corneil, Proskurowski 1987]
It is NP-hard to determine the treewidth of a graph (given a graph G and an integer w, decide if the treewidth of G is at most w).

Fixed-parameter tractability:

Theorem [Bodlaender 1996]

There is a $2^{O\left(w^{3}\right)} \cdot n$ time algorithm that finds a tree decomposition of width w (if exists).

Consequence:

If we want an FPT algorithm parameterized by treewidth w of the input graph, then we can assume that a tree decomposition of width w is available.

Finding tree decompositions - approximately

Sometimes we can get better dependence on treewidth using approximation.

FPT approximation:

Theorem [Robertson and Seymour]
There is a $O\left(3^{3 w} \cdot w \cdot n^{2}\right)$ time algorithm that finds a tree decomposition of width $4 w+1$, if the treewidth of the graph is at most w.

Polynomial-time approximation:
Theorem [Feige, Hajiaghayi, Lee 2008]
There is a polynomial-time algorithm that finds a tree decomposition of width $O(w \sqrt{\log w})$, if the treewidth of the graph is at most w.

Weighted Max Independent Set and treewidth

Theorem

Given a tree decomposition of width w, Weighted Max Independent Set can be solved in time $O\left(2^{w} \cdot w^{O(1)} \cdot n\right)$.
B_{x} : vertices appearing in node x.
V_{x} : vertices appearing in the subtree rooted at x.
Generalizing our solution for trees:
Instead of computing 2 values $A[v], B[v]$ for each vertex of the graph, we compute $2^{\left|B_{x}\right|} \leq 2^{w+1}$ values for each bag B_{x}.

M[x, S]:
the max. weight of an independent set
$I \subseteq V_{x}$ with $I \cap B_{x}=S$.

Weighted Max Independent Set and treewidth

Theorem

Given a tree decomposition of width w, Weighted Max Independent Set can be solved in time $O\left(2^{w} \cdot w^{O(1)} \cdot n\right)$.
B_{x} : vertices appearing in node x.
V_{x} : vertices appearing in the subtree rooted at x.
Generalizing our solution for trees:
Instead of computing 2 values $A[v], B[v]$ for each vertex of the graph, we compute $2^{\left|B_{x}\right|} \leq 2^{w+1}$ values for each bag B_{x}.

M[x, S]:
the max. weight of an independent set
$I \subseteq V_{x}$ with $I \cap B_{x}=S$.

How to determine $M[x, S]$ if all the values are known for the children of x ?

Nice tree decompositions

Definition

A rooted tree decomposition is nice if every node x is one of the following 4 types:

- Leaf: no children, $\left|B_{x}\right|=1$
- Introduce: 1 child y with $B_{x}=B_{y} \cup\{v\}$ for some vertex v
- Forget: 1 child y with $B_{x}=B_{y} \backslash\{v\}$ for some vertex v
- Join: 2 children y_{1}, y_{2} with $B_{x}=B_{y_{1}}=B_{y_{2}}$

Nice tree decompositions

Definition

A rooted tree decomposition is nice if every node x is one of the following 4 types:

- Leaf: no children, $\left|B_{x}\right|=1$
- Introduce: 1 child y with $B_{x}=B_{y} \cup\{v\}$ for some vertex v
- Forget: 1 child y with $B_{x}=B_{y} \backslash\{v\}$ for some vertex v
- Join: 2 children y_{1}, y_{2} with $B_{x}=B_{y_{1}}=B_{y_{2}}$

Theorem

A tree decomposition of width w and n nodes can be turned into a nice tree decomposition of width w and $O(w n)$ nodes in time $O\left(w^{2} n\right)$.

Weighted Max Independent Set and nice tree decompositions

- Leaf: no children, $\left|B_{x}\right|=1$ Trivial!
- Introduce: 1 child y with $B_{x}=B_{y} \cup\{v\}$ for some vertex v

$$
m[x, S]= \begin{cases}m[y, S] & \text { if } v \notin S, \\ m[y, S \backslash\{v\}]+w(v) & \text { if } v \in S \text { but } v \text { has no } \\ \text { neighbor in } S, \\ -\infty & \text { if } S \text { contains } v \text { and its neighbor. }\end{cases}
$$

Weighted Max Independent Set and nice tree decompositions

- Forget: 1 child y with $B_{x}=B_{y} \backslash\{v\}$ for some vertex v

$$
m[x, S]=\max \{m[y, S], m[y, S \cup\{v\}]\}
$$

- Join: 2 children y_{1}, y_{2} with $B_{x}=B_{y_{1}}=B_{y_{2}}$

$$
m[x, S]=m\left[y_{1}, S\right]+m\left[y_{2}, S\right]-w(S)
$$

Weighted Max Independent Set and nice tree decompositions

- Forget: 1 child y with $B_{x}=B_{y} \backslash\{v\}$ for some vertex v

$$
m[x, S]=\max \{m[y, S], m[y, S \cup\{v\}]\}
$$

- Join: 2 children y_{1}, y_{2} with $B_{x}=B_{y_{1}}=B_{y_{2}}$

$$
m[x, S]=m\left[y_{1}, S\right]+m\left[y_{2}, S\right]-w(S)
$$

There are at most $2^{w+1} \cdot n$ subproblems $m[x, S]$ and each subproblem can be solved in $w^{O(1)}$ time (assuming the children are already solved).
\Downarrow
Running time is $O\left(2^{w} \cdot w^{O(1)} \cdot n\right)$.

3-COLORING and tree decompositions

Theorem

Given a tree decomposition of width $w, 3$-Coloring can be solved in $O\left(3^{w} \cdot w^{O(1)} \cdot n\right)$.
B_{x} : vertices appearing in node x.
V_{x} : vertices appearing in the subtree rooted at x.

For every node x and coloring $c: B_{x} \rightarrow$ $\{1,2,3\}$, we compute the Boolean value $E[x, c]$, which is true if and only if c can be extended to a proper 3-coloring of V_{x}.

3-COLORING and tree decompositions

Theorem

Given a tree decomposition of width $w, 3$-Coloring can be solved in $O\left(3^{w} \cdot w^{O(1)} \cdot n\right)$.
B_{x} : vertices appearing in node x.
V_{x} : vertices appearing in the subtree rooted at x.

For every node x and coloring $c: B_{x} \rightarrow$ $\{1,2,3\}$, we compute the Boolean value $E[x, c]$, which is true if and only if c can be extended to a proper 3-coloring of V_{x}.

How to determine $E[x, c]$ if all the values are known for the children of x ?

3-Coloring and nice tree decompositions

- Leaf: no children, $\left|B_{x}\right|=1$

Trivial!

- Introduce: 1 child y with $B_{x}=B_{y} \cup\{v\}$ for some vertex v If $c(v) \neq c(u)$ for every neighbor u of v, then $E[x, c]=E\left[y, c^{\prime}\right]$, where c^{\prime} is c restricted to B_{y}.
- Forget: 1 child y with $B_{x}=B_{y} \backslash\{v\}$ for some vertex v $E[x, c]$ is true if $E\left[y, c^{\prime}\right]$ is true for one of the 3 extensions of c to B_{y}.
- Join: 2 children y_{1}, y_{2} with $B_{x}=B_{y_{1}}=B_{y_{2}}$ $E[x, c]=E\left[y_{1}, c\right] \wedge E\left[y_{2}, c\right]$

3-Coloring and nice tree decompositions

- Leaf: no children, $\left|B_{x}\right|=1$

Trivial!

- Introduce: 1 child y with $B_{x}=B_{y} \cup\{v\}$ for some vertex v If $c(v) \neq c(u)$ for every neighbor u of v, then $E[x, c]=E\left[y, c^{\prime}\right]$, where c^{\prime} is c restricted to B_{y}.
- Forget: 1 child y with $B_{x}=B_{y} \backslash\{v\}$ for some vertex v $E[x, c]$ is true if $E\left[y, c^{\prime}\right]$ is true for one of the 3 extensions of c to B_{y}.
- Join: 2 children y_{1}, y_{2} with $B_{x}=B_{y_{1}}=B_{y_{2}}$ $E[x, c]=E\left[y_{1}, c\right] \wedge E\left[y_{2}, c\right]$

There are at most $3^{w+1} \cdot n$ subproblems $E[x, c]$ and each subproblem can be solved in $w^{O(1)}$ time (assuming the children are already solved).
\Rightarrow Running time is $O\left(3^{w} \cdot w^{O(1)} \cdot n\right)$.
$\Rightarrow 3$-Coloring is FPT parameterized by treewidth.

Monadic Second Order Logic

Extended Monadic Second Order Logic (EMSO)
A logical language on graphs consisting of the following:

- Logical connectives $\wedge, \vee, \rightarrow, \neg,=, \neq$
- quantifiers \forall, \exists over vertex/edge variables
- predicate $\operatorname{adj}(u, v)$: vertices u and v are adjacent
- predicate inc (e, v) : edge e is incident to vertex v
- quantifiers \forall, \exists over vertex/edge set variables
- \in, \subseteq for vertex/edge sets

Example:
The formula

$$
\exists C \subseteq V \exists v_{0} \in C \forall v \in C \exists u_{1}, u_{2} \in C\left(u_{1} \neq u_{2} \wedge \operatorname{adj}\left(u_{1}, v\right) \wedge \operatorname{adj}\left(u_{2}, v\right)\right)
$$

is true on graph G if and only if ...

Monadic Second Order Logic

Extended Monadic Second Order Logic (EMSO)
A logical language on graphs consisting of the following:

- Logical connectives $\wedge, \vee, \rightarrow, \neg,=, \neq$
- quantifiers \forall, \exists over vertex/edge variables
- predicate $\operatorname{adj}(u, v)$: vertices u and v are adjacent
- predicate inc (e, v) : edge e is incident to vertex v
- quantifiers \forall, \exists over vertex/edge set variables
- \in, \subseteq for vertex/edge sets

Example:
The formula

$$
\exists C \subseteq V \exists v_{0} \in C \forall v \in C \exists u_{1}, u_{2} \in C\left(u_{1} \neq u_{2} \wedge \operatorname{adj}\left(u_{1}, v\right) \wedge \operatorname{adj}\left(u_{2}, v\right)\right)
$$

is true on graph G if and only if G has a cycle.

Courcelle's Theorem

Courcelle's Theorem

If a graph property can be expressed in EMSO, then for every fixed $w \geq 1$, there is a linear-time algorithm for testing this property on graphs having treewidth at most w.

Note: The constant depending on w can be very large (double, triple exponential etc.), therefore a direct dynamic programming algorithm can be more efficient.

Courcelle's Theorem

Courcelle's Theorem

If a graph property can be expressed in EMSO, then for every fixed $w \geq 1$, there is a linear-time algorithm for testing this property on graphs having treewidth at most w.

Note: The constant depending on w can be very large (double, triple exponential etc.), therefore a direct dynamic programming algorithm can be more efficient.

If we can express a property in EMSO, then we immediately get that testing this property is FPT parameterized by the treewidth w of the input graph.

Can we express 3-Coloring and Hamiltonian Cycle in EMSO?

Using Courcelle's Theorem

$$
\begin{aligned}
& \text { 3-COLORING } \\
& \exists C_{1}, C_{2}, C_{3} \subseteq V\left(\forall v \in V\left(v \in C_{1} \vee v \in C_{2} \vee v \in C_{3}\right)\right) \wedge(\forall u, v \in \\
& V \operatorname{adj}(u, v) \rightarrow\left(\neg\left(u \in C_{1} \wedge v \in C_{1}\right) \wedge \neg\left(u \in C_{2} \wedge v \in C_{2}\right) \wedge \neg(u \in\right. \\
& \left.\left.\left.C_{3} \wedge v \in C_{3}\right)\right)\right)
\end{aligned}
$$

Using Courcelle's Theorem

3-Coloring

$\exists C_{1}, C_{2}, C_{3} \subseteq V\left(\forall v \in V\left(v \in C_{1} \vee v \in C_{2} \vee v \in C_{3}\right)\right) \wedge(\forall u, v \in$ $\vee \operatorname{adj}(u, v) \rightarrow\left(\neg\left(u \in C_{1} \wedge v \in C_{1}\right) \wedge \neg\left(u \in C_{2} \wedge v \in C_{2}\right) \wedge \neg(u \in\right.$ $\left.\left.C_{3} \wedge v \in C_{3}\right)\right)$)

Hamiltonian Cycle

$\exists H \subseteq E(\operatorname{spanning}(H) \wedge(\forall v \in V \operatorname{degree} 2(H, v)))$
degree $0(H, v):=\neg \exists e \in H$ inc (e, v)
degree1 $(H, v):=\neg \operatorname{degree} 0(H, v) \wedge\left(\neg \exists e_{1}, e_{2} \in H\left(e_{1} \neq\right.\right.$
$\left.\left.e_{2} \wedge \operatorname{inc}\left(e_{1}, v\right) \wedge \operatorname{inc}\left(e_{2}, v\right)\right)\right)$
degree $2(H, v):=\neg \operatorname{degree} 0(H, v) \wedge \neg \operatorname{degree} 1(H, v) \wedge\left(\neg \exists e_{1}, e_{2}, e_{3} \in\right.$ $\left.\left.H\left(e_{1} \neq e_{2} \wedge e_{2} \neq e_{3} \wedge e_{1} \neq e_{3} \wedge \operatorname{inc}\left(e_{1}, v\right) \wedge \operatorname{inc}\left(e_{2}, v\right) \wedge \operatorname{inc}\left(e_{3}, v\right)\right)\right)\right)$ spanning $(H):=\forall u, v \in V \exists P \subseteq H \forall x \in V(((x=u \vee x=$ $v) \wedge \operatorname{degree} 1(P, x)) \vee(x \neq u \wedge x \neq v \wedge(\operatorname{degree} 0(P, x) \vee \operatorname{degree} 2(P, x))))$

Minor

An operation similar to taking subgraphs:

Definition

Graph H is a minor of $G(H \leq G)$ if H can be obtained from G by deleting edges, deleting vertices, and contracting edges.

Properties of treewidth

Fact: Treewidth does not increase if we delete edges, delete vertices, or contract edges.
\Rightarrow If F is a minor of G, then the treewidth of F is at most the treewidth of G.

Properties of treewidth

Fact: Treewidth does not increase if we delete edges, delete vertices, or contract edges.
\Rightarrow If F is a minor of G, then the treewidth of F is at most the treewidth of G.

Fact: For every clique K, there is a bag B with $K \subseteq B$.
Fact: The treewidth of the k-clique is $k-1$.

Properties of treewidth

Fact: Treewidth does not increase if we delete edges, delete vertices, or contract edges.
\Rightarrow If F is a minor of G, then the treewidth of F is at most the treewidth of G.

Fact: For every clique K, there is a bag B with $K \subseteq B$.
Fact: The treewidth of the k-clique is $k-1$.
Fact: For every $k \geq 2$, the treewidth of the $k \times k$ grid is exactly k.

Excluded Grid Theorem

Excluded Grid Theorem [Diestel et al. 1999]

If the treewidth of G is at least $k^{4 k^{2}(k+2)}$, then G has a $k \times k$ grid minor.

(A $k^{O(1)}$ bound was achieved recently [Chekuri and Chuznoy 2014]!)

Excluded Grid Theorem

Excluded Grid Theorem [Diestel et al. 1999]

If the treewidth of G is at least $k^{4 k^{2}(k+2)}$, then G has a $k \times k$ grid minor.

Observation: Every planar graph is the minor of a sufficiently large grid.

Consequence

If H is planar, then every H-minor free graph has treewidth at most $f(H)$.

Excluded Grid Theorem

Excluded Grid Theorem [Diestel et al. 1999]

If the treewidth of G is at least $k^{4 k^{2}(k+2)}$, then G has a $k \times k$ grid minor.

A large grid minor is a "witness" that treewidth is large, but the relation is approximate:

Planar Excluded Grid Theorem

For planar graphs, we get linear instead of exponential dependence:
Theorem [Robertson, Seymour, Thomas 1994]
Every planar graph with treewidth at least $5 k$ has a $k \times k$ grid minor.

Bidimensionality

A powerful framework for efficient algorithms on planar graphs.

Setup:

- Let $x(G)$ be some graph invariant (i.e., an integer associated with each graph).
- Given G and k, we want to decide if $x(G) \leq k($ or $x(G) \geq k)$.
- Typical examples:
- Maximum independent set size.
- Minimum vertex cover size.
- Length of the longest path.
- Minimum dominating set size.
- Minimum feedback vertex set size.

Bidimensionality [Demaine, Fomin, Hajiaghayi, Thilikos 2005]

For many natural invariants, we can do this in time $2^{O(\sqrt{k})} \cdot n^{O(1)}$ on planar graphs.

Bidimensionality for Vertex Cover

Observation: If the treewidth of a planar graph G is at least $5 \sqrt{2 k}$ \Rightarrow It has a $\sqrt{2 k} \times \sqrt{2 k}$ grid minor (Planar Excluded Grid Theorem)
\Rightarrow The grid has a matching of size k
\Rightarrow Vertex cover size is at least k in the grid.
\Rightarrow Vertex cover size is at least k in G.

Bidimensionality for Vertex Cover

Observation: If the treewidth of a planar graph G is at least $5 \sqrt{2 k}$ \Rightarrow It has a $\sqrt{2 k} \times \sqrt{2 k}$ grid minor (Planar Excluded Grid Theorem) \Rightarrow The grid has a matching of size k
\Rightarrow Vertex cover size is at least k in the grid.
\Rightarrow Vertex cover size is at least k in G.
We use this observation to solve Vertex Cover on planar graphs:

- Set $w:=5 \sqrt{2 k}$.
- Find a 4 -approximate tree decomposition.
- If treewidth is at least w : we answer "vertex cover is $\geq k$."
- If we get a tree decomposition of width $4 w$, then we can solve the problem in time

$$
2^{O(w)} \cdot n^{O(1)}=2^{O(\sqrt{k})} \cdot n^{O(1)}
$$

Bidimensionality

Definition

A graph invariant $x(G)$ is minor-bidimensional if

- $x\left(G^{\prime}\right) \leq x(G)$ for every minor G^{\prime} of G, and
- If G_{k} is the $k \times k$ grid, then $x\left(G_{k}\right) \geq c k^{2}$ (for some constant $c>0$).

Examples: minimum vertex cover, length of the longest path, feedback vertex set are minor-bidimensional.

Bidimensionality

Definition

A graph invariant $x(G)$ is minor-bidimensional if

- $x\left(G^{\prime}\right) \leq x(G)$ for every minor G^{\prime} of G, and
- If G_{k} is the $k \times k$ grid, then $x\left(G_{k}\right) \geq c k^{2}$ (for some constant $c>0$).

Examples: minimum vertex cover, length of the longest path, feedback vertex set are minor-bidimensional.

Bidimensionality

Definition

A graph invariant $x(G)$ is minor-bidimensional if

- $x\left(G^{\prime}\right) \leq x(G)$ for every minor G^{\prime} of G, and
- If G_{k} is the $k \times k$ grid, then $x\left(G_{k}\right) \geq c k^{2}$ (for some constant $c>0$).

Examples: minimum vertex cover, length of the longest path, feedback vertex set are minor-bidimensional.

Bidimensionality (cont.)

We can answer " $x(G) \geq k$?" for a minor-bidimensional invariant the following way:

- Set $w:=c \sqrt{k}$ for an appropriate constant c.
- Use the 4-approximation tree decomposition algorithm.
- If treewidth is at least $w: x(G)$ is at least k.
- If we get a tree decomposition of width $4 w$, then we can solve the problem using dynamic programming on the tree decomposition.
Running time:
- If we can solve the problem on tree decomposition of width w in time $2^{O(w)} \cdot n^{O(1)}$, then the running time is $2^{O(\sqrt{k})} \cdot n^{O(1)}$.
- If we can solve the problem on tree decomposition of width w in time $w^{O(w)} \cdot n^{O(1)}$, then the running time is $2^{O(\sqrt{k} \log k)} \cdot n^{O(1)}$.

Treewidth

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:
(1) If u and v are neighbors, then there is a bag containing both of them.
(2) For every v, the bags containing v form a connected subtree.

Width of the decomposition: largest bag size -1 .
treewidth: width of the best decomposition.

