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Abstract

In the Minimum Sum Edge Coloring problem we have to assign
positive integers to the edges of a graph such that adjacent edges receive
different integers and the sum of the assigned numbers is minimal. We
show that the problem is (a) NP-hard for planar bipartite graphs with
maximum degree 3, (b) NP-hard for 3-regular planar graphs, (c) NP-hard
for partial 2-trees, and (d) APX-hard for bipartite graphs.

1 Introduction

A vertex coloring of a graph is an assignment of colors to the vertices of a graph
such that if two vertices are adjacent, then they are assigned different colors.
In this paper, we assume that the colors are the positive intergers; a vertex
k-coloring is a coloring where the color of each vertex is taken from the set
{1, 2, . . . , k}. Given a vertex coloring of a graph G, the sum of the coloring is
the sum of the colors assigned to the vertices. The chromatic sum Σ(G) of G
is the smallest sum that can be achieved by any proper coloring of G. In the
Minimum Sum Coloring problem we have to find a coloring of G with sum
Σ(G).

Minimum Sum Coloring was introduced independently by Kubicka [15]
and Supowit [25]. Besides its combinatorial interest, the problem is motivated
by applications in scheduling [2, 3, 11] and VLSI design [22, 26]. In [16] it is
shown that the problem is NP-hard in general, but polynomial-time solvable for
trees. The dynamic programming algorithm for trees can be extended to partial
k-trees [14]. For further complexity results and approximation algorithms, see
[2, 3, 9, 24].

One can analogously define the edge coloring version of Minimum Sum Col-

oring. Formally, we will investigate the following optimization problem:
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ian National Research Fund (Grant Number OTKA 67651).
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Table 1: Results for Minimum Sum Edge Coloring.

Class Algorithm Hardness
Trees P [10, 24, 28] –
Bipartite graphs 1.414-approx [8] APX-hard (Theorem 4.2)
Planar graphs PTAS [19] NP-hard (Theorem 3.3)
Partial k-trees PTAS [19] NP-hard (Theorem 5.6)
General graphs 2-approx [2] APX-hard (Theorem 4.2)

Minimum Sum Edge Coloring

Input: A graph G(V,E).
Find: An edge coloring ψ : E → N such that if e1 and e2

have a common vertex, then ψ(e1) 6= ψ(e2).
Goal: Minimize Σ′

ψ(E) =
∑

e∈E ψ(e), the sum of the col-
oring.

In this paper we prove complexity results for Minimum Sum Edge Col-

oring restricted to certain classes of graphs. These results nicely complement
the approximation algorithms published in the literature, as they show that
the constant-factor approximation algorithms of [11, 2] cannot be improved
to a polynomial-time approximation scheme (PTAS), and the approximation
schemes of [19] cannot be replaced by a polynomial-time exact algorithm.

Table 1 summarizes the algorithmic and complexity results known for Min-

imum Sum Edge Coloring. The problem is NP-hard in general (even for
bipartite graphs [10]) and trees are the only class of graphs where Minimum

Sum Edge Coloring is known to be polynomial-time solvable [10, 24, 28].
Therefore, most of the algorithmic results presented in the literature are ap-
proximation algorithms.

For general graphs, a 2-approximation algorithm for Minimum Sum Edge

Coloring is presented in [2]. For bipartite graphs better approximation ration
is possible: a 1.796-approximation algorithm follows from [11], and a 1.414-
approximation algorithm is given in [8]. It is proved in Section 4 that the
problem is APX-hard for bipartite graphs, hence these constant-factor approx-
imations cannot be improved to a PTAS.

For partial k-trees (graphs of bounded tree width) and planar graphs, Min-

imum Sum Edge Coloring admits a PTAS [19]. (In fact, the approximation
scheme of [19] works also for the more general multicoloring version of the prob-
lem.) We show that a polynomial-time exact algorithm for these classes cannot
be expected, as the problem is NP-hard for partial 2-trees (Section 5) and for
planar graphs (Section 3).

As noted above, for trees Minimum Sum Edge Coloring can be solved
in polynomial time [10, 24, 28] by a dynamic programming algorithm that uses
weighted bipartite matching as a subroutine. In most cases, when a problem
can be solved in trees by dynamic programming, then this easily generalizes
to partial k-trees, and a similar dynamic programming approach can solve the
problem in partial k-trees. For example, that is the case with the vertex col-
oring version of Minimum Sum Coloring on trees and partial k-trees. Other
examples include the Maximum Independent Set, Vertex Coloring, and
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Vertex Disjoint Paths (see [5, 6, 7] for more information on partial k-trees).
Therefore, it is somewhat surprising that Minimum Sum Edge Coloring

is NP-hard for partial 2-trees. There are only two other examples that we are
aware of where the algorithm for trees does not generalize to partial 2-trees. The
Edge Disjoint Paths problem is trivial for trees, but it becomes NP-hard for
partial 2-trees [23]. Furthermore, the Edge Precoloring Extension prob-
lem is polynomial-time solvable for trees [18], but NP-hard for partial 2-trees
[20].

2 Preliminaries

For the rest of the paper, we consider only edge colorings, hence even if it is not
noted explicitly, “coloring” will mean “edge coloring.” We introduce notation
and new parameters that turn out to be useful in studying minimum sum edge
colorings. Let ψ be an edge coloring of G(V,E), and let Ev be the set of edges
incident to vertex v. For every v ∈ V , let Σ′

ψ(v) =
∑

e∈Ev
ψ(e) be the sum of v,

and for a subset V ′ ⊆ V , let Σ′

ψ(V ′) =
∑
v∈V ′ Σ′

ψ(v). Clearly, Σ′

ψ(V ) = 2Σ′

ψ(G);
therefore, minimizing Σ′

ψ(V ) is equivalent to minimizing Σ′

ψ(G).
The degree of vertex v is denoted by d(v) := |Ev|. For every vertex v,

let ℓ(v) :=
∑d(v)

i=1 i = d(v)(d(v) + 1)/2, and for a set of vertices V ′ ⊆ V , let
ℓ(V ′) :=

∑
v∈V ′ ℓ(v). Since Σ′

ψ(v) is the sum of d(v) distinct positive integers,
Σ′

ψ(v) ≥ ℓ(v) in every proper coloring ψ. Let ǫψ(v) = Σ′

ψ(v) − ℓ(v) ≥ 0 be the
error of vertex v in coloring ψ. For V ′ ⊆ V we define ǫψ(V ′) =

∑
v∈V ′ ǫψ(v), and

call ǫψ(V ) the error of coloring ψ. The error is always non-negative: Σ′

ψ(V ) ≥
ℓ(V ), hence ǫψ(V ) = Σ′

ψ(V )− ℓ(V ) ≥ 0. Notice that ǫψ(V ) has the same parity
for every coloring ψ. Minimizing the error of the coloring is clearly equivalent to
minimizing the sum of the coloring. In particular, if ψ is a zero error coloring,
that is, ǫψ(V ) = 0, then ψ is a minimum sum coloring of G. In a zero error
coloring, the edges incident to vertex v are colored with the colors 1, 2, . . . , d(v).

However, in general, G does not necessarily have a zero error coloring. De-
ciding whether G has a zero error coloring is a special case of Minimum Sum

Edge Coloring. It might be worth pointing out that finding a zero error
coloring is very different from finding a minimum sum coloring: zero error is
a local constraint on the coloring (every vertex has to have zero error), while
minimizing the sum is a global constraint.

Parallel edges are not allowed for the graphs considered in this paper. How-
ever, for convenience we extend the problem by introducing half-loops. A half-
loop is a loop that contributes only 1 to the degree of its end vertex. Every
vertex has at most one half-loop. If a graph is allowed to have half-loops, then
it will be called a quasigraph (the terminology half-loop and quasigraph is bor-
rowed from [17]). In a quasigraph, the sum of an edge coloring is defined to be
the sum of the color of the edges plus half the sum of the color of the half-loops;
therefore, the sum of a quasigraph is not necessarily an integer. The sum Σ′

ψ(v)
is defined to be the integer

∑
e∈Ev

ψ(e), as before, thus a half-loop contributes to
the sum of exactly one vertex. Thus it remains true that the error of a coloring
is always integer and the sum of the vertices is twice the sum of the edges.

The following observation shows that allowing half-loops does not make the
problem more difficult, thus any hardness result for quasigraphs immediately
implies hardness for ordinary graphs as well. This observation was used in
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[21] to obtain complexity results for the related problem Chromatic Edge

Strength. We reproduce the proof here for completeness.

Proposition 2.1. Given a quasigraph G, one can create in polynomial time a
graph G′ such that Σ′(G′) = 2Σ′(G).

Proof. To obtain G′, take two disjoint copies G1, G2 of G and remove every
half-loop. If there was a half-loop at v in G, then add an edge v1v2 to G′, where
v1 and v2 are the vertices corresponding to v in G1 and G2, respectively. In
graph G′, give to every edge the color of the corresponding edge in G. If the
sum of the coloring in G was S, then we obtain a coloring in G′ with sum 2S:
two edges of G′ correspond to every edge of G, but only one edge corresponds
to every half-loop of G.

On the other hand, one can show that if G′ has a k-coloring with sum S, then
G has a k-coloring with sum at most S/2. The edges of G′ can be partitioned
into three sets E1, E2, E′: set Ei contains the edges induced byGi (i = 1, 2), and
E′ contains the edges corresponding to the half-loops. If ψ is an edge coloring of
G′ with sum S, then S = Σ′

ψ(E1)+Σ′

ψ(E2)+Σ′

ψ(E′). Without loss of generality,
it can be assumed that Σ′

ψ(E1) ≤ Σ′

ψ(E2), hence Σ′

ψ(E1) + Σ′

ψ(E′)/2 ≤ S/2.
The k-coloring of G1 induced by ψ has sum Σ′

ψ(E1) + Σ′

ψ(E′)/2 ≤ S/2, since
the edges in E′ correspond to half-loops.

Therefore, minimizing the sum of the coloring on G′ is the same problem
as minimizing the sum on G. Notice that if G is bipartite, then G′ is bipartite
as well. On the other hand, the transformation does not preserve planarity in
general. Therefore, quasigraphs will be used only when proving hardness results
for bipartite graphs (Section 4), but not in the case of planar graphs (Section 3).

3 Planar graphs

In this section we show that Minimum Sum Edge Coloring is NP-hard for
planar bipartite graphs of maximum degree 3, and for planar 3-regular graphs.
The proof is by reduction from Edge Precoloring Extension.

In Precoloring Extension a graph G is given with some of the vertices
having preassigned colors, and it has to be decided whether this precoloring
can be extended to a proper vertex k-coloring of the whole graph. One can
analogously define the problem Edge Precoloring Extension. It is shown
in [20] that Edge Precoloring Extension is NP-complete for 3-regular pla-
nar bipartite graphs. For more background on Precoloring Extension and
Edge Precoloring Extension, the reader is referred to [27, 4, 12, 13].

In the following theorem, we reduce the NP-complete Edge Precoloring

Extension (a problem with local constraints) to deciding whether a graph has
a zero error coloring. This proves that Minimum Sum Edge Coloring is
NP-hard.

Theorem 3.1. It is NP-hard to decide if a planar bipartite graph with degree
at most 3 has a zero error coloring.

Proof. Using simple local replacements, we reduce Edge Precoloring Ex-

tension to the problem of finding a zero error coloring, which is a special case
of Minimum Sum Edge Coloring. Given a 3-regular graph G with some
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Figure 1: Each precolored edge is replaced by the corresponding subgraph on
the right.

of the edges having preassigned colors, construct a graph G′ by replacing the
precolored edges with the subgraphs shown in Figure 1. If we replace the edge
e = uv with such a subgraph, then the two new edges incident to v and u will
be called e1 and e2. If G is planar and bipartite, then clearly G′ is planar and
bipartite as well.

We show that G′ has a zero error coloring if and only if G has a precoloring
extension with 3 colors. Assume that ψ is a zero error coloring. We show that
for every precolored edge e, the edges e1 and e2 receive the color of e. If e is
precolored to 1 (see case a) in Figure 1), then d(a) = d(b) = 1, thus e1 and e2
receive color 1 in every zero error coloring. If e has color 2, then edges ac and
bd must have color 1, thus edges e1, e2 have color 2 in every zero error coloring.
Finally, if e has color 3, then ac and bd have color 1, edges ax and by have color
2, hence e1 and e2 have color 3. Therefore, ψ extends the precoloring of G.

The converse is also easy to see: given a precoloring extension of G, for each
edge e in G we assign the color of e to edges e1 and e2 in G′, and extend this
coloring the straightforward way. It can be verified that this is a zero error
coloring of G′, there is no vertex v that is incident to an edge with color greater
than d(v) (here we use that G is 3-regular).

As finding a zero error coloring is a special case of Minimum Sum Edge

Coloring, we have

Corollary 3.2. Minimum Sum Edge Coloring is NP-hard for planar bipar-
tite graphs having degrees at most 3.

It is tempting to try to strengthen Corollary 3.2 by replacing “degree at
most 3” with “3-regular.” However, Minimum Sum Edge Coloring becomes
polynomial-time solvable for bipartite, regular graphs. In fact, every such graph
has a zero error coloring: by the line coloring theorem of Kőnig, every bipartite
graphG has a ∆(G)-edge-coloring, which has zero error if G is regular. However,
if we add the requirement of 3-regularity, but drop the requirement that the
graph is bipartite, then the problem remains NP-complete.

Theorem 3.3. Minimum Sum Edge Coloring is NP-complete for planar
3-regular graphs.
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Proof. The reduction is from zero error coloring of planar graphs with degree
at most 3 (Theorem 3.1). We attach certain gadgets to the graph G to make
it a 3-regular graph G′. The gadgets are attached in such a way that G has a
zero error coloring if and only if G′ has a coloring with error K, where K is an
integer determined during the reduction.

Figure 2 shows three gadgets R1, R2, R3, each gadget has a pendant edge e.
We show that gadget Ri has the following property: if its edges are colored in
such a way that the total error on the internal vertices is as small as possible,
then the pendant edge receives color i. The figure shows such a coloring for
each gadget, the circled vertices are the vertices where there are errors in the
coloring.

Gadget R1 (see Figure 2) has a pendant edge e, 5 internal vertices (denoted
by S), and 7 edges connecting the internal vertices. Since each color can be used
at most twice on these 7 edges, they have sum at least 2·1+2·2+2·3+1·4 = 16 in
every coloring. Therefore, if a coloring assigns color i to edge e, then the vertices
in S have sum at least 32 + i and error at least 32 + i− ℓ(S) = 2 + i. Thus the
error of S is at least 3 and it can be 3 only if the pendant edge e is colored with
color 1.

In gadget R3 (second graph on Figure 2), two copies of gadget R1 are at-
tached to vertex v. The error on the internal vertices is at least 6 in every
coloring: there are at least 3 errors in each of S1 and S2. However, the error
is strictly greater than this: at least one of e1 and e2 is colored with a color
greater than 1, hence either S1 or S2 has error at least 4. Moreover, if the error
of the internal vertices in R3 is 7, then one of e1 and e2 is colored with color 1,
the other edge is colored with color 2; therefore, edge e has to be colored with
color 3.
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Figure 2: The gadgets R1, R2, R3. The coloring given on the figure has as few
errors on the internal vertices as possible. The circles show the errors on the
internal vertices in this coloring.

Gadget R2 (third graph on Figure 2) contains a gadget R1 and R3 attached
to vertex v. It has error at least 3 + 7 = 10, since the internal vertices of these
gadgets have at least that much error in every coloring. Furthermore, if the
error on the internal vertices of R2 is exactly 10, then this is only possible if the
error in S1 is 3 and the error in S2 is 7. This implies that the edge e1 has color
1 and edge e2 has color 3; therefore, edge e has color 2.

Given a planar graph G with degree at most 3, we attach a gadget R2 and a
gadget R3 to every vertex of degree 1. Furthermore, we attach a gadget R3 to

6



every degree 2 vertex. Clearly, the resulting graph G′ is planar and 3-regular.
Let n be the number of R3 gadgets attached, and let m be the number of R2

gadgets. We claim that G has a zero error coloring if and only if G′ has a
coloring with error at most K = 7n+ 10m.

Assume first that G has zero error. This coloring can be extended in such a
way that the error on every attached R3 (resp., R2) gadget is 7 (resp., 10), and
the edge that connects an R2 (resp., R3) gadget to G has color 2 (resp., 3). If v
is a vertex of G (not an internal vertex of a gadget), then the three colors 1, 2,
and 3 appear at v. Therefore, the error of the coloring is the total error of the
gadgets, that is, K = 7n+ 10m.

Assume now that G′ has a coloring with error at most K. As we have seen,
every gadget R3 has error at least 7 in every coloring, and every gadget R2

has error at least 10; therefore, if the coloring has error 7n + 10m, then every
R3 gadget has error exactly 7, and every R2 gadget has error exactly 10. This
means that every edge connecting an R2 (resp., R3) gadget to G has color 2
(resp., 3). Since G is a subgraph of G′, the coloring of G′ induces a coloring of
G. We show that this coloring is a zero error coloring of G. If v is a degree 1
vertex of G, then two additional edges connect v to an R2 and an R3 gadget
in G′, and these two edges have colors 2 and 3. The error of v is zero in the
coloring; therefore, the edge incident to v in G receives color 1. Similarly, if v
has degree 2 in G, then an additional edge with color 3 is connected to v in G,
and it follows that the two edges incident to v in G have the colors 1 and 2, as
required.

4 Approximability

A polynomial-time approximation scheme (PTAS) is an approximation algo-
rithm that has an input parameter ǫ, and for every ǫ > 0 it produces a solution
with cost at most (1 + ǫ) times the optimum. The running time has to be poly-
nomial in the size of the input for every fixed value of ǫ, i.e., it is of the form
nf(ǫ). If a problem admits a PTAS, then this means that there is no “best”
approximation algorithm: an approximation ratio arbitrarily close to 1 can be
achieved. On the other hand, by proving that a problem is APX-hard we can
show that the problem does not admit a PTAS (unless P = NP), that is, there
is a c > 1 such that there is no polynomial-time approximation algorithm with
approximation ratio better than c. Here we prove that Minimum Sum Edge

Coloring is APX-hard, even for bipartite graphs. Therefore, the approxima-
tion schemes for partial k-trees and planar graphs presented in [19] cannot be
generalized to arbitrary graphs.

Theorem 4.1. Minimum Sum Coloring is APX-hard for graphs with maxi-
mum degree 3.

Proof. The theorem is proved by an L-reduction from Minimum Vertex Cover

for 3-regular graphs, which is shown to be APX-hard in [1]. For every graph
G(V,E) with minimum vertex cover size τ(G), a graph G′′ is constructed that
has edge chromatic sum C = c1|V | + c2|E| + τ(G), where c1 and c2 are con-
stants to be determined later. To see that this is an L-reduction, notice that
|E| = 3

2 |V | and τ(G) ≥ |V |/4 follows from the fact that G is 3-regular. There-
fore, C ≤ 4c1τ(G) + 6c2τ(G) + τ(G) = c3τ(G), as required. Furthermore, we
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show that given an edge coloring of G′′ with sum at most c1|V |+ c2|E|+ t, one
can find a vertex cover of size t. This proves the correctness of the L-reduction.

The graph G′′ is constructed in two steps: first we create a quasigraph
G′, then apply the transformation of Proposition 2.1 to obtain the graph G′′.
The graph G′ consists of vertex gadgets and edge gadgets. The vertex gadget
shown in Figure 3 has 3 pendant edges e1, e2, e3, and satisfies the following two
properties:

• If a coloring has zero error on the internal vertices of the variable gadget,
then it colors all three pendant edges with color 1.

• There is a coloring that colors all three pendant edges with color 2 and
has only 1 error on the internal vertices.

Figure 3 shows two possible colorings of the gadget, the two numbers on
each edge show the color of the edge in the two colorings. The first coloring is
the unique coloring with zero error on the internal vertices. To see this, notice
first that an edge incident to a degree 1 internal vertex has to be colored with
color 1. Furthermore, if an edge of a degree 2 vertex is colored with color 1,
then the other edge has to be colored with color 2. Applying these and similar
implications repeatedly, we get the first coloring of Figure 3. In particular, edges
e1, e2, e3 have color 1, proving the first property. The second coloring has one
error (at v), and colors e1, e2, e3 with color 2, proving the second property.

e1 e2
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1111

11 22

22 22

22

31

31

13

31

31

13

2323 32

21
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21

12 12

1212

1212

1212 32 2323

Figure 3: The vertex gadget.

The edge gadget shown in Figure 4 has two pendant edges f and g. If a
coloring has zero error on the internal vertices of the gadget, then clearly f and
g have color 1 or 2. There are 4 different ways of coloring f and g with colors 1
or 2. In 3 out of 4 of these combinations, when at least one of f and g is colored
with color 2, the coloring can be extended to the whole gadget with zero error
(Figure 4 shows these 3 colorings). On the other hand, if both f and g have
color 1, then there is at least one error on the internal vertices of the gadget.
The reader can verify this by following the implications of coloring f and g with
color 1, and requiring that every internal vertex has zero error.

The quasigraph G′(V ′, E′) is constructed as follows. A vertex gadget Sv
corresponds to every vertex v of G, and an edge gadget Se corresponds to every
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Figure 4: The edge gadget.

edge e of G. Direct the edges of G arbitrarily. If the i-th edge incident to v ∈ V
(i = 1, 2, 3) is the head of some edge e ∈ E, then identify edge ei of Sv with
edge f of Se. If the i-th edge incident to v ∈ V is the tail of some edge e ∈ E,
then identify edge ei of Sv with edge g of Se. Thus every vertex of G′ is an
internal vertex of a vertex gadget Sv or an edge gadget Se. Denote by Vv the
internal vertices of gadget Sv and by Ve the internal vertices of Se; clearly these
sets form a partition of V ′.

We claim that G′ has a coloring with error t if and only if G has a vertex
cover of size t. Assume first that D ⊆ V is a vertex cover of G. If v ∈ D, then
color gadget Sv such that every pendant edge has color 2 (and there is one error
on the internal vertices), otherwise color Sv in such a way that every pendant
edge has color 1, and there is no error on the internal vertices. Now consider a
gadget Se for some e ∈ E. The two pendant edges f and g are already colored
with colors 1 or 2. However, at least one of these two edges is colored with 2,
since at least one end vertex of e is in D. Therefore, using one of the three
colorings shown in Figure 4, we can extend the coloring to every edge of Se with
zero error on the internal vertices of the gadget. This means that errors appear
only on the internal vertices of Sv for v ∈ D, and the total error is |D|.

On the other hand, consider a coloring of G′ with error t. Let V̂ ⊆ V be the
set of those v ∈ V for which Vv is colored with error. Similarly, let Ê ⊆ E be
the set of those e ∈ E for which Ve is colored with error. Clearly, the coloring
has error at least |V̂ | + |Ê| ≤ t. Let V be a set of |Ê| vertices in G that cover

every edge in Ê. The set of vertices V̂ ∪ V has size at most |V̂ | + |Ê| ≤ t. We

show that this set is a vertex cover of G. It is clear that every edge e ∈ Ê is
covered, since there is a v ∈ V covering e. Now consider an edge e 6∈ Ê, this
means that Ve is colored with zero error, thus, as we have observed, at least one
pendant edge of Se is colored with color 2. If this edge is the pendant edge of
the vertex gadget Sv, then there is at least one error in Vv and v is in V̂ . If the
pendant edge of Se and Sv is identified in the construction, this means that e
is incident to v, thus v ∈ V̂ covers e.

We have proved that the error of a minimum sum edge coloring of G′ is at
least τ(G). Furthermore, Σ′(G′) = (c1/2)|V | + (c2/2)|E| + τ(G)/2 for some
constants c1 and c2. To see this, notice that the lower bound ℓ(Vv) is the same
for every v ∈ V (denote it by c1), and ℓ(Ve) is the same for every e ∈ E
(denote it by c2). Therefore, the sum of the vertices in the optimum coloring
is ℓ(V ′) + τ(G) = c1|V | + c2|E| + τ(G). The edge chromatic sum is the half of
this value, (c1/2)|V | + (c2/2)|E| + τ(G)/2. Now construct graph G′′ from G′

as in Proposition 2.1. We have that Σ′(G′′) = 2Σ′(G′) = c1|V | + c2|E| + τ(G).
Furthermore, a coloring of G′′ with sum c1|V | + c2|E| + t gives a coloring of
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G′ with sum (c1/2)|V | + (c2/2)|E| + t/2, that is a coloring with error t. It was
shown above that given a coloring of G′ with error t, one can find a vertex cover
of G with size at most t. This completes the proof of the L-reduction.

Theorem 4.1 can be strengthened: the problem remains APX-hard for bipar-
tite graphs. The graph constructed in the proof of Theorem 4.1 is not bipartite,
since the vertex gadget in Figure 3 is not bipartite. However, the vertex gadget
can be replaced by the slightly more complex quasigraph shown in Figure 5,
which is bipartite and has the same properties. That is, if a coloring has zero
error on the internal vertices, then the pendant edges have color 1, and there
is a coloring that has error 1 on the internal vertices, and assigns color 2 to
the pendant edges. The vertex and edge gadgets are bipartite, and they are
connected in a way that ensures that the resulting graph G′ is bipartite as well.

Theorem 4.2. Minimum sum edge coloring is APX-hard for bipartite graphs
with maximum degree 3.

e2

e3

e1

Figure 5: The bipartite quasigraph version of the vertex gadget.

5 Partial k-trees

In this section, we show that Minimum Sum Edge Coloring is NP-hard for
partial 2-trees. A k-tree is a graph defined by the following three rules:

1. A clique of size k + 1 is a k-tree.

2. If G is a k-tree, and K is a clique of size k in G, then the graph G′ that
is obtained by adding a new vertex v and connecting v to every vertex of
K is also a k-tree.
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3. Every k-tree can be obtained using 1 and 2.

Another way to define k-trees is to say that a graph is a k-tree if and only if
it is a chordal graph with clique number k + 1. A graph is a partial k-tree if it
is a subgraph of a k-tree. The notion of tree width gives an alternate charac-
terization of partial k-trees: a graph is partial k-tree if and only if it has tree
width at most k. For more information on the algorithmic and combinatorial
significance of partial k-trees and tree width, the reader is referred to [7, 6].

Before presenting the proof of NP-completeness, we introduce some gadgets
used in the reduction. These gadgets are trees with a single pendant edge, and
have the following general property: if a coloring is “cheap,” meaning that it has
as small error on the internal vertices as possible, then the color of the pendant
edge has to be one of the special allowed colors of the gadget. For the gadget
Fn, this means that in every such cheap coloring, the pendant edge has color n.
In the gadget Ln, the color of the pendant edge has to be either n− 1 or n+ 1
in such a coloring. In the gadget An, the color of the pendant edge has to be
an odd number not greater than n.

The reduction is from 3-SAT; therefore, we need satisfaction testing gadgets
and variable setting gadgets. All these gadget are connected to a central vertex
v. The satisfaction testing gadget has the property that in every cheap coloring
the pendant edge (the edge that connects the gadget to v) has one of the three
preassigned colors. The variable setting gadget Wn is different from the other
gadgets. First, it is not a tree, but a partial 2-tree. Moreover, there are two
edges connecting it to the central vertex v. The crucial property of this gadget
is that in every cheap coloring, these two edges either use the colors n+1, n+3,
or they use the colors n+ 5, n+ 7.

In the following lemmas, we formally define the properties of the gadgets,
describe how they are constructed, and prove the required properties.

Lemma 5.1. For every n ≥ 2, there is a tree Fn and an integer fn, such that

1. Fn has one pendant edge e,

2. the internal vertices of Fn have error at least fn in every coloring,

3. if a coloring has error fn on the internal vertices of Fn, then this coloring
assigns color n to the pendant edge e, and

4. Fn can be constructed in time polynomial in n.

Proof. The tree Fn is a star with a central vertex v, and n leaves v1, v2, . . . , vn.
The pendant edge e is the edge vnv, thus the internal vertices are v, v1, v2, . . . ,
vn−1. Let fn := (n−1)(n−2)/2. The n−1 edges v1v, . . . , vn−1v have different

colors, hence the sum of the vertices v1, . . . , vn−1 is at least
∑n−1
i=1 i = n(n−1)/2.

Therefore, the error on these vertices is at least n(n−1)/2−(n−1) = fn. There
is equality if and only if the sum of these vertices is exactly n(n−1)/2 and there
is no error on v. This implies that edge vnv has color n, as required.

Lemma 5.2. For every even n ≥ 1, there is a tree Ln and an integer kn, such
that

1. Ln has one pendant edge e,

11
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Figure 6: The gadget Ln.

2. the internal vertices of Ln have error at least kn in every coloring,

3. if a coloring has error kn on the internal vertices of Ln, then this coloring
assigns either color n− 1 or n+ 1 to the pendant edge e,

4. there are colorings ψn−1 and ψn+1 of Ln with ψn−1(e) = n−1, ψn+1(e) =
n+ 1, such that they have error kn on the internal vertices, and

5. Ln can be constructed in time polynomial in n.

Proof. The tree Ln is constructed as follows (see Figure 6). The pendant edge
e connects external vertex u and internal vertex v. A set V of n − 2 vertices
v1, v2, . . . , vn−2 are connected to v. There are two additional neighbors of v:
vertices a and b. Besides v, vertex a has n− 1 neighbors a1, a2, . . . , an−1, let A
be the set containing these n−1 vertices. Similarly, vertex b has n−1 additional
neighbors B = {b1, b2, . . . , bn−1}.

Since the edges v1v, v2v, . . . , vn−2v have different colors in every coloring
of Ln, the sum of V is at least

∑n−2
i=1 i = (n − 2)(n − 1)/2 in every coloring.

Therefore, there is error at least (n−2)(n−1)/2−ℓ(V ) = (n−2)(n−1)/2−(n−
2) = (n−2)(n−3)/2 on V in every coloring. This minimum is reached if and only
if the edges v1v, . . . , vn−2v have the colors 1, . . . , n−2 (in some order). Similarly,
there is error at least (n− 1)n/2− (n− 1) = (n− 1)(n− 2)/2 on both A and B.
Therefore, there is error at least (n−2)(n−3)/2+2·(n−1)(n−2)/2 on the internal
vertices in every coloring. However, the error is always strictly greater than that.
If the error is exactly (n− 1)(n− 2)/2 on both A and B, and there is zero error
on a and b, then edges va and vb both have to receive color n. Thus we can
conclude that there is error at least kn := (n−2)(n−3)/2+2·(n−1)(n−2)/2+1
in every coloring.

The coloring ψn−1 is defined as

• ψn−1(e) = n− 1,

• ψn−1(va) = n,

• ψn−1(vb) = n+ 1,

• ψn−1(viv) = i for 1 ≤ i ≤ n− 2,
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• ψn−1(aia) = i for 1 ≤ i ≤ n− 1, and

• ψn−1(bib) = i for 1 ≤ i ≤ n− 1.

It can be verified that ǫψn−1
(V ) = (n − 2)(n − 3)/2, ǫψn−1

(A) = ǫψn−1
(B) =

(n−1)(n−2)/2, ǫψn−1
(a) = ǫψn−1

(v) = 0, and ǫψn−1
(b) = 1; therefore, the error

of ψn−1 on the internal vertices of Ln is exactly kn. Coloring ψn+1 is the same
as coloring ψn−1, except that

• ψn+1(e) = n+ 1,

• ψn+1(vb) = n− 1, and

• ψn+1(bn−1b) = n.

This change decreases the error on b to zero, and increases the error on bn−1 to
1. Therefore, ψn+1 also has error kn on the internal vertices, and this proves
Property 4.

To show that Property 3 holds, assume that coloring ψ has error kn on the
internal vertices of Ln. As we have observed, eψ(A ∪ {a}) = (n − 1)(n − 2)/2
implies ψ(va) = n. Similarly, eψ(B∪{b}) = (n−1)(n−2)/2 implies ψ(vb) = n;
therefore, at least one of A ∪ {a} and B ∪ {b} have error strictly greater than
(n − 1)(n − 2)/2. Assume, without loss of generality, that eψ(A ∪ {a}) > (n −
1)(n − 2)/2. In this case, the error of ψ can be kn only if eψ(B ∪ {b}) =
(n − 1)(n − 2)/2, eψ(V ) = (n − 2)(n − 3)/2, thus v has zero error. Therefore,
color n is used by edge vb, and the colors 1, 2, . . . , n− 2 are used by the edges
v1v, v2v, . . . , vn−2v (not necessarily in this order). Since there is zero error at
v, and v has degree n+ 1, edge e has a color not greater than n+ 1. This can
be only n− 1 or n+ 1, since the other colors are already used by edges incident
to v.

Lemma 5.3. For every odd n ≥ 1, there is a tree An and an integer an such
that

1. An has one pendant edge e,

2. the internal vertices of An have error at least an in every coloring,

3. if a coloring ψ has error an on the internal vertices of An, then ψ(e) is
odd and ψ(e) ≤ n,

4. for every odd c not greater than n, there is a coloring ψc of An such that
ψc(e) = c and it has error an on the internal vertices,

5. An can be constructed in time polynomial in n.

Proof. The pendant edge e of An connects external vertex u and internal vertex
v. Attach the pendant edges of the (n−1)/2 trees F2, F4, . . . , Fn−1 (Lemma 5.1)
to vertex v, let the pendant edges of these trees be v2v, v4v, . . . , vn−1v, respec-
tively (see Figure 7). Similarly, attach the pendant edges of the (n− 1)/2 trees
L2, L4, . . . , Ln−1 (Lemma 5.2) to v, let the pendant edges of these trees be
w2v, w4v, . . . , wn−1v, respectively. Therefore, the degree of v in An is n.

Let an = (f2 + f4 + · · ·+ fn−1) + (k2 + k4 + · · ·+ kn−1). Since An contains a
copy of the trees F2, F4, . . . , Fn−1, and a copy of the trees L2, L4, . . . , Ln−1, it
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is clear that every coloring of An has at least an errors on the internal vertices.
Moreover, if a coloring ψ has error an on the internal vertices, then ψ(viv) = i
for i = 2, 4, . . . , n−1, and the error of v is zero. This implies that ψ(e) ≤ n and
not even, as required.

The coloring ψc required by Property 4 is the following. For every i =
2, 4, . . . , n− 1, coloring ψc colors the edges of the tree Fi in such a way that the
pendant edge viv receives color i, and there is error fi on the internal vertices
of Fi; by Lemma 5.1, such a coloring exists. For every i = 2, 4, . . . , c − 1, the
tree Li is colored such that the pendant edge wiv has color i− 1, and the error
on the internal vertices of Li is ki. Similarly, for i = c+ 1, . . . , n− 1, the tree Li
is colored such that the pendant edge wiv has color i+ 1, and there is error ki
on the internal vertices of Li. Coloring ψc assigns color c to edge e, thus every
color 1, 2, . . . , n appears on exactly one edge incident to v. Therefore, v has
zero error, and the error on the internal vertices of An is an.

Lemma 5.4 (Satisfaction testing gadget). For odd integers x1 < x2 < x3,
there is a tree Sx1,x2,x3

and an integer sx1,x2,x3
such that

1. Sx1,x2,x3
has one pendant edge e,

2. the internal vertices of Sx1,x2,x3
have error at least sx1,x2,x3

in every col-
oring,

3. if a coloring ψ has error sx1,x2,x3
on the internal vertices of Sx1,x2,x3

, then
ψ(e) ∈ {x1, x2, x3}

4. for i = 1, 2, 3, there is a coloring ψi of Sx1,x2,x3
such that ψi(e) = xi and

it has error sx1,x2,x3
on the internal vertices,

5. Sx1,x2,x3
can be constructed in time polynomial in x3.

Proof. The pendant edge e of Sx1,x2,x3
connects external vertex u and internal

vertex v. Attach to vertex v the pendant edges of

• x1 − 1 trees F1, F2, . . . , Fx1−1 (Lemma 5.1),
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• x2 − x1 − 1 trees Fx1+1, . . . , Fx2−1,

• x3 − x2 − 1 trees Fx2+1, . . . , Fx3−1, and

• 2 copies of the tree Ax3
(Lemma 5.3).

Vertex v has degree x3 in Sx1,x2,x3
. Set sx1,x2,x3

:= f1 + f2 + · · · + fx1−1 +
fx1+1 + · · ·+ fx2−1 + fx2+1 + · · ·+ fx3−1 + 2ax3

. Because of the way Sx1,x2,x3
is

constructed, it is clear that every coloring of Sx1,x2,x3
has error at least sx1,x2,x3

on the internal vertices. If ψ has error exactly sx1,x2,x3
on the internal vertices,

then v has zero error and ψ(e) ≤ d(v) = x3. Furthermore, it also follows that
the colors 1, . . . , x1−1, x1 +1, . . . , x2−1, x2 +1, . . . , x3−1 are used at v by the
pendant edges of the attached trees F1, . . . , Fx1−1, Fx1+1, . . . , Fx2−1, Fx2+1,
. . . , Fx3−1, respectively. Therefore, edge e has one of the remaining colors x1,
x2, x3, proving Property 3.

The colorings ψ1, ψ2, ψ3 required by Property 4 color the (x1 − 1) + (x2 −
x1 − 1) + (x3 − x2 − 1) trees of type Fi in the same way: all three colorings
color these trees such that there is error f1 + f2 + · · · + fx1−1 + fx1+1 + · · · +
fx2−1+fx2+1+· · ·+fx3−1 on the internal vertices of the trees, and their pendant
edges use the colors 1, . . . , x1 − 1, x1 + 1, . . . , x2 − 1, x2 + 1, . . . , x3 − 1 at
v, respectively. Coloring ψi assigns color xi to the pendant edge e, hence two
colors not greater than x3 remains unused at v: only the colors {x1, x2, x3} \ xi
are not yet assigned. These two colors are odd and not greater than x3, thus
by Property 4 of Lemma 5.3, we can color the two copies of Ax3

attached to v
such that their pendant edges have these two colors, and the additional error
that we introduce is 2ax3

. Since there is zero error on v, the error of this
coloring is exactly sx1,x2,x3

on the internal vertices of Sx1,x2,x3
, as required by

Property 4.

Lemma 5.5 (Variable setting gadget). For every n ≥ 0, there is a partial
2-tree Wn and an integer wn such that

1. Wn has an external vertex v, and two edges e1 and e2 incident to v,

2. every coloring of Wn has error at least wn on the internal vertices of Wn,

3. if a coloring ψ of Wn has error wn on the internal vertices, then either

• ψ(e1) = n+ 1, ψ(e2) = n+ 3 or

• ψ(e1) = n+ 5, ψ(e2) = n+ 7 holds,

4. there are colorings ψ1 and ψ2 of Wn with error wn on the internal vertices
such that

• ψ1(e1) = n+ 1, ψ1(e2) = n+ 3,

• ψ2(e1) = n+ 5, ψ2(e2) = n+ 7, and

5. Wn can be constructed in time polynomial in n.

Proof. The graph Wn is constructed as follows (see Figure 8 for the case n = 0).
The external vertex v is connected to vertex v1 by edge e1, and to v2 by e2.
Vertices v1 and v2 are connected by an edge e. We attach several trees to vertices
v1 and v2:
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Figure 8: The variable setting gadget W0.

• Attach n trees F1, F2, . . . , Fn to v1, let the pendant edges of these trees
be z1

1v1, z1
2v1, . . . , z1

nv1, respectively.

• Similarly, attach a copy of these n trees to v2, let the pendant edges be
z2
1v2, z2

2v2, . . . , z2
nv2.

• Attach to v1 the trees Fn+2, Fn+3, Fn+4, Fn+6 with pendant edges z1
n+2v1,

z1
n+3v1, z1

n+4v1, z1
n+6v1, respectively.

• Attach to v1 a tree Ln+6 with pendant edge u1v1.

• Attach to v2 the trees Fn+2, Fn+4, Fn+5, Fn+6 with pendant edges z2
n+2v2,

z2
n+4v2, z2

n+5v2, z2
n+6v2, respectively.

• Attach to v2 a tree Ln+2 with pendant edge u2v2.

Notice that both v1 and v2 have degree n + 7. The graph Wn is a partial
2-tree: it is chordal, and it has clique number 3.

Set wn := 2(f1 + f2 + · · · + fn) + (fn+2 + fn+3 + fn+4 + fn+6 + kn+6) +
(fn+2 + fn+4 + fn+5 + fn+6 + kn+2). It is clear that every coloring of Wn has
error at least wn on the internal vertices: the combined error in the attached
trees is always at least wn. Moreover, if the error of coloring ψ is wn on the
internal vertices, then there has to be zero error on v1 and v2. Furthermore,
from Lemma 5.1 and Lemma 5.2, in this case we also have that

• ψ(z1
i v1) = ψ(z2

i v2) = i for i = 1, 2, . . . , n,

• ψ(z1
i v1) = ψ(z2

i v2) = i for i = n+ 2, n+ 4, n+ 6,

• ψ(z1
n+3v1) = n+ 3,

• ψ(z2
n+5v2) = n+ 5,

• ψ(u1v1) is either n+ 5 or n+ 7, and

• ψ(u2v2) is either n+ 1 or n+ 3.
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Since the degree of v1 is n + 7 and there is zero error on v1, it follows that
ψ(e) ≤ n + 7. Moreover, ψ(e) is either n + 1 or n + 7: as shown above, every
other color not greater than n + 7 is already used on at least one of v1 or v2.
Assume first that ψ(e) = n + 1. In this case u2v2 cannot have color n + 1;
therefore, ψ(u2v2) = n+ 3 follows. Now the only unused color not greater than
n+ 7 at v2 is n+ 7, hence ψ(e2) = n+ 7. There remains two unused colors at
v1: color n+ 5 and color n+ 7. However, edge e1 cannot have color n+ 7, since
edge e2 already has this color. Thus we have ψ(e1) = n+ 5 and ψ(e2) = n+ 7,
as required by Property 4. Similarly, assume that ψ(e) = n+ 7, it follows that
ψ(u1v1) = n+ 5. The only unused color not greater than n+ 7 at v1 is n + 1,
hence edge e1 has to receive this color. Colors n + 3 and n + 1 are the only
remaining colors at v2; therefore, e2 has color n+ 3, since n+ 1 is already used
by e1. Thus we have ψ(e1) = n+ 1 and ψ(e2) = n+ 3, as required.

The two colorings ψ1 and ψ2 required by Property 4 are given as follows (see
Figure 8 for the case n = 0). Consider the (partial) coloring ψ with

• ψ(z1
i v1) = ψ(z2

i v2) = i for i = 1, 2, . . . , n,

• ψ(z1
i v1) = ψ(z2

i v2) = i for i = n+ 2, n+ 4, n+ 6,

• ψ(z1
n+3v1) = n+ 3 and

• ψ(z2
n+5v2) = n+ 5.

Both ψ1 and ψ2 assign the same colors as ψ, but we also have

• ψ1(e1) = n+ 1, ψ1(e2) = n+ 3, ψ1(e) = n+ 7,

• ψ1(u1v1) = n+ 5,

• ψ1(u2v2) = n+ 1.

• ψ2(e1) = n+ 5, ψ2(e2) = n+ 7, ψ2(e) = n+ 1,

• ψ2(u1v1) = n+ 7,

• ψ2(u2v2) = n+ 3.

In these colorings vertices v1 and v2 have zero error. Furthermore, these color-
ings can be extended to the attached trees with error wn: the colors assigned
to the pendant edges of the attached trees are compatible with the “best” col-
oring of the attached trees (see Property 4 of Lemma 5.2 and Property 3 of
Lemma 5.1). This gives Property 4 of the lemma being proved.

Theorem 5.6. Minimum Sum Edge Coloring is NP-hard for partial 2-trees.

Proof. The proof is by reduction from 3-SAT: given a 3-CNF formula ϕ, we
construct a partial 2-tree G and determine an integer K such that Σ′(G) ≤ K
if and only if ϕ is satisfiable.

We assume that every variable occurs exactly twice positively and exactly
twice negated in φ. This can be achieved as follows. It is well-known that 3-SAT
remains NP-complete if every variable occurs exactly twice positively, exactly
once negated, and every clause contains two or three literals. Let us assume that
the number of variables is even, if not, then duplicate every variable and every
clause. Let x1, x2, . . . , xn be the variables of φ. We add n/2 new variables
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y1, y2, . . . , yn
2

and n new clauses (x̄1 ∨ y1 ∨ ȳ1), (x̄2 ∨ y1 ∨ ȳ1), (x̄3 ∨ y2 ∨ ȳ2),
(x̄4 ∨ y2 ∨ ȳ2), . . . , (x̄n−1 ∨ yn

2
∨ ȳn

2
), (x̄n ∨ yn

2
∨ ȳn

2
) to the formula. Now every

variable occurs exactly twice positively and twice negated. These new clauses
are satisfied in every variable assignment, hence the new formula is satisfiable
if and only if the original is satisfiable. Furthermore, if there is a clause (x ∨ y)
containing only two literals, then add a new variable z, and replace this clause
with (x∨ z ∨ z)∧ (z̄ ∨ z̄ ∨ y). It is easy to see that this transformation does not
change the satisfiability of the formula.

Let x0, x1, . . . , xn−1 be the n variables of ϕ. The number of clauses is
therefore m = 4n/3. For every literal of ϕ, there is a corresponding color, as
follows:

• color 8i+ 1 corresponds to the first positive occurrence of xi,

• color 8i+ 3 corresponds to the second positive occurrence of xi,

• color 8i+ 5 corresponds to the first negated occurrence of xi, and

• color 8i+ 7 corresponds to the second negated occurrence of xi.

Notice that these numbers are odd, and every odd number not greater than 8n
corresponds to a literal.

Take a vertex v, we will attach several gadgets to v to obtain the graph G.
Attach 4n trees F2, F4, . . . , F8n to v, let the pendant edges of the attached trees
be u2v, u4v, . . . , u8nv, respectively. Attach n variable setting gadgets W0, W8,
W16, . . . , W8(n−1) to v, let the two edges of W8i incident to v be called wi,1v
and wi,2v. For every clause Cj of ϕ, we attach a satisfaction testing gadget to v
in the following way: if colors cj,1 < cj,2 < cj,3 correspond to the three literals
in clause Cj , then attach a tree Sc1,c2,c3 to v, and let siv be its pendant edge.
Finally, attach m/2 copies of the tree A8n−1 to v, let the pendant edges of these
trees be t1v, t2v, . . . , tm

2
v. This completes the description of the graph G. Since

every gadget is a partial 2-tree (or even a tree), the graph G is a partial 2-tree
as well: joining graphs at a single vertex does not increase the tree width of the
graphs.

Let K(1) := f2 + f4 + · · · + f8n. In every coloring of G the error is at least
K(1) on the internal vertices of the 4n trees Fi attached to v. Let K(2) :=
w0 + w8 + · · · + w8(n−1). In every coloring the error is at least K(2) on the

internal vertices of the n variable setting gadgets. Let K(3) := m/2 · a8n−1. In
every coloring the error is at least K(3) on the internal vertices of the m/2 copies
of A8n−1. Let K(4) :=

∑m
j=1 scj,1,cj,2,cj,3

where cj,k is the color corresponding
to the k-th literal in clause Cj . In every coloring of G, the error on the internal
vertices of the m satisfaction testing gadget is at least K(4). Finally, set K :=
K(1) +K(2) +K(3) +K(4). It is clear that every coloring of G has error at least
K. We claim that G has a coloring with error exactly K if and only if ϕ is
satisfiable.

Assume first that coloring ψ has error K. This is possible only if ψ has zero
error on v, and the error is exactly K on the internal vertices of the attached
gadgets. By Lemmas 5.1, 5.3, 5.4, and 5.5, this implies that

• ψ(uiv) = i for i = 2, 4, . . . , 8n,

• for every i = 0, 1, . . . , n− 1, either

18



– ψ(wi,1v) = 8i+ 1 and ψ(wi,2v) = 8i+ 3, or

– ψ(wi,1v) = 8i+ 5 and ψ(wi,2v) = 8i+ 7,

• ψ(siv) ∈ {cj,1, cj,2, cj,3} for every j = 1, . . . , m, and

• ψ(tiv) ≤ 8n− 1 and odd for every i = 1, 2, . . ., m/2.

Consider the following variable assignment: set variable xi to true if ψ(wi,1v) =
8i+ 5, ψ(wi,2v) = 8i+ 7, and set xi to false if ψ(wi,1v) = 8i+ 1 and ψ(wi,2v) =
8i+ 3. We show that this is a satisfying assignment of ϕ, i.e., every clause Cj is
satisfied. Assume that ψ(sjv) = cj,k for some k = 1, 2, 3, and let the k-th literal
in clause Cj be an occurrence of the variable xi. In this case, the k-th literal
of clause Cj is true in the constructed variable assignment: otherwise color cj,w
would appear also on edge wi,1v or wi,2v. Therefore, every clause contains at
least one true literal, and the formula is satisfied by the variable assignment.

Now assume that ϕ has a satisfying variable assignment. Consider the fol-
lowing (partial) coloring ψ:

• ψ(uiv) = i for i = 2, 4, . . . , 8n,

• for every i = 0, 1, . . . , n− 1,

– if variable xi is true, then ψ(wi,1v) = 8i+ 5 and ψ(wi,2v) = 8i+ 7,

– if variable xi false, then ψ(wi,1v) = 8i+ 1 and ψ(wi,2v) = 8i+ 3,

It is clear from the construction that for every j = 1, 2, . . . ,m, one of the
colors cj,1, cj,2, cj,3 is not already assigned: otherwise this would imply that
clause Cj contains only false literals in the satisfying variable assignment, a
contradiction. Therefore, we can set ψ(sjv) to one of these three colors. So far
coloring ψ assigns 4n even and 2n + m odd colors to the edges incident to v,
thus there remains exactly m/2 odd colors not greater than 8n. Assign these
colors to the edges t1v, t2v, . . . , tm

2
v in some order. Now every color not greater

than 8n is used exactly once at v, hence there is zero error on vertex v in ψ.
It is straightforward to verify that this coloring can be extended to the whole
graph G such that the resulting coloring has error exactly K: in every gadget,
the edges incident to v are colored in such a way that makes this extension
possible.

References

[1] P. Alimonti and V. Kann. Some APX-completeness results for cubic graphs.
Theoret. Comput. Sci., 237(1-2):123–134, 2000.

[2] A. Bar-Noy, M. Bellare, M. M. Halldórsson, H. Shachnai, and T. Tamir. On
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