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Abstract

An important question in the study of constraint satisfaction problems (CSP) is understanding how the graph
or hypergraph describing the incidence structure of the constraints influences the complexity of the problem. For
binary CSP instances (i.e., where each constraint involvesonly two variables), the situation is well understood: the
complexity of the problem essentially depends on the treewidth of the graph of the constraints [27, 41]. However,
this is not the correct answer if constraints with unboundednumber of variables are allowed, and in particular, for
CSP instances arising from query evaluation problems in database theory. Formally, ifH is a class of hypergraphs,
then let CSP(H) be CSP restricted to instances whose hypergraph is inH. Our goal is to characterize those classes
of hypergraphs for which CSP(H) is polynomial-time solvable or fixed-parameter tractable, parameterized by the
number of variables. Note that in the applications related to database query evaluation, we usually assume that the
number of variables is much smaller than the size of the instance, thus parameterization by the number of variables
is a meaningful question.

The most general known property ofH that makes CSP(H) polynomial-time solvable is bounded fractional
hypertree width. Here we introduce a new hypergraph measurecalledsubmodular width,and show that bounded
submodular width ofH (which is a strictly more general property than bounded fractional hypertree width) implies
that CSP(H) is fixed-parameter tractable. In a matching hardness result, we show that ifH has unbounded sub-
modular width, then CSP(H) is not fixed-parameter tractable (and hence not polynomial-time solvable), unless the
Exponential Time Hypothesis (ETH) fails. The algorithmic result uses tree decompositions in a novel way: instead
of using a single decomposition depending on the hypergraph, the instance is split into a set of instances (all on the
same set of variables as the original instance), and then thenew instances are solved by choosing a different tree
decomposition for each of them. The reason why this strategyworks is that the splitting can be done in such a way
that the new instances are “uniform” with respect to the number extensions of partial solutions, and therefore the
number of partial solutions can be described by a submodularfunction. For the hardness result, we prove via a series
of combinatorial results that if a hypergraphH has large submodular width, then a 3SAT instance can be efficiently
simulated by a CSP instance whose hypergraph isH. To prove these combinatorial results, we need to develop a
theory of (multicommodity) flows on hypergraphs and vertex separators in the case when the functionb(S) defining
the cost of separatorS is submodular, which can be of independent interest.
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1 Introduction

There is a long line of research devoted to identifying hypergraph properties that make the evaluation of conjunctive
queries tractable (see e.g. [23, 50, 26, 27]). Our main contribution is giving a complete theoretical answer to this
question: in a very precise technical sense, we characterize those hypergraph properties that imply tractability for the
evaluation of a query. Efficient evaluation of queries is originally a question of database theory; however, it has been
noted that the problem can be treated as a constraint satisfaction problem (CSP) and this connection led to a fruitful
interaction between the two communities [39, 25, 50]. Most of the literature relevant to the current paper use the
language of constraint satisfaction. Therefore, after a brief explanation of the database-theoretic motivation, we switch
to the language of CSPs.

Conjunctive queries. Evaluation of conjunctive queries (or equivalently, Select-Project-Join queries) is one of
the most basic and most studied tasks in relational databases. A relational database consists of a fixed set of rela-
tions. A conjunctive query defines a new relation that can be obtained as first taking the join of some relations and
then projecting it to a subset of the variables. As an example, consider a relational database that contains three rela-
tions: enrolled(Person,Course,Date), teaches(Person,Course,Year), parent(Person1,Person2). The following query
Q defines a relation ans(P) with the meaning that “P is enrolled in a course taught by her parent.”

Q : ans(P)← enrolled(P,C,D)∧ teaches(P2,C,Y)∧parent(P2,P).

In theBoolean Conjunctive Queryproblem we need only to decide if the answer relation is emptyor not, that is, if the
join of the relations is empty or not. This is usually denotedas the relation “ans” not having any variables. Boolean
Conjunctive Query contains most of the combinatorial difficulty of the general problem without complications such
that the size of the output being exponentially large. Therefore, the current paper focuses on this decision problem.

In a natural way, we can define thehypergraphof a query: its vertices are the variables appearing in the query and
the edges are the relations. Intuitively, if the hypergraphhas “simple structure,” then the query is easy to solve. For
example, compare the following two queries:

Q1 : ans← R1(A,B,C)∧R2(C,D)∧R3(D,E,F)∧R4(E,F,G,H)∧R5(H, I)

Q2 : ans← R1(A,B)∧R2(A,C)∧R3(A,D)∧R4(B,C)∧R5(B,D)∧R6(C,D)

Even though more variables appear inQ1, evaluating it seems to be easier: its hypergraph is “path like,” thus the query
can be answered efficiently by, say, dynamic programming techniques. On the other hand, the hypergraph ofQ2 is a
clique on 4 vertices and no significant shortcut is apparent compared to trying all possible combinations of values for
(A,B,C,D).

What are those hypergraph properties that make Boolean Conjunctive Query tractable? In the early 80s, it has
been noted that acyclicity is one such property [9, 19, 53, 8]. Later, more general such properties were identified in
the literature: for example, bounded query width [14], bounded hypertree width [23], and bound fractional hypertree
width [43, 28]. Our goal is to find the most general hypergraphproperty that guarantees an efficient solution for query
evaluation.

Constraint satisfaction. Constraint satisfaction is a general framework that includes many standard algorithmic
problems such as satisfiability, graph coloring, database queries, etc. [26, 20]. A constraint satisfaction problem (CSP)
consists of a setV of variables, a domainD, and a setC of constraints, where each constraint is a relation on a subset of
the variables. The task is to assign a value fromD to each variable in such a way that every constraint is satisfied (see
Definition 2.1 for the formal definition). For example, 3SAT can be interpreted as a CSP problem where the domain
is D = {0,1} and the constraints inC correspond to the clauses (thus the arity of each constraintis 3). As another
example, let us observe that thek-Clique problem (Is there ak-clique in a given graphG?) can be easily expressed as a
CSP instance. LetD be the set of verticesG, letV containk variables, and letC contain

(k
2

)

constraints, one constraint
on each pair of variables. The binary relation of these constraints require that the two vertices are adjacent. Therefore,
the CSP instance has a solution if and only ifG has ak-clique.

It is easy to see that Boolean Conjunctive Query can be formulated as the problem of deciding if a CSP instance
has a solution: the variables of the CSP instance corresponds to the variables appearing in the query and the constraints
correspond to the database relations. A distinctive feature of CSP instances obtained this way is that the number of
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variables is small (as queries are typically small), while the domain of the variables are large (as the database relations
usually contain a large number of entries). This has to be contrasted with typical CSP problems from AI, such as
3-colorability and satisfiability, where the domain is small, but the number of variables is large. As our motivation is
database-theoretic, in the rest of the paper the reader should keep in mind that we are envisioning scenarios where the
number of variables is small and the domain is large.

As the examples above show, solving constraint satisfaction problems is NP-hard in general if there are no addi-
tional restrictions on the instances. The main goal of the research on CSP is to identify tractable special cases of the
general problem. The theoretical literature on CSP investigates two main types of restrictions. The first type is to
restrict theconstraint language,that is, the type of constraints that are allowed. This direction includes the classical
work of Schaefer [51] and its many generalizations [10, 11, 12, 20, 38]. The second type is to restrict thestructure
induced by the constraints on the variables. Thehypergraphof a CSP instance is defined to be a hypergraph on the
variables of the instance such that for each constraintc∈C there is a hyperedgeec that contains all the variables that
appear inc. If the hypergraph of the CSP instance has very simple structure, then the instance is easy to solve. For
example, it is well-known that a CSP instanceI with hypergraphH can be solved in time‖I‖O(tw(H)) [22], where tw(H)
denotes the treewidth ofH and‖I‖ is the size of the representation ofI in the input.

Our goal is to characterize the “easy” and “hard” hypergraphs from the viewpoint of constraint satisfaction. How-
ever, formally speaking, CSP is polynomial-time solvable for every fixed hypergraphH: sinceH has a constant number
k of vertices, every CSP instance with hypergraphH can be solved by trying all‖I‖k possible combinations on thek
variables. It makes more sense to characterize thoseclassesof hypergraphs where CSP is easy. Formally, for a class
H of hypergraphs, let CSP(H) be the restriction of CSP where the hypergraph of the instance is assumed to be inH.
For example, as discussed above, we know that ifH is a class of hypergraphs with bounded treewidth, i.e., there is a
constantw such that tw(H)≤ w for H ∈H, then CSP(H) is polynomial-time solvable.

For the characterization of the complexity of CSP(H), we can investigate two notions of tractability. CSP(H)
is polynomial-time solvableif there is an algorithm solving every instance of CSP(H) in time (‖I‖)O(1), where‖I‖
is the length of the representation ofI in the input. The following notion interprets tractabilityin a less restrictive
way: CSP(H) is fixed-parameter tractable (FPT)if there is an algorithm solving every instanceI of CSP(H) in time
f (H)(‖I‖)O(1), where f is an arbitrary function of the hypergraphH of the instance. Equivalently, the factorf (H)
in the definition can be replaced by a factorf (k) depending only on the numberk of vertices ofH: as the number
of hypergraphs onk vertices (without parallel edges) is bounded by a function of k, the two definitions result in the
same notion. For a more general treatment of fixed-parametertractability, the reader is referred to the parameterized
complexity literature [18, 21, 45].

The case of bounded arities.If the constraints have bounded arity (i.e., the edge size inH is bounded by a constant
r), then the complexity of CSP(H) is well understood. In this case, bounded treewidth is the only polynomial-time
solvable case:

Theorem 1.1([27]). If H is a recursively enumerable class of hypergraphs with bounded edge size, then (assuming
FPT 6= W[1]) the following are equivalent:

1. CSP(H) is polynomial-time solvable.

2. CSP(H) is fixed-parameter tractable.

3. H has bounded treewidth.

The assumption FPT6= W[1] is a standard hypothesis of parameterized complexity.Thus in the bounded arity
case bounded treewidth is the only property of the hypergraph that can make the problem polynomial-time solvable.
By definition, polynomial-time solvability implies fixed-parameter tractability, but Theorem 1.1 proves the surprising
result that whenever CSP(H) is fixed-parameter tractable, it is polynomial-time solvable as well.

The following sharpening of Theorem 1.1 shows that there is no algorithm whose running time is significantly
better than the‖I‖O(tw(H)) bound of the treewidth based algorithm. The result is provedunder the Exponential Time
Hypothesis (ETH) [35], a somewhat stronger assumption thanFPT 6= W[1]: it is assumed that there is no 2o(n) time
algorithm forn-variable 3SAT.
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Theorem 1.2([41]). If there is a computable function f and a recursively enumerable classH of hypergraphs with
bounded edge size and unbounded treewidth such that the problem CSP(H) can be solved in time f(H)‖I‖o(tw(H)/ log tw(H))

for instances I with hypergraph H∈H, then ETH fails.

This means that the treewidth-based algorithm is almost optimal: in the exponent only anO(log tw(H)) factor
improvement is possible. It is conjectured in [41] that Theorem 1.2 can be made tight, i.e., the lower bound holds even
if the logarithmic factor is removed from the exponent.

Conjecture 1.3([41]). If H is a class of hypergraphs with bounded edge size, then there is no algorithm that solves
CSP(H) in time f(H)‖I‖o(tw(H)) for instances I with hypergraph H∈H, where f is an arbitrary computable function.

Unbounded arities. The situation is less understood in the unbounded arity case, i.e., when there is no bound on
the maximum edge size inH. First, the complexity in the unbounded-arity case dependson how the constraints are
represented. In the bounded-arity case, if each constraintcontains at mostr variables (r being a fixed constant), then
every reasonable representation of a constraint has size|D|O(r). Therefore, the size of the different representations can
differ only by a polynomial factor. On the other hand, if there is no bound on the arity, then there can be exponential
difference between the size of succinct representations (e.g., formulas [15]) and verbose representations (e.g., truth
tables [44]). The running time of an algorithm is expressed as a function of the input size, hence the complexity of the
problem can depend on how the input is represented: longer representation means that it is potentially easier to obtain
a polynomial-time algorithm.

The most well-studied representation of constraints is listing all the tuples that satisfy the constraint. This repre-
sentation is perfectly compatible with our database-theoretic motivation: the constraints are relations of the database,
and a relation is physically stored as a table containing allthe tuples in the relation. For this representation, there
are classesH with unbounded treewidth such that CSP restricted to this class is polynomial-time solvable. A trivial
example is the classH of all hypergraphs having only a single hyperedge of arbitrary size. The treewidth of such
hypergraphs can be arbitrarily large (as the treewidth of a hypergraph consisting of a single edgee is exactly|e|−1),
but CSP(H) is trivial to solve: we can pick any tuple from the constraint corresponding to the single edge. There are
other, nontrivial, classes of hypergraphs with unbounded treewidth such that CSP(H) is solvable in polynomial time:
for example, classes with bounded(generalized) hypertree width[24], boundedfractional edge cover number[28], and
boundedfractional hypertree width[28, 43]. Thus, unlike in the bounded-arity case, treewidthis not the right measure
for characterizing the complexity of the problem.

Our results. We introduce a new hypergraph width measure that we callsubmodular width.Small submodular
width means that for every monotone submodular functionb on the vertices of the hypergraphH, there is a tree
decomposition whereb(B) is small for every bagB of the decomposition. (This definition makes sense only if we
normalize the considered functions: for this reason, we require thatb(e) ≤ 1 for every edgee of H.) The main result
of the paper is showing that bounded submodular width is the property that precisely characterizes the complexity of
CSP(H):

Theorem 1.4 (Main). Let H be a recursively enumerable class of hypergraphs. Assumingthe Exponential Time
Hypothesis, CSP(H) parameterized by H is fixed-parameter tractable if and onlyif H has bounded submodular width.

Theorem 1.4 has an algorithmic side (algorithm for bounded submodular width) and a complexity side (hardness
result for unbounded submodular width). Unlike previous width measures in the literature, where small value of the
measure suggests a way of solving CSP(H) it is not at all clear how bounded submodular width is of any help. In
particular, it is not obvious what submodular functions have to do with CSP instances. The main idea of our algorithm
is that a CSP instance can be “split” into a small number of “uniform” CSP instances; for this purpose, we use a
partitioning procedure inspired by a result of Alon et al. [4]. More precisely, splitting means that we partition the setof
tuples appearing in the constraint relations in a certain way and each new instance inherits only one class of the partition
(thus each new instance has the same set of variables as the original). Uniformity means that for any subsetsB⊆ A of
variables, every solution for the problem restricted toB has roughly the same number of extensions toA. The property
of uniformity allows us to bound the logarithm of the number of solutions on the different subsets by a submodular
function. Therefore, bounded submodular width guaranteesthat each uniform instance has a tree decomposition such
that in each bag only a polynomially bounded number of solutions has to be considered.
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Conceptually, our algorithm goes beyond previous decomposition techniques in two ways. First, the tree decompo-
sition that we use depends not only on the hypergraph, but on the actual constraint relations in the instance (we remark
that this idea first appeared in [44] in a different context that does not directly apply to our problem). Second, we are
not only decomposing the set of variables, but we also split the constraint relations. This way, we can apply different
decompositions to different parts of the solution space.

The proof of the complexity side of Theorem 1.4 follows the same high-level strategy as the proof of Theorem 1.2
in [41]. In a nutshell, the argument of [41] is the following:if treewidth is large, then there is subset of vertices which
is highly connected in the sense that the set does not have a small balanced separator; such a highly connected set
implies that there is uniform concurrent flow (i.e., a compatible set of flows connecting every pair of vertices in the
set); the paths in the flows can be used to embed the graph of a 3SAT formula; and finally this embedding can be used
to reduce 3SAT to CSP. These arguments build heavily on well-known characterizations of treewidth and results from
combinatorial optimization (such as theO(logk) integrality gap of sparsest cut). The proof of Theorem 1.4 follows this
outline, but now no such well-known tools are available: we are dealing with hypergraphs and submodular functions
in a way that was not explored before in the literature. Thus we have to build from scratch all the necessary tools. One
of the main difficulties of obtaining Theorem 1.4 is that we have to work in three different domains:

• CSP instances.As our goal is to investigate the existence of algorithms solving CSP, the most obvious domain
is CSP instances. In light of previous results, we are especially interested in algorithms based on tree decompo-
sitions. For such algorithms, what matters is the existenceof subsets of vertices such that restricting the instance
to any of these subsets gives an instance with “small” numberof solutions. In order to solve the instance, we
would like to find a tree decomposition where every bag is sucha small set.

• Submodular functions. Submodular width is defined in terms of submodular functions, thus submodular func-
tions defined on hypergraphs is our second natural domain. Weneed to understand what large submodular width
means, that is, what property of the submodular function andthe hypergraph makes it impossible to obtain a tree
decomposition where every bag has small value.

• Flows and embeddings in hypergraphs.In the hardness proof, our goal is to embed the graph of a 3SAT for-
mula into a hypergraph. Thus we need to define an appropriate notion of embedding and study what guarantees
the existence of embeddings with suitable properties. As in[41], we use the paths appearing in flows to con-
struct embeddings. For our purposes, the right notion of flowis a collection of weighted paths where the total
weight of the paths intersecting each hyperedge is at most 1.This notion of flows has not been studied in the
literature before, thus we need to obtain basic results on such flows, such as exploring the duality between flows
and separators.

A key question is how to find connections between these domains. As mentioned above and detailed in Section 4,
we have a procedure that reduces a CSP instance into a set of uniform CSP instances, and the number of solutions on
the different subsets of variables in a uniform CSP instancecan be described by a submodular function. This method
allows us to move from the domain of CSP instances to the domain of submodular functions. Section 5 is devoted
to showing that if submodular width of a hypergraph is large,then there is a certain “highly connected” set in the
hypergraph. Highly connected set is defined as a property of the hypergraph and has no longer anything to do with
submodular functions. Thus this connection allows us to move from the domain of submodular functions to the study
of hypergraphs. In Section 6, we show that a highly connectedset in a hypergraph means that graphs can be efficiently
embedded into the hypergraph. In particular, the graph of a 3SAT formula can be embedded into the hypergraph, which
gives us (as shown in Section 7) a reduction from 3SAT to CSP(H). This connection allows us to move from the domain
of embeddings back to the domain of CSP instances. We remark that Sections 4–7 are written in a self-contained way:
only the first theorem of each section is used outside the section.

As a consequence of our characterization of submodular width, we obtain the surprising result that bounded sub-
modular width equals bounded adaptive width (defined in [44]):

Theorem 1.5. A class of hypergraphs has bounded submodular width if and only if it has bounded adaptive width.

It is proved in [44] that there are classes of hypergraphs having bounded adaptive width (and hence bounded
submodular width), but unbounded fractional hypertree width. Previously, bounded fractional hypertree width was the
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most general property that was known to guarantee fixed-parameter tractability [28]. Thus Theorem 1.4 not only gives a
complete characterization of the parameterized complexity of CSP(H), but its algorithmic side proves fixed-parameter
tractability in a strictly more general case than what was known before.

Why fixed-parameter tractability? We argue that investigating the fixed-parameter tractability of CSP(H) is
at least as interesting as investigating polynomial-time solvability. In problems coming from our database-theoretic
motivation, the size of the hypergraph (that is, the size of the query) is assumed to be much smaller than the input size
(which is usually dominated by the size of the database), hence a constant factor in the running time depending only on
the number of variables (or on the hypergraph) is acceptable1. Even the STOC 1977 landmark paper of Chandra and
Merlin [13], which started the complexity research on conjunctive queries, suggests spending exponential time (in the
size of the query) on finding the best possible evaluation order. Furthermore, the notion of fixed-parameter tractability
formalizes the usual viewpoint of the literature on conjunctive queries: in the complexity analysis, we should analyze
separately the contribution of the query size and the contribution of the database size.

By aiming for fixed-parameter tractability, we can focus more on the core algorithmic question: is there some
method for decomposing the space of all solutions in a way that allows efficient evaluation of the query? Some of
the progress in this area was made by showing that if certain decompositions exist, then the query can be evaluated
efficiently, for example, this was the case for the paper introducing query width [14] and fractional hypertree width
[28]. In our terminology, these results already show the fixed-parameter tractability of CSP(H) for certain classesH
(since the time required to find an appropriate decomposition can be bounded by a function ofH only), but do not
give polynomial-time algorithms. It took some more time andeffort to come up with polynomial-time (approximation)
algorithms for finding such decompositions [23, 43]. While investigating algorithms for finding decompositions give
rise to interesting and important problems, they are purelycombinatorial problems on graphs and hypergraphs, and no
longer has anything to do with query evaluation, constraints, or databases. Thus fixed-parameter tractability gives usa
formal way of ignoring these issues and focusing exclusively on the evaluation problem.

On the complexity side, fixed-parameter tractability of CSP(H) seems to be a more robust question than polynomial-
time solvability. For example, any polynomial-time reduction to CSP(H) should be able to pick a member ofH, thus it
seems that polynomial-time reduction to CSP(H) is only possible if certain artificial technical conditions are imposed
onH (such as there is an algorithm efficiently generating appropriate members ofH). Furthermore, there are classesH
for which CSP(H) is polynomial-time equivalent to LOG CLIQUE [27], thus we cannot hope to classify CSP(H) into
polynomial-time solvable and NP-hard cases. Another difficulty in understanding polynomial-time solvability is that
it can depend on the “irrelevant” parts of the hypergraph. Suppose for example that there is classH for which CSP(H)
is not polynomial-time solvable, but it is fixed-parameter tractable: it can be solved in timef (H) · (‖I‖)O(1). LetH′
be constructed the following way: for everyH ∈ H, classH′ contains a hypergraphH ′ that is obtained fromH by
adding a new component that is a path of lengthf (H). This new path is trivial with respect to the CSP problem, thus
any algorithm for CSP(H) can be used for CSP(H′) as well. Consider an instanceI of CSP(H′) having hypergraphH ′,
which was obtained from hypergraphH. After taking care of the path, the assumed algorithm for CSP(H) can solve
this instance in timef (H) · (‖I‖)O(1), which is polynomial in‖I‖: instanceI contains a representation ofH ′, which
has at leastf (H) vertices, thus‖I‖ is at leastf (H). Therefore, CSP(H′) is polynomial-time solvable. This example
shows that aiming for polynomial-time solvability insteadof fixed-parameter tractability might require understanding
such subtle, but mostly irrelevant phenomena.

In the hardness results obtained so far, evidence for the non-existence of polynomial-time algorithms is given not
in the form of NP-hardness, but by giving evidence that the problem is not fixed-parameter tractable. In Theorem 1.1, it
is a remarkable coincidence that polynomial-time solvability and fixed-parameter tractability are equivalent. However,
there is no reason to expect this to remain true in more general cases. Therefore, as discussed above, it makes sense to
focus first on understanding the fixed-parameter tractability of the problem.

1This assumption is valid only for evaluation problems (where the problem instance includes a large database) and not forproblems that
involves only queries, such as the Conjunctive Query Containment problem.
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2 Preliminaries

Constraint satisfaction problems.We briefly recall the most important notions related to CSP. For more background,
see e.g., [26, 20].

Definition 2.1. An instance of aconstraint satisfaction problemis a triple(V,D,C), where:

• V is a set of variables,

• D is a domain of values,

• C is a set of constraints,{c1,c2, . . . ,cq}. Each constraintci ∈C is a pair〈si ,Ri〉, where:

– si is a tuple of variables of lengthmi , called theconstraint scope,and

– Ri is anmi-ary relation overD, called theconstraint relation.

For each constraint〈si ,Ri〉 the tuples ofRi indicate the allowed combinations of simultaneous values for the vari-
ables insi . The lengthmi of the tuplesi is called thearity of the constraint. Asolution to a constraint satisfaction
problem instance is a functionf from the set of variablesV to the domain of valuesD such that for each constraint
〈si ,Ri〉 with si = 〈vi1,vi2, . . . ,vim〉, the tuple〈 f (vi1), f (vi2), . . . , f (vim)〉 is a member ofRi. We say that an instance is
binary if each constraint relation is binary, i.e.,mi = 2 for each constraint. It can be assumed that the instance does
not contain two constraints〈si ,Ri〉, 〈sj ,Rj〉 with si = sj , since in this case the two constraints can be replaced by the
constraint〈si ,Ri ∩Rj〉.

In the input, the relation in a constraint is represented by listing all the tuples of the constraint. We denote by‖I‖
the size of the representation of the instanceI = (V,D,C). It can be assumed that‖I‖ ≤ D: elements ofD that do not
appear in any relation can be safely removed.

Let I = (V,D,C) be a CSP instance and letV ′⊆V be a nonempty subset of variables. TheprojectionprV ′ I of I toV ′

is a CSPI ′ = (V ′,D,C′), whereC′ is defined the following way: For each constraintc= 〈(v1, . . . ,vk),R〉 having at least
one variable inV ′, there is a corresponding constraintc′ in C′. Suppose thatvi1, . . . ,viℓ are the variables amongv1, . . . ,vk

that are inV ′. Then the constraintc′ is defined as〈(vi1, . . . ,viℓ),R
′〉, where the relationR′ is the projection ofR to the

componentsi1, . . . , iℓ, that is,R′ contains anℓ-tuple (d′1, . . . ,d
′
ℓ) ∈ Dℓ if and only if there is ak-tuple (d1, . . . ,dk) ∈ R

such thatd′j = di j for 1≤ j ≤ ℓ. Clearly, if f is a solution ofI , then f|V ′ ( f restricted to V′) is a solution of prV ′ I . For
a subsetV ′ ⊆V, we denote by solI(V ′) the set of all solutions of prV′ I . If the instanceI is clear from the context, we
drop the subscript.

Theprimal graph(or Gaifman graph) of a CSP instanceI = (V,D,C) is a graph with vertex setV such thatu,v∈V
are adjacent if and only if there is a constraint whose scope contains bothu andv. Thehypergraphof a CSP instance
I = (V,D,C) is a hypergraphH with vertex setV, wheree⊆V is an edge ofH if and only if there is a constraint whose
scope ise (more precisely, an|e|-tuples, whose coordinates form a permutation of the elements ofe). For a classH of
graphs, we denote by CSP(H) the problem restricted to instances whose hypergraph is inH.

Graphs and hypergraphs. If G is a graph or hypergraph, then we denote byV(G) andE(G) the set of vertices
and the set of edges ofG, respectively. IfH is a hypergraph andV ′ ⊆ V(H), then thesubhypergraph induced by V′

is a hypergraphH ′ with vertex setS and /0⊂ e′ ⊆ V ′ is an edge ofH ′ if and only if there is an edgee∈ E(H) with
e∩V ′ = e′. We denote byH \S the subhypergraph ofH induced byV(H)\S.

Paths, separators, and flows in hypergraphs.A path Pin hypergraphH is an ordered sequencev0, v1, . . . , vr of
vertices such thatvi andvi−1 are adjacent for every 1≤ i < r. We distinguish the endpoints of a path: vertexv0 is the
first endpointof P andvr is thesecond endpointof P. A path is anX−Y pathif its first endpoint is inX and its second
endpoint is inY. A pathP = v1v2 . . .vt is minimal if there are no shortcuts, i.e.,vi andv j are not adjacent if|i− j|> 1.
Note that a minimal path intersects each edge at most twice.

Let H be a hypergraph andX,Y⊆V(H) be two (not necessarily disjoint) sets of vertices. An(X,Y)-separatoris a
setS⊆V(H) of vertices such that there is no(X \S)− (Y \S) path inH \S, or in other words, everyX−Y path ofH
contains at least one vertex ofS. In particular, this means thatX∩Y ⊆ S.

An assignments : E(H)→ R
+ is a fractional (X,Y)-separator if every X−Y path P is coveredby s, that is,

∑e∈E(H),e∩P6= /0 s(e)≥ 1. Theweightof the fractional separators is ∑e∈E(H) s(e).
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Let H be a hypergraph and letP be the set of all paths inH. A flow of H is an assignmentf : P → R
+ such that

∑P∈P ,P∩e6= /0 f (P)≤ 1 for everye∈ E(H). Thevalueof the flow f is ∑P∈P f (P). We say that a pathP appearsin flow
f , or simplyP is apath of f if f (P) > 0. For someX,Y ⊆V(H), an(X,Y)-flow is a flow f such that onlyX−Y paths
appear inf . A standard LP duality argument shows that the minimum weight of a fractional(X,Y)-separator is equal
to the maximum value of an(X,Y)-flow.

If f , f ′ are flows such thatf ′(P)≤ f (P) for every pathP, then f ′ is asubflowof f . Thesumof the flows f1, . . . , fr
is a mapping that assigns weight∑r

i=1 f (P) to each pathP. Note that the sum of flows is not necessarily a flow itself.
If the sum of f1, . . . , fr happens to be a flow, then we say thatf1, . . . , fr arecompatible.

Highly connected sets.An important step in understanding various width measures is showing that if the measure
is large, then the (hyper)graph contains a highly connectedset (in a certain sense). We define here the notion of highly
connected that will be used in the paper. First, recall that afractional independent setof a hypergraphH is a mapping
µ : V(H)→ [0,1] such that∑v∈eµ(v) ≤ 1 for everye∈ E(H). We extend functions on the vertices ofH to subsets
of vertices ofH the natural way by settingµ(X) := ∑v∈X µ(v), thusµ is a fractional independent set if and only if
µ(e)≤ 1 for everye∈ E(H).

Let µ be a fractional independent set of hypergraphH and letλ > 0 be a constant. We say that a setW ⊆V(H) is
(µ ,λ )-connectedif for any two disjoint setsA,B⊆W, the minimum weight of a fractional(A,B)-separator is at least
λ ·min{µ(A),µ(B)}. Note that ifW is (µ ,λ )-connected, then everyW′ ⊆W is (µ ,λ )-connected. Informally, ifW
is (µ ,λ )-lambda connected for some fractional independent setµ such thatµ(W) is “large”, then we callW a highly
connected set. Forλ > 0, we denote by conλ (H) the maximum ofµ(W), taken over all(µ ,λ )-connected setW of
H. Note that ifλ ′ < λ , then conλ ′(H) > conλ (H). Throughout the paper,λ can be thought of as a sufficiently small
universal constant, say, 0.001.

Embeddings.The hardness result presented in the paper and earlier hardness results for CSP(H) [27, 44, 41] are
based on embedding a CSP instance in a CSP instance whose hypergraph is a member ofH. Thus we need a notion of
embedding in a (hyper)graph. Let us first recall the definition of minors in graphs. A graphH is aminorof G if H can
be obtained fromG by a sequence of vertex deletions, edge deletions, and edge contractions. The following alternative
definition is more relevant from the viewpoint of embeddings: a graphF is a minor ofG if there is a mappingψ that
maps each vertex ofF to a connected subset ofV(G) such thatψ(u)∩ψ(v) = /0 for u 6= v, and if u,v ∈ V(F) are
adjacent inF, then there is an edge inE(G) connectingψ(u) andψ(v).

A crucial difference between the proofs of Theorem 1.1 in [27] and the proof of Theorem 1.2 in [41] is that the
former result is a based on finding a minor embedding of a grid,while the latter result uses an embedding where the
images of distinct vertices are not necessarily disjoint, but can overlap in a controlled way. We define such embeddings
the following way. We say that two sets of verticesX,Y⊆V(H) touchif eitherX∩Y 6= /0, or there is an edgee∈ E(H)
intersecting bothX andY. An embeddingof graphG into hypergraphH is a mappingψ that maps each vertex ofH
to a connected subset ofV(G) such that ifu andv are adjacent inG, thenψ(u) andψ(v) touch. Thedepthof a vertex
v∈V(H) in embeddingψ is dψ(v) := |{u∈V(G) | v∈ ψ(u)}|, the number of vertices ofG whose images containv.
Thevertex depthof the embedding is maxv∈V(H) dψ(v). Observe thatψ is a minor mapping if and only if it has vertex
depth 1. Because in our case we want to control the size of the constraint relations, we need a notion of depth that is
sensitive to “what the edges see.” We defineedge depthof ψ to be maxe∈E(H) ∑v∈edψ(v). Equivalently, we can define
edge depth as the maximum of∑v∈V(G) |ψ(v)∩e|, taken over all edges ofeof H.

Trivially, for any graphG and hypergraphH, there is an embedding ofG into H having vertex depth and edge
depth at most|V(G)|. If G hasm edges and no isolated vertices, then|V(G)| is at most 2m. We are interested in how
much we can gain compared to this trivial solution of depthO(m). We define theembedding poweremb(H) to be the
maximum (supremum) value ofα for which there is a integermα such that every graphG with m≥mα edges has an
embedding intoH with edge depthm/α . It might look unmotivated that we define embedding power in terms of the
number of edges ofG: defining it in terms of the number of vertices might look morenatural. However, if we replace
number of edges with number of vertices in the definition, then the worst case occurs for cliques, and the definition is
really about embedding cliques.
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3 Width parameters

Treewidth and its various generalizations are defined in this section. We follow the framework of width functions
introduced by Adler [1]. Atree decompositionof a hypergraphH is a tuple(T,(Bt)t∈V(T)), whereT is a tree and
(Bt)t∈V(T) is a family of subsets ofV(H) satisfying the following two conditions: (1) for eache∈ E(H) there is a
nodet ∈V(T) such thate⊆ Bt , and (2) for eachv∈V(H) the set{t ∈V(T) | v∈ Bt} is connected inT. The setsBt

are called thebagsof the decomposition. Letf : 2V(H)→ R
+ be a function that assigns a nonnegative real number to

each nonempty subset of vertices. Thef -width of a tree-decomposition(T,(Bt)t∈V(T)) is max
{

f (Bt) | t ∈V(T)}. The
f -width of a hypergraphH is the minimum of thef -widths of all its tree decompositions.

The main idea of tree decomposition based algorithms is thatif we have a tree decomposition for instanceI such
that for each bagBt , at mostC assignments onBt have to be considered, then the problem can be solved by in dynamic
programming in time polynomial inC and ‖I‖. The various width notions try to guarantee the existence ofsuch
decompositions. The simplest such notion, treewidth, can be defined as follows:

Definition 3.1. Let s(B) = |B|−1. Thetreewidthof H is tw(H) := s-width(H).

Further width notions defined in the literature can also be conveniently defined using this setup. A subsetE′⊆E(H)
is anedge coverif

⋃

E′ = V(H). Theedge cover numberρ(H) is the size of the smallest edge cover (here we assume
thatH has no isolated vertices). ForX ⊆V(H), let ρH(X) be the size of the smallest set of edges coveringX.

Definition 3.2. Thegeneralized hypertree widthof H is hw(H) := ρH-width(H).

The original (nongeneralized) definition [23] of hypertreewidth includes an additional requirement on the decom-
position (we omit the details), thus it cannot be less than generalized hypertree. However, it is known that hypertree
width and generalized hypertree width can differ by at most aconstant factor [2].

We also consider the linear relaxations of edge covers: a function γ : E(H)→ [0,1] is a fractional edge coverof
H if ∑e:v∈eγ(e) ≥ 1 for everyv ∈ V(H). The fractional cover numberρ∗(H) of H is the minimum of∑e∈e(H) γ(e)
taken over all fractional edge covers ofH. We defineρ∗H(X) analogously toρH(X): the requirement∑e:v∈eγ(e)≥ 1 is
restricted to verticesv∈ X.

Definition 3.3. The fractional hypertree widthof H is fhw(H) := ρ∗H-width(H).

We generalize the notion off -width from a single functionf to a class of functionsF . Let F be an arbitrary
(possibly infinite) class of functions that assign nonnegative real numbers to nonempty subsets of vertices. TheF-
widthof a hypergraphH isF-width(H) := sup

{

f -width(H) | f ∈F
}

. Thus ifF-width(H)≤ k, then for everyf ∈F ,
hypergraphH has a tree decomposition withf -width at mostk. Note that this tree decomposition can be different for
the different functionsf . For normalization purposes, we consider only functionsf onV(H) that areedge-dominated,
that is, f (e)≤ 1 holds for everye∈ E(H).

Using these definitions, we can define adaptive width, introduced in [44], as follows. Recall that in Section 2, we
stated that ifµ is a fractional independent set, thenµ is extended to subsets of vertices by definingµ(X) := ∑v∈X µ(v)
for everyX ⊆V(H).

Definition 3.4. The adaptive widthadw(H) of a hypergraphH is F-width(H), whereF is the set of all fractional
independent sets ofH.

A function f : 2V(H) → R is modular if f (X) = ∑v∈X cv for some constantscv (v ∈ V(H)). The functionµ(X)
arising from a fractional independent set is clearly a modular and edge dominated function, in fact, in Definition 3.4
we can defineF as the set of all nonnegative modular edge-dominated functions onV(H). The main new definition
of the paper is a new width measure, which is obtained by imposing a requirement weaker than modularity on the
functions inF (hence the considered setF of functions is larger):

Definition 3.5. A function b : 2V(H) → R
+ is submodularif b(X) + b(Y) ≥ b(X ∩Y) + b(X ∪Y) holds for every

X,Y ⊆ V(H). Given a hypergraphH, let F contain the edge-dominated monotone submodular functionson V(H).
Thesubmodular widthsubw(H) of hypergraphH isF-width(H).
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It is well-known that submodular functions can be equivalently characterized by the property thatb(X∪v)−b(X),
themarginal valueof v with respect toX, is a nonincreasing function ofX. That is, for everyv andX ⊆Y,

b(X∪v)−b(X)≥ b(Y∪v)−b(Y). (1)

It is clear that subw(H)≥ adw(H): Definition 3.5 considers a larger set of functions. Furthermore, we show that
subw(H) is at most the fractional hypertree width ofH. This is a straightforward consequence of the fact that an
edge-dominated submodular function is always bounded by the fractional cover number:

Lemma 3.6. Let H be a hypergraph and b be a monotone edge-dominated submodular function. Then b(S) ≤ ρ∗H(S)
for every S⊆V(H).

Proof. The statement can be proved along the same lines as the proof Shearer’s Lemma [16] attributed to Radhakrish-
nan goes. It is sufficient to prove the statement for the caseS= V(H): otherwise, we can consider the subhypergraph
of H induced byS and the functionb restricted toS. Let γ : E(H)→ R

+ be a minimum fractional edge cover of
S. Let v1, . . . , vn be an arbitrary ordering ofV(H) and letVi = {v1, . . . ,vi}, V0 = /0. For everye∈ E(H), we have
b(e) = ∑vi∈e(b(e∩Vi)−b(e∩Vi−1) ≥ ∑vi∈e(b(Vi)−b(Vi−1))) (the equality is a simple telescopic sum; the inequality
uses (1), i.e., the marginal value ofvi with respect toVi−1 is not greater than with respect toe∩Vi−1).

ρ∗H(V(H)) = ∑
e∈E(H)

γ(e)≥ ∑
e∈E(H)

γ(e)b(e) ≥ ∑
e∈E(H)

γ(e) ∑
vi∈e

(b(Vi)−b(Vi−1))

=
n

∑
i=1

(b(Vi)−b(Vi−1)) ∑
e∈E(H),vi∈e

γ(e)≥
n

∑
i=1

(b(Vi)−b(Vi−1)) = b(V(H))

(in the first inequality, we use thatf is edge dominated; in the last inequality, we use thatγ is a fractional edge
cover).

Proposition 3.7. For every hypergraph H,subw(H)≤ fhw(H).

Proof. Let (T,Bt∈V(T)) be a tree decomposition ofH whoseρ∗H-width is fhw(H). If b is an edge-bounded monotone
submodular function, then by Lemma 3.6,b(Bt) ≤ ρ∗H(Bt) ≤ fhw(H) for every bagBt of the decomposition, i.e.,
b-width(H)≤ fhw(H). This is true for every such functionb, hence subw(H)≤ fhw(H).

Since adw(H)≤ subw(H)≤ fhw(H), if a classH of hypergraphs has bounded fractional hypertree width, then it
has bound submodular width, and if a classH has bounded submodular width, then it has bounded adaptive width.
Surprisingly, it turns out that the latter implication is actually an equivalence: Corollary 6.10 shows that subw(H) is at
mostO(adw(H)4), thus a class of hypergraphs has bounded submodular width ifand only if it has bounded adaptive
width. In other words large submodular width can be certifiedalready by modular functions: if submodular width is
unbounded inH and we want to choose anH ∈ H and a submodular functionb such that theb-width of H is larger
than some constantk, then we can chooseH andb such thatb is actually modular.

There is no such connection between adaptive width and fractional hypertree width: it is shown in [44] that there
is a class of hypergraphs with bound adaptive width and unbounded fractional hypertree width. Thus the property
bounded fractional hypertree width is a strictly weaker property than bounded adaptive/submodular width.

Figure 1 shows the relations of the hypergraph properties defined in this section (note that the elements of this Venn
diagram are sets of hypergraphs; e.g., the set “bounded treewidth” contains every setH of hypergraphs with bounded
tree width). As discussed above, all the inclusions in the figure are proper.

Finally, let us remark that there have been investigations of tree decompositions and branch decompositions of
submodular functions and matroids in the literature [33, 47, 34, 32, 5]. However, in those results the submodular
function is a connectivity function, i.e.,b(S) describes the boundary ofS, or in other words, the cost of separatingS
from its complement. In our case,b(S) describes the cost of the separatorS itself. Therefore, we are in a completely
different setting and the previous results cannot be used atall.
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Bounded fractional hypertree width
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Bounded adaptive width

Bounded 

Figure 1: Hypergraph properties that make CSP fixed-parameter tractable.

4 From CSP instances to submodular functions

In this section, we prove the main algorithmic result of the paper: CSP(H) is fixed-parameter tractable ifH has bounded
submodular width.

Theorem 4.1. LetH be a class of hypergraphs such thatsubw(H)≤ c0 for every H∈H. Then CSP(H) can be solved
in time f(H) · ‖I‖O(c0) for some function f .

The proof of Theorem 4.1 is based on two main ideas:

1. A CSP instanceI can be decomposed into a bounded number of “uniform” CSP instancesI1, . . . , It (Lemma 4.9).
Here uniform means that ifB⊆ A are two sets of variables, then every solution of prB I j has roughly the same
number of extensions to prA I j .

2. If I is a uniform CSP instance, then (the logarithm of) the numberof solutions on the different projections ofI
can be described by an edge-dominated submodular function (Lemma 4.10). Therefore, if the hypergraphH of
I has bounded submodular width, then it follows that there is atree decomposition where every bag has a small
number of solutions (Lemma 4.11).

In the implementation of the first idea (Lemma 4.9), we guarantee uniformity only to subsets of variables that are
“small” in the following hereditary sense:

Definition 4.2. Let I be a CSP instance andM ≥ 1 an integer. We say thatS⊆V is M-small if |solI(S′)| ≤M for every
S′ ⊆ S.

It is not difficult to find all theM-small sets, and every solution of the projected instances these sets:

Lemma 4.3. Let I = (V,D,C) be a CSP instance and M≥ 1 an integer. There is an algorithm with running time
f (|V|) ·poly(‖I‖,M) (for some function f ) that finds the setS of all M-small sets S⊆V and constructssolI(S) for each
such S∈ S.

Proof. For i = 1,2, . . . , |V|, let us find everyM-small set of sizei. This is trivial to do fori = 1. Suppose that we have
already found the setSi of all M-small sets of size exactlyi. By definition, every sizei subsetS of an M-small set
S of size i + 1 is anM-small set. Thus we can find everyM-small set of sizei + 1 by enumerating everyS∈ Si and
checking for everyv∈V \SwhetherS′ := S∪{v} is M-small. To check whetherS′ is M-small, we first check whether
every subset of sizei is M-small, which is easy to do using the setSi . Then we construct solI(S′): this can be done
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by enumerating every tuples∈ solI (S) and every extension ofs by a new value fromD. Thus we need to consider at
most|solI (S)| · |D| ≤M · |D| tuples as possible members in solI (S′), which means that solI (S′) can be constructed in
time polynomial inM and‖I‖. If |solI (S′)| ≤M, then we putS′ into Si+1. As the size of each setSi is at most 2|V| and
every operation is polynomial inM and‖I‖, the total running time isf (|V|) ·poly(‖I‖,M) for an appropriate function
f .

The following definition gives the precise notion of uniformity that we use:

Definition 4.4. Let I = (V,D,C) be a CSP instance. ForB⊆ A⊆ V and an assignmentb : B→ D, let solI (A|B =
b) := {a∈ solI (A) | a(x) = b(x) for everyx∈ B}, the set of all extensions ofb to a solution of prA I . Let maxI (A|B) =
maxb∈solI (B) |solI (A|B = b)|. We say thatA⊆V is c-uniform(for some integerc) if, for everyB⊆ A,

maxI(A|B)≤ c|solI (A)|/|solI(B)|.

We define maxI (A| /0) = |solI (A)| and maxI ( /0| /0) = 1. We will drop I from the subscript of max if it is clear from the
context. A CSP instance is(N,c,ε)-uniform if every Nc-small set isNε-uniform.

Let us prove two straightforward properties of the functionmax(A|B):

Proposition 4.5. For every B⊆ A⊆V and C⊆V, we have

1. max(A|B)≥ |sol(A)|/|sol(B)|,

2. max(A|B)≥max(A∪C|B∪C).

Proof. If every b∈ sol(B) has at most max(A|B) extensions toA, then clearly|sol(A)| is at most|sol(B)| ·max(A|B),
proving the first statement. To show the second statement, consider anx∈ sol(B∪C) with max(A∪C|B∪C) extensions
to A∪C. For any twoy1,y2∈ sol(A∪C|B∪C= x) with y1 6= y2, we have prC y1 = prC y2 = prC x, hencey1 andy2 can be
different only if prAy1 6= prAy2. This means that prAy1 and prAy2 are two different extensions of prBx to A. Therefore,

max(A|B)≥ |sol(A|B = prBx)| ≥ |sol(A∪C|B∪C = x)|= max(A∪C|B∪C),

what we had to show.

Notice that (2) in Prop. 4.5 gives a hint that submodularity will be relevant: it is analogous to inequality (1)
expressing that marginal value is larger with respect to a smaller set.

We want to avoid dealing with assignmentsb ∈ sol(B) that cannot be extended to a member of sol(A) for some
A⊇ B (that is, sol(A|B = b) = /0). Of course, there is no easy way to avoid this in general (or even to detect if there is
such ab): for example, ifA is the set of all variables, then we would need to check ifb can be extended to a solution.
Therefore, we require that there is no such unextendableb only if A andB areM-small:

Definition 4.6. A CSP instance isM-consistentif sol(B) = prAsol(A) for all M-small setsB⊆ A.

The notion ofM-consistency is very similar tok-consistency, a standard notion in the constraint satisfaction lit-
erature [7, 17, 40]. However, we restrict the considered subsets not by the number of variables, but by the number
of solutions (more precisely, by considering onlyM-small sets). Similarly to usualk-consistency, we can achieveM-
consistency by throwing away partial solutions that violate the requirements: if we use the algorithm of Lemma 4.3
to find all possible assignments of theM-small sets, then we can check if there is such an unextendable b for some
M-small setsA andB. If there is such ab, then we can exclude it from consideration (without losing any solution of the
instance) by introducing a new constraint onB. By repeatedly excluding the unextendable assignments, wecan avoid
all such problems. We say thatI ′ = (V,D,C′) is arefinementof I = (V,D,C) if for every constraint〈s,R〉 ∈C, there is
a constraint〈s,R′〉 ∈C′ such thatR′ ⊆ R.

Lemma 4.7. Let I = (V,D,C) be a CSP instance and M≥ 1 an integer. There is an algorithm with running time
f (|V|) ·poly(‖I‖,M) (for some function f ) that produces an M-consistent CSP instance I′ that is a refinement of I with
sol(I) = sol(I ′).
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Proof. Using the algorithm of Lemma 4.3, we can find all theM-small sets and then we can easily check if there
are twoM-small setsS⊆ S′ violating consistency, i.e., sol(S) 6⊆ prSsol(S′). In this case, let us add the constraint
〈S,prSsol(S′)〉; it is clear that sol(V) does not change but|sol(S)| strictly decreases. We repeat this step until the
instance becomesM-consistent. Note that adding the new constraint can make a set M-small that was notM-small
before, thus we need to rerun the algorithm of Lemma 4.3. To bound the number of iterations beforeM-consistency is
reached, observe that adding a new constraint does not increase|sol(A)| for anyA and strictly decreases|sol(S)| for
someM-small setS. As there are at most 2|V| setsSand|sol(S)| ≤M for everyM-small setS, it follows that this step
can be repeated at most 2|V | ·M times. Thus the total time required to ensure that instanceI is M-consistent can be
bounded byf (|V |) ·poly(‖I‖,M) for some functionf .

We want to avoid degenerate cases where there is no solution for trivial reasons. A CSP instance isnontrivial if
sol({v}) 6= /0 for anyv∈V.

Proposition 4.8. If I is an M-consistent nontrivial CSP instance, thensol(S) 6= /0 for every M-small set S.

4.1 Decomposition into uniform CSP instances

Our algorithm for decomposing a CSP instance into uniform CSP instances is inspired by a combinatorial result of
Alon et al. [4], which shows that, for every fixedn, ann-dimensional point setScan be partitioned into polylog(|S|)
classes such that each class isO(1)-uniform. We follow the same proof idea: the instance is split into two instances if
uniformity is violated somewhere, and we analyze the changeof an appropriately defined weight function to bound the
number of splits performed. However, the parameter settingis different in our proof: we want to partition intof (|V |)
classes, but we are satisfied with somewhat weaker uniformity. Another minor technical difference is that we require
uniformity only on theNc-small sets.

Lemma 4.9. Let I = (V,D,C) be a CSP instance and let N, c be integers andε > 0. There is an algorithm with
running time f1(|V|,c,ε) ·poly(‖I‖,Nc) that produces a set of(N,c,ε)-uniform Nc-consistent nontrivial instances I1,
. . . , It with 0≤ t ≤ f2(|V|,c,ε), all on the set V of variables, such that

1. every solution of I is a solution of exactly one instance Ii ,

2. for every1≤ i ≤ t, instance Ii is a refinement of I.

Proof. The main step of the algorithm takes a CSP instanceI and either makes it(N,c,ε)-uniform andNc-consistent,
or splits it into two instancesIsmall, Ilarge. By applying the main step recursively onIsmall andIlarge, we eventually arrive
to a set of(N,c,ε)-uniform Nc-consistent instances. We will argue that the number of constructed instances is at most
f2(|V|,c,ε) and the total running time is at mostf1(|V|,c,ε) ·poly(‖I‖,M), for some functionsf1, f2.

In the main step, we first check if the instance is trivial; in this case we can stop witht = 0. Otherwise, we
invoke the algorithm of Lemma 4.7 to obtain anNc-consistent refinement of the instance, without losing any so-
lution. Next we check if thisNc-consistent instanceI is (N,c,ε)-uniform. This can be tested in timef (|V |) ·
poly(‖I‖,Nc) if we use Lemma 4.3 to find all theNc-small sets and the corresponding sets of solutions. Sup-
pose thatNc-small setsB⊆ A violate uniformity, that is, max(A|B) > Mε |sol(A)|/|sol(B)|. Let solsmall(B) contain
those tuplesb for which |sol(A|B = b)| ≤

√
Mε |sol(A)|/|sol(B)| and let sollarge(B) = sol(B) \ solsmall(B). Note that

|sol(A)| ≥ |sollarge(B)| · (
√

Mε |sol(A)|/|sol(B)|) (as every tupleb∈ sollarge(B) has at least
√

Mε |sol(A)|/|sol(B)| ex-
tensions toA), hence|sollarge(B)| ≤ |sol(B)|/

√
Mε . Let instanceIsmall (resp.,Ilarge) be obtained fromI by adding the

constraint〈B,solsmall(B)〉 (resp.,〈B,sollarge(B)〉). Note that the set of solutions ofI is the disjoint union of the sets of
solutions ofIsmall andIlarge. This completes the description of the main step.

It is clear that if the recursive procedure stops, then the instances at the leaves of the recursion satisfy the two
requirements. We show that the height of the recursion tree can be bounded from above by a functionh(|V|,c,ε)
depending only on|V|, c, andε ; in particular, this shows that the recursive algorithm eventually stops and produces at
most 2h(|V|,c,ε) instances.

Let us consider a path in the recursion tree starting at the root, and letI1, I2, . . . , I p be the correspondingNc

consistent instances. If a setS is Nc-small inI j , then it isNc-small inI j ′ for every j ′ > j: the main step cannot increase
|sol(S)| for anyS. Thus, with the exception of at most 2|V| values of j, instancesI j andI j+1 have the sameNc-small
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sets. Let us consider a subpathIx, . . . , Iy such that all these instances have the sameNc-small sets. We show that the
length of this subpath is at mostO(3|V | · c/ε), hencep = O(2|V| ·3|V| · c/ε). As this holds for any path starting at the
root, we obtain a bound on the height of the recursion tree.

For the instanceI j , let us define the following weight:

W j = ∑
/0⊆B⊆A⊆V

A,B areNc-small

logmaxI j (A|B).

We bound the length of the subpathIx, . . . , Iy by analyzing how this weight changes inIlarge and Ismall compared to
I . Note that 0≤W j ≤ 3|V | logNc = 3|V| ·clogN: the sum consists of at most 3|V| terms and (asA is Nc-small and the
instanceI j is Nc consistent and nontrivial) maxI j (A|B) is between 1 andNc. We show thatW j+1≤W j − (ε/2) logN,
which immediately implies that the length of the subpath isO(3|V | ·c/ε). Let us inspect howW j+1 changes compared
to W j . SinceI j andI j+1 have the sameNc-small sets, no new term can appear inW j+1. It is clear that maxI i+1(A|B)
cannot be greater than maxI i (A|B) for anyA,B. However, there is at least one term that strictly decreases. Suppose first
that I j+1 was obtained fromI j by adding the constraint〈B,solsmall(B)〉. Then

logmaxI j+1(A|B)≤ log
√

Nε |solI j (A)|
|solI j (B)| ≤ log(maxI j (A|B)/

√
Nε) = logmaxI j (A|B)− (ε/2) logN.

On the other hand, ifI j+1 was obtained by adding the constraint〈B,sollarge(B)〉, then

logmaxI j+1(B| /0) = log|solI j+1(B)| ≤ log(|solI j (B)|/
√

Nε) = logmaxI j (B| /0)− (ε/2) logN.

In both cases, we get that at least one term decreases by at least (ε/2) logN.

4.2 Uniform CSP instances and submodularity

Assume for a moment that we have a 1-uniform instanceI with hypergraphH. Note that by Prop 4.5(1), this means that
max(A|B) = |sol(A)|/|sol(B)|. Suppose that every constraint contains at mostN tuples and let us define the function
b(S) = logN |sol(S)|. For every edgee∈ E(H), there is a corresponding constraint, which has at mostN tuples by the
definition ofN. Thus|sol(e)| ≤ N and henceb(e) ≤ 1 for everye∈ E(H), that is,b is edge dominated. The crucial
observation of this section is that this functionb is submodular:

b(X)+b(Y)= logN |sol(X)|+ logN

(

|sol(X∩Y)| |sol(Y)|
|sol(X∩Y)|

)

= logN |sol(X)|+ logN (|sol(X∩Y)|max(Y|X∩Y))

≥ logN |sol(X)|+ logN (|sol(X∩Y)|max(X∪Y|X)) = logN

(

|sol(X)
|sol(X∪Y)|
|sol(X)|

)

+ logN |sol(X∩Y)|

= b(X∩Y)+b(X∪Y)

(the equalities follow from 1-uniformity; the inequality uses Prop. 4.5(2) withA= Y, B = X∩Y, C = X). Therefore, if
the submodular width ofH is at mostc, thenH has a tree decomposition whereb(B)≤ c and hence|sol(B)| ≤ Nc for
every bagB. Thus we can find a solution of the instance by dynamic programming in time polynomial inNc.

Lemma 4.9 guarantees some uniformity for the created instances, but not perfect 1-uniformity and only for the
Nc-small sets. Thus in Lemma 4.10, we need to defineb in a slightly different way: we add some small terms to
correct errors arising from the weaker uniformity and we truncate the function at large values (i.e., for sets that are not
Nc-small).

Lemma 4.10. Let I = (V,D,C) be a CSP instance with hypergraph H such that|sol(e)| ≤N for every e∈ E(H). If I is
Nc-consistent and(N,c,ε3)-uniform for some c≥ 1andε := 1/|V |, then the following function b is an edge-dominated,
monotone, submodular function on V(H):

b(S) :=

{

(1− ε)logN |sol(S)|+2ε2|S|− ε3|S|2 if S is Nc-small,

(1− ε)c+2ε2|S|− ε3|S|2 otherwise.
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Proof. Let h(S) := 2ε2|S|− ε3|S|2. It is easy to see thath(S) is monotone and 0≤ h(S) ≤ ε for everyS⊆V(H) (as
ε |S| ≤ 1). Furthermore,h is a submodular function:

h(X)+h(Y)−h(X∩Y)−h(X∪Y) = 2ε2(|X|+ |Y|− |X∩Y|− |X∪Y|)+ ε3(−|X|2−|Y|2 + |X∩Y|2 + |X∪Y|2)
= ε3(−(|X∩Y|+ |X\Y|)2−(|X∩Y|+ |Y\X|)2+ |X∩Y|2+(|X∩Y|+ |X\Y|+ |Y\X|)2) = 2ε3|X\Y| · |Y\X| ≥ 0.

This calculation shows that if|X \Y|, |Y \X| ≥ 1, then we actually haveh(X)+ h(Y) ≥ h(X ∩Y)+ h(X ∪Y)+ 2ε3.
We will use this extra 2ε3 term to dominate the error terms arising from assuming only(N,c,ε3)-uniformity instead of
perfect uniformity.

Let us first verify the monotonicity ofb. If Y is Nc-small, then everyX ⊆Y is Nc-small, which implies|sol(X)| ≤
|sol(Y)| asI is Nc-consistent. Therefore,b(X) ≤ b(Y) follows from the monotonicity ofh. If Y is notNc small, then
b(Y) = (1− ε)c+h(Y) andb(X)≤ b(Y) is clear for everyX ⊆Y, no matter whetherX is Nc-small or not.

To see thatb is edge-dominated, consider an edgee∈ E(H). By assumption, logN |sol(e)| ≤ 1 for everye∈ E(H)
and hence (usingNc-consistency andc≥ 1) e is Nc-small. Thusb(e) ≤ (1− ε)+h(S)≤ 1, as required.

Finally, let us verify the submodularity ofb for someX,Y ⊆V. If X ⊆Y or Y ⊆ X, then there is nothing to show.
Thus we can assume that|X \Y|, |Y \X| ≥ 1. We consider 3 cases depending on which ofX andY areNc-small.
Suppose first thatX andY are bothNc-small. In this case,

b(X)+b(Y) = (1− ε)logN |sol(X)|+(1− ε)logN |sol(Y)|+h(X)+h(Y)

= (1− ε)logN |sol(X)|+(1− ε) logN

(

|sol(X∩Y)| · |sol(Y)|
|sol(X∩Y)|

)

+h(X)+h(Y)

≥ (1− ε)logN |sol(X)|+(1− ε)logN sol(X∩Y)+ (1− ε)logN(max(Y|X∩Y)/Nε3
)+h(X)+h(Y)

≥ (1− ε)logN |sol(X∩Y)|+(1− ε)logN(|sol(X)|max(X∪Y|X))− (1− ε) · ε3+h(X∩Y)+h(X∪Y)+2ε3

≥ (1− ε)logN |sol(X∩Y)|+(1− ε)logN |sol(X∪Y)|+h(X∩Y)+h(X∪Y)≥ b(X∩Y)+b(X∪Y)

(in the first inequality, we used the definition of(N,c,ε3)-uniformity onX∩Y andY; in the second inequality, we used
the submodularity ofh and Prop. 4.5(2) forA = Y, B = X∩Y, andC = X; in the third inequality, we used Prop. 4.5(1)
for A = X∪Y, B = X; the last inequality is strict only ifX∪Y is notNc-small).

For the second case, suppose that, say,X is Nc-small butY is not. In this case,X∩Y is Nc-small butX∪Y is not.
Thus

b(X)+b(Y)= (1−ε)logN |sol(X)|+(1−ε)c+h(X)+h(Y)≥ (1−ε)logN |sol(X∩Y)|+(1−ε)c+h(X∩Y)+h(X∪Y)

= b(X∩Y)+b(X∪Y)

(in the inequality, we used theNc-consistency onX∩Y andY, and the submodularity ofh).
Finally, suppose that neitherX norY is Nc-small. In this case,X∪Y is notNc-small either. Now

b(X)+b(Y) = 2(1− ε)c+h(X)+h(Y)≥ 2(1− ε)c+h(X∩Y)+h(X∪Y)≥ b(X∩Y)+b(X∪Y).

Having constructed the submodular functionb as in Lemma 4.10, we can use the argument described at the begin-
ning of the section: ifH has submodular width at most(1− ε)c, then there is a tree decomposition where every bag
is Nc-small, and we can use this tree decomposition to find a solution. In fact, in this caseNc-consistency implies that
every nontrivial instance has a solution.

Lemma 4.11. Let I = (V,D,C) be a nontrivial CSP instance, let H be a hypergraph on the variables of I, and let N
be an integer such that|sol(e)| ≤ N for every e∈ E(H). If I is Nc-consistent and(N,c,ε3)-uniform forε = 1/|V | and
some c≥ subw(H)/(1− ε), then there is an assignment g of I that satisfies every edge ofH (i.e., g|e∈ sol(e) for every
e∈ E(H)). Furthermore, such an assignment can be constructed in time f(|V|) ·poly(‖I‖,Nc).
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Proof. Let b be the edge-dominated monotone submodular function definedin Lemma 4.10. By definition of submod-
ular width,H has a tree decomposition(T,(Bt)t∈V(T)) such thatb(Bt)≤ subw(H)≤ (1−ε)c for everyt ∈V(T). Since
b(S) ≤ (1− ε)c implies |sol(S)| ≤ Nc andb is monotone, this means thatBt is Nc-small for everyt ∈V(T). As I is
nontrivial, this also means that sol(Bt) 6= /0 for everyt ∈V(T).

Suppose thatT is rooted and for every nodet ∈ V(T), let Vt be the union of the bags that are descendants oft
(including Bt). We claim that every assignment in sol(Bt) can be extended to an assignment ofVt that satisfies every
edge ofH fully contained inVt . Applying this statement to the root ofT proves that there exists a solution forI that
satisfies every edge ofH.

We prove the claim for every node ofT in a bottom up order. The statement is trivial for the leaves.Let t1, . . . ,
tℓ be the children oft and suppose the claim is true for these nodes. Consider an assignmentg ∈ sol(Bt). SinceI is
Nc-consistent andBti is Nc-small, assignmentg|Bt∩Bti

can be extended to an assignmentgi ∈ sol(Bt1). As the claim
is true for nodeti, assignmentgi can be extended to an assignmentg′i of Vti . The assignmentsg, g′1, . . . , g′ℓ can be
combined to obtain an assignmentg′ onVt (note that this is well defined: the intersection ofVti andVt j is in Vt , which
means that a variable appearing in bothVti andVt j has the same value ing, g′i , andg′j ). Furthermore, every edgeeof H
that is fully contained inVt is fully contained in at least one ofBt , Vt1, . . . , Vtℓ , and the corresponding assignmentg, g′1,
. . . , g′ℓ shows thatg′ satisfies the edgee.

The argument in the previous paragraph gives an algorithm for finding extensions: in bottom up order of the nodes,
for every nodet ∈V(T) and everyg∈ sol(Bt), we construct an appropriate extensiong′. We need to store and handle at
mostNc assignments for each bag, thus the total running time is poly(‖I‖,Nc). However, we need a tree decomposition
where every bag isNc-small. As discussed above, such a tree decomposition is guaranteed to exist, thus we can find
one in timef (|V|) ·poly(‖I‖,Nc) by trying all possible tree decompositions.

Putting together Lemmas 4.9, 4.10, and 4.11 we can easily prove Theorem 4.1, the main result of Section 4:

Proof (of Theorem 4.1).Let I be an instance of CSP(H) having hypergraphH ∈H. We solveI the following way. Let
N be the size of the largest constraint inI . Setε := 1/|V |, and letc := 2c0≥ c0/(1−ε) (assuming|V| ≥ 2). Let us use
the algorithm of Lemma 4.9 to produce the nontrivialNc-consistent(N,c,ε3)-uniform instancesI1, . . . , It . The running
time of this step isf1(|V|,c,ε) ·poly(‖I‖,Nc), which is at mostf (H) · ‖I‖O(c0) for some appropriate functionf .

If t = 0, then we can conclude thatI has no solution. Otherwise, we argue thatI has a solution. More precisely,
we show that everyIi has an assignment that satisfies every edge ofH, which means that it satisfies every constraint
of I . Indeed, the conditions of Lemma 4.11 hold for everyIi : for every edgee, |solIi (e)| ≤ |solI(e)| ≤ N holds by the
definition ofN and instanceIi is anNc-consistent(N,c,ε3)-uniform instance forc = subw(H)/(1− ε).

5 From submodular functions to highly connected sets

The aim of this section is to show that if a hypergraphH has large submodular width, then there is a large highly
connected set inH. The main result is the following:

Theorem 5.1. For every sufficiently small constantλ > 0, the following holds. Let b be an edge-dominated monotone
submodular function of H. If the b-width of H is greater than3

2(w+1), thenconλ (W)≥ w.

For the proof of Theorem 5.1, we need to show that if there is notree decomposition whereb(B) is small for every
bagB, then a highly connected set exists. There is a standard recursive procedure that either builds a tree decomposition
or finds a highly connected set (see e.g., [21, Section 11.2]). Simplifying somewhat, the main idea is that if a the graph
can be decomposed into smaller graphs by splitting a certainset of vertices into two parts, then a tree decomposition
for each part is constructed using the algorithm recursively, and the tree decompositions for the parts are joined in an
appropriate way to obtain a tree decomposition for the original problem. On the other hand, if the set of vertices cannot
be split, then we can conclude that it is highly connected. This high-level idea has been applied for various notions tree
decompositions [48, 46, 2, 47], and it turns out to be useful in our context as well. However, we need to overcome two
major difficulties:
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1. Highly connected set in our context is defined as not havingcertainfractional separators(i.e., weight assign-
ments). However, if we want to build a tree decomposition in arecursive manner, we needinteger separators
(i.e., subsets of vertices) that decompose the hypergraph into smaller parts.

2. Measuring the sizes of sets with a submodular functionb can lead to problems, since the size of the union
of two sets can be much smaller the sum of the sizes of the two sets. We need the property that, roughly
speaking, removing a “large” part from a set makes it “much smaller.” For example, ifA andB are components
of H \S, and bothb(A) andb(B) are large, then we need the property that both of them are muchsmaller than
b(A∪B). Adler [1, Section 4.2] investigates the relation between some notion of highly connected set andf -
width, but assumes thatf is additive: if A andB do not touch, thenf (A∪B) = f (A)+ f (B). However, for a
submodular functionb, there is no reason to assume that additivity holds: for example, it very well may be that
b(A) = b(B) = b(A∪B).

To overcome the first difficulty, we have to understand what fractional separation really means. The first question is
whether fractional separation is equivalent to some notionof integral separation, perhaps up to constant factors. The
first, naive, question is whether a fractional(X,Y)-separator of weightw implies that there areO(w) edges whose union
is an(X,Y)-separator, i.e., there is a(X,Y)-separatorSwith ρH(S) = O(w). There is a simple counterexample showing
that this is not true. It is well-known that for every integerk > 0 there is a hypergraphH such thatρ∗(H) = 2 and
ρ(H) = k. LetV be the set of vertices ofH and letH ′ be obtained fromH by extending it with two independent sets
X,Y, each of sizek, and connecting every vertex ofX∪Y with every vertex ofV. It is clear that there is a fractional
(X,Y)-separator of weight 2, but every(X,Y)-separatorS has to fully contain at least one ofX, Y, or V, implying
ρH′(S)≥ k.

A less naive question is whether a fractional(X,Y)-separator with weightw in H implies that there exists an(X,Y)-
separatorSwith ρ∗H(S) = O(w) (or at mostf (w) for some functionf ). It can be shown that this is not true either: using
the hypergraph family presented in [44, Section 5], one can construct counterexamples where the minimum weight of
a fractional(X,Y)-separator is a constant, butρ∗H(S) has to be arbitrarily large ifS is an(X,Y)-separator (we omit the
details).

We will characterize fractional separation in a very different way. We show that if there is a fractional(A,B)-
separator of weightw, then there is a(A,B)-separatorS with b(S) = O(w) for everyedge-dominated monotone sub-
modular functionb. The converse is also true, thus this gives a novel characterization of fractional separation, tight up
to a constant factor. This result is the key idea that allows us to move from the domain of submodular functions to the
domain of pure hypergraph properties: if there is no(A,B)-separator such thatb(S) is small, then we know that there
is no small fractional(A,B)-separator, which is a property of the hypergraphH and has no longer anything to do with
the submodular functionb.

To overcome the second difficulty, we introduce a transformation that turns a monotone submodular functionb
on V(H) into a functionb∗ that encodes somehow the neighborhood structure ofH as well. The new functionb∗

is no longer monotone and submodular, but is has a number of remarkable properties, for example,b∗ remains edge
dominated andb∗(S)≥ b(S) for every setS⊆V(H), implying thatb∗-width is not smaller thanb-width. The main idea
is to prove Theorem 5.1 forb∗-width instead ofb-width. Because of the wayb∗ encodes the neighborhoods, the second
difficulty will disappear: for example, it will be true thatb∗(A∪B) = b∗(A)+ b∗(B) if there are no edges betweenA
andB, that is,b∗ is additive on disjoint components. Lemma 5.6 formulates (in a somewhat technical way) the exact
property ofb∗ that we will need. Furthermore, luckily it turns out that theresult mentioned in the previous paragraph
remains true withb replaced byb∗: if there is no fractional(A,B)-separator of weightw, then there is(A,B)-separator
Ssuch that not onlyb(S), but evenb∗(S) is O(w).

5.1 The functionb∗

We define the functionb∗ the following way. LetH be a hypergraph and letb be a monotone submodular function
defined onV(H). Let SV(H) be the set of all permutations ofV(H). For a permutationπ ∈ SV(H), let N−π (v) be the
neighbors ofv precedingv in the orderingπ. Forπ ∈ SV(H) andZ⊆V(H), we define

∂bπ,Z(v) := b(v∪ (N−π (v)∩Z))−b(N−π (v)∩Z).
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In other words,bπ,Z(v) is the marginal value ofv with respect to the set of its neighbors inZ preceding it. We abbreviate
∂bπ,V(H) by ∂bπ . As usual, we extend the definition to subsets by letting∂bπ,Z(S) := ∑v∈S∂bπ,Z(v). Furthermore, we
define

bπ(Z) := ∂bπ,Z(Z) = ∑
v∈Z

∂bπ,Z(v),

b∗(Z) := min
π∈SV(H)

bπ(Z).

Thusbπ(Z) is the sum of the marginal values with respect to a given ordering, whileb∗(Z) is the smallest possible sum
taken over all possible orderings. Let us prove some simple properties of the functionb∗. Properties (1)–(3) and their
proofs show whyb∗ was defined this way, the other properties are only technicalstatements that we will need later.

Proposition 5.2. Let H be a hypergraph and let b be a monotone submodular function defined on V(H). For every
π ∈ SV(H) and Z⊆V(H) we have

1. bπ(Z)≥ b(Z),

2. b∗(Z)≥ b(Z),

3. bπ(Z) = b(Z) if Z is a clique,

4. ∂bπ,Z1(v)≤ ∂bπ,Z2(v) if Z2⊆ Z1,

5. ∂bπ(v)≤ ∂bπ,Z(v),

6. b∗(X∪Y)≤ b∗(X)+b∗(Y).

Proof. (1) We prove the statement by induction on|Z|; for Z = /0, the claim is true. Otherwise, letv be the last element
of Z according to the orderingπ. As v is not preceding any element ofZ, we haveN−π (u)∩Z = N−π (u)∩ (Z\v), and
hence∂bπ,Z(u) = ∂bπ,Z\v(u) for everyu∈ Z.

bπ(Z) = ∑
u∈Z\v

∂bπ,Z(u)+ ∂bπ,Z(v) = ∑
u∈Z\v

∂bπ,Z\v(u)+ ∂bπ,Z(v)

= bπ(Z\v)+ ∂bπ,Z(v)≥ b(Z\v)+b(v∪ (N−π (v)∩Z))−b(N−π (v)∩Z)≥ b(Z).

In the first inequality, we used the induction hypothesis andthe definition of∂bπ,Z(v); in the second inequality, we
used the submodularity ofb: the marginal value ofv with respect toZ\v is not greater than with respect toN−π (v)∩Z.

(2) Follows immediately from (1) and from the definition ofb∗.
(3) By (1), we need to prove onlybπ(Z) ≤ b(Z), which we prove by induction on|Z|. As in (1), letv be the last

vertex ofZ in π. Note that sinceZ is a clique,N−π (v)∩Z is exactlyZ\v.

bπ(Z) = ∑
u∈Z\v

∂bπ,Z(u)+ ∂bπ,Z(v) = ∑
u∈Z\v

∂bπ,Z\v(u)+b(v∪ (N−π (v)∩Z))−b(N−π (v)∩Z)

= bπ(Z\v)+b(v∪ (Z\v))−b(Z\v)≤ b(Z\v)+b(Z)−b(Z\v) = b(Z).

(4) Follows from the submodularity ofb: ∂bπ,Z1(v) is the marginal value ofv with respect toN−π (v)∩Z1, while
∂bπ,Z2(v) is the marginal value ofv with respect to the subsetN−π (v)∩Z2 of N−π (v)∩Z1.

(5) Immediate from (4).
(6) Let πX be an ordering such thatbπx(X) = b∗(X) and defineπY similarly. Let us define orderingπ such that it

starts with the elements ofX, in the order ofπX, followed by the elements ofY\X, in the order ofπY, and completed by
an arbitrary ordering ofV(H)\ (X∪Y). It is clear that for everyv∈ X, we have∂bπ,X∪Y(v) = ∂bπX (v). Furthermore,
for everyv∈Y \X, N−πY

(v)∩Y ⊆ N−π (v)∩ (X∪Y): if u is a neighbor ofv in Y that precedes it inπY, thenu is either
in X or in Y \X; in both casesu precedesv in π. Thus, similarly to (4), we have∂bπ,X∪Y(v) ≤ ∂bπY ,Y(v) for every
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v∈Y\X: ∂bπ,X∪Y(v) is the increase obtained by addingv to N−π (v)∩ (X∪Y), while ∂bπY ,Y(v) is the increase obtained
by addingv to the subsetN−πY

(v)∩Y. Now we have

b∗(X∪Y)≤ bπ(X∪Y) = ∑
v∈X∪Y

∂bπ,X∪Y(v)≤ ∑
v∈X

∂bπX ,X(v)+ ∑
v∈Y\X

∂bπY ,Y(v)≤ b∗(X)+b∗(Y).

Prop. 5.2(3) implies that∂bw,Z can be used to define a fractional independent set:

Lemma 5.3. Let H be a hypergraph and let b be a monotone submodular function defined on V(H). Let W⊆V(H)
and letπ be a ordering of W. Let us defineµ(v) = ∂bπ,W(v) for v∈W andµ(v) = 0 otherwise. Thenµ is a fractional
independent set of H withµ(W) = bπ(W)≥ b∗(W).

Proof. Let ebe an edge ofH and letZ := e∩W. We have

µ(e) = µ(Z) = ∂bπ,W(Z)≤ ∂bπ,Z(Z) = bπ(Z) = b(Z)≤ 1,

where the fist inequality follows from Prop. 5.2(4), the lastequality follows from Prop. 5.2(3), and the second inequality
follows from the fact thatb is edge dominated. Furthermore, we haveµ(W) = ∂bπ,W(W) = bπ(W) ≥ b(W) from
Prop. 5.2(1).

We close this section by proving the main property ofb∗ that allows us to avoid the second difficulty described
at the beginning of Section 5. First, although it is not used directly, let us state thatb∗ is additive on sets that are
independent from each other:

Lemma 5.4. Let H be a hypergraph, let b be an edge-dominated monotone submodular function defined on V(H), and
let A,B⊆V(H) be disjoint sets such that there is no edge between A and B. Then b∗(A∪B) = b∗(A)+b∗(B).

Proof. By Prop. 5.2(6), we have to show onlyb∗(A∪B) ≥ b∗(A)+ b∗(B). Let π be an ordering ofV(H) such that
bπ(A∪B) = b∗(A∪B); we can assume thatπ starts with the vertices ofA∪B. Since there are no edges betweenA
andB and no vertex outsideA∪B precedes a vertexu∈ A∪B, we haveN−π (u) ⊆ A for everyu∈ A andN−π (u) ⊆ B
for everyu∈ B. Thus∂bπ,A∪B(u) = ∂bπ,A(u) for everyu∈ A and∂bπ,A∪B(u) = ∂bπ,B(u) for everyu∈ B. Therefore,
b∗(A∪B) = bπ(A∪B) = bπ(A)+bπ(B)≥ b∗(A)+b∗(B), what we had to show.

The actual statement that we use is more complicated than Lemma 5.4: there can be edges betweenA andB, but
we assume that there is a small(A,B)-separator. We want to generalize the following trivial statement to our setting:

Proposition 5.5. Let G be a graph, W⊆V(G) a set of vertices, A,B⊆W two disjoint subsets, and an(A,B)-separator
S. If |S|< |A|, |B|, then(C∩W)∪S< |W| for every component C of G\S.

The proof of Prop. 5.5 is easy to see: every componentC of G\S is disjoint from eitherA or B, thus|C∩W| is at
most|W|−min{|A|, |B|} < |W|− |S|, implying that|(C∩W)∪S| is less than|W|. In our setting, we want to measure
the size of the sets using the functionb∗, not by the number of vertices. More precisely, we measure the size ofSand
(C∩W)∪S usingb∗, while the size ofW, A, andB are measured using the fractional independent setµ defined by
Lemma 5.3. The reason for this will be apparent in the proof ofLemma 5.10: we want to claim that if such a separator
Sdoes not exist for anyA,B⊆W, thenW is a(µ ,λ )-connected set for this fractional independent setµ .

Lemma 5.6. Let H be a hypergraph, let b be a monotone submodular functiondefined on V(H) and let W be a set of
vertices. LetπW be an ordering of V(H), and letµ(v) := ∂bπW,W(v) for v∈W andµ(v) = 0 otherwise. Let A,B⊆W
be two disjoint sets, and let S be an(A,B)-separator. If b∗(S) < µ(A),µ(B), then b∗((C∩W)∪S) < µ(W) for every
component C of H\S.

Proof. Let C be a component ofH \S and letZ := (C∩W)∪S. Let πS be the ordering reaching the minimum in
the definition ofb∗(S). Let us define the orderingπ that starts withS in the order ofπS, followed byC∩W in the
order ofπW, and finished by an arbitrary ordering of the remaining vertices. It is clear that for everyv∈ S, we have
∂bπ,Z(v) = ∂bπS,S(v). Let us consider a vertexv∈C∩W and letu∈W be a neighbor ofv that precedes it inπW. Since
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v ∈C andC is a component ofH \S, eitheru ∈ S or u ∈C∩W. In both cases,u precedesv in π. This means that
N−πW

(v)∩W ⊆N−π (v)∩Z, which implies that∂bπ,Z(v)≤ ∂bπW ,W(v) = µ(v) for everyv∈C∩W. As SseparatesA and
B, componentC intersects at most one ofA andB; suppose, without loss of generality, thatC is disjoint fromA. Thus

b∗(Z) ≤ bπ(Z) = ∑
v∈S

∂bπ,Z(v) + ∑
v∈C∩W

∂bπ,Z(v) ≤ b∗(S) + µ(C ∩ W) < µ(A) + µ(W \ A) = µ(W).

5.2 Submodular separation

This section is devoted to understanding what fractional separation means: we show that having a small fractional
(A,B)-separator is essentially equivalent to the property that for every edge-dominated submodular functionb, there
is an(A,B)-separatorSsuch thatb(S) is small. The proof is based on a standard trick that is often used for rounding
fractional solutions for separation problems: we define a distance function and show by an averaging argument that
cutting at some distancet gives a small separator. However, in our setting, we need significant new ideas to make
this trick work: the main difficulty is that the cost functionb is defined onsubsetsof vertices and is not a modular
function defined by the cost of vertices. To overcome this problem, we use the definitions in Section 5.1 (in particular,
the function∂bπ(v)) to assign a cost to every single vertex.

Theorem 5.7. Let H be a hypergraph, X,Y ⊆ V(H) two sets of vertices, and b: V(H)→ R
+ an edge-dominated

monotone submodular function. Suppose that s is a fractional (X,Y)-separator of weight at most w. Then there is an
(X,Y)-separator S⊆V(H) with b∗(S) = O(w).

Proof. Let us definex(v) := max{1,∑e∈E(H),v∈es(e)}. It is clear that ifP is a path fromX to Y, then∑v∈Px(v) ≥ 1.
We define the distanced(v) to be the minimum of∑v′∈Px(v′), taken over all paths fromX to v (this means that
d(v) > 0 is possible for somev ∈ X). It is clear thatd(v) ≥ 1 for everyv ∈ Y. Let us associate the closed interval
ι(v) = [d(v)− x(v),d(v)] to each vertexv. If v is in X, then the left endpoint ofι(v) is 0, while if v is in Y, then the
right endpoint ofι(v) is at least 1.

Let u andv be two adjacent vertices inH such thatd(u) ≤ d(v). It is easy to see thatd(v) ≤ d(u)+ x(u): there
is a pathP from X to u such that∑u′∈Px(u′) = d(u), thus the pathP′ obtained by appendingv to P has∑v′∈P′ x(v

′) =

∑u′∈Px(u′)+x(v) = d(u)+x(v). Therefore, we have:

Claim 1: If u andv are adjacent, thenι(u)∩ ι(v) 6= /0.

The classof a vertexv ∈ V(H) is the largest integerκ(v) such thatx(v) ≤ 2−κ(v), and we defineκ(v) := ∞ if
x(v) = 0. Recall thatx(v) ≤ 1, thusκ(v) is nonnegative. Theoffsetof a vertexv is the unique value 0≤ α < 2·2−κ(v)

such thatd(v) = i(2·2−κ(v))+ α for some integeri. Let us define an orderingπ = (v1, . . . ,vn) of V(H) such that

• κ(v) is nondecreasing,

• among vertices having the same class, the offset is nondecreasing.

Let directed graphD be the orientation of the primal graph ofH such that ifvi andv j are adjacent andi < j, then
there is a directed edge−→viv j in D. If P is a directed path inD, then thewidth of P is the length of the interval

⋃

v∈P ι(v)
(note that by Claim 1, this union is indeed an interval). The following claim bounds the maximum possible width of a
path:

Claim 2: If P is a directed pathD starting atv, then the width ofP is at most 16x(v).

We first prove that if every vertex ofP has the same classκ(v), then the width ofP is at most 4·2−κ(v). Since the
class is nondecreasing along the path, we can partition the path into subpaths such that every vertex in a subpath has
the same class and the classes are distinct on the different subpaths. The width ofP is at most the sum of the widths of
the subpaths, which is at most∑i≥κ(v) 4·2−i = 8·2−κ(v) ≤ 16x(v).
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Suppose now that every vertex ofP has the same classκ(v) as the first vertexv and leth := 2−κ(v). As the offset is
nondecreasing, pathP can be partitioned into two parts: a subpathP1 containing vertices with offset at leasth, followed
by a subpathP2 containing vertices with offset less thanh (one ofP1 andP2 can be empty). We show that each ofP1

andP2 has width at most 2h, which implies that the width ofP is at most 4h. Observe that ifv∈ P1 andι(v) contains
a point i ·2h for some integeri, then, consideringx(v) ≤ h and the bounds on the offset ofv, this is only possible if
ι(v) = [i ·2h, i ·2h+ h], i.e., i ·2h is the left endpoint ofι(v). Thus if I1 =

⋃

v∈P1
ι(v) containsi ·2h, then it is the left

endpoint ofI1. Therefore,I1 can containi ·2h for at most one value ofi, which immediately implies that the length of
I1 is at most 2h.

We argue similarly forP2. If v∈ P2, thenι(v) can contain the pointi ·2h+h only if ι(v) = [i ·2h+h,(i +1) ·2h].
Thus if I2 =

⋃

v∈P2
ι(v) containsi ·2h+ h, then it is the left endpoint ofI2. We get thatI2 can containi ·2h+ h for at

most one value ofi, which immediately implies that the width ofI2 is at most 2h. This concludes the proof of Claim 2.
Let c(v) := ∂bπ(v).

Claim 3: ∑v∈V(H) x(v)c(v) ≤ w.

Let us examine the contribution of an edgee∈E(H) with values(e) to the sum. For every vertexv∈ e, edgee increases
the valuex(v) by at mosts(e). Thus the total contribution of edgee is at most

s(e) ·∑
v∈e

c(v) = s(e) ·∑
v∈e

∂bπ(v)≤ s(e) ·∑
v∈e

∂bπ,e(v) = s(e)bπ (e)≤ s(e)b(e) ≤ s(e),

where the first inequality follows Prop. 5.2(5); the second inequality follows form Prop. 5.2(3); the last inequality
follows from the fact thatb is edge dominated. Therefore,∑v∈V(H) x(v)c(v) ≤ ∑e∈E(H) s(e)≤ w, proving Claim 3.

Let S be a set of vertices. We defineC(S) to be the set of all vertices from which a vertex ofS is reachable on a
directed path inD (in particular, this means thatS⊆ C(S)).

Claim 4: For everyS⊆V(H), ∑v∈C(S) c(v) = bπ(C(S)).

Observe that for anyv∈ C(S), every inneighbor ofv is also inC(S), henceN−π (v)⊆ C(S). Therefore,∂bπ,C(S)(v) =
∂bπ(v) = c(v) and the claim follows.

Let S(t) be the set of all verticesv∈V(H) for whicht ∈ ι(v). Observe that for every 0≤ t ≤ 1, the setS(t) separates
X from Y. We use an averaging argument to show that there is a 0≤ t ≤ 1 for whichbπ(C(S(t))) is O(w). In this case,
the setC(S(t)) is the required separator: by Prop 5.2(1),b∗(C(S(t))) ≤ bπ(C(S(t))) = O(w).

If we are able to show that
∫ 1

0 bπ(C(S(t)))dt = O(w), then the existence of the requiredt clearly follows. Let
Iv(t) = 1 if v ∈ C(S(t)) and let Iv(t) = 0 otherwise. IfIv(t) = 1, then there is a pathP in D from v to a member
of S(t). By Claim 2, the width of this path is at most 16x(v), thus t ∈ [d(v)− 16x(v),d(v) + 15x(v)]. Therefore,
∫ 1

0 Iv(t)dt ≤ 31x(v). Now we have

∫ 1

0
bπ(C(S(t)))dt =

∫ 1

0
∑

v∈C(S(t))

c(v)dt =
∫ 1

0
∑

v∈V(H)

c(v)Iv(t)dt

= ∑
v∈V(H)

c(v)
∫ 1

0
Iv(t)dt ≤ 31 ∑

v∈V(H)

x(v)c(v) ≤ 31w

(we used Claim 4 in the first equality and Claim 3 in the last inequality).

Although it is not used in this paper, we can prove the converse of Theorem 5.7 in a very simple way.

Theorem 5.8. Let H be a hypergraph, and let X,Y ⊆ V(H) be two sets of vertices. Suppose that for every edge-
dominated monotone submodular function on H, there is an(X,Y)-separator S with b(S)≤w. Then there is a fractional
(X,Y)-separator of weight at most w.
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Proof. If there is no fractional(X,Y)-separator of weight at mostw, then by LP duality, there is an(X,Y)-flow F of
value greater thanw. Let b(S) be defined as the total weight of the paths inF intersectingS; it is easy to see thatf is
a monotone submodular function, and sinceF is a flow,b(e) ≤ 1 for everye∈ E(H). Thus by assumption, there is an
(X,Y)-separatorSwith b(S)≤w. However, every path ofF intersectsS, which impliesb(S) > w, a contradiction.

We close this section by pointing out that finding an(A,B)-separatorS with b(S) small for a given submodular
functionb is not an instance of submodular function minimization, and hencethe well-known algorithms (see [36, 37,
52]) cannot be used for this problem. If a submodular function g(X) describes the weight of theboundaryof X, then
finding a small(A,B)-separator is equivalent to minimizingg(X) subject toA⊆ X, X∩B = /0, which can be expressed
as an instance of submodular function minimization (and hence solvable in polynomial time). In our case, however,
b(S) is the weight ofSitself, which means that we have to minimizeg(S) subject toSbeing an(A,B)-separator and this
latter constraint cannot be expressed in the framework of submodular function minimization. A possible workaround
is to defineδ (X) as the neighborhood ofX (the set of vertices outsideX adjacent toX) andb′(X) := b(δ (S)); now
minimizing b′(X) subject toA⊆ X∪ δ (X), X∩B = /0 is the same as finding an(X,Y)-separatorS minimizing b(S).
However, the functionb′ is not necessarily a submodular function in general. Therefore, transformingb to b′ this way
does not lead to a polynomial-time algorithm using submodular function minimization. In fact, it is quite easy to show
that finding an(A,B)-separatorSwith b(S) minimum possible can be an NP-hard problem even ifb is a submodular
function of very simple form.

Theorem 5.9. Given a graph G, subsets of vertices X, Y , and collectionS of subsets of vertices, it is NP-hard to find
an (X,Y)-separator that intersects the minimum number of members ofS.

Proof. The proof is by reduction from 3-COLORING. Let H be a graph withn vertices andm edges; we identify the
vertices ofH with the integers from 1 ton. We construct a graphG consisting of 3n+2 vertices, vertex setsX, Y, and
a collectionS of 6msets such that there is an(X,Y)-separatorS intersecting at most 5mmembers ofS if and only if G
is 3-colorable.

The graphG consists of two verticesx, y, and for every 1≤ i ≤ n, a pathxvi,1vi,2vi,3y of length 4 connectingx and
y. The collectionS is constructed such that for every edgei j ∈ E(H) and 1≤ a,b≤ 3, a 6= b, there is a corresponding
set{vi,a,v j,b,x,y}. Let X := {x} andY := {y}.

Let c : V(G)→ {1,2,3} be a 3-coloring ofG. The set{vi,c(i) | 1≤ i ≤ n} is clearly an(X,Y)-separator. For every
i j ∈ E(G), separatorS intersects only 5 of the 6 sets{vi,a,vi,b,x,y}: asc(i) 6= c( j), the set{vi,c(i),v j,c( j),x,y} appears
in S and it is disjoint fromS. Therefore,S intersects exactly 5m members ofS.

Consider now an(X,Y)-separatorSintersecting at most 5mmembers ofS. Since every member ofS contains both
x andy, it follows thatx,y 6∈ S. This Shas to contain at least one internal vertex of every pathxvi,1vi,2vi,3y. For every
1≤ i ≤ n, let us fix a vertexvi,c(i) ∈ S. We claim thatc is a 3-coloring ofG. For everyi j ∈ E(G), S intersects at least 5
of the sets{vi,a,vi,b,x,y}, and intersects all 6 of them ifc(i) = c( j). Thus the assumption thatS intersects at most 5m
members ofS immediately implies thatc is a proper 3-coloring.

5.3 Obtaining a highly connected set

The following lemma is the same as the main result of Section 5(Theorem 5.1) with the exception thatb-width is
replaced byb∗-width. By Prop 5.2(2),b∗(S) ≥ b(S) for every setS⊆ V(H), thusb-width is greater thanb∗-width.
Therefore, the following lemma immediately implies Theorem 5.1.

Lemma 5.10. Let b be an edge-dominated monotone submodular function of H. If the b∗-width of H is greater than
3
2(w+1), thenconλ (W)≥w (for some universal constantλ ).

Proof. Let λ := 1/c, wherec is the universal constant of Lemma 5.7 hidden by the big-O notation. Suppose that
conλ (W) < w, that is, there is no fractional independent setµ and(µ ,λ )-connected setW with µ(W)≥ w. We show
that H has a tree decomposition ofb∗-width at most3

2(w+ 1), or more precisely, we show the following stronger
statement:

For every subhypergraphH ′ of H and everyW⊆V(H ′) with b∗(W)≤w+1, there is a tree decomposition
of H ′ havingb∗-width at most32(w+1) such thatW is contained in one of the bags.
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We prove this statement by induction on|V(H ′)|. If b∗(V(H ′))≤ 3
2(w+1), then a decomposition consisting of a single

bag proves the statement. LetW′ be an inclusionwise maximal superset ofW such thatw≤ b∗(W′)≤ w+1. Observe
that there has to be at least one such set: from the fact thatb∗(v) ≤ 1 for every vertexv and from Prop. 5.2(6), we
know that adding a vertex increasesb∗(W′) by at most 1. Sinceb∗(V(H ′))≥ 3

2(w+1), by adding vertices toW in an
arbitrary order, we eventually find a setW′ with b∗(W′)≥ w, and the first such set satisfiesb∗(W′)≤ w+1 as well.

Let π be an ordering ofV(H ′) such thatbπ(W′) = b∗(W′). As in Lemma 5.3, let us define the fractional independent
setµ by µ(v) := ∂bπ,W′(v) if v∈W′ andµ(v) = 0 otherwise. Clearly, we haveµ(W′) = b∗(W′)≥ w.

By assumption,W′ is not(µ ,λ )-connected, hence there are disjoint setsA,B⊆W′ and a fractional(A,B)-separator
of weight less thanλ ·min{µ(A),µ(B)}. Thus by Lemma 5.7, there is an(A,B)-separatorS⊆ V(H ′) with b∗(S) <
min{µ(A),µ(B)} ≤ µ(W′)/2≤ (w+1)/2 (the second inequality follows from the fact thatA andB are disjoint subsets
of W′). LetC1, . . . , Cr be the connected components ofH ′ \S; by Lemma 5.6,b∗((Ci ∩W′)∪S) < bπ(W′) = b∗(W′)≤
w+ 1 for every 1≤ i ≤ r. As b∗(V(H ′)) ≥ 3

2(w+ 1) andb∗(S) ≤ (w+ 1)/2, it is not possible thatS= V(H ′), hence
r > 0. It is not possible thatr = 1 either: (C1∩W′)∪S would be a superset ofW′ with b∗-value less thanb∗(W′),
contradicting the maximality ofW′. Thusr ≥ 2, which means that each hypergraphH ′i := H ′[Ci ∪S] has strictly fewer
vertices thanH ′.

By the induction hypothesis, eachH ′i has a tree decompositionTi having b∗-width at most3
2(w+ 1) such that

Wi := (Ci ∩W′)∪Sis contained in one of the bags. LetBi be the bag ofTi containingWi . We build a tree decomposition
T of H by joining together the tree decompositionsT1, . . . , Tr : let B0 := W∪Sbe a new bag that is adjacent to bags
B1, . . . , Br . It can be easily verified thatT is indeed a tree decomposition ofH ′. Furthermore, by Prop. 5.2(6),
b∗(B0) ≤ b∗(W)+ b∗(S) < w+ 1+(w+ 1)/2 = 3

2(w+ 1) and by the assumptions onT1, . . . , Tr , every other bag has
b∗ value at most32(w+1).

6 From highly connected sets to embeddings

The main result of this section is showing that the existenceof highly connected sets imply that the hypergraph has
large embedding power:

Theorem 6.1. For every sufficiently smallλ > 0 and hypergraph H, there is a constant mH,λ such that every graph

G with m≥ mH,λ edges has an embedding into H with edge depth O(m/(λ 3
2 conλ (H)

1
4 )). Furthermore, there is an

algorithm that, given G and H, produces such an embedding in time f(H,λ )nO(1).

In other words, Theorem 6.1 gives a lower bound on the embedding power ofH:

Corollary 6.2. For every sufficiently smallλ > 0 and hypergraph H,emb(H) = Ω(λ 3
2 conλ (H)

1
4 ).

Theorem 6.1 is stated in algorithmic form, since the reduction in the hardness result of Section 7 needs to find such
embeddings. For the proof, our strategy is similar to the embedding result of [41]: we show that a highly connected
set implies that a uniform concurrent flow exists, the paths appearing in the uniform concurrent flow can be used to
embed (a blowup of) the line graph of a complete graph, and every graph has an appropriate embedding in the line
graph of a complete graph. To make this strategy work, we needgeneralizations of concurrent flows, multicuts, and
multicommodity flows in our hypergraph setting and we need toobtain results that connect these concepts to highly
connected sets. Some of these results are similar in spirit to theO(

√
n)-approximation algorithms appearing in the

combinatorial optimization literature [30, 31, 3]. However, those approximation algorithms are mostly based on clever
rounding of fractional solutions, while in our setting rounding is not an option: as discussed in Section 5, the existence
of a fractional(X,Y)-separator of small weight does not imply the existence of a small integer separator. Thus we have
to work directly with the fractional solution and use the properties of the highly connected set.

It turns out that the right notion of uniform concurrent flow for our purposes is a collection of flows that connect
cliques: that is, a collectionFi, j (1≤ i < j ≤ k) of compatible flows, each of valueε , such thatFi, j is a(Ki,K j)-flow,
whereK1, . . . , Kk are disjoint cliques. Thus our first goal is to find a highly connected set that can be partitioned intok
cliques in an appropriate way.
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6.1 Highly connected sets with cliques

Let (X1,Y1), . . . , (Xk,Yk) be pairs of vertex sets such that the minimum weight of a fractional (Xi,Yi)-separator issi .
Analogously to multicut problems in combinatorial optimization, we investigate weight assignments thatsimultane-
ously separate all these pairs. Clearly, the minimum weight of such an assignment is at least the minimum of the
si ’s and at most the sum of thesi ’s. The following lemma shows that in a highly connected set,such a simultaneous
separator cannot be very efficient: roughly speaking, its weight is at least the square root of the sum of thesi ’s.

Lemma 6.3. Let µ be a fractional independent set in hypergraph H and let W be a(µ ,λ )-connected set for some
0 < λ ≤ 1. Let (X1, . . . ,Xk,Y1, . . . ,Yk) be a partition of W, let wi := min{µ(Xi),µ(Yi)} ≥ 1/2, and let w:= ∑k

i=1 wi.
Let s: E(H)→ R

+ be a weight assignment of total weight p such that s is a fractional (Xi,Yi)-separator for every
1≤ i ≤ k. Then p≥ (λ/7) ·√w.

Proof. Let us define the functions′ by s′(e) = 6s(e) and letx(v) := ∑e∈E(H),v∈es′(e). We define the distanced(u,v)
to be the minimum of∑v′∈Px(v′), taken over all pathsP from u to v. It is clear that the triangle inequality holds, i.e.,
d(u,v) ≤ d(u,z)+d(z,v) for everyu,v,z∈V(H). If scovers every path betweenu to v, thend(u,v) ≥ 6: every edgee
intersecting au−v pathP contributes at leasts′(e) to the sum∑v′∈Px(v′) (asecan intersectP in more than one vertices,
e can increase the sum by more thans′(e)). On the other hand, ifd(u,v) ≥ 2, thens′ covers everyu−v path. Clearly,
it is sufficient to verify this for minimal paths. Such a pathP can intersect an edgeeat most twice, henceecontributes
at most 2s′(e) to the sum∑v′∈P x(v′)≥ 2, implying that the edges intersectingP have total weight at least 1 ins′.

Suppose for contradiction thatp < (λ/7) ·√w, that is,w > 49p2/λ 2. Let A := /0 andB :=
⋃k

i=1(Xi ∪Yi). Note that
µ(B)≥ 2∑k

i=1 wi = 2w. We will increaseA and decreaseB while maintaining the invariant condition that the distance
of A andB is at least 2. LetT be the smallest integer such that∑T

i=1 wi > 6p/λ ; if there is no suchT, thenw≤ 6p/λ ,
a contradiction. Aswi ≥ 1/2 for everyi, it follows thatT ≤ ⌈12p/λ +1⌉ ≤ 13p/λ (sincep/λ ≥ 2).

For i = 1,2, . . . ,T, we perform the following step. LetX′i (resp.,Y′i ) be the set of all vertices ofW that are at
distance at most 2 fromXi (resp.,Yi). As the distance ofXi andYi is at least 6, the distance ofX′i andY′i is at least 2,
hences′ is a fractional(X′i ,Y

′
i )-separator. SinceW is (µ ,λ )-connected ands′ is an assignment of weight 6p, we have

min{µ(X′i ),µ(Y′i )} ≤ 6p/λ . If µ(X′i )≤ 6p/λ , then let us putXi into A and let us removeX′i from B. The setX′i , which
we remove fromB, contains all the vertices that are at distance at most 2 fromany new vertex inA, hence it remains
true that the distance ofA andB is at least 2. Similarly, ifµ(X′i ) > 6p/λ andµ(Y′i )≤ 6p/λ , then let us putYi into A
and let us removeY′i from B.

In the i-th step of the procedure, we increaseµ(A) by at leastwi (asµ(Xi),µ(Yi) ≥ wi and these sets are disjoint
from the sets already contained inA) andµ(B) is decreased by at most 6p/λ . Thus at the end of the procedure, we
haveµ(A)≥∑T

i=1 wi > 6p/λ and

µ(B)≥ 2w−T ·6p/λ > 98p2/(λ 2)− (13p/(λ ))(6p/λ ) > 6p/λ ,

that is, min{µ(A),µ(B)} > 6p/λ . By construction, the distance ofA andB is at least 2, thuss′ is a fractional(A,B)-
separator of weight exactly 6p, contradicting the assumption thatW is (µ ,λ )-connected.

In the rest of the section, we need a more constrained notion of flow, where the endpoints “respect” a particular
fractional independent set. Letµ1, µ2 be fractional independent sets of hypergraphH and letX,Y ⊆V(H) be two sets
of vertices. A(µ1,µ2)-demand(X,Y)-flow is a(X,Y)-flow F such that for eachx∈ X, the total weight of the paths in
F having first endpointx is at mostµ1(x), and similarly, the total weight of the paths inF having second endpointy is
at mostµ2(y). Note that there is no bound on the weight of the paths going through anx∈ X, we only bound the paths
whose first/second endpoint isx. The definition is particularly delicate ifX andY are not disjoint, in this case, a vertex
z∈ X∩Y can be the first endpoint of some paths and the second endpointof some other paths, or it can be even both
the first and second endpoint of a path of length 0. We use the abbreviationµ-demand for(µ ,µ)-demand.

The following lemma shows that if a flow connects a setU with a highly connected setW, thenU is highly
connected as well (“W can be moved toU ”). This observation will be used in the proof of Lemma 6.5, where we
locate cliques and show that their union is highly connected, since there is a flow that connects the cliques to a highly
connected set.
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Lemma 6.4. Let H be a hypergraph,µ1,µ2 fractional independent sets, and W⊆V(H) a (µ1,λ )-connected set for
some0 < λ ≤ 1. Suppose that U⊆V(H) is a set of vertices and F is a(µ1,µ2)-demand(W,U)-flow of valueµ2(U).
Then U is(µ2,λ/6)-connected.

Proof. Suppose that there are disjoint setsA,B⊆U and a fractional(A,B)-separatorsof weightw< (λ/6) ·min{µ2(A),µ2(B)}
(Note that this meansµ2(A),µ2(B) > 6w/λ ≥ 6w.) For a pathP, let s(P) = ∑e∈E(H),e∩P6= /0 s(e) be the total weight of
the edges intersectingP. LetA′⊆W (resp.,B′⊆W) contain a vertexv∈W if there is a pathP in F with first endpointv
and second endpoint inA (resp.,B) ands(P)≤ 1/3. If A′∩B′ 6= /0, then it is clear that there is a pathP with s(P)≤ 2/3
connecting a vertex ofA and a vertex ofB via a vertex ofA′∩B′, a contradiction. Thus we can assume thatA′ andB′

are disjoint.
SinceF is a flow, the total weight of the paths inF with s(P) ≥ 1/3 is at most 3w. As the value ofF is exactly

µ2(U), the total weight of the paths inF with second endpoint inA is exactlyµ2(A). If s(P) ≤ 1/3 for such a path,
then its first endpoint is inA′ by definition. Therefore, the total weight of the paths inF with first endpoint inA′

is at leastµ2(A)− 3w, which means thatµ1(A′) ≥ µ2(A)− 3w ≥ µ2(A)/2. Similarly, we haveµ1(B′) ≥ µ2(B)/2.
SinceW is (µ1,λ )-connected ands is an assignment with weight less than(λ/6) ·min{µ2(A),µ2(B)} ≤ (λ/3) ·
min{µ1(A′),µ1(B′)}, there is anA′−B′ pathP with s(P) < 1/3. Now pathP, together with anA′−A pathPA having
s(PA)≤ 1/3, and aB′−B pathPB havings(PB)≤ 1/3 forms anA−B path that is not covered bys, a contradiction.

A µ-demandmulticommodity flowbetween pairs(A1,B1), . . . , (Ar ,Br) is a setF1, . . . , Fr of compatible flows such
thatFi is a µ-demand(Ai ,Bi)-flow. Thevalueof a multicommodity flow is the sum of the values of ther flows. Let
A =

⋃r
i=1Ai , B =

⋃r
i=1Bi, and suppose for simplicity that(A1, . . . ,Ar ,B1, . . . ,Br) is a partition ofA∪B. In this case,

the maximum value of aµ-demand multicommodity flow between pairs(A1,B1), . . . , (Ar ,Br) can be expressed as the
optimum values of the following primal and dual linear programs (we denote byPuv the set of allu−v paths):

Primal LP Dual LP

maximize
r

∑
i=1

∑
u∈Ai ,v∈Bi

P∈Puv

x(P) minimize ∑
e∈e(H)

y(e)+ ∑
u∈A

µ(u)y(u)+ ∑
v∈B

µ(v)y(v)

s. t.
r

∑
i=1

∑
u∈Ai ,v∈Bi

P∈Puv,P∩e6= /0

x(P)≤ 1 ∀e∈ E(H)

∑
v∈Bi ,P∈Puv

x(P)≤ µ(u) ∀1≤ i ≤ r,u∈ Ai

∑
u∈Ai ,P∈Puv

x(P)≤ µ(v) ∀1≤ i ≤ r,v∈ Bi

x(P)≥ 0
∀1≤ i ≤ r,u∈ Ai,v∈ Bi,
P∈ Puv

s. t.

∑
e∈E(H),
e∩P6= /0

y(e)+y(u)+y(v) ≥ 1
∀1≤ i ≤ r,u∈ Ai,v∈ Bi,
P∈ Puv

y(e)≥ 0 ∀e∈ E(H)

y(u)≥ 0 ∀u∈ A

y(v)≥ 0 ∀v∈ B

The following lemma shows that if conλ (H) is sufficiently large, then there is a highly connected set that is the
union ofk cliques (satisfying the requirement that they are not too small with respect toµ).

Lemma 6.5. Let H be a hypergraph and let0< λ < 1/16be a constant. Then there is fractional independent setµ , a
(µ ,λ/6)-connected set W, and a partition(K1, . . . ,Kk) of W such that k= Ω(λ

√

conλ (H)), and for every1≤ i ≤ k,
Ki is a clique withµ(Ki)≥ 1/2.

Proof. Let k be the largest integer such that conλ (H) ≥ 6T + 4k holds, whereT := (56/λ )2 · k2; it is clear thatk =
Ω(λ

√

conλ (H)). Let µ0 be a fractional independent set andW be a(µ0,λ )-connected set withµ0(W) = conλ (H). We
can assume thatµ0(v) > 0 if and only ifv∈W.
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Highly loaded edges.First, we want to modifyµ0 such that there is no edgee with µ0(e) ≥ 1/2. Let us choose
edgesg1, g2, . . . as long as possible with the requirementµ0(Gi) ≥ 1/2 for Gi := gi \

⋃i−1
j=1g j . If we can select at

leastk such edges, then the required structure can be found in an easy way. In this case, letKi := Gi ∩W, clearly
W′ :=

⋃k
i=1 Gi ⊆W is a(µ0,λ )-connected set,µ0(Ki)≥ 1/2, and(K1, . . . ,Kk) is a partition ofW into cliques.

Thus we can assume that the selection of the edges stops at edgegt for somet < k. LetW0 := W\⋃t
i=1 gi . Observe

that there is no edgee∈ E(H) with µ0(e∩W0) ≥ 1/2, as in this case the selection of the edges could be continued
with gt+1 := e. Thus if we defineµ such thatµ(v) = 2µ0(v) if v∈W0 andµ(v) = 0 otherwise, thenµ is a fractional
independent set. Note thatµ(W0) = 2µ0(W \

⋃t
i=1 gi) > 2(µ0(W)−k) = 2µ0(W)−2k.

Moderately connected pairs.The setW0 is (µ0,λ )-connected, but not necessarily(µ ,λ )-connected. In the next
step, we further decreaseW0 by removing those parts that violate(µ ,λ )-connectivity. We repeat the following step
for i = 1,2, . . . as long as possible. If there are disjoint subsetsAi,Bi ⊆Wi−1 such that there is a fractional(Ai,Bi)-
separator with value less thanλwi for wi := min{µ(Ai),µ(Bi)}, then defineWi := Wi−1 \ (Ai ∪Bi). Informally, we
can say that these pairs(Ai,Bi) are “moderately connected”: the minimum value of a fractional (Ai,Bi)-separator is
less thanλwi , but at leastλwi/2 = λ min{µ0(Ai),µ0(Bi)} (using the fact thatW is (µ0,λ )-connected). Note that
every fractional separator has value at least 1 (asW is in a single component ofH), thusλwi > 1 holds, implying
wi ≥ 1/λ ≥ 1. In each step, we selectAi andBi such that|Ai |+ |Bi| is minimum possible. In particular, this implies that
µ(Ai),µ(Bi)≤ wi +1≤ 2wi : if, say,µ(Ai) > µ(Bi)+1, then removing an arbitrary vertex ofAi decreasesµ(Ai) by at
most one (asµ is a fractional independent set) without changing min{µ(Ai),µ(Bi)}, hence there would be a smaller
pair of sets with the required properties. Therefore, we have 2wi ≤ µ(Ai ∪Bi)≤ 2wi +1≤ 3wi for every 1≤ i ≤ r.

Suppose that the procedure stops after finding the pairs(A1,B1), . . . , (Ar ,Br) for somer ≥ 0. Suppose first that
w := ∑r

i=1 wi < T. Thenµ(
⋃r

i=1(Ai ∪Bi)) ≤ 3w < 3T, henceµ(Wr) > µ(W0)−3T ≥ 2µ0(W)−2k−3T ≥ µ0(W) =
conλ (H). Since the procedure stopped, there is no fractional(A′,B′)-separator of value less thanλ ·min{µ(A′),µ(B′)}
for any A′,B′ ⊆Wr , that is,Wr is (µ ,λ )-connected withµ(Wr ) > conλ (H), contradicting the definition of conλ (H).
Thus in the following, we can assume thatw≥ T.

Finding a multicommodity flow. By construction, there is a fractional(Ai,Bi)-separator of value less thanλwi,
hence the maximum value of aµ-demand multicommodity flow between pairs(A1,B1), . . . , (Ar ,Br) is less thanλw.
Let A :=

⋃r
i=1 Ai andB :=

⋃r
i=1 Bi. Let us consider an optimum dual solution with valueY = Y1 +Y2, whereY1 is the

contribution of the variablesy(u),y(v) (a∈ A, b∈ B), andY2 is the contribution of the variablesy(e) (e∈ E(H)). Let
A∗ := {u ∈ A | y(u) ≤ 1/4}, B∗ := {v ∈ B | y(v) ≤ 1/4}, A∗i = Ai ∩A∗, B∗i = Bi ∩B∗, andw∗i = min{µ(A∗i ),µ(B∗i )}.
For eachi, the value ofw∗i is either at leastwi/2, or less than that. Assume without loss of generality that there is a
1≤ r∗ ≤ r such thatw∗i ≥ wi/2 if and only if i ≤ r∗. Let w∗ = ∑r∗

i=1w∗i .
We claim thatw∗ ≥ w/4. Note thatw∗i < wi/2 means that eitherµ(A∗i ) < µ(Ai)/2 or µ(B∗i ) < µ(Bi)/2; as

µ(Ai),µ(Bi) ≥ wi, this is only possible ifµ(Ai \A∗)+ µ(Bi \B∗) > wi/2. Suppose first that∑r
i=r∗+1wi > w/2. This

would imply

µ((A\A∗)∪ (B\B∗))≥
r

∑
i=r∗+1

(µ(Ai \A∗)+ µ(Bi \B∗)) >
r

∑
i=r∗+1

wi/2 > w/4.

However,y(u) > 1/4 for everyu∈ (A\A∗)∪ (B\B∗), thusY ≥Y1 ≥ µ((A\A∗)∪ (B\B∗))/4≥ w/16> λw (since
λ < 1/16), a contradiction with our earlier observation that the optimum is at mostλw. Thus we can assume that
∑r

i=r∗+1wi ≤ w/2 and hence∑r∗
i=1 wi ≥ w/2. Together withw∗i ≥ wi/2 for every 1≤ i ≤ r∗, this impliesw∗ ≥ w/4.

As y(a),y(b) ≤ 1/4 for everya∈ A∗i , b∈ B∗i , it is clear that for everyA∗i −B∗i pathP, the total weight of the edges
intersectingP has to be at least 1/2 in assignmenty. Therefore, if we definey∗ : E(H)→R

+ by y∗(e) = 2y(e) for every
e∈ E(H), theny∗ covers everyA∗i −B∗i path. LetW∗ =

⋃r∗
i=1(A

∗
i ∪B∗i ). We use Lemma 6.3 for the(µ ,λ )-connected

setW∗ and for the pairs(A∗1,B
∗
1), . . . , (A∗r∗,B

∗
r∗). Note thatw∗i ≥wi/2≥ 1/2 for everyi. It follows thaty∗ has weight at

least(λ/7) ·
√

w∗ ≥ (λ/14) ·√w, which means thatY2 = ∑e∈E(H) y(e)≥ (λ/28) ·√w≥ (λ/28) ·
√

T ≥ 2k.
Locating the cliques. Let us fix and optimum primal and dual solution for the maximummulticommodity flow

problem with pairs(A∗1,B
∗
1), . . . , (A

∗
r∗ ,B

∗
r∗) and letF0 be the flow obtained from the primal solution. We selectk cliques

K1, . . . , Kk and associate a subflowFi of F0 with each cliqueKi. Let F(i) be the flow obtained fromF0 by removing
F1, . . . , Fi. For everyu− v pathP appearing inF0, we get∑e∈E(H),e∩P6= /0 y(e)+ y(u)+ y(v) = 1 from complementary
slackness: if the primal variable corresponding toP is nonzero, then the corresponding dual constraint is tight. In
particular, this means that the total weight of the edges intersecting such a pathP is at most 1. Letc(e,F (i)) be the total
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weight of the paths inF (i) intersecting edgee and letCi = ∑e∈E(H) y(e)c(e,F (i)). Again by complementary slackness,
c(e,F0) = 1 for eache∈ E(H) with y(e) > 0 and henceC0 = ∑e∈E(H) y(e)≥ 2k.

Let us selectei to be an edge such thatc(ei ,F(i−1)) is maximum possible and letKi := ei \
⋃i−1

j=1ej . Let the flow

Fi contain all the paths ofF (i−1) intersectingei . Observe that the paths appearing inFi do not intersecte1, . . . , ei−1

(otherwise they would no longer be inF(i−1)), thus cliqueKi intersects every path inFi. AsF(i−1) is a subflow ofF0, for
every pathP in F(i−1), the total weight of the edges intersectingP in y is at most 1. This means that if we remove a path
of weightγ from F(i−1), thenCi−1 decreases by at mostγ . As the total weight of the paths intersectingei is at most 1, we
get thatCi ≥Ci−1−1 and henceCi ≥Ci−k≥C0/2 for i ≤ k. SinceC0 = ∑e∈E(H) y(e) andCi = ∑e∈E(H) y(e)c(e,F (i)),

it is easy to see thatCi ≥C0/2 implies that there has to be at least one edgeewith c(e,F (i))≥ 1/2. Thus in each step,
we can select an edgeei such that that the total weight of the paths intersectingei is at least 1/2, and hence the value
of Fi is at least 1/2 for every 1≤ i ≤ k.

Moving the highly connected set. Let U =
⋃k

i=1 Ki. Each pathP in Fi is a path with endpoints inW∗ and
intersectingKi. Let us truncate each pathP such that its first endpoint is still inW∗ and its second endpoint is inKi; let
F ′i be the(W,Ki)-flow obtained by truncating every path inFi. Note thatF ′i is still a flow and the sumF ′ of F ′1, . . . , F ′k
is a(W∗,U)-flow. Let µ1 = µ and letµ2(v) be the total weight of the paths inF ′ with second endpointv. It is clear that
µ2 is a fractional independent set,µ2(Ki)≥ 1/2, andF is a(µ1,µ2)-demand(W∗,U)-flow with valueµ2(U). Thus by
Lemma 6.4,U is a(µ2,λ/6)-connected set with the required properties.

6.2 Concurrent flows and embedding

LetW be a set of vertices and let(X1, . . . ,Xk) be a partition ofW. A uniform concurrent flow of valueε on (X1, . . . ,Xk)
is a compatible set of

(k
2

)

flows Fi, j (1≤ i < j ≤ k) whereFi, j is an(Xi ,Xj)-flow of value ε . The maximum value
of a uniform concurrent flow onW can be expressed as the optimum values of the following primal and dual linear
programs (we denote byPi, j the set of allXi−Xj paths):

Primal LP Dual LP

maximizeε minimize ∑
e∈e(H)

y(e)

s. t.

∑
1≤i< j≤k

∑
P∈Pi, j ,
P∩e6= /0

x(P)≤ 1 ∀e∈ E(H)

∑
P∈Pi, j

x(P)≥ ε ∀1≤ i < j ≤ k

x(P)≥ 0 ∀1≤ i < j ≤ k,P∈ Pi, j

∑
e∈E(H),e∩P6= /0

y(e)≥ ℓi, j ∀1≤ i < j ≤ k,P∈ Pi, j

∑
1≤i< j≤k

ℓi, j ≥ 1

y(e) ≥ 0 ∀e∈ E(H)

ℓi, j ≥ 0 ∀1≤ i < j ≤ k

If H is connected, then the maximum value of a uniform concurrentflow on(X1, . . . ,Xk) is at least 1/
(k

2

)

= Ω(k−2):

if each of the
(k

2

)

flows has value 1/
(k

2

)

, then they are clearly compatible. The following lemma shows that in a(µ ,λ )-
connected set, if the setsX1, . . . , Xr are cliques (and they are not too small with respect toµ), then we can guarantee a
better bound ofΩ(k−

3
2 ).

Lemma 6.6. Let H be a hypergraph,µ a fractional independent set of H, and W⊆V(H) a (µ ,λ )-connected set of W
for some0 < λ < 1. Let (K1, . . . ,Kk) be a partition of W such that Ki is a clique andµ(Ki)≥ 1/2 for every1≤ i ≤ k.
Then there is a uniform concurrent flow of valueΩ(λ/k

3
2 ) on (K1, . . . ,Kk).

Proof. Suppose that there is no uniform concurrent flow of valueβ ·λ/k
3
2 , whereβ > 0 is a sufficiently small constant

specified later. This means that the dual linear program has asolution having value less than that. Let us fix such a
solution(y, ℓi, j ) of the dual linear program. In the following, for every pathP, we denote byy(P) := ∑e∈E(H),e∩P6= /0 y(e)
the total weight of the edges intersectingP.

We construct two graphsG1 andG2: the vertex set of both graphs is{1, . . . ,k} and for every 1≤ i < j ≤ k, vertices
i and j are adjacent inG1 (resp.,G2) if and only if ℓi, j > 1/(3k2) (resp.,ℓi, j > 1/k2). Note thatG2 is a subgraph ofG1.
First we prove the following claim:
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Claim: If the distance ofu andv is at most 3 in thecomplementof G1, thenu andv are not adjacent inG2.

Suppose thatuw1w2v is a path of length 3 in the complement ofG1 (the same argument works for paths of length
less than 3). By definition ofG1, there is aKu−Kw1 pathP1, a Kw1−Kw2 pathP2, and aKw2−Kv pathP3 such that
y(P1),y(P2),y(P3) ≤ 1/(3k2). SinceKw1 andKw2 are cliques, pathsP1 andP2 touch, and pathsP2 andP3 touch. Thus
by concatenating the three paths, we can obtain aKu−Kv pathP with y(P) ≤ y(P1)+y(P2)+y(P3)≤ 1/k2, implying
thatu andv are not adjacent inG2, proving the claim. Note that the proof of this claim is the only point where we use
that theKi ’s are cliques.

Let y′ : E(H)→ R
+ defined byy′(e) := 3k2 · y(e), thusy′ has total weight less than 3β ·λ

√
k. Suppose first that

G1 has a matching of size⌈k/4⌉. Without loss of generality, assume that(i, i + ⌈k/4⌉) is an edge ofG1 for every
1≤ i ≤ ⌈k/4⌉. This means thaty′ covers everyKi−Ki+⌈k/4⌉ path for everyi. Therefore, by Lemma 6.3,y′ has weight

at least(λ/7) ·
√

⌈k/4⌉ · (1/2) > 3β ·λ
√

k, if β is sufficiently small, yielding a contradiction.
Thus the size of the maximum matching inG1 is less thank/4, which means that there is a vertex coverS1 of size

less thank/2. LetS2⊆ S1 contain those vertices that are adjacent to every vertex outsideS1 in G1. We claim thatS2 is
a vertex cover ofG2. Suppose that there is an edgeuv of G2 for someu,v 6∈ S2. Sinceu is not inS2, eitheru 6∈ S1, or
there is a vertexw1 6∈ S1 such thatu andw1 are not adjacent inG1. Similarly, eitherv is not inS1, or it is not adjacent
in G1 to somew2 6∈ S1. Since vertices not inS1 are not adjacent inG1 (asS1 is a vertex cover ofG1), we get that the
distance ofu andv is at most 3 in the complement ofG1. Thus by the claim,u andv are not adjacent inG2.

The total weight ofy, which is less thanβ ·λ/k
3
2 , is an upper bound on anyℓi, j . Furthermore, ifi and j are not

adjacent inG2, then we haveℓi, j ≤ 1/k2. The number of edges inG2 is at most|S2|k (asS2 is vertex cover), hence we
have

1≤ ∑
1≤i< j≤k

ℓi, j ≤ |S2|k ·β ·λ/k
3
2 +

(

k
2

)

(1/k2)≤ β ·λ |S2|/
√

k+1/2,

which implies that|S2| ≥ 2
√

k/(βλ ). Let A :=
⋃

i∈S2
Ki andB :=

⋃

i 6∈S1
Ki; we haveµ(A) ≥ |S2| · (1/2) ≥

√
k/(βλ )

andµ(B)≥ (1/2) · (k−|S1|))≥ k/4. As every vertex ofS2 is adjacent inG1 with every vertex outsideS1, assignment
y′ covers everyA−B path. However,y′ has weight less than 3β ·λ

√
k < min{

√
k/(βλ ),k/4} (using thatλ ≤ 1 and

assuming thatβ is sufficiently small), contradicting the assumption thatW is (µ ,λ )-connected.

Intuitively, the intersection structure of the paths appearing in a uniform concurrent flow on cliquesK1, . . . , Kr is
reminiscent of the edges of the complete graph onr vertices: if{i1, j1}∩{i2, j2} 6= /0, then every path ofFi1, j1 touches
every path ofFi2, j2. We use the following result from [41], which shows that the line graph of cliques have good
embedding properties. IfG is a graph andq≥ 1 is an integer, then theblow up G(q) is obtained fromG by replacing
every vertexv with a cliqueKv of sizeq and for every edgeuv of G, connecting every vertex of the cliqueKu with
every vertex of the cliqueKv. Let Lk be the line graph of the complete graph onk vertices.

Lemma 6.7. For every k> 1 there is a constant nk > 0 such that for every G(V,E) with |E| > nk and no isolated

vertices, the graph G is a minor of L(q)
k for q = ⌈130|E|/k2⌉. Furthermore, a minor mapping can be found in time

polynomial in the size of G.

Using the terminology of embeddings, a minor mapping ofG into L(q)
k can be considered as an embedding fromG

to Lk where every vertex ofLk appears in the image of at mostq vertices, i.e., the vertex depth of the embedding is at
mostq. Thus we can restate Lemma 6.7 the following way:

Lemma 6.8. For every k> 1 there is a constant nk > 0 such that for every G(V,E) with |E| > nk and no isolated
vertices, the graph G has an embedding into Lk with vertex depth O(|E|/k2). Furthermore, such an embedding can be
found in time polynomial in the size of G.

Now we are ready to prove Theorem 6.1, the main result of the section:

Proof (of Theorem 6.1).By Lemma 6.5 and Lemma 6.6, for somek = Ω(λ
√

conλ (H)), there are cliquesK1, . . . , Kk

and a uniform concurrent flowFi, j (1≤ i < j ≤ k) of valueε = Ω(λ/k
3
2 ) on (K1, . . . ,Kk). By trying all possibilities for

the cliques and then solving the uniform concurrent flow linear program, we can find these flows (the time required for
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this step is a constantf (H,λ ) depending only onH andλ ) . Let w0 be the smallest positive weight appearing in the
flows.

Letm= |E(G)| and suppose thatm≥ nk, for the constantnk in Lemma 6.7. Thus the algorithm of Lemma 6.8 can be
used to find a an embeddingψ from G to Lk with vertex depthq= O(m/k2). Let us denote byv{i, j} (1≤ i < j ≤ k) the
vertices ofLk with the meaning that distinct verticesv{i1, j1} andv{i2, j2} are adjacent if and only if{i1, j1}∩{i2, j2} 6= /0.

We construct an embeddingφ from G to H the following way. The setφ(u) is obtained by replacing each vertex of
ψ(u) by a path from one of the flows (thusφ(u) is the union of|ψ(u)| paths). More precisely, for everyv{i, j} ∈ ψ(u),
let us add a path fromFi, j to φ(u). We select the paths in such a way that the following requirement is satisfied: a
pathP of Fi, j having weightw is selected into the images of at most⌈(q/ε) ·w⌉ vertices ofG. We setmH,λ sufficiently
large that(q/ε) ·w0 ≥ 1 (note thatq depends onm, but ε andw0 depends only onH andλ ). Thus if m≥mH,λ , then
⌈(q/ε) ·w⌉ ≤ 2(q/ε) ·w. Since the total weight of the paths inFi, j is ε , these paths can accommodate the image of at
least(q/ε) · ε = q vertices. As each vertexv{i, j} of Lk appears in the image of at mostq vertices ofG in the mapping
ψ , we can satisfy the requirement.

It is easy to see that ifu1 andu2 are adjacent inG, thenφ(u1) andφ(u2) touch: in this case, there are vertices
v{i1, j1} ∈ψ(u1), v{i2, j2} ∈ψ(u2) that are adjacent or the same inLk (that is, there is at ∈ {i1, j1}∩{i2, j2} 6= /0), and the
corresponding paths ofFi1, j1 andFi2, j2 selected intoφ(u1) andφ(u2) touch, as they both intersect the cliqueKt. With a
similar argument, we can show thatφ(u) is connected.

To bound the edge depth of the embeddingφ , consider an edgee. The total weight of the paths intersectinge
is at most 1 and a path with weightw is used in the image of at most 2(q/ε) ·w vertices. Each path intersectse
in at most 2 vertices (as we can assume that the paths appearing in the flows are minimal), thus a path with weight
w contributes at most 4(q/ε) ·w to the depth ofe. Thus the edge depth ofφ is at most 4(q/ε) = O(m/(λ

√
k)) =

O(m/(λ 3
2 conλ (H)

1
4 )).

6.3 Connection with adaptive width

As an easy consequence of the embedding result Corollary 6.2, we can show that large submodular width implies large
adaptive width:

Lemma 6.9. For every hypergraph H,adw(H) = Ω(emb(H))

Proof. Suppose that emb(H) > α . This means that there is an integermα such that every graph withm≥mα edges
has an embedding intoH with edge depthm/α . It is well-known that there are arbitrarily large sparse graphs whose
treewidth is linear in the number of vertices (see e.g., [29]): for some universal constantβ , there is a graphG with
m≥mα edges and treewidth at leastβm. Thus there is an embeddingφ from G to H with edge depthq≤m/α . Let
d(v) be the depth of vertexv in the embedding and let us defineµ(v) := d(v)/q. From the definition of edge depth,
it is clear thatµ is a fractional independent set. Suppose that there is a treedecomposition(T,Bv∈V(T)) of H having
µ-width w. This tree decomposition can be turned into a tree decomposition (T,B′v∈V(T)) of G: for everyBt ⊆V(H),
let B′t := {u∈V(G) | φ(u)∩Bt 6= /0} contain those vertices ofG whose images intersectBt . Furthermore,µ(Bt) ≤ w
means that∑v∈Bt

d(v)≤ qw, which implies that|B′t | ≤ qw. Thus the width of(T,B′v∈V(T)) is less thanqw, which means
thatw has to be at leastβm/q = Ω(α), the required lower bound on the adaptive width ofH.

Combining Theorem 5.1 and Lemma 6.9 gives:

Corollary 6.10. For every hypergraph H,subw(H) = O(adw(H)4).

7 From embeddings to hardness of CSP

We prove the main hardness result of the paper in this section:

Theorem 7.1. If H is a recursively enumerable class of hypergraphs with unbounded submodular width, then CSP(H)
is not fixed-parameter tractable, unless the Exponential Time Hypothesis fails.
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The Exponential Time Hypothesis (ETH) states that there is no 2o(n) time algorithm forn-variable 3SAT. The
Sparsification Lemma of Impagliazzo, Paturi, and Zane [35] shows that ETH is equivalent to the assumption that there
is no algorithm for 3SAT whose running time is subexponential in the number of clauses.This result will be crucial
for our hardness proof, as our reduction from 3SAT is sensitive to the number of clauses.

Theorem 7.2(Impagliazzo, Paturi, and Zane [35]). If there is a2o(m) time algorithm for m-clause 3-SAT, then there is
a 2o(n) time algorithm for n-variable 3-SAT.

To prove Theorem 7.1, we show that a subexponential-time algorithm for 3SAT exists if CSP(H) is FPT for some
H with unbounded submodular width. We use the characterization of submodular width from Section 5 and the
embedding results of Section 6 to reduce 3SAT to CSP(H) by embedding the incidence graph of a 3SAT formula into
a hypergraphH ∈ H. The basic idea of the proof is that if the 3SAT formula hasm clauses and the edge depth of the
embedding ism/r, then we can gain a factorr in the exponent of the running time. If submodular width is unbounded
in H, then we can make this gapr between the number of clauses and the edge depth arbitrary large, and hence the
exponent can be arbitrarily smaller than the number of clauses, i.e., the algorithm is subexponential in the number of
clauses.

The following simple lemma gives a transformation that turns a 3SAT instance into a binary CSP instance.

Lemma 7.3. [41] Given an instance of 3SAT with n variables and m clauses,it is possible to construct in polynomial
time an equivalent CSP instance with n+m variables,3m binary constraints, and domain size3.

Next we show that an embedding from graphG to hypergraphH can be used to simulate a binary CSP instanceI1
having primal graphG by a CSP instanceI2 whose hypergraph isH. The domain size and the size of the constraint
relations ofI2 can grow very large in this transformation: the edge depth ofthe embedding determines how large is this
increase.

Lemma 7.4. Let I1 = (V1,D1,C1) be a binary CSP instance with primal graph G and letφ be a embedding of G into
a hypergraph H with edge depth q. Given I1, H, and the embeddingφ , it is possible to construct (in time polynomial
in the size of theoutput) an equivalent CSP instance I2 = (V2,D2,C2) with hypergraph H where the size of every
constraint relation is at most|D1|q.

Proof. For everyv∈V(H), let Uv := {u∈V(G) | v∈ φ(u)} be the set of vertices inG whose images containv, and
for everye∈ E(H), let Ue :=

⋃

v∈eUv. Observe that for everye∈ E(H), we have∑v∈e |Uv| ≤ q, since the edge depth
of φ is q. Let D2 be the set of integers between 1 and|D1|q. For everyv∈V(H), the number of assignments fromUv

to D1 is clearly|D1||Uv| ≤ |D1|q. Let us fix a bijectionhv between these assignments onUv and the set{1, . . . , |D1||Uv|}.
The setC2 of constraints ofI2 are constructed as follows. For eache∈ E(H), there is a constraint〈se,Re〉 in C2,

wherese is an|e|-tuple containing an arbitrary ordering of the elements ofe. The relationRe is defined the following

way. Suppose thatvi is thei-th coordinate ofse and consider a tuplet = (d1, . . . ,d|Ue|) ⊆ D|e|2 where 1≤ di ≤ |D1||Uvi |

for every 1≤ i ≤ |e|. This means thatdi is in the image ofhvi and hencefi := h−1
vi

(di) is an assignment fromUvi

to D1. We define relationRe such that it contains tuplet if the following two conditions hold. First, we require that
the assignmentsf1, . . . , f|e| areconsistentin the sense thatfi(u) = f j(u) for any u ∈Uvi ∩Uvj . In this case,f1, . . . ,

f|e| together define an assignmentf on
⋃|e|

i=1Uvi = Ue. The second requirement is that assignmentf satisfies every
constraint ofI1 whose scope is contained inUe, that is, for every constraint〈(u1,u2),R〉 ∈C1 with {u1,u2} ⊆Ue, we
have( f (u1), f (u2)) ∈ R. This completes the description of the instanceI2.

Let us bound the maximum size of a relation ofI2. Consider the relationRe constructed in the previous paragraph.
It contains tuples(d1, . . . ,d|Ue|)⊆ D|e|2 where 1≤ di ≤ |D1||Uvi | for every 1≤ i ≤ |e|. This means that

|Re| ≤
|e|

∏
i=1

|Di||Uvi | = |D1|∑
|e|
i=1 |Uvi | ≤ |D1|q,

where the last inequality follows from the fact thatφ has edge depth at mostq.
To prove thatI1 andI2 are equivalent, assume first thatI1 has a solutionf1 : V1→D1. For everyv∈V2, let us define

f2(v) := hv( f2|Uv
), that is, the integer between 1 and|D1||Uv| corresponding to assignmentf2 restricted toUv. It is easy

to see thatf2 is a solution ofI2.
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Assume now thatI2 has a solutionf2 : V2→ D2. For everyv ∈ V(H), let fz := h−1
v ( f2(v)) be the assignment

from Uv to D1 that corresponds tof2(v) (note that by construction,f2(v) is at most|D1||Uv|, henceh−1
v ( f2(v)) is well-

defined). We claim that these assignments are compatible: ifu∈Uv′ ∩Uv′′ for someu∈V(G) andv′,v′′ ∈V(H), then
fv′(u) = fv′′(u). Recall thatφ(u) is a connected set inH, hence there is a path betweenv′ andv′′ in φ(u). We prove the
claim by induction on the distance betweenv′ andv′′ in φ(u). If the distance is 0, that is,v′ = v′′, then the statement is
trivial. Suppose now that the distance ofv′ andv′′ is d > 0. This means thatv′ has a neighborz∈ φ(u) such that the
distance ofz andv′′ is d−1. Therefore,fz(u) = fv′′(u) by the induction hypothesis. Sincev′ andz are adjacent inH,
there is an edgeE∈E(H) containing bothv′ andz. From the wayI2 is defined, this means thatfv′ and fz are compatible
and fv′(u) = fz(u) = fv′′(u) follows, proving the claim. Thus the assignmentsfv, v∈V(H) are compatible and these
assignments together define an assignmentf1 : V(G)→ D. We claim thatf1 is a solution ofI1. Let c = 〈(u1,u2),R〉
be an arbitrary constraint ofI1. Sinceu1u′2 ∈ E(G), setsφ(u1) andφ(u2) touch, thus there is an edgee∈ E(Hk) that
contains a vertexv1 ∈ φ(u1) and a vertexv2 ∈ φ(u2) (or, in other words,u1 ∈Uv1 andu2 ∈Uv2). The definition of
ce in I2 ensures thatf1 restricted toUv1 ∪Uv2 satisfies every constraint ofI1 whose scope is contained inUv1 ∪Uv2; in
particular, f1 satisfies constraintc.

Now we are ready to prove Theorem 7.1, the main result of the section. We show that if there is a classH of
hypergraphs with unbounded submodular width such that CSP(H) is FPT, then this algorithm can be used to solve
3SAT in subexponential time. The main ingredients are the embedding result of Theorem 6.1, and Lemmas 7.3 and 7.4
above on reduction to CSP. Furthermore, we need a way of choosing an appropriate hypergraph from the setH. The
reduction enumerates the firstk hypergraphs from the classH (for an appropriate value ofk), and uses the hypergraph
that is the best for embedding the 3SAT instance. Choosing the right value ofk will be done in a somewhat technical
way, but it should be clear that (1) ifk is sufficiently small compared to the input size, then any operations and any
constants related to the firstk hypergraphs is dominated by the input size, and (2) ifk is allowed to grow arbitrarily
large (for sufficiently large input sizes), then every hypergraph inH is considered. As discussed above, the gain in
the exponent of the running time depends on the submodular width of the hypergraph. Thus ifH has unbounded
submodular width and every hypergraphH ∈ H is considered in the reduction, then the gain in the exponentcan be
arbitrarily large.

Proof (of Theorem 7.1).Let us fix aλ > 0 that is sufficiently small for Theorems 5.1 and 6.1. Supposethat there is an
f1(H)nc1 time algorithm for CSP(H). We use this algorithm to solve 3SAT in subexponential time. Given an instance
I of 3SAT withn variables andmclauses, we use Lemma 7.3 to transform it into a CSP instanceI1 = (V1,D1,C1) with
|V1| = n+ m, |D1| = 3, and|C1| = 3m. Let G be the primal graph ofI1, which is a graph having 3m edges. We can
assume thatm is greater than some constantm0 (specified later), otherwise the instance can be solved in constant time.

Let us fix an arbitrary computable enumerationH1, H2, . . . of the hypergraphs inH. Let us spendm steps on
enumerating these hypergraphs; letkm be the last hypergraph produced by this enumeration. If we set m0 sufficiently
large, thenkm≥ 1, that is, the enumeration produces at least one hypergraph. Consider the algorithm of Theorem 6.1
having running timef2(H,λ )|E(G)|c2. For i = 1, . . . ,km, let us simulate the first|E(G)|c2+1 steps of this algorithm
with input (G,Hi). If the algorithm terminates in at mostmc2+1 steps, then it produces an embeddingφi from G to Hi.
If we setm0≥ f2(H1,λ ), thenm is sufficiently large that the simulation terminates and produces an embedding for at
least onei. Among these embeddings, letφk be the one whose edge depth is minimum. We useφk and Lemma 7.4 to
construct an equivalent instanceI2 = (V2,D2,C2) whose hypergraph isHk. By solving I2 using the assumed algorithm
for CSP(H), we can answer ifI1 has a solution, or equivalently, if the 3SAT instanceI has a solution.

We claim that for everys≥ 1, the running time of this algorithm is 2O(m/s) if m is sufficiently large. If conλ (H)
is sufficiently large andm is sufficiently large, then the embedding from a graph withm edges toH produced by
the algorithm of Theorem 6.1 has edge depthm/s. SinceH has unbounded submodular width and hence conλ (H) is
unbounded, there is a graphHis ∈H and a constantms such that ifG is a graph withm≥ms edges, then the algorithm of
Theorem 6.1 produces an embedding fromG to His with edge depth at mostm/s. If furthermorem is sufficiently large,
thenkm≥ is, i.e., the enumeration findsHis in at mostmsteps. Ifm≥ f2(His,λ ) andm is greater than the constantmHis,λ
in Theorem 6.1, then the simulation of the algorithm on(G,His) for |E(G)|c2+1 ≥ f2(His,λ )|E(G)|c2 steps terminates
with an embeddingφis. Thus if q is the edge depth ofφk (the embedding minimum edge depth), thenq ≤ m/s.
Therefore, every relation inI2 has size at most|D1|q≤ 3m/s. Note that the time required to constructI2 is polynomial in
the size‖I2‖ of the output, which is 3m/s(|V(His)|+ |E(His)|+‖I1‖)O(1). Therefore, the time required to solveI2 using
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the the assumed algorithm for CSP(H) is f2(His,λ ) · ‖I2‖c1, which is‖I1‖O(1) ·3m/s, if m≥ f2(His,λ ), |V(His)|, |E(His|.
Thus, suppressing factors polynomial inm, we get that the running time is dominated by 3m/s if m is sufficiently large.
This means that the running time of the algorithm is 2o(m), implying that ETH fails.

8 Conclusions

The main result of the paper is introducing submodular widthand proving that bounded submodular width is the
property that determines the fixed-parameter tractabilityof CSP(H). The hardness result is proved assuming the
Exponential Time Hypothesis. This conjecture was formulated relatively recently [35], but it turned out to be very
useful in proving lower bounds in a variety of settings [41, 6, 42, 49].

For the hardness proof, we had to understand what large submodular width means and connected submodular width
with other combinatorial properties. We have obtained several equivalent characterizations of bounded submodular
width, in particular, we have showed that bounded submodular width is equivalent to bounded adaptive width:

Corollary 8.1. The following are equivalent for every classH of hypergraphs:

1. There is a constant c1 such thatµ-width(H)≤ c1 for every H∈H and fractional independent setµ .

2. There is a constant c2 such that b-width(H) ≤ c2 for every H∈ H and edge-dominated monotone submodular
function b on V(H).

3. There is a constant c3 such that b∗-width(H)≤ c3 for every H∈ H and edge-dominated monotone submodular
function b on V(H).

4. There is a constant c4 such thatconλ (H)≤ c4 for every H∈H, whereλ > 0 is a universal constant.

5. There is a constant c5 such thatemb(H)≤ c5 for every H∈H.

Implications (2)⇒(1) and (3)⇒(2) are trivial; (4)⇒(3) follows from Theorem 5.1; (5)⇒(4) follows from Corol-
lary 6.2; (1)⇒(5) follows from Corollary 6.10.

Let us briefly review the main ideas that were necessary for proving the main result of the paper:

• Recognizing that submodular width is the right property characterizing the complexity of the problem.

• A CSP instance can be partitioned into a bounded number of uniform instances (Section 4.1).

• The number of solutions in a uniform CSP instance can be described by a submodular function (Section 4.2).

• There is a connection between fractional separation and finding a separator minimizing an edge-dominated
submodular cost function (Section 5.2).

• The transformation that turnsb into b∗, the properties ofb∗ (Section 5.1).

• Our results on fractional separation and the standard framework of finding tree decompositions show that large
submodular width implies that there is highly connected set(Section 5.3).

• A highly connected set can be turned into a highly connected set that is partitioned into cliques in an appropriate
way (Section 6.1).

• A highly connected set with appropriate cliques implies that there is a uniform concurrent flow of large value
between the cliques (Section 6.2).

• Similarly to [41], we use the observation that a concurrent flow is analogous to a line graph of a clique, hence it
has good embedding properties (Section 6.2).

• Similarly to [41], an embedding in a hypergraph gives a way ofsimulating 3SAT with CSP(H) (Section 7).

33



An obvious question for further research is whether it is possible to prove a similar dichotomy result with respect
to polynomial time solvability. At this point, it is hard to see what the answer could be if we investigate the same
question using the more restricted notion of polynomial time solvability. We know that bounded fractional hypertree
width implies polynomial-time solvability [43] and Theorem 7.1 show that unbounded submodular width implies that
the problem is not polynomial-time solvable (as it is not even fixed-parameter tractable). So only those classes are in
the “grey zone” of hypergraph classes that have bounded submodular width but unbounded fractional hypertree width.

What could be the truth in this grey zone? A first possibility is that CSP(H) is polynomial-time solvable for ev-
ery such classes, i.e., Theorem 4.1 can be improved from fixed-parameter tractability to polynomial-time solvability.
However, Theorem 4.1 uses the power of fixed-parameter tractability in an essential way (splitting into an exponential
number of uniform instances), so it is not clear how such improvement is possible. A second possibility is that un-
bounded fractional hypertree width implies that CSP(H) is not polynomial-time solvable. Substantially new techniques
would be required for such a hardness proof. The hardness proofs of this paper and of [27, 41] are based on showing
that a large problem space can be efficiently embedded into aninstance with a particular hypergraph. However, the
fixed-parameter tractability results show that no such embedding is possible in case of classes with bounded submodu-
lar width. Therefore, a possible hardness proof should embed a problem space that is comparable (in some sense) with
the size of the hypergraph and should create instances wherethe domain size is bounded by a function of the size of
the hypergraph. A third possibility is that the boundary of polynomial-time solvability is somewhere between bounded
fractional hypertree width and bound submodular width. Currently, there is no natural candidate for a property that
could correspond to this boundary and, again, the hardness part of the characterization should be substantially different
than what was done before. Finally, there is a fourth possibility: the boundary of the polynomial-time cases cannot
be elegantly characterized by a simple combinatorial property. In general, if we consider the restriction of a problem
to all possible classes of (hyper)graphs, then there is no a priori reason why an elegant characterization should exist
that that describes the easy and hard classes. For example, it is highly unlikely that there is an elegant characterization
of those classes of graphs where solving the MAXIMUM INDEPENDENT SET problem is polynomial-time solvable.
As discussed earlier, the fixed-parameter tractability of CSP(H) is a more robust question than its polynomial-time
solvability, hence it is very well possible that only the former question has an elegant answer.
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