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Steiner Tree

Steiner Tree
Given an edge-weighted graph G and set T ⊆ V (G ) of terminals,
find a minimum-weight tree in G containing every vertex of T .
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This talk

I will talk about two topics:
1 A classification result for directed Steiner problems.
2 How this fits into the general theme of systematically

classifying easy and hard graph problems.
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Steiner Tree

Some known results:
NP-hard
Easy 2-approximation: use a minimum spanning tree.
1.386-approximation [Byrka et al. 2013].
3k · nO(1) time algorithm for k terminals using dynamic
programming (i.e., fixed-parameter tractable parameterized by
the number of terminals)
Can be improved to 2k · nO(1) time using fast subset
convolution [Björklund et al. 2006].
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Steiner Forest
Steiner Forest
Given an edge-weighted graph G and a list (s1, t1), . . . , (sk , tk) of
pairs of terminals, find a minimum-weight forest in G that connects
si and ti for every 1 ≤ i ≤ k .

s1

s2

t1t2t3
s3

s4

t4 t5

s5

s6

t6

Fixed-parameter tractable parameterized by k : Guess a partition of
the 2k terminals (kO(k) = 2O(k log k)) possibilities) and solve a
Steiner Tree for each class of the partition.
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Variants of Steiner Tree
Steiner Tree

Connect all the terminals

Steiner Forest

Create connections
satisying every request

r

Directed Steiner
Network (DSN)

Strongly Connected
Steiner Subgraph (SCSS)

Make all the terminals
reachable from each other

Make every terminal
reachable from the root

Steiner Tree

Create connections
satisying every request
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Directed Steiner vs. SCSS

The DP for Steiner Tree generalizes to the directed version:

Directed Steiner Tree with k terminals can be solved in time
2k · nO(1).

SCSS seems to be much harder:

Theorem [Feldman and Ruhl 2006]

Strongly Connected Steiner Subgraph with k terminals
can be solved in time nO(k).

Theorem [Chitnis, Hajiaghayi, and M. 2014]

Assuming ETH, Strongly Connected Steiner Subgraph is
W[1]-hard and has no f (k)no(k/ log k) time algorithm for any
function f .
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Directed Steiner Network

Theorem [Feldman and Ruhl 2006]

Directed Steiner Network with k requests can be solved in
time nO(k).

Corollary: Strongly Connected Steiner Subgraph with k
terminals can be solved in time nO(k).

Proof is based on a “pebble game”: O(k) pebbles need to reach
their destinations using certain allowed moves, tracing the solution.
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Directed Steiner Network

A new combinatorial result:

Theorem [Feldmann and M. 2016]

[The underlying undireced graph of] every minimum cost solution
of Directed Steiner Network with k requests has cutwidth
and treewidth O(k).

A new algorithmic result:

Theorem [Feldmann and M. 2016]

If a Directed Steiner Network instance with k requests has
a minimum cost solution with treewidth w [of the underlying
undirected graph], then it can be solved in time f (k ,w) · nO(w).

Corollary: A new proof that DSN and SCSS can be solved in
time f (k)nO(k).
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Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

dcb

a

e f g h

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f

A subtree communicates with the outside world
only via the root of the subtree.
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Cutwidth

A graph G has cutwidth at most t if there is a layout (an ordering
of the vertices) where every “gap” is crossed by at most t edges.

Fact
Treewidth of G is at most the cutwidth of G

(So an upper bound on cutwidth is stronger than an upper bound
on treewidth!)
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Side trip: planar graphs

(
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Square root phenomenon

NP-hard problems become easier on planar graphs
and geometric objects, and usually exactly by a
square root factor.

Planar graphs Geometric objects
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Better exponential algorithms

Most NP-hard problems (e.g., 3-Coloring, Independent Set,
Hamiltonian Cycle, Steiner Tree, etc.) remain NP-hard on
planar graphs,1 so what do we mean by “easier”?

The running time is still exponential, but significantly smaller:

2O(n) ⇒ 2O(
√
n)

nO(k) ⇒ nO(
√
k)

2O(k) · nO(1) ⇒ 2O(
√
k) · nO(1)

1Notable exception: Max Cut is in P for planar graphs.
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Planar Steiner Problems

Square root phenomenon for SCSS:

Theorem [Chitnis, Hajiaghayi, M. 2014]

Strongly Connected Steiner Subgraph with k terminals
can be solved in time f (k)nO(

√
k) on planar graphs.

Proof by a complicated generalization of the Feldman-Ruhl pebble
game.

Lower bound:

Theorem [Chitnis, Hajiaghayi, M. 2014]

Assuming ETH, Strongly Connected Steiner Subgraph
with k terminals cannot be solved in time f (k)no(

√
k) on planar

graphs.
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Planar Strongly Connected Steiner Subgraph
Theorem [Feldmann and M. 2016]

Every minimum cost solution of SCSS with k terminals has
“distance O(k) from treewidth 2.”

Corollary
Every minimum cost solution of SCSS with k terminals has
treewidth O(

√
k) on planar graphs.
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Minors

Definition
Graph H is a minor of G (H ≤ G ) if H can be obtained from G by
deleting edges, deleting vertices, and contracting edges.

deleting uv

vu w

u v
contracting uv
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Planar Excluded Grid Theorem

Theorem [Robertson, Seymour, Thomas 1994]

Every planar graph with treewidth at least 5k has a k × k grid
minor.

Note: for general graphs, treewidth at least k19 · polylog(k)
guarantees a k × k grid minor (Julia’s talk yesterday).
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Planar Strongly Connected Steiner Subgraph
Theorem [Feldmann and M. 2016]

Every minimum cost solution of SCSS with k terminals has
“distance O(k) from treewidth 2.”

Observation: In a 3
√
k × 3

√
k , each of the k small 3× 3 grids

have to be hit to make it treewidth 2.

Corollary
Every minimum cost solution of SCSS with k terminals has
treewidth O(

√
k) on planar graphs.
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Planar Directed Steiner Network

No square root phenomenon for DSN:

Theorem [Chitnis, Hajiaghayi, M. 2014]

Directed Steiner Network with k requests is W[1]-hard on
planar graphs and (assuming ETH) cannot be solved in time
f (k)no(k).

Perhaps because the problem description is not fully planar?
(Requests do not respect planarity.)
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Side trip: planar graphs

)
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Special cases of Directed Steiner Network

Directed Steiner Tree and Strongly Connected
Steiner Subgraph are both restrictions of Directed Steiner
Network to certain type of patterns:

SCSSDirected Steiner Tree

Goal: characterize the patterns that give rise to FPT/W[1]-hard
problems.
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Patterns for Directed Steiner Network
Question:
What is the complexity of Directed Steiner Network for
this pattern?

Answer:
Directed Steiner Network has an nO(k) algorithm for k
requests, so it is polynomial-time solvable for every fixed pattern.
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Patterns for Directed Steiner Network
Goal: For every class of H of directed patterns, characterize the
complexity of Directed Steiner Network when restricted to
demand patterns from H.

Example:
If H is the class of all directed in-stars (or out-stars), then
H-DSN is FPT.
If H is the class of all directed cycles, then H-DSN is
W[1]-hard.

Main result:

Theorem [Feldmann and M. 2016]

For any class H of directed patterns,
if H has combinatorial property X, then H-DSN and
H-DSN is W[1]-hard otherwise.
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FPT special cases

What classes H give FPT cases of H-DSN?

We know that out-stars are FPT.
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FPT special cases

What classes H give FPT cases of H-DSN?

This is also FPT: minimal solutions have bounded treewidth.
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FPT special cases

What classes H give FPT cases of H-DSN?

Cλ: in- or out-caterpillar of length λ.

Lemma
If the pattern is in Cλ, then every minimal solution has treewidth
O(λ2).
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FPT special cases

What classes H give FPT cases of H-DSN?

What about this pattern?
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FPT special cases

What classes H give FPT cases of H-DSN?

Lemma
If the pattern is transitively equivalent to a member of Cλ, then
every minimal solution has treewidth O(λ2).
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FPT special cases

What classes H give FPT cases of H-DSN?

Cλ,δ: in- or out-caterpillar of length λ with δ additional edges.

Lemma
If the pattern is transitively equivalent to a member of Cλ,δ, then
every minimal solution has treewidth O((1+ λ)(λ+ δ)).
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FPT special cases
Theorem
If every H ∈ H is transitively equivalent to a member of Cλ,δ for
some constants λ, δ ≥ 0, then H-DSN is FPT.

Does this cover all the FPT cases?

(Yes)
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FPT special cases
Theorem
If every H ∈ H is transitively equivalent to a member of Cλ,δ for
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W[1]-hard special cases
We show that the following classes H make H-DSN W[1]-hard:

cycles (SCSS) out-diamonds in-diamonds

flawed out-diamonds flawed in-diamonds
28



Identifying terminals

If H ′ is obtained from H by identifying terminals, then the
problem cannot be harder for H ′ than for H:

0

H H ′

G G ′

⇒ We can assume that H is closed under identifying terminals.
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Combinatorial classification

The following combinatorial result connects the algorithmic and the
hardness results:

Theorem
Let H be a class of patterns closed under identifying terminals and
transitive equivalence. Then exactly one of the following holds:

1 There are constants λ, δ such that every H ∈ H is transitively
equivalent to a member of Cλ,δ

2 H contains either
all directed cycles,
all in-diamonds,
all out-diamonds,
all flawed in-diamonds, or
all flawed out-diamonds.
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Classification result

Our main result:

Theorem [Feldmann and M. 2016]

Let H be a class of patterns.
1 If there are constants λ, δ such that every H ∈ H is transitively

equivalent to a member of Cλ,δ, then H-DSN is FPT,
2 and it is W[1]-hard otherwise.
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Dichotomy problem

We have obtained a classification result that sharply divides
the set of all special cases into “easy” and “hard” (dichotomy).

Such a result has to reveals all the algorithmic insights relevant
for the problem, generalizing and unifying previous algorithms.
Most algorithmic graph problems can be and should be
analyzed this way!
What is the methodology for obtaining such results?
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Find an
unclassified case

easy? hard?

Complete
classification

no

yes

New algorithmic result
is needed

New hardness
result is needed

Does our results
explain every case?
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Combinatorics

Algorithm
design

Computational
complexity

Dichotomy
results
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In the case Directed Steiner Network:
Algorithm design:
Algorithm for “almost-caterpillars.”
Computational complexity:
Hardness results for SCSS, diamonds, and flawed diamonds.
Combinatorics:
Either H contains only almost-caterpillars, or contain one of
the obstructions.

Rest of the talk: A smörgåsbord hlaðborð of dichotomy results for
other algorithmic graph problems.
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Factor problems
Perfect Matching
Input: graph G .
Task: find |V (G )|/2 vertex-disjoint edges.

Polynomial-time solvable [Edmonds 1961].

Triangle Factor
Input: graph G .
Task: find |V (G )|/3 vertex-disjoint triangles.

NP-complete [Karp 1975]
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Factor problems

H-factor
Input: graph G .
Task: find |V (G )|/|V (H)| vertex-disjoint copies of H in G .

Polynomial-time solvable for H = K2 and NP-hard for H = K3.

Which graphs H make H-factor easy and which graphs make it
hard?

Theorem [Kirkpatrick and Hell 1978]

H-factor is NP-hard for every connected graph H with at least 3
vertices.
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Edge-disjoint version

H-decomposition
Input: graph G .
Task: find |E (G )|/|E (H)| edge-disjoint copies of H in G .

Trivial for H = K2.
Can be solved by matching for P3 (path on 3 vertices).

Theorem [Holyer 1981]

H-decomposition is NP-complete if H is the clique Kr or the
cycle Cr for some r ≥ 3.
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Edge-disjoint version

H-decomposition
Input: graph G .
Task: find |E (G )|/|E (H)| edge-disjoint copies of H in G .

Trivial for H = K2.
Can be solved by matching for P3 (path on 3 vertices).

Theorem (Holyer’s Conjecture) [Dor and Tarsi 1992]

H-decomposition is NP-complete for every connected graph H
with at least 3 edges.
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H-coloring
A homomorphism from G to H is a mapping f : V (G )→ V (H)
such that if ab is an edge of G , then f (a)f (b) is an edge of H.

1 2

43 5

4 5 4

342

4 2 1

4

1

4

G H

H-coloring
Input: graph G .
Task: Find a homomorphism from G to H.

If H = Kr , then equivalent to r-coloring.
If H is bipartite, then the problem is equivalent to G being
bipartite.
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H-coloring
A homomorphism from G to H is a mapping f : V (G )→ V (H)
such that if ab is an edge of G , then f (a)f (b) is an edge of H.

1 2

43 5

4 5 4

342

4 2 1

4

1

4

G H

H-coloring
Input: graph G .
Task: Find a homomorphism from G to H.

Theorem [Hell and Nešetřil 1990]

For every simple graph H, H-coloring is polynomial-time
solvable if H is bipartite and NP-complete if H is not bipartite.
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Finding subgraphs

Sub(H)
Input: a graph H ∈ H and an arbitrary graph G .
Task: decide if H is a subgraph of G .

Some classes for which Sub(H) is polynomial-time solvable:
H is the class of all matchings
H is the class of all stars
H is the class of all stars, each edge subdivided once
H is the class of all windmills

matching star subdivided star windmill
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Finding subgraphs
Definition
Class H is matching splittable if there is a constant c such that
every H ∈ H has a set S of at most c vertices such that every
component of H − S has size at most 2.

1

2

3

S

Theorem [Jansen and M. 2015]

Let H be a hereditary class of graphs. If H is matching splittable,
then Sub(H) is randomized polynomial-time solvable and NP-hard
otherwise.
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Counting subgraphs
#Sub(H)
Input: a graph H ∈ H and an arbitrary graph G .
Task: calculate the number of copies of H in G .

If H is the class of all stars, then #Sub(H) is easy: for each place-
ment of the center of the star, calculate the number of possible
different assignments of the leaves.

H G
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Counting subgraphs
#Sub(H)
Input: a graph H ∈ H and an arbitrary graph G .
Task: calculate the number of copies of H in G .

Theorem
If every graph in H has vertex cover number at most c , then
#Sub(H) is polynomial-time solvable.

2 31

H G

Running time is n2O(c)
, better algorithms known [Vassilevska Williams

and Williams], [Kowaluk, Lingas, and Lundell].
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Counting subgraphs

Who are the bad guys now?

Theorem [Flum and Grohe 2002]

If H is the set of all paths, then #Sub(H) is #W[1]-hard.

Theorem [Curticapean 2013]

If H is the set of all matchings, then #Sub(H) is #W[1]-hard.

Dichotomy theorem:

Theorem [Curticapean and M. 2014]

Let H be a recursively enumerable class of graphs. If H has
unbounded vertex cover number, then #Sub(H) is #W[1]-hard.

(ν(G) ≤ τ(G) ≤ 2ν(G), hence “unbounded vertex cover number” and
“unbounded matching number” are the same.)
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Counting subgraphs

Theorem [Curticapean and M. 2014]

Let H be a recursively enumerable class of graphs.
If H has bounded vertex cover number, then #Sub(H) is
polynomial-time solvable.

If H has unbounded vertex cover number, then #Sub(H) is
#W[1]-hard (parameterized by |V (H)|).

Fixed-parameter tractability does not give us any
extra power here!
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Disjoint paths

k-Disjoint Paths
Input: graph G and pairs of vertices (s1, t1), . . . , (sk , tk).
Task: find pairwise vertex-disjoint paths P1, . . . , Pk such that
Pi connects si and ti .

s1 s2 s3 s4

t1 t2 t3 t4

NP-hard, but FPT parameterized by k :

Theorem [Robertson and Seymour]

The k-Disjoint Paths problem can be solved in time f (k)n3.

We consider now a maximization version of the problem.
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Disjoint paths

Maximum Disjoint Paths
Input: supply graph G , set T ⊆ V (G ) of terminals and a demand
graph H on T .
Task: find k pairwise vertex-disjoint paths such that the two
endpoints of each path are adjacent in H.

T

Can be solved in time nO(k), but W[1]-hard in general.
Maximum Disjoint H-Paths: special case when H restricted to
be a member of H.
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Maximum Disjoint H-Paths

s1 s2 s3 s4 s5

t1 t2 t3 t4 t5

bicliques: cliques: complete multipartite graphs:

two disjoint bicliques: matchings: skew bicliques:

in P in P in P

FPT W[1]-hard W[1]-hard
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Maximum Disjoint H-Paths
Questions:

Algorithmic: FPT vs. W[1]-hard.
Combinatorial (Erdős-Pósa): is there a function f such that
there is either a set of k vertex-disjoint good paths or a set of
f (k) vertices covering every good path?
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Theorem [M. and Wollan]

Let H be a hereditary class of graphs.
1 If H does not contain every matching and every skew biclique,

then Maximum Disjoint H-Paths is FPT and has the
Erdős-Pósa Property.

2 If H does not contain every matching, but contains every skew
biclique, then Maximum Disjoint H-Paths is W[1]-hard,
but has the Erdős-Pósa Property.

3 If H contains every matching, then Maximum Disjoint
H-Paths is W[1]-hard, and does not have the Erdős-Pósa
Property.
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Maximum Disjoint H-Paths
Questions:

Algorithmic: FPT vs. W[1]-hard.
Combinatorial (Erdős-Pósa): is there a function f such that
there is either a set of k vertex-disjoint good paths or a set of
f (k) vertices covering every good path?

FPT and Erdős-Pósa

W[1]-hard and Erdős-Pósa

W[1]-hard and not Erdős-Pósa
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Summary

Dichotomy result for Directed Steiner Network:
almost-caterpillars is FPT, everything else is W[1]-hard.
Systematic research program to reveal all the algorithmic
results that can appear in a certain framework.
Some results for other problems, probably many more to come.
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