Treewidth

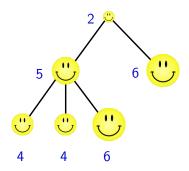
Dániel Marx

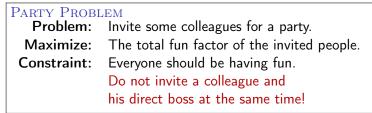
Recent Advances in Parameterized Complexity Tel Aviv, Israel, December 3-7, 2017

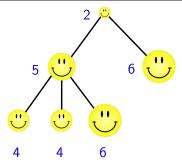
Treewidth

- Treewidth: a notion of "treelike" graphs.
- Some combinatorial properties.
- Algorithmic results.
 - Algorithms on graphs of bounded treewidth.
 - Applications for other problems.

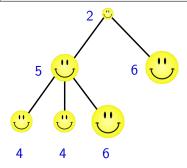
Party Problem	
Problem:	Invite some colleagues for a party.
Maximize:	The total fun factor of the invited people.
Constraint:	Everyone should be having fun.





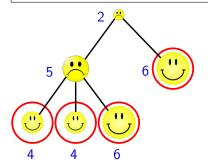


PARTY PROBLEMProblem:Invite some colleagues for a party.Maximize:The total fun factor of the invited people.Constraint:Everyone should be having fun.Do not invite a colleague and
his direct boss at the same time!



- Input: A tree with weights on the vertices.
- Task: Find an independent set of maximum weight.

PARTY PROBLEM Problem: Invite some colleagues for a party. Maximize: The total fun factor of the invited people. Constraint: Everyone should be having fun. Do not invite a colleague and his direct boss at the same time!



- Input: A tree with weights on the vertices.
- Task: Find an independent set of maximum weight.

Solving the Party Problem

Dynamic programming paradigm:

We solve a large number of subproblems that depend on each other. The answer is a single subproblem.

Subproblems:

- T_{v} : the subtree rooted at v.
- A[v]: max. weight of an independent set in T_v
- B[v]: max. weight of an independent set in T_v that does not contain v

Goal: determine A[r] for the root r.

Solving the Party Problem

Subproblems:

- T_{v} : the subtree rooted at v.
- A[v]: max. weight of an independent set in T_v
- B[v]: max. weight of an independent set in T_v that does not contain v

Recurrence:

Assume v_1, \ldots, v_k are the children of v. Use the recurrence relations

$$B[v] = \sum_{i=1}^{k} A[v_i]$$

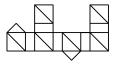
$$A[v] = \max\{B[v], w(v) + \sum_{i=1}^{k} B[v_i]\}$$

The values A[v] and B[v] can be calculated in a bottom-up order (the leaves are trivial).

How could we define that a graph is "treelike"?

How could we define that a graph is "treelike"?

• Number of cycles is bounded.



good

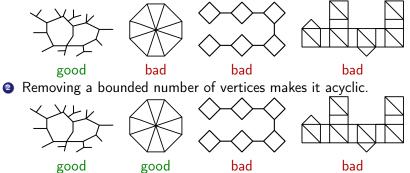
bad

bad

bad

How could we define that a graph is "treelike"?

• Number of cycles is bounded.

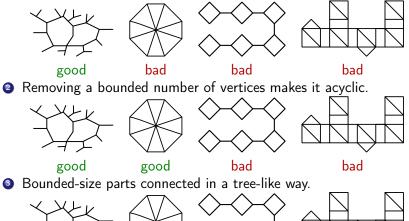


How could we define that a graph is "treelike"?

bad

• Number of cycles is bounded.

bad



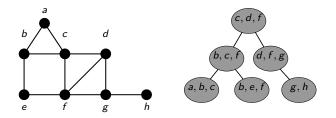
good

5

good

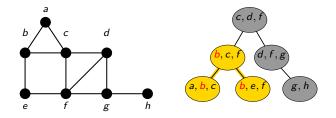
Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

- If u and v are neighbors, then there is a bag containing both of them.
- 2 For every v, the bags containing v form a connected subtree.



Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

- If u and v are neighbors, then there is a bag containing both of them.
- 2 For every v, the bags containing v form a connected subtree.



Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

- If u and v are neighbors, then there is a bag containing both of them.
- 2 For every v, the bags containing v form a connected subtree.

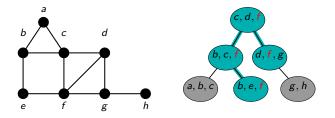


Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

If u and v are neighbors, then there is a bag containing both of them.

② For every v, the bags containing v form a connected subtree. Width of the decomposition: largest bag size -1.

treewidth: width of the best decomposition.

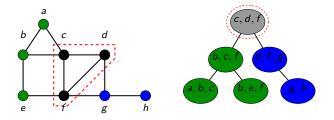


Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

If u and v are neighbors, then there is a bag containing both of them.

② For every v, the bags containing v form a connected subtree. Width of the decomposition: largest bag size -1.

treewidth: width of the best decomposition.



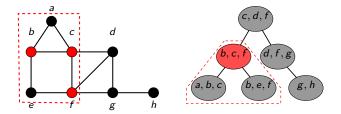
Each bag is a separator.

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

If u and v are neighbors, then there is a bag containing both of them.

② For every v, the bags containing v form a connected subtree. Width of the decomposition: largest bag size -1.

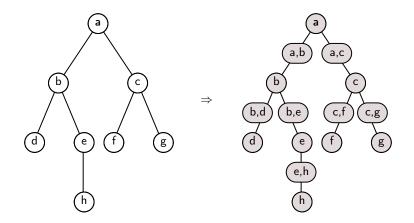
treewidth: width of the best decomposition.



A subtree communicates with the outside world only via the root of the subtree.

Treewidth

Fact: treewidth = 1 \iff graph is a forest



Exercise: A cycle cannot have a tree decomposition of width 1.

Treewidth - outline

Basic algorithms

- 2 Combinatorial properties
- Applications

Finding tree decompositions

Hardness:

Theorem [Arnborg, Corneil, Proskurowski 1987]

It is NP-hard to determine the treewidth of a graph (given a graph G and an integer w, decide if the treewidth of G is at most w).

Fixed-parameter tractability:

Theorem [Bodlaender 1996]

There is a $2^{O(w^3)} \cdot n$ time algorithm that finds a tree decomposition of width w (if exists).

Consequence:

If we want an FPT algorithm parameterized by treewidth w of the input graph, then we can assume that a tree decomposition of width w is available.

Finding tree decompositions — approximately

Sometimes we can get better dependence on treewidth using approximation.

FPT approximation:

Theorem [Robertson and Seymour]

There is a $O(3^{3w} \cdot w \cdot n^2)$ time algorithm that finds a tree decomposition of width 4w + 1, if the treewidth of the graph is at most w.

Polynomial-time approximation:

Theorem [Feige, Hajiaghayi, Lee 2008]

There is a polynomial-time algorithm that finds a tree decomposition of width $O(w\sqrt{\log w})$, if the treewidth of the graph is at most w.

WEIGHTED MAX INDEPENDENT SET and treewidth

Theorem

Given a tree decomposition of width w, WEIGHTED MAX INDEPENDENT SET can be solved in time $O(2^w \cdot w^{O(1)} \cdot n)$.

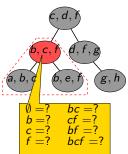
 B_x : vertices appearing in node x.

 V_x : vertices appearing in the subtree rooted at x.

Generalizing our solution for trees:

Instead of computing 2 values A[v], B[v] for each **vertex** of the graph, we compute $2^{|B_x|} \leq 2^{w+1}$ values for each bag B_x .

M[x, S]:the max. weight of an independent set $I \subseteq V_x$ with $I \cap B_x = S$.



WEIGHTED MAX INDEPENDENT SET and treewidth

Theorem

Given a tree decomposition of width w, WEIGHTED MAX INDEPENDENT SET can be solved in time $O(2^w \cdot w^{O(1)} \cdot n)$.

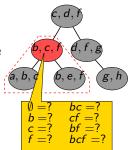
 B_x : vertices appearing in node x.

 V_x : vertices appearing in the subtree rooted at x.

Generalizing our solution for trees:

Instead of computing 2 values A[v], B[v] for each **vertex** of the graph, we compute $2^{|B_x|} \leq 2^{w+1}$ values for each bag B_x .

M[x, S]: the max. weight of an independent set $I \subseteq V_x$ with $I \cap B_x = S$.



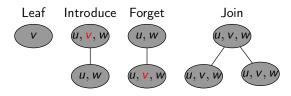
How to determine M[x, S] if all the values are known for the children of x?

Nice tree decompositions

Definition

A rooted tree decomposition is **nice** if every node x is one of the following 4 types:

- Leaf: no children, $|B_x| = 1$
- Introduce: 1 child y with $B_x = B_y \cup \{v\}$ for some vertex v
- Forget: 1 child y with $B_x = B_y \setminus \{v\}$ for some vertex v
- Join: 2 children y_1 , y_2 with $B_x = B_{y_1} = B_{y_2}$



Nice tree decompositions

Definition

A rooted tree decomposition is **nice** if every node x is one of the following 4 types:

- Leaf: no children, $|B_x| = 1$
- Introduce: 1 child y with $B_x = B_y \cup \{v\}$ for some vertex v
- Forget: 1 child y with $B_x = B_y \setminus \{v\}$ for some vertex v
- Join: 2 children y_1 , y_2 with $B_x = B_{y_1} = B_{y_2}$

Theorem

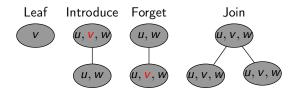
A tree decomposition of width w and n nodes can be turned into a nice tree decomposition of width w and O(wn) nodes in time $O(w^2n)$.

WEIGHTED MAX INDEPENDENT SET and nice tree decompositions

- Leaf: no children, $|B_x| = 1$ Trivial!
- Introduce: 1 child y with $B_x = B_y \cup \{v\}$ for some vertex v

$$m[x,S] = \begin{cases} m[y,S] \\ m[y,S \setminus \{v\}] + w(v) \\ -\infty \end{cases}$$

if $v \notin S$, if $v \in S$ but v has no neighbor in S, if S contains v and its neighbor.



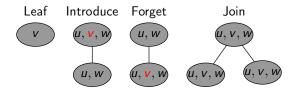
WEIGHTED MAX INDEPENDENT SET and nice tree decompositions

• Forget: 1 child y with $B_x = B_y \setminus \{v\}$ for some vertex v

 $m[x,S] = \max\{m[y,S], m[y,S \cup \{v\}]\}$

• Join: 2 children y_1 , y_2 with $B_x = B_{y_1} = B_{y_2}$

 $m[x, S] = m[y_1, S] + m[y_2, S] - w(S)$



WEIGHTED MAX INDEPENDENT SET and nice tree decompositions

• Forget: 1 child y with $B_x = B_y \setminus \{v\}$ for some vertex v

 $m[x,S] = \max\{m[y,S], m[y,S \cup \{v\}]\}$

• Join: 2 children y_1 , y_2 with $B_x = B_{y_1} = B_{y_2}$

 $m[x, S] = m[y_1, S] + m[y_2, S] - w(S)$

There are at most $2^{w+1} \cdot n$ subproblems m[x, S] and each subproblem can be solved in $w^{O(1)}$ time (assuming the children are already solved). Running time is $O(2^w \cdot w^{O(1)} \cdot n)$.

$\operatorname{3-COLORING}$ and tree decompositions

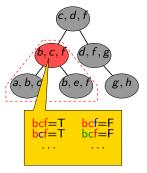
Theorem

Given a tree decomposition of width w, 3-COLORING can be solved in $O(3^w \cdot w^{O(1)} \cdot n)$.

 B_{x} : vertices appearing in node x.

 V_x : vertices appearing in the subtree rooted at x.

For every node x and coloring $c : B_x \rightarrow \{1, 2, 3\}$, we compute the Boolean value E[x, c], which is true if and only if c can be extended to a proper 3-coloring of V_x .



$\operatorname{3-COLORING}$ and tree decompositions

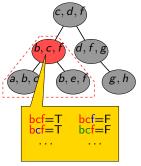
Theorem

Given a tree decomposition of width w, 3-COLORING can be solved in $O(3^w \cdot w^{O(1)} \cdot n)$.

 B_x : vertices appearing in node x.

 V_x : vertices appearing in the subtree rooted at x.

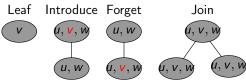
For every node x and coloring $c : B_x \rightarrow \{1, 2, 3\}$, we compute the Boolean value E[x, c], which is true if and only if c can be extended to a proper 3-coloring of V_x .



How to determine E[x, c] if all the values are known for the children of x?

$\operatorname{3-COLORING}$ and nice tree decompositions

- Leaf: no children, $|B_x| = 1$ Trivial!
- Introduce: 1 child y with $B_x = B_y \cup \{v\}$ for some vertex v If $c(v) \neq c(u)$ for every neighbor u of v, then E[x, c] = E[y, c'], where c' is c restricted to B_y .
- Forget: 1 child y with B_x = B_y \ {v} for some vertex v
 E[x, c] is true if E[y, c'] is true for one of the 3 extensions of c to B_y.
- Join: 2 children y_1 , y_2 with $B_x = B_{y_1} = B_{y_2}$ $E[x, c] = E[y_1, c] \land E[y_2, c]$



$\operatorname{3-COLORING}$ and nice tree decompositions

- Leaf: no children, $|B_x| = 1$ Trivial!
- Introduce: 1 child y with $B_x = B_y \cup \{v\}$ for some vertex v If $c(v) \neq c(u)$ for every neighbor u of v, then E[x, c] = E[y, c'], where c' is c restricted to B_y .
- Forget: 1 child y with $B_x = B_y \setminus \{v\}$ for some vertex v E[x, c] is true if E[y, c'] is true for one of the 3 extensions of c to B_y .
- Join: 2 children y_1 , y_2 with $B_x = B_{y_1} = B_{y_2}$ $E[x, c] = E[y_1, c] \land E[y_2, c]$

There are at most $3^{w+1} \cdot n$ subproblems E[x, c] and each subproblem can be solved in $w^{O(1)}$ time (assuming the children are already solved).

- \Rightarrow Running time is $O(3^w \cdot w^{O(1)} \cdot n)$.
- \Rightarrow 3-COLORING is FPT parameterized by treewidth.

Monadic Second Order Logic

Extended Monadic Second Order Logic (EMSO)

A logical language on graphs consisting of the following:

- Logical connectives \land , \lor , \rightarrow , \neg , =, \neq
- quantifiers \forall , \exists over vertex/edge variables
- predicate adj(u, v): vertices u and v are adjacent
- predicate inc(e, v): edge e is incident to vertex v
- quantifiers \forall , \exists over vertex/edge set variables
- \in , \subseteq for vertex/edge sets

Example:

The formula

 $\exists C \subseteq V \exists v_0 \in C \forall v \in C \ \exists u_1, u_2 \in C(u_1 \neq u_2 \land \mathsf{adj}(u_1, v) \land \mathsf{adj}(u_2, v))$

is true on graph G if and only if ...

Monadic Second Order Logic

Extended Monadic Second Order Logic (EMSO)

A logical language on graphs consisting of the following:

- Logical connectives \land , \lor , \rightarrow , \neg , =, \neq
- quantifiers \forall , \exists over vertex/edge variables
- predicate adj(u, v): vertices u and v are adjacent
- predicate inc(e, v): edge e is incident to vertex v
- quantifiers \forall , \exists over vertex/edge set variables
- \in , \subseteq for vertex/edge sets

Example:

The formula

 $\exists C \subseteq V \exists v_0 \in C \forall v \in C \ \exists u_1, u_2 \in C(u_1 \neq u_2 \land \mathsf{adj}(u_1, v) \land \mathsf{adj}(u_2, v))$

is true on graph G if and only if G has a cycle.

Courcelle's Theorem

Courcelle's Theorem

If a graph property can be expressed in EMSO, then for every fixed $w \ge 1$, there is a linear-time algorithm for testing this property on graphs having treewidth at most w.

Note: The constant depending on w can be very large (double, triple exponential etc.), therefore a direct dynamic programming algorithm can be more efficient.

Courcelle's Theorem

Courcelle's Theorem

If a graph property can be expressed in EMSO, then for every fixed $w \ge 1$, there is a linear-time algorithm for testing this property on graphs having treewidth at most w.

Note: The constant depending on w can be very large (double, triple exponential etc.), therefore a direct dynamic programming algorithm can be more efficient.

If we can express a property in EMSO, then we immediately get that testing this property is FPT parameterized by the treewidth w of the input graph.

Can we express 3-COLORING and HAMILTONIAN CYCLE in EMSO?

Using Courcelle's Theorem

3-COLORING

$$\exists C_1, C_2, C_3 \subseteq V (\forall v \in V (v \in C_1 \lor v \in C_2 \lor v \in C_3)) \land (\forall u, v \in V adj(u, v) \rightarrow (\neg(u \in C_1 \land v \in C_1) \land \neg(u \in C_2 \land v \in C_2) \land \neg(u \in C_3 \land v \in C_3)))$$

Using Courcelle's Theorem

3-COLORING

 $\exists C_1, C_2, C_3 \subseteq V (\forall v \in V (v \in C_1 \lor v \in C_2 \lor v \in C_3)) \land (\forall u, v \in V \text{ adj}(u, v) \rightarrow (\neg(u \in C_1 \land v \in C_1) \land \neg(u \in C_2 \land v \in C_2) \land \neg(u \in C_3 \land v \in C_3)))$

HAMILTONIAN CYCLE

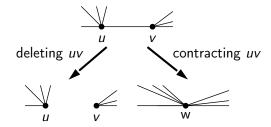
 $\exists H \subseteq E (\text{spanning}(H) \land (\forall v \in V \text{ degree2}(H, v)))$ degree0(H, v) := $\neg \exists e \in H \text{ inc}(e, v)$ degree1(H, v) := $\neg \text{degree0}(H, v) \land (\neg \exists e_1, e_2 \in H (e_1 \neq e_2 \land \text{inc}(e_1, v) \land \text{inc}(e_2, v)))$ degree2(H, v) := $\neg \text{degree0}(H, v) \land \neg \text{degree1}(H, v) \land (\neg \exists e_1, e_2, e_3 \in H (e_1 \neq e_2 \land e_2 \neq e_3 \land e_1 \neq e_3 \land \text{inc}(e_1, v) \land \text{inc}(e_2, v) \land \text{inc}(e_3, v))))$ spanning(H) := $\forall u, v \in V \exists P \subseteq H \forall x \in V (((x = u \lor x = v) \land \text{degree1}(P, x)) \lor (x \neq u \land x \neq v \land (\text{degree0}(P, x) \lor \text{degree2}(P, x))))$

Minor

An operation similar to taking subgraphs:

Definition

Graph *H* is a **minor** of G ($H \le G$) if *H* can be obtained from *G* by deleting edges, deleting vertices, and contracting edges.



Properties of treewidth

Fact: Treewidth does not increase if we delete edges, delete vertices, or contract edges.

 \Rightarrow If *F* is a **minor** of *G*, then the treewidth of *F* is at most the treewidth of *G*.

Properties of treewidth

Fact: Treewidth does not increase if we delete edges, delete vertices, or contract edges.

 \Rightarrow If *F* is a minor of *G*, then the treewidth of *F* is at most the treewidth of *G*.

Fact: For every clique *K*, there is a bag *B* with $K \subseteq B$.

Fact: The treewidth of the *k*-clique is k - 1.

Properties of treewidth

Fact: Treewidth does not increase if we delete edges, delete vertices, or contract edges.

 \Rightarrow If *F* is a minor of *G*, then the treewidth of *F* is at most the treewidth of *G*.

Fact: For every clique *K*, there is a bag *B* with $K \subseteq B$.

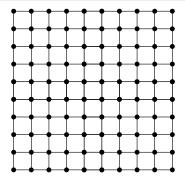
Fact: The treewidth of the *k*-clique is k - 1.

Fact: For every $k \ge 2$, the treewidth of the $k \times k$ grid is exactly k.

Excluded Grid Theorem

Excluded Grid Theorem [Diestel et al. 1999]

If the treewidth of G is at least $k^{4k^2(k+2)}$, then G has a $k \times k$ grid minor.



(A k^{O(1)} bound was achieved recently [Chekuri and Chuznoy 2014]!)

Excluded Grid Theorem

Excluded Grid Theorem [Diestel et al. 1999]

If the treewidth of G is at least $k^{4k^2(k+2)}$, then G has a $k \times k$ grid minor.

Observation: Every planar graph is the minor of a sufficiently large grid.

Consequence

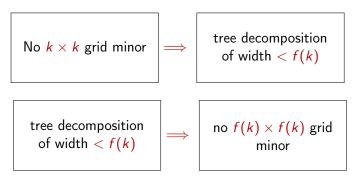
If H is planar, then every H-minor free graph has treewidth at most f(H).

Excluded Grid Theorem

Excluded Grid Theorem [Diestel et al. 1999]

If the treewidth of G is at least $k^{4k^2(k+2)}$, then G has a $k \times k$ grid minor.

A large grid minor is a "witness" that treewidth is large, but the relation is approximate:

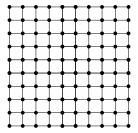


Planar Excluded Grid Theorem

For planar graphs, we get linear instead of exponential dependence:

Theorem [Robertson, Seymour, Thomas 1994]

Every **planar graph** with treewidth at least 5k has a $k \times k$ grid minor.



A powerful framework for efficient algorithms on planar graphs.

Setup:

- Let x(G) be some graph invariant (i.e., an integer associated with each graph).
- Given G and k, we want to decide if $x(G) \le k$ (or $x(G) \ge k$).
- Typical examples:
 - Maximum independent set size.
 - Minimum vertex cover size.
 - Length of the longest path.
 - Minimum dominating set size.
 - Minimum feedback vertex set size.

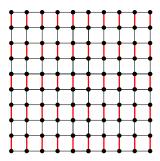
Bidimensionality [Demaine, Fomin, Hajiaghayi, Thilikos 2005]

For many natural invariants, we can do this in time $2^{O(\sqrt{k})} \cdot n^{O(1)}$ on planar graphs.

Bidimensionality for $\operatorname{VERTEX}\,\operatorname{COVER}$

Observation: If the treewidth of a planar graph *G* is at least $5\sqrt{2k}$ \Rightarrow It has a $\sqrt{2k} \times \sqrt{2k}$ grid minor (Planar Excluded Grid Theorem) \Rightarrow The grid has a matching of size *k*

- \Rightarrow Vertex cover size is at least k in the grid.
- \Rightarrow Vertex cover size is at least k in G.



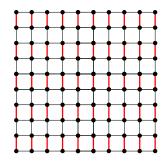
Bidimensionality for $\operatorname{VERTEX}\,\operatorname{COVER}$

Observation: If the treewidth of a planar graph *G* is at least $5\sqrt{2k}$ \Rightarrow It has a $\sqrt{2k} \times \sqrt{2k}$ grid minor (Planar Excluded Grid Theorem) \rightarrow The grid has a matching of size *k*.

- \Rightarrow The grid has a matching of size k
- \Rightarrow Vertex cover size is at least k in the grid.
- \Rightarrow Vertex cover size is at least k in G.

We use this observation to solve $\operatorname{Vertex}\,\operatorname{Cover}$ on planar graphs:

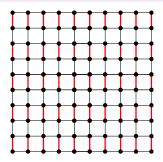
- Set $w := 5\sqrt{2k}$.
- Find a 4-approximate tree decomposition.
 - If treewidth is at least w: we answer "vertex cover is ≥ k."
 - If we get a tree decomposition of width 4w, then we can solve the problem in time $2^{O(w)} \cdot n^{O(1)} = 2^{O(\sqrt{k})} \cdot n^{O(1)}$.



Definition

A graph invariant x(G) is minor-bidimensional if

- $x(G') \le x(G)$ for every minor G' of G, and
- If G_k is the $k \times k$ grid, then $x(G_k) \ge ck^2$ (for some constant c > 0).

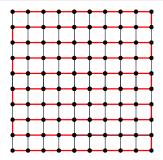


Examples: minimum vertex cover, length of the longest path, feedback vertex set are minor-bidimensional.

Definition

A graph invariant x(G) is minor-bidimensional if

- $x(G') \le x(G)$ for every minor G' of G, and
- If G_k is the $k \times k$ grid, then $x(G_k) \ge ck^2$ (for some constant c > 0).

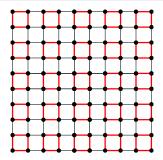


Examples: minimum vertex cover, length of the longest path, feedback vertex set are minor-bidimensional.

Definition

A graph invariant x(G) is minor-bidimensional if

- $x(G') \le x(G)$ for every minor G' of G, and
- If G_k is the $k \times k$ grid, then $x(G_k) \ge ck^2$ (for some constant c > 0).



Examples: minimum vertex cover, length of the longest path, feedback vertex set are minor-bidimensional.

Bidimensionality (cont.)

We can answer " $x(G) \ge k$?" for a minor-bidimensional invariant the following way:

- Set $w := c\sqrt{k}$ for an appropriate constant c.
- Use the 4-approximation tree decomposition algorithm.
 - If treewidth is at least w: x(G) is at least k.
 - If we get a tree decomposition of width 4w, then we can solve the problem using dynamic programming on the tree decomposition.

Running time:

- If we can solve the problem on tree decomposition of width w in time $2^{O(w)} \cdot n^{O(1)}$, then the running time is $2^{O(\sqrt{k})} \cdot n^{O(1)}$.
- If we can solve the problem on tree decomposition of width w in time $w^{O(w)} \cdot n^{O(1)}$, then the running time is $2^{O(\sqrt{k} \log k)} \cdot n^{O(1)}$.

Treewidth

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

If u and v are neighbors, then there is a bag containing both of them.

⁽²⁾ For every v, the bags containing v form a connected subtree.

Width of the decomposition: largest bag size -1.

treewidth: width of the best decomposition.

