Tractable hypergraph properties for constraint satisfaction and conjunctive queries

Dániel Marx*

November 4, 2009

Abstract

An important question in the study of constraint satisfaction problems (CSP) is understanding how the graph or hypergraph describing the incidence structure of the constraints influences the complexity of the problem. For binary CSP instances (i.e., where each constraint involves only two variables), the situation is well understood: the complexity of the problem essentially depends on the treewidth of the graph of the constraints [27, 41]. However, this is not the correct answer if constraints with unbounded number of variables are allowed, and in particular, for CSP instances arising from query evaluation problems in database theory. Formally, if \mathcal{H} is a class of hypergraphs, then let $\operatorname{CSP}(\mathcal{H})$ be CSP restricted to instances whose hypergraph is in \mathcal{H}. Our goal is to characterize those classes of hypergraphs for which $\operatorname{CSP}(\mathcal{H})$ is polynomial-time solvable or fixed-parameter tractable, parameterized by the number of variables. Note that in the applications related to database query evaluation, we usually assume that the number of variables is much smaller than the size of the instance, thus parameterization by the number of variables is a meaningful question.

The most general known property of \mathcal{H} that makes $\operatorname{CSP}(\mathcal{H})$ polynomial-time solvable is bounded fractional hypertree width. Here we introduce a new hypergraph measure called submodular width, and show that bounded submodular width of \mathcal{H} (which is a strictly more general property than bounded fractional hypertree width) implies that $\operatorname{CSP}(\mathcal{H})$ is fixed-parameter tractable. In a matching hardness result, we show that if \mathcal{H} has unbounded submodular width, then $\operatorname{CSP}(\mathcal{H})$ is not fixed-parameter tractable (and hence not polynomial-time solvable), unless the Exponential Time Hypothesis (ETH) fails. The algorithmic result uses tree decompositions in a novel way: instead of using a single decomposition depending on the hypergraph, the instance is split into a set of instances (all on the same set of variables as the original instance), and then the new instances are solved by choosing a different tree decomposition for each of them. The reason why this strategy works is that the splitting can be done in such a way that the new instances are "uniform" with respect to the number extensions of partial solutions, and therefore the number of partial solutions can be described by a submodular function. For the hardness result, we prove via a series of combinatorial results that if a hypergraph H has large submodular width, then a 3SAT instance can be efficiently simulated by a CSP instance whose hypergraph is H. To prove these combinatorial results, we need to develop a theory of (multicommodity) flows on hypergraphs and vertex separators in the case when the function $b(S)$ defining the cost of separator S is submodular, which can be of independent interest.

[^0]
Contents

1 Introduction 3
2 Preliminaries 8
3 Width parameters 10
4 From CSP instances to submodular functions 12
4.1 Decomposition into uniform CSP instances 14
4.2 Uniform CSP instances and submodularity 15
5 From submodular functions to highly connected sets 17
5.1 The function b^{*} 18
5.2 Submodular separation 21
5.3 Obtaining a highly connected set 23
6 From highly connected sets to embeddings 24
6.1 Highly connected sets with cliques 25
6.2 Concurrent flows and embedding 28
6.3 Connection with adaptive width 30
7 From embeddings to hardness of CSP 30
8 Conclusions 33

1 Introduction

There is a long line of research devoted to identifying hypergraph properties that make the evaluation of conjunctive queries tractable (see e.g. [23, 50, 26, 27]). Our main contribution is giving a complete theoretical answer to this question: in a very precise technical sense, we characterize those hypergraph properties that imply tractability for the evaluation of a query. Efficient evaluation of queries is originally a question of database theory; however, it has been noted that the problem can be treated as a constraint satisfaction problem (CSP) and this connection led to a fruitful interaction between the two communities [39, 25, 50]. Most of the literature relevant to the current paper use the language of constraint satisfaction. Therefore, after a brief explanation of the database-theoretic motivation, we switch to the language of CSPs.

Conjunctive queries. Evaluation of conjunctive queries (or equivalently, Select-Project-Join queries) is one of the most basic and most studied tasks in relational databases. A relational database consists of a fixed set of relations. A conjunctive query defines a new relation that can be obtained as first taking the join of some relations and then projecting it to a subset of the variables. As an example, consider a relational database that contains three relations: enrolled(Person, Course, Date), teaches(Person, Course, Year), parent(Person1,Person2). The following query Q defines a relation ans (P) with the meaning that " P is enrolled in a course taught by her parent."

$$
Q: \operatorname{ans}(P) \leftarrow \operatorname{enrolled}(P, C, D) \wedge \text { teaches }(P 2, C, Y) \wedge \operatorname{parent}(P 2, P) .
$$

In the Boolean Conjunctive Query problem we need only to decide if the answer relation is empty or not, that is, if the join of the relations is empty or not. This is usually denoted as the relation "ans" not having any variables. Boolean Conjunctive Query contains most of the combinatorial difficulty of the general problem without complications such that the size of the output being exponentially large. Therefore, the current paper focuses on this decision problem.

In a natural way, we can define the hypergraph of a query: its vertices are the variables appearing in the query and the edges are the relations. Intuitively, if the hypergraph has "simple structure," then the query is easy to solve. For example, compare the following two queries:

$$
\begin{aligned}
& Q_{1}: \text { ans } \leftarrow R_{1}(A, B, C) \wedge R_{2}(C, D) \wedge R_{3}(D, E, F) \wedge R_{4}(E, F, G, H) \wedge R_{5}(H, I) \\
& Q_{2}: \text { ans } \leftarrow R_{1}(A, B) \wedge R_{2}(A, C) \wedge R_{3}(A, D) \wedge R_{4}(B, C) \wedge R_{5}(B, D) \wedge R_{6}(C, D)
\end{aligned}
$$

Even though more variables appear in Q_{1}, evaluating it seems to be easier: its hypergraph is "path like," thus the query can be answered efficiently by, say, dynamic programming techniques. On the other hand, the hypergraph of Q_{2} is a clique on 4 vertices and no significant shortcut is apparent compared to trying all possible combinations of values for (A, B, C, D).

What are those hypergraph properties that make Boolean Conjunctive Query tractable? In the early 80 s , it has been noted that acyclicity is one such property [9, 19, 53, 8]. Later, more general such properties were identified in the literature: for example, bounded query width [14], bounded hypertree width [23], and bound fractional hypertree width [43, 28]. Our goal is to find the most general hypergraph property that guarantees an efficient solution for query evaluation.

Constraint satisfaction. Constraint satisfaction is a general framework that includes many standard algorithmic problems such as satisfiability, graph coloring, database queries, etc. [26, 20]. A constraint satisfaction problem (CSP) consists of a set V of variables, a domain D, and a set C of constraints, where each constraint is a relation on a subset of the variables. The task is to assign a value from D to each variable in such a way that every constraint is satisfied (see Definition [2.1] for the formal definition). For example, 3SAT can be interpreted as a CSP problem where the domain is $D=\{0,1\}$ and the constraints in C correspond to the clauses (thus the arity of each constraint is 3). As another example, let us observe that the k-Clique problem (Is there a k-clique in a given graph G ?) can be easily expressed as a CSP instance. Let D be the set of vertices G, let V contain k variables, and let C contain $\binom{k}{2}$ constraints, one constraint on each pair of variables. The binary relation of these constraints require that the two vertices are adjacent. Therefore, the CSP instance has a solution if and only if G has a k-clique.

It is easy to see that Boolean Conjunctive Query can be formulated as the problem of deciding if a CSP instance has a solution: the variables of the CSP instance corresponds to the variables appearing in the query and the constraints correspond to the database relations. A distinctive feature of CSP instances obtained this way is that the number of
variables is small (as queries are typically small), while the domain of the variables are large (as the database relations usually contain a large number of entries). This has to be contrasted with typical CSP problems from AI, such as 3 -colorability and satisfiability, where the domain is small, but the number of variables is large. As our motivation is database-theoretic, in the rest of the paper the reader should keep in mind that we are envisioning scenarios where the number of variables is small and the domain is large.

As the examples above show, solving constraint satisfaction problems is NP-hard in general if there are no additional restrictions on the instances. The main goal of the research on CSP is to identify tractable special cases of the general problem. The theoretical literature on CSP investigates two main types of restrictions. The first type is to restrict the constraint language, that is, the type of constraints that are allowed. This direction includes the classical work of Schaefer [51] and its many generalizations [10, [11, 12, 20, 38]. The second type is to restrict the structure induced by the constraints on the variables. The hypergraph of a CSP instance is defined to be a hypergraph on the variables of the instance such that for each constraint $c \in C$ there is a hyperedge e_{c} that contains all the variables that appear in c. If the hypergraph of the CSP instance has very simple structure, then the instance is easy to solve. For example, it is well-known that a CSP instance I with hypergraph H can be solved in time $\|I\|^{O(t w(H))}$ [22], where $\operatorname{tw}(H)$ denotes the treewidth of H and $\|I\|$ is the size of the representation of I in the input.

Our goal is to characterize the "easy" and "hard" hypergraphs from the viewpoint of constraint satisfaction. However, formally speaking, CSP is polynomial-time solvable for every fixed hypergraph H : since H has a constant number k of vertices, every CSP instance with hypergraph H can be solved by trying all $\|I\|^{k}$ possible combinations on the k variables. It makes more sense to characterize those classes of hypergraphs where CSP is easy. Formally, for a class \mathcal{H} of hypergraphs, let $\operatorname{CSP}(\mathcal{H})$ be the restriction of CSP where the hypergraph of the instance is assumed to be in \mathcal{H}. For example, as discussed above, we know that if \mathcal{H} is a class of hypergraphs with bounded treewidth, i.e., there is a constant w such that $\operatorname{tw}(H) \leq w$ for $H \in \mathcal{H}$, then $\operatorname{CSP}(\mathcal{H})$ is polynomial-time solvable.

For the characterization of the complexity of $\operatorname{CSP}(\mathcal{H})$, we can investigate two notions of tractability. $\operatorname{CSP}(\mathcal{H})$ is polynomial-time solvable if there is an algorithm solving every instance of $\operatorname{CSP}(\mathcal{H})$ in time $(\|I\|)^{O(1)}$, where $\|I\|$ is the length of the representation of I in the input. The following notion interprets tractability in a less restrictive way: $\operatorname{CSP}(\mathcal{H})$ is fixed-parameter tractable (FPT) if there is an algorithm solving every instance I of $\operatorname{CSP}(\mathcal{H})$ in time $f(H)(\|I\|)^{O(1)}$, where f is an arbitrary function of the hypergraph H of the instance. Equivalently, the factor $f(H)$ in the definition can be replaced by a factor $f(k)$ depending only on the number k of vertices of H : as the number of hypergraphs on k vertices (without parallel edges) is bounded by a function of k, the two definitions result in the same notion. For a more general treatment of fixed-parameter tractability, the reader is referred to the parameterized complexity literature [18, 21, 45].

The case of bounded arities. If the constraints have bounded arity (i.e., the edge size in \mathcal{H} is bounded by a constant r), then the complexity of $\operatorname{CSP}(\mathcal{H})$ is well understood. In this case, bounded treewidth is the only polynomial-time solvable case:

Theorem 1.1 ([27]). If \mathcal{H} is a recursively enumerable class of hypergraphs with bounded edge size, then (assuming $\mathrm{FPT} \neq \mathrm{W}[1]$) the following are equivalent:

1. $\operatorname{CSP}(\mathcal{H})$ is polynomial-time solvable.
2. $\operatorname{CSP}(\mathcal{H})$ is fixed-parameter tractable.

3. \mathcal{H} has bounded treewidth.

The assumption FPT $\neq \mathrm{W}[1]$ is a standard hypothesis of parameterized complexity. Thus in the bounded arity case bounded treewidth is the only property of the hypergraph that can make the problem polynomial-time solvable. By definition, polynomial-time solvability implies fixed-parameter tractability, but Theorem 1.1 proves the surprising result that whenever $\operatorname{CSP}(\mathcal{H})$ is fixed-parameter tractable, it is polynomial-time solvable as well.

The following sharpening of Theorem 1.1 shows that there is no algorithm whose running time is significantly better than the $\|I\|^{O}(\operatorname{tw}(H))$ bound of the treewidth based algorithm. The result is proved under the Exponential Time Hypothesis (ETH) [35], a somewhat stronger assumption than FPT $\neq \mathrm{W}[1]$: it is assumed that there is no $2^{o(n)}$ time algorithm for n-variable 3SAT.

Theorem 1.2 ([41]). If there is a computable function f and a recursively enumerable class \mathcal{H} of hypergraphs with bounded edge size and unbounded treewidth such that the problem $\operatorname{CSP}(\mathcal{H})$ can be solved in time $f(H)\|I\|^{o(\operatorname{tw}(H) / \log \operatorname{tw}(H))}$ for instances I with hypergraph $H \in \mathcal{H}$, then ETH fails.

This means that the treewidth-based algorithm is almost optimal: in the exponent only an $O(\log \operatorname{tw}(H))$ factor improvement is possible. It is conjectured in [41] that Theorem 1.2 can be made tight, i.e., the lower bound holds even if the logarithmic factor is removed from the exponent.

Conjecture 1.3 ([41]). If \mathcal{H} is a class of hypergraphs with bounded edge size, then there is no algorithm that solves $\operatorname{CSP}(\mathcal{H})$ in time $f(H)\|I\|^{0(\operatorname{tw}(H))}$ for instances I with hypergraph $H \in \mathcal{H}$, where f is an arbitrary computable function.

Unbounded arities. The situation is less understood in the unbounded arity case, i.e., when there is no bound on the maximum edge size in \mathcal{H}. First, the complexity in the unbounded-arity case depends on how the constraints are represented. In the bounded-arity case, if each constraint contains at most r variables (r being a fixed constant), then every reasonable representation of a constraint has size $|D|^{O(r)}$. Therefore, the size of the different representations can differ only by a polynomial factor. On the other hand, if there is no bound on the arity, then there can be exponential difference between the size of succinct representations (e.g., formulas [15]) and verbose representations (e.g., truth tables [44]). The running time of an algorithm is expressed as a function of the input size, hence the complexity of the problem can depend on how the input is represented: longer representation means that it is potentially easier to obtain a polynomial-time algorithm.

The most well-studied representation of constraints is listing all the tuples that satisfy the constraint. This representation is perfectly compatible with our database-theoretic motivation: the constraints are relations of the database, and a relation is physically stored as a table containing all the tuples in the relation. For this representation, there are classes \mathcal{H} with unbounded treewidth such that CSP restricted to this class is polynomial-time solvable. A trivial example is the class \mathcal{H} of all hypergraphs having only a single hyperedge of arbitrary size. The treewidth of such hypergraphs can be arbitrarily large (as the treewidth of a hypergraph consisting of a single edge e is exactly $|e|-1$), but $\operatorname{CSP}(\mathcal{H})$ is trivial to solve: we can pick any tuple from the constraint corresponding to the single edge. There are other, nontrivial, classes of hypergraphs with unbounded treewidth such that $\operatorname{CSP}(\mathcal{H})$ is solvable in polynomial time: for example, classes with bounded (generalized) hypertree width [24], bounded fractional edge cover number [28], and bounded fractional hypertree width [28, 43]. Thus, unlike in the bounded-arity case, treewidth is not the right measure for characterizing the complexity of the problem.

Our results. We introduce a new hypergraph width measure that we call submodular width. Small submodular width means that for every monotone submodular function b on the vertices of the hypergraph H, there is a tree decomposition where $b(B)$ is small for every bag B of the decomposition. (This definition makes sense only if we normalize the considered functions: for this reason, we require that $b(e) \leq 1$ for every edge e of H.) The main result of the paper is showing that bounded submodular width is the property that precisely characterizes the complexity of $\operatorname{CSP}(\mathcal{H})$:

Theorem 1.4 (Main). Let \mathcal{H} be a recursively enumerable class of hypergraphs. Assuming the Exponential Time Hypothesis, $\operatorname{CSP}(\mathcal{H})$ parameterized by H is fixed-parameter tractable if and only if \mathcal{H} has bounded submodular width.

Theorem 1.4 has an algorithmic side (algorithm for bounded submodular width) and a complexity side (hardness result for unbounded submodular width). Unlike previous width measures in the literature, where small value of the measure suggests a way of solving $\operatorname{CSP}(\mathcal{H})$ it is not at all clear how bounded submodular width is of any help. In particular, it is not obvious what submodular functions have to do with CSP instances. The main idea of our algorithm is that a CSP instance can be "split" into a small number of "uniform" CSP instances; for this purpose, we use a partitioning procedure inspired by a result of Alon et al. [4]. More precisely, splitting means that we partition the set of tuples appearing in the constraint relations in a certain way and each new instance inherits only one class of the partition (thus each new instance has the same set of variables as the original). Uniformity means that for any subsets $B \subseteq A$ of variables, every solution for the problem restricted to B has roughly the same number of extensions to A. The property of uniformity allows us to bound the logarithm of the number of solutions on the different subsets by a submodular function. Therefore, bounded submodular width guarantees that each uniform instance has a tree decomposition such that in each bag only a polynomially bounded number of solutions has to be considered.

Conceptually, our algorithm goes beyond previous decomposition techniques in two ways. First, the tree decomposition that we use depends not only on the hypergraph, but on the actual constraint relations in the instance (we remark that this idea first appeared in [44] in a different context that does not directly apply to our problem). Second, we are not only decomposing the set of variables, but we also split the constraint relations. This way, we can apply different decompositions to different parts of the solution space.

The proof of the complexity side of Theorem 1.4 follows the same high-level strategy as the proof of Theorem 1.2 in [41]. In a nutshell, the argument of [41] is the following: if treewidth is large, then there is subset of vertices which is highly connected in the sense that the set does not have a small balanced separator; such a highly connected set implies that there is uniform concurrent flow (i.e., a compatible set of flows connecting every pair of vertices in the set); the paths in the flows can be used to embed the graph of a 3SAT formula; and finally this embedding can be used to reduce 3SAT to CSP. These arguments build heavily on well-known characterizations of treewidth and results from combinatorial optimization (such as the $O(\log k)$ integrality gap of sparsest cut). The proof of Theorem 1.4follows this outline, but now no such well-known tools are available: we are dealing with hypergraphs and submodular functions in a way that was not explored before in the literature. Thus we have to build from scratch all the necessary tools. One of the main difficulties of obtaining Theorem 1.4 is that we have to work in three different domains:

- CSP instances. As our goal is to investigate the existence of algorithms solving CSP, the most obvious domain is CSP instances. In light of previous results, we are especially interested in algorithms based on tree decompositions. For such algorithms, what matters is the existence of subsets of vertices such that restricting the instance to any of these subsets gives an instance with "small" number of solutions. In order to solve the instance, we would like to find a tree decomposition where every bag is such a small set.
- Submodular functions. Submodular width is defined in terms of submodular functions, thus submodular functions defined on hypergraphs is our second natural domain. We need to understand what large submodular width means, that is, what property of the submodular function and the hypergraph makes it impossible to obtain a tree decomposition where every bag has small value.
- Flows and embeddings in hypergraphs. In the hardness proof, our goal is to embed the graph of a 3SAT formula into a hypergraph. Thus we need to define an appropriate notion of embedding and study what guarantees the existence of embeddings with suitable properties. As in [41], we use the paths appearing in flows to construct embeddings. For our purposes, the right notion of flow is a collection of weighted paths where the total weight of the paths intersecting each hyperedge is at most 1 . This notion of flows has not been studied in the literature before, thus we need to obtain basic results on such flows, such as exploring the duality between flows and separators.

A key question is how to find connections between these domains. As mentioned above and detailed in Section 4 we have a procedure that reduces a CSP instance into a set of uniform CSP instances, and the number of solutions on the different subsets of variables in a uniform CSP instance can be described by a submodular function. This method allows us to move from the domain of CSP instances to the domain of submodular functions. Section 5 is devoted to showing that if submodular width of a hypergraph is large, then there is a certain "highly connected" set in the hypergraph. Highly connected set is defined as a property of the hypergraph and has no longer anything to do with submodular functions. Thus this connection allows us to move from the domain of submodular functions to the study of hypergraphs. In Section 6 we show that a highly connected set in a hypergraph means that graphs can be efficiently embedded into the hypergraph. In particular, the graph of a 3SAT formula can be embedded into the hypergraph, which gives us (as shown in Section 7) a reduction from 3SAT to $\operatorname{CSP}(\mathcal{H})$. This connection allows us to move from the domain of embeddings back to the domain of CSP instances. We remark that Sections 4 -7 are written in a self-contained way: only the first theorem of each section is used outside the section.

As a consequence of our characterization of submodular width, we obtain the surprising result that bounded submodular width equals bounded adaptive width (defined in [44]):

Theorem 1.5. A class of hypergraphs has bounded submodular width if and only if it has bounded adaptive width.
It is proved in [44] that there are classes of hypergraphs having bounded adaptive width (and hence bounded submodular width), but unbounded fractional hypertree width. Previously, bounded fractional hypertree width was the
most general property that was known to guarantee fixed-parameter tractability [28]. Thus Theorem 1.4]not only gives a complete characterization of the parameterized complexity of $\operatorname{CSP}(\mathcal{H})$, but its algorithmic side proves fixed-parameter tractability in a strictly more general case than what was known before.

Why fixed-parameter tractability? We argue that investigating the fixed-parameter tractability of $\operatorname{CSP}(\mathcal{H})$ is at least as interesting as investigating polynomial-time solvability. In problems coming from our database-theoretic motivation, the size of the hypergraph (that is, the size of the query) is assumed to be much smaller than the input size (which is usually dominated by the size of the database), hence a constant factor in the running time depending only on the number of variables (or on the hypergraph) is acceptable 1 . Even the STOC 1977 landmark paper of Chandra and Merlin [13], which started the complexity research on conjunctive queries, suggests spending exponential time (in the size of the query) on finding the best possible evaluation order. Furthermore, the notion of fixed-parameter tractability formalizes the usual viewpoint of the literature on conjunctive queries: in the complexity analysis, we should analyze separately the contribution of the query size and the contribution of the database size.

By aiming for fixed-parameter tractability, we can focus more on the core algorithmic question: is there some method for decomposing the space of all solutions in a way that allows efficient evaluation of the query? Some of the progress in this area was made by showing that if certain decompositions exist, then the query can be evaluated efficiently, for example, this was the case for the paper introducing query width [14] and fractional hypertree width [28]. In our terminology, these results already show the fixed-parameter tractability of $\operatorname{CSP}(\mathcal{H})$ for certain classes \mathcal{H} (since the time required to find an appropriate decomposition can be bounded by a function of H only), but do not give polynomial-time algorithms. It took some more time and effort to come up with polynomial-time (approximation) algorithms for finding such decompositions [23, 43]. While investigating algorithms for finding decompositions give rise to interesting and important problems, they are purely combinatorial problems on graphs and hypergraphs, and no longer has anything to do with query evaluation, constraints, or databases. Thus fixed-parameter tractability gives us a formal way of ignoring these issues and focusing exclusively on the evaluation problem.

On the complexity side, fixed-parameter tractability of $\operatorname{CSP}(\mathcal{H})$ seems to be a more robust question than polynomialtime solvability. For example, any polynomial-time reduction to $\operatorname{CSP}(\mathcal{H})$ should be able to pick a member of \mathcal{H}, thus it seems that polynomial-time reduction to $\operatorname{CSP}(\mathcal{H})$ is only possible if certain artificial technical conditions are imposed on \mathcal{H} (such as there is an algorithm efficiently generating appropriate members of \mathcal{H}). Furthermore, there are classes \mathcal{H} for which $\operatorname{CSP}(\mathcal{H})$ is polynomial-time equivalent to LOG CLIQUE [27], thus we cannot hope to classify $\operatorname{CSP}(\mathcal{H})$ into polynomial-time solvable and NP-hard cases. Another difficulty in understanding polynomial-time solvability is that it can depend on the "irrelevant" parts of the hypergraph. Suppose for example that there is class \mathcal{H} for which $\operatorname{CSP}(\mathcal{H})$ is not polynomial-time solvable, but it is fixed-parameter tractable: it can be solved in time $f(H) \cdot(\|I\|)^{O(1)}$. Let \mathcal{H}^{\prime} be constructed the following way: for every $H \in \mathcal{H}$, class \mathcal{H}^{\prime} contains a hypergraph H^{\prime} that is obtained from H by adding a new component that is a path of length $f(H)$. This new path is trivial with respect to the CSP problem, thus any algorithm for $\operatorname{CSP}(\mathcal{H})$ can be used for $\operatorname{CSP}\left(\mathcal{H}^{\prime}\right)$ as well. Consider an instance I of $\operatorname{CSP}\left(\mathcal{H}^{\prime}\right)$ having hypergraph H^{\prime}, which was obtained from hypergraph H. After taking care of the path, the assumed algorithm for $\operatorname{CSP}(\mathcal{H})$ can solve this instance in time $f(H) \cdot(\|I\|)^{O(1)}$, which is polynomial in $\|I\|$: instance I contains a representation of H^{\prime}, which has at least $f(H)$ vertices, thus $\|I\|$ is at least $f(H)$. Therefore, $\operatorname{CSP}\left(\mathcal{H}^{\prime}\right)$ is polynomial-time solvable. This example shows that aiming for polynomial-time solvability instead of fixed-parameter tractability might require understanding such subtle, but mostly irrelevant phenomena.

In the hardness results obtained so far, evidence for the non-existence of polynomial-time algorithms is given not in the form of NP-hardness, but by giving evidence that the problem is not fixed-parameter tractable. In Theorem 1.1 it is a remarkable coincidence that polynomial-time solvability and fixed-parameter tractability are equivalent. However, there is no reason to expect this to remain true in more general cases. Therefore, as discussed above, it makes sense to focus first on understanding the fixed-parameter tractability of the problem.

[^1]
2 Preliminaries

Constraint satisfaction problems. We briefly recall the most important notions related to CSP. For more background, see e.g., [26, 20].

Definition 2.1. An instance of a constraint satisfaction problem is a triple (V, D, C), where:

- V is a set of variables,
- D is a domain of values,
- C is a set of constraints, $\left\{c_{1}, c_{2}, \ldots, c_{q}\right\}$. Each constraint $c_{i} \in C$ is a pair $\left\langle s_{i}, R_{i}\right\rangle$, where:
- s_{i} is a tuple of variables of length m_{i}, called the constraint scope, and
- R_{i} is an m_{i}-ary relation over D, called the constraint relation.

For each constraint $\left\langle s_{i}, R_{i}\right\rangle$ the tuples of R_{i} indicate the allowed combinations of simultaneous values for the variables in s_{i}. The length m_{i} of the tuple s_{i} is called the arity of the constraint. A solution to a constraint satisfaction problem instance is a function f from the set of variables V to the domain of values D such that for each constraint $\left\langle s_{i}, R_{i}\right\rangle$ with $s_{i}=\left\langle v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{m}}\right\rangle$, the tuple $\left\langle f\left(v_{i_{1}}\right), f\left(v_{i_{2}}\right), \ldots, f\left(v_{i_{m}}\right)\right\rangle$ is a member of R_{i}. We say that an instance is binary if each constraint relation is binary, i.e., $m_{i}=2$ for each constraint. It can be assumed that the instance does not contain two constraints $\left\langle s_{i}, R_{i}\right\rangle,\left\langle s_{j}, R_{j}\right\rangle$ with $s_{i}=s_{j}$, since in this case the two constraints can be replaced by the constraint $\left\langle s_{i}, R_{i} \cap R_{j}\right\rangle$.

In the input, the relation in a constraint is represented by listing all the tuples of the constraint. We denote by $\|I\|$ the size of the representation of the instance $I=(V, D, C)$. It can be assumed that $\|I\| \leq D$: elements of D that do not appear in any relation can be safely removed.

Let $I=(V, D, C)$ be a CSP instance and let $V^{\prime} \subseteq V$ be a nonempty subset of variables. The projection $\mathrm{pr}_{V^{\prime}} I$ of I to V^{\prime} is a CSP $I^{\prime}=\left(V^{\prime}, D, C^{\prime}\right)$, where C^{\prime} is defined the following way: For each constraint $c=\left\langle\left(v_{1}, \ldots, v_{k}\right), R\right\rangle$ having at least one variable in V^{\prime}, there is a corresponding constraint c^{\prime} in C^{\prime}. Suppose that $v_{i_{1}}, \ldots, v_{i_{\ell}}$ are the variables among v_{1}, \ldots, v_{k} that are in V^{\prime}. Then the constraint c^{\prime} is defined as $\left\langle\left(v_{i_{1}}, \ldots, v_{i_{\ell}}\right), R^{\prime}\right\rangle$, where the relation R^{\prime} is the projection of R to the components i_{1}, \ldots, i_{ℓ}, that is, R^{\prime} contains an ℓ-tuple $\left(d_{1}^{\prime}, \ldots, d_{\ell}^{\prime}\right) \in D^{\ell}$ if and only if there is a k-tuple $\left(d_{1}, \ldots, d_{k}\right) \in R$ such that $d_{j}^{\prime}=d_{i_{j}}$ for $1 \leq j \leq \ell$. Clearly, if f is a solution of I, then $f_{\mid V^{\prime}}\left(f\right.$ restricted to $\left.V^{\prime}\right)$ is a solution of $\operatorname{pr}_{V^{\prime}} I$. For a subset $V^{\prime} \subseteq V$, we denote by $\operatorname{sol}_{I}\left(V^{\prime}\right)$ the set of all solutions of $\mathrm{pr}_{V^{\prime}} I$. If the instance I is clear from the context, we drop the subscript.

The primal graph (or Gaifman graph) of a CSP instance $I=(V, D, C)$ is a graph with vertex set V such that $u, v \in V$ are adjacent if and only if there is a constraint whose scope contains both u and v. The hypergraph of a CSP instance $I=(V, D, C)$ is a hypergraph H with vertex set V, where $e \subseteq V$ is an edge of H if and only if there is a constraint whose scope is e (more precisely, an $|e|$-tuple s, whose coordinates form a permutation of the elements of e). For a class \mathcal{H} of graphs, we denote by $\operatorname{CSP}(\mathcal{H})$ the problem restricted to instances whose hypergraph is in \mathcal{H}.

Graphs and hypergraphs. If G is a graph or hypergraph, then we denote by $V(G)$ and $E(G)$ the set of vertices and the set of edges of G, respectively. If H is a hypergraph and $V^{\prime} \subseteq V(H)$, then the subhypergraph induced by V^{\prime} is a hypergraph H^{\prime} with vertex set S and $\emptyset \subset e^{\prime} \subseteq V^{\prime}$ is an edge of H^{\prime} if and only if there is an edge $e \in E(H)$ with $e \cap V^{\prime}=e^{\prime}$. We denote by $H \backslash S$ the subhypergraph of H induced by $V(H) \backslash S$.

Paths, separators, and flows in hypergraphs. A path P in hypergraph H is an ordered sequence $v_{0}, v_{1}, \ldots, v_{r}$ of vertices such that v_{i} and v_{i-1} are adjacent for every $1 \leq i<r$. We distinguish the endpoints of a path: vertex v_{0} is the first endpoint of P and v_{r} is the second endpoint of P. A path is an $X-Y$ path if its first endpoint is in X and its second endpoint is in Y. A path $P=v_{1} v_{2} \ldots v_{t}$ is minimal if there are no shortcuts, i.e., v_{i} and v_{j} are not adjacent if $|i-j|>1$. Note that a minimal path intersects each edge at most twice.

Let H be a hypergraph and $X, Y \subseteq V(H)$ be two (not necessarily disjoint) sets of vertices. An (X, Y)-separator is a set $S \subseteq V(H)$ of vertices such that there is no $(X \backslash S)-(Y \backslash S)$ path in $H \backslash S$, or in other words, every $X-Y$ path of H contains at least one vertex of S. In particular, this means that $X \cap Y \subseteq S$.

An assignment $s: E(H) \rightarrow \mathbb{R}^{+}$is a fractional (X, Y)-separator if every $X-Y$ path P is covered by s, that is, $\sum_{e \in E(H), e \cap P \neq \emptyset} s(e) \geq 1$. The weight of the fractional separator s is $\sum_{e \in E(H)} s(e)$.

Let H be a hypergraph and let \mathcal{P} be the set of all paths in H. A flow of H is an assignment $f: \mathcal{P} \rightarrow \mathbb{R}^{+}$such that $\sum_{P \in \mathcal{P}, P \cap e \neq \emptyset} f(P) \leq 1$ for every $e \in E(H)$. The value of the flow f is $\sum_{P \in \mathcal{P}} f(P)$. We say that a path P appears in flow f, or simply P is a path of f if $f(P)>0$. For some $X, Y \subseteq V(H)$, an (X, Y)-flow is a flow f such that only $X-Y$ paths appear in f. A standard LP duality argument shows that the minimum weight of a fractional (X, Y)-separator is equal to the maximum value of an (X, Y)-flow.

If f, f^{\prime} are flows such that $f^{\prime}(P) \leq f(P)$ for every path P, then f^{\prime} is a subflow of f. The sum of the flows f_{1}, \ldots, f_{r} is a mapping that assigns weight $\sum_{i=1}^{r} f(P)$ to each path P. Note that the sum of flows is not necessarily a flow itself. If the sum of f_{1}, \ldots, f_{r} happens to be a flow, then we say that f_{1}, \ldots, f_{r} are compatible.

Highly connected sets. An important step in understanding various width measures is showing that if the measure is large, then the (hyper)graph contains a highly connected set (in a certain sense). We define here the notion of highly connected that will be used in the paper. First, recall that a fractional independent set of a hypergraph H is a mapping $\mu: V(H) \rightarrow[0,1]$ such that $\sum_{v \in e} \mu(v) \leq 1$ for every $e \in E(H)$. We extend functions on the vertices of H to subsets of vertices of H the natural way by setting $\mu(X):=\sum_{v \in X} \mu(v)$, thus μ is a fractional independent set if and only if $\mu(e) \leq 1$ for every $e \in E(H)$.

Let μ be a fractional independent set of hypergraph H and let $\lambda>0$ be a constant. We say that a set $W \subseteq V(H)$ is (μ, λ)-connected if for any two disjoint sets $A, B \subseteq W$, the minimum weight of a fractional (A, B)-separator is at least $\lambda \cdot \min \{\mu(A), \mu(B)\}$. Note that if W is (μ, λ)-connected, then every $W^{\prime} \subseteq W$ is (μ, λ)-connected. Informally, if W is (μ, λ)-lambda connected for some fractional independent set μ such that $\mu(W)$ is "large", then we call W a highly connected set. For $\lambda>0$, we denote by $\operatorname{con}_{\lambda}(H)$ the maximum of $\mu(W)$, taken over all (μ, λ)-connected set W of H. Note that if $\lambda^{\prime}<\lambda$, then $\operatorname{con}_{\lambda^{\prime}}(H)>\operatorname{con}_{\lambda}(H)$. Throughout the paper, λ can be thought of as a sufficiently small universal constant, say, 0.001 .

Embeddings. The hardness result presented in the paper and earlier hardness results for $\operatorname{CSP}(\mathcal{H})$ [27, 44, 41] are based on embedding a CSP instance in a CSP instance whose hypergraph is a member of \mathcal{H}. Thus we need a notion of embedding in a (hyper)graph. Let us first recall the definition of minors in graphs. A graph H is a minor of G if H can be obtained from G by a sequence of vertex deletions, edge deletions, and edge contractions. The following alternative definition is more relevant from the viewpoint of embeddings: a graph F is a minor of G if there is a mapping ψ that maps each vertex of F to a connected subset of $V(G)$ such that $\psi(u) \cap \psi(v)=\emptyset$ for $u \neq v$, and if $u, v \in V(F)$ are adjacent in F, then there is an edge in $E(G)$ connecting $\psi(u)$ and $\psi(v)$.

A crucial difference between the proofs of Theorem [1.1] in [27] and the proof of Theorem [1.2] in [41] is that the former result is a based on finding a minor embedding of a grid, while the latter result uses an embedding where the images of distinct vertices are not necessarily disjoint, but can overlap in a controlled way. We define such embeddings the following way. We say that two sets of vertices $X, Y \subseteq V(H)$ touch if either $X \cap Y \neq \emptyset$, or there is an edge $e \in E(H)$ intersecting both X and Y. An embedding of graph G into hypergraph H is a mapping ψ that maps each vertex of H to a connected subset of $V(G)$ such that if u and v are adjacent in G, then $\psi(u)$ and $\psi(v)$ touch. The depth of a vertex $v \in V(H)$ in embedding ψ is $d_{\psi}(v):=|\{u \in V(G) \mid v \in \psi(u)\}|$, the number of vertices of G whose images contain v. The vertex depth of the embedding is $\max _{v \in V(H)} d_{\psi}(v)$. Observe that ψ is a minor mapping if and only if it has vertex depth 1. Because in our case we want to control the size of the constraint relations, we need a notion of depth that is sensitive to "what the edges see." We define edge depth of ψ to be $\max _{e \in E(H)} \sum_{v \in e} d_{\psi}(v)$. Equivalently, we can define edge depth as the maximum of $\sum_{v \in V(G)}|\psi(v) \cap e|$, taken over all edges of e of H.

Trivially, for any graph G and hypergraph H, there is an embedding of G into H having vertex depth and edge depth at most $|V(G)|$. If G has m edges and no isolated vertices, then $|V(G)|$ is at most $2 m$. We are interested in how much we can gain compared to this trivial solution of depth $O(m)$. We define the embedding power $\mathrm{emb}(H)$ to be the maximum (supremum) value of α for which there is a integer m_{α} such that every graph G with $m \geq m_{\alpha}$ edges has an embedding into H with edge depth m / α. It might look unmotivated that we define embedding power in terms of the number of edges of G : defining it in terms of the number of vertices might look more natural. However, if we replace number of edges with number of vertices in the definition, then the worst case occurs for cliques, and the definition is really about embedding cliques.

3 Width parameters

Treewidth and its various generalizations are defined in this section. We follow the framework of width functions introduced by Adler [1]. A tree decomposition of a hypergraph H is a tuple $\left(T,\left(B_{t}\right)_{t \in V(T)}\right)$, where T is a tree and $\left(B_{t}\right)_{t \in V(T)}$ is a family of subsets of $V(H)$ satisfying the following two conditions: (1) for each $e \in E(H)$ there is a node $t \in V(T)$ such that $e \subseteq B_{t}$, and (2) for each $v \in V(H)$ the set $\left\{t \in V(T) \mid v \in B_{t}\right\}$ is connected in T. The sets B_{t} are called the bags of the decomposition. Let $f: 2^{V(H)} \rightarrow \mathbb{R}^{+}$be a function that assigns a nonnegative real number to each nonempty subset of vertices. The f-width of a tree-decomposition $\left(T,\left(B_{t}\right)_{t \in V(T)}\right)$ is $\max \left\{f\left(B_{t}\right) \mid t \in V(T)\right\}$. The f-width of a hypergraph H is the minimum of the f-widths of all its tree decompositions.

The main idea of tree decomposition based algorithms is that if we have a tree decomposition for instance I such that for each bag B_{t}, at most C assignments on B_{t} have to be considered, then the problem can be solved by in dynamic programming in time polynomial in C and $\|I\|$. The various width notions try to guarantee the existence of such decompositions. The simplest such notion, treewidth, can be defined as follows:

Definition 3.1. Let $s(B)=|B|-1$. The treewidth of H is $\operatorname{tw}(H):=s$-width (H).
Further width notions defined in the literature can also be conveniently defined using this setup. A subset $E^{\prime} \subseteq E(H)$ is an edge cover if $\cup E^{\prime}=V(H)$. The edge cover number $\rho(H)$ is the size of the smallest edge cover (here we assume that H has no isolated vertices). For $X \subseteq V(H)$, let $\rho_{H}(X)$ be the size of the smallest set of edges covering X.

Definition 3.2. The generalized hypertree width of H is $\operatorname{hw}(H):=\rho_{H}$-width (H).
The original (nongeneralized) definition [23] of hypertree width includes an additional requirement on the decomposition (we omit the details), thus it cannot be less than generalized hypertree. However, it is known that hypertree width and generalized hypertree width can differ by at most a constant factor [2].

We also consider the linear relaxations of edge covers: a function $\gamma: E(H) \rightarrow[0,1]$ is a fractional edge cover of H if $\sum_{e: v \in e} \gamma(e) \geq 1$ for every $v \in V(H)$. The fractional cover number $\rho^{*}(H)$ of H is the minimum of $\sum_{e \in e(H)} \gamma(e)$ taken over all fractional edge covers of H. We define $\rho_{H}^{*}(X)$ analogously to $\rho_{H}(X)$: the requirement $\sum_{e: v \in e} \gamma(e) \geq 1$ is restricted to vertices $v \in X$.

Definition 3.3. The fractional hypertree width of H is fhw $(H):=\rho_{H}^{*}$-width (H).
We generalize the notion of f-width from a single function f to a class of functions \mathcal{F}. Let \mathcal{F} be an arbitrary (possibly infinite) class of functions that assign nonnegative real numbers to nonempty subsets of vertices. The \mathcal{F} width of a hypergraph H is \mathcal{F}-width $(H):=\sup \{f$-width $(H) \mid f \in \mathcal{F}\}$. Thus if \mathcal{F}-width $(H) \leq k$, then for every $f \in \mathcal{F}$, hypergraph H has a tree decomposition with f-width at most k. Note that this tree decomposition can be different for the different functions f. For normalization purposes, we consider only functions f on $V(H)$ that are edge-dominated, that is, $f(e) \leq 1$ holds for every $e \in E(H)$.

Using these definitions, we can define adaptive width, introduced in [44], as follows. Recall that in Section 2 we stated that if μ is a fractional independent set, then μ is extended to subsets of vertices by defining $\mu(X):=\sum_{v \in X} \mu(v)$ for every $X \subseteq V(H)$.

Definition 3.4. The adaptive width $\operatorname{adw}(H)$ of a hypergraph H is \mathcal{F}-width (H), where \mathcal{F} is the set of all fractional independent sets of H.

A function $f: 2^{V(H)} \rightarrow \mathbb{R}$ is modular if $f(X)=\sum_{v \in X} c_{v}$ for some constants $c_{v}(v \in V(H))$. The function $\mu(X)$ arising from a fractional independent set is clearly a modular and edge dominated function, in fact, in Definition 3.4 we can define \mathcal{F} as the set of all nonnegative modular edge-dominated functions on $V(H)$. The main new definition of the paper is a new width measure, which is obtained by imposing a requirement weaker than modularity on the functions in \mathcal{F} (hence the considered set \mathcal{F} of functions is larger):

Definition 3.5. A function $b: 2^{V(H)} \rightarrow \mathbb{R}^{+}$is submodular if $b(X)+b(Y) \geq b(X \cap Y)+b(X \cup Y)$ holds for every $X, Y \subseteq V(H)$. Given a hypergraph H, let \mathcal{F} contain the edge-dominated monotone submodular functions on $V(H)$. The submodular width $\operatorname{subw}(H)$ of hypergraph H is \mathcal{F}-width (H).

It is well-known that submodular functions can be equivalently characterized by the property that $b(X \cup v)-b(X)$, the marginal value of v with respect to X, is a nonincreasing function of X. That is, for every v and $X \subseteq Y$,

$$
\begin{equation*}
b(X \cup v)-b(X) \geq b(Y \cup v)-b(Y) \tag{1}
\end{equation*}
$$

It is clear that $\operatorname{subw}(H) \geq \operatorname{adw}(H)$: Definition 3.5 considers a larger set of functions. Furthermore, we show that $\operatorname{subw}(H)$ is at most the fractional hypertree width of H. This is a straightforward consequence of the fact that an edge-dominated submodular function is always bounded by the fractional cover number:

Lemma 3.6. Let H be a hypergraph and b be a monotone edge-dominated submodular function. Then $b(S) \leq \rho_{H}^{*}(S)$ for every $S \subseteq V(H)$.

Proof. The statement can be proved along the same lines as the proof Shearer's Lemma [16] attributed to Radhakrishnan goes. It is sufficient to prove the statement for the case $S=V(H)$: otherwise, we can consider the subhypergraph of H induced by S and the function b restricted to S. Let $\gamma: E(H) \rightarrow \mathbb{R}^{+}$be a minimum fractional edge cover of S. Let v_{1}, \ldots, v_{n} be an arbitrary ordering of $V(H)$ and let $V_{i}=\left\{v_{1}, \ldots, v_{i}\right\}, V_{0}=\emptyset$. For every $e \in E(H)$, we have $b(e)=\sum_{v_{i} \in e}\left(b\left(e \cap V_{i}\right)-b\left(e \cap V_{i-1}\right) \geq \sum_{v_{i} \in e}\left(b\left(V_{i}\right)-b\left(V_{i-1}\right)\right)\right)$ (the equality is a simple telescopic sum; the inequality uses (1), i.e., the marginal value of v_{i} with respect to V_{i-1} is not greater than with respect to $\left.e \cap V_{i-1}\right)$.

$$
\begin{aligned}
\rho_{H}^{*}(V(H))=\sum_{e \in E(H)} \gamma(e) \geq \sum_{e \in E(H)} \gamma(e) b(e) & \geq \sum_{e \in E(H)} \gamma(e) \sum_{v_{i} \in e}\left(b\left(V_{i}\right)-b\left(V_{i-1}\right)\right) \\
& =\sum_{i=1}^{n}\left(b\left(V_{i}\right)-b\left(V_{i-1}\right)\right) \sum_{e \in E(H), v_{i} \in e} \gamma(e) \geq \sum_{i=1}^{n}\left(b\left(V_{i}\right)-b\left(V_{i-1}\right)\right)=b(V(H))
\end{aligned}
$$

(in the first inequality, we use that f is edge dominated; in the last inequality, we use that γ is a fractional edge cover).

Proposition 3.7. For every hypergraph H, $\operatorname{subw}(H) \leq \operatorname{fhw}(H)$.
Proof. Let $\left(T, B_{t \in V(T)}\right)$ be a tree decomposition of H whose ρ_{H}^{*}-width is fhw (H). If b is an edge-bounded monotone submodular function, then by Lemma 3.6, $b\left(B_{t}\right) \leq \rho_{H}^{*}\left(B_{t}\right) \leq$ fhw (H) for every bag B_{t} of the decomposition, i.e., b-width $(H) \leq \operatorname{fhw}(H)$. This is true for every such function b, hence subw $(H) \leq \operatorname{fhw}(H)$.

Since $\operatorname{adw}(H) \leq \operatorname{subw}(H) \leq \operatorname{fhw}(H)$, if a class \mathcal{H} of hypergraphs has bounded fractional hypertree width, then it has bound submodular width, and if a class \mathcal{H} has bounded submodular width, then it has bounded adaptive width. Surprisingly, it turns out that the latter implication is actually an equivalence: Corollary 6.10 shows that subw (H) is at most $O\left(\operatorname{adw}(H)^{4}\right)$, thus a class of hypergraphs has bounded submodular width if and only if it has bounded adaptive width. In other words large submodular width can be certified already by modular functions: if submodular width is unbounded in \mathcal{H} and we want to choose an $H \in \mathcal{H}$ and a submodular function b such that the b-width of H is larger than some constant k, then we can choose H and b such that b is actually modular.

There is no such connection between adaptive width and fractional hypertree width: it is shown in [44] that there is a class of hypergraphs with bound adaptive width and unbounded fractional hypertree width. Thus the property bounded fractional hypertree width is a strictly weaker property than bounded adaptive/submodular width.

Figure 1 shows the relations of the hypergraph properties defined in this section (note that the elements of this Venn diagram are sets of hypergraphs; e.g., the set "bounded tree width" contains every set \mathcal{H} of hypergraphs with bounded tree width). As discussed above, all the inclusions in the figure are proper.

Finally, let us remark that there have been investigations of tree decompositions and branch decompositions of submodular functions and matroids in the literature [33, 47, 34, 32, 5]. However, in those results the submodular function is a connectivity function, i.e., $b(S)$ describes the boundary of S, or in other words, the cost of separating S from its complement. In our case, $b(S)$ describes the cost of the separator S itself. Therefore, we are in a completely different setting and the previous results cannot be used at all.

Figure 1: Hypergraph properties that make CSP fixed-parameter tractable.

4 From CSP instances to submodular functions

In this section, we prove the main algorithmic result of the paper: $\operatorname{CSP}(\mathcal{H})$ is fixed-parameter tractable if \mathcal{H} has bounded submodular width.

Theorem 4.1. Let \mathcal{H} be a class of hypergraphs such that $\operatorname{subw}(H) \leq c_{0}$ for every $H \in \mathcal{H}$. Then $\operatorname{CSP}(\mathcal{H})$ can be solved in time $f(H) \cdot\|I\|^{O\left(c_{0}\right)}$ for some function f.

The proof of Theorem 4.1 is based on two main ideas:

1. A CSP instance I can be decomposed into a bounded number of "uniform" CSP instances I_{1}, \ldots, I_{t} (Lemma4.9). Here uniform means that if $B \subseteq A$ are two sets of variables, then every solution of $\operatorname{pr}_{B} I_{j}$ has roughly the same number of extensions to $\operatorname{pr}_{A} I_{j}$.
2. If I is a uniform CSP instance, then (the logarithm of) the number of solutions on the different projections of I can be described by an edge-dominated submodular function (Lemma4.10). Therefore, if the hypergraph H of I has bounded submodular width, then it follows that there is a tree decomposition where every bag has a small number of solutions (Lemma 4.11).

In the implementation of the first idea (Lemma 4.9), we guarantee uniformity only to subsets of variables that are "small" in the following hereditary sense:

Definition 4.2. Let I be a CSP instance and $M \geq 1$ an integer. We say that $S \subseteq V$ is M-small if $\left|\operatorname{sol}_{I}\left(S^{\prime}\right)\right| \leq M$ for every $S^{\prime} \subseteq S$.

It is not difficult to find all the M-small sets, and every solution of the projected instances these sets:
Lemma 4.3. Let $I=(V, D, C)$ be a CSP instance and $M \geq 1$ an integer. There is an algorithm with running time $f(|V|) \cdot \operatorname{poly}(\|I\|, M)$ (for some function f) that finds the set \mathcal{S} of all M-small sets $S \subseteq V$ and constructs $\operatorname{sol}_{I}(S)$ for each such $S \in \mathcal{S}$.

Proof. For $i=1,2, \ldots,|V|$, let us find every M-small set of size i. This is trivial to do for $i=1$. Suppose that we have already found the set \mathcal{S}_{i} of all M-small sets of size exactly i. By definition, every size i subset S of an M-small set S of size $i+1$ is an M-small set. Thus we can find every M-small set of size $i+1$ by enumerating every $S \in \mathcal{S}_{i}$ and checking for every $v \in V \backslash S$ whether $S^{\prime}:=S \cup\{v\}$ is M-small. To check whether S^{\prime} is M-small, we first check whether every subset of size i is M-small, which is easy to do using the set \mathcal{S}_{i}. Then we construct $\operatorname{sol}_{I}\left(S^{\prime}\right)$: this can be done
by enumerating every tuple $s \in \operatorname{sol}_{I}(S)$ and every extension of s by a new value from D. Thus we need to consider at most $\left|\operatorname{sol}_{I}(S)\right| \cdot|D| \leq M \cdot|D|$ tuples as possible members in $\operatorname{sol}_{I}\left(S^{\prime}\right)$, which means that $\operatorname{sol}_{I}\left(S^{\prime}\right)$ can be constructed in time polynomial in M and $\|I\|$. If $\left|\operatorname{sol}_{I}\left(S^{\prime}\right)\right| \leq M$, then we put S^{\prime} into \mathcal{S}_{i+1}. As the size of each set \mathcal{S}_{i} is at most $2^{|V|}$ and every operation is polynomial in M and $\|I\|$, the total running time is $f(|V|) \cdot$ poly $(\|I\|, M)$ for an appropriate function f.

The following definition gives the precise notion of uniformity that we use:
Definition 4.4. Let $I=(V, D, C)$ be a CSP instance. For $B \subseteq A \subseteq V$ and an assignment $b: B \rightarrow D$, let $\operatorname{sol}_{I}(A \mid B=$ $b):=\left\{a \in \operatorname{sol}_{I}(A) \mid a(x)=b(x)\right.$ for every $\left.x \in B\right\}$, the set of all extensions of b to a solution of $\operatorname{pr}_{A} I$. Let $\max _{I}(A \mid B)=$ $\max _{b \in \operatorname{sol}_{I}(B)}\left|\operatorname{sol}_{I}(A \mid B=b)\right|$. We say that $A \subseteq V$ is c-uniform (for some integer c) if, for every $B \subseteq A$,

$$
\max _{I}(A \mid B) \leq c\left|\operatorname{sol}_{I}(A)\right| /\left|\operatorname{sol}_{I}(B)\right|
$$

We define $\max _{I}(A \mid \emptyset)=\left|\operatorname{sol}_{I}(A)\right|$ and $\max _{I}(\emptyset \mid \emptyset)=1$. We will drop I from the subscript of max if it is clear from the context. A CSP instance is (N, c, ε)-uniform if every N^{c}-small set is N^{ε}-uniform.

Let us prove two straightforward properties of the function $\max (A \mid B)$:
Proposition 4.5. For every $B \subseteq A \subseteq V$ and $C \subseteq V$, we have

1. $\max (A \mid B) \geq|\operatorname{sol}(A)| /|\operatorname{sol}(B)|$,
2. $\max (A \mid B) \geq \max (A \cup C \mid B \cup C)$.

Proof. If every $b \in \operatorname{sol}(B)$ has at most $\max (A \mid B)$ extensions to A, then clearly $|\operatorname{sol}(A)|$ is at most $|\operatorname{sol}(B)| \cdot \max (A \mid B)$, proving the first statement. To show the second statement, consider an $x \in \operatorname{sol}(B \cup C)$ with $\max (A \cup C \mid B \cup C)$ extensions to $A \cup C$. For any two $y_{1}, y_{2} \in \operatorname{sol}(A \cup C \mid B \cup C=x)$ with $y_{1} \neq y_{2}$, we have $\operatorname{pr}_{C} y_{1}=\operatorname{pr}_{C} y_{2}=\operatorname{pr}_{C} x$, hence y_{1} and y_{2} can be different only if $\operatorname{pr}_{A} y_{1} \neq \operatorname{pr}_{A} y_{2}$. This means that $\mathrm{pr}_{A} y_{1}$ and $\mathrm{pr}_{A} y_{2}$ are two different extensions of $\mathrm{pr}_{B} x$ to A. Therefore,

$$
\max (A \mid B) \geq\left|\operatorname{sol}\left(A \mid B=\operatorname{pr}_{B} x\right)\right| \geq|\operatorname{sol}(A \cup C \mid B \cup C=x)|=\max (A \cup C \mid B \cup C)
$$

what we had to show.
Notice that (2) in Prop. 4.5 gives a hint that submodularity will be relevant: it is analogous to inequality (1) expressing that marginal value is larger with respect to a smaller set.

We want to avoid dealing with assignments $b \in \operatorname{sol}(B)$ that cannot be extended to a member of $\operatorname{sol}(A)$ for some $A \supseteq B$ (that is, $\operatorname{sol}(A \mid B=b)=\emptyset$). Of course, there is no easy way to avoid this in general (or even to detect if there is such a b): for example, if A is the set of all variables, then we would need to check if b can be extended to a solution. Therefore, we require that there is no such unextendable b only if A and B are M-small:

Definition 4.6. A CSP instance is M-consistent if $\operatorname{sol}(B)=\mathrm{pr}_{A} \operatorname{sol}(A)$ for all M-small sets $B \subseteq A$.
The notion of M-consistency is very similar to k-consistency, a standard notion in the constraint satisfaction literature [7, 17, 40]. However, we restrict the considered subsets not by the number of variables, but by the number of solutions (more precisely, by considering only M-small sets). Similarly to usual k-consistency, we can achieve M consistency by throwing away partial solutions that violate the requirements: if we use the algorithm of Lemma 4.3 to find all possible assignments of the M-small sets, then we can check if there is such an unextendable b for some M-small sets A and B. If there is such a b, then we can exclude it from consideration (without losing any solution of the instance) by introducing a new constraint on B. By repeatedly excluding the unextendable assignments, we can avoid all such problems. We say that $I^{\prime}=\left(V, D, C^{\prime}\right)$ is a refinement of $I=(V, D, C)$ if for every constraint $\langle s, R\rangle \in C$, there is a constraint $\left\langle s, R^{\prime}\right\rangle \in C^{\prime}$ such that $R^{\prime} \subseteq R$.

Lemma 4.7. Let $I=(V, D, C)$ be a CSP instance and $M \geq 1$ an integer. There is an algorithm with running time $f(|V|) \cdot \operatorname{poly}(\|I\|, M)$ (for some function f) that produces an M-consistent CSP instance I^{\prime} that is a refinement of I with $\operatorname{sol}(I)=\operatorname{sol}\left(I^{\prime}\right)$.

Proof. Using the algorithm of Lemma 4.3 we can find all the M-small sets and then we can easily check if there are two M-small sets $S \subseteq S^{\prime}$ violating consistency, i.e., $\operatorname{sol}(S) \nsubseteq \operatorname{pr}_{S} \operatorname{sol}\left(S^{\prime}\right)$. In this case, let us add the constraint $\left\langle S, \operatorname{pr}_{S} \operatorname{sol}\left(S^{\prime}\right)\right\rangle$; it is clear that $\operatorname{sol}(V)$ does not change but $|\operatorname{sol}(S)|$ strictly decreases. We repeat this step until the instance becomes M-consistent. Note that adding the new constraint can make a set M-small that was not M-small before, thus we need to rerun the algorithm of Lemma 4.3 To bound the number of iterations before M-consistency is reached, observe that adding a new constraint does not increase $|\operatorname{sol}(A)|$ for any A and strictly decreases $|\operatorname{sol}(S)|$ for some M-small set S. As there are at most $2^{|V|}$ sets S and $|\operatorname{sol}(S)| \leq M$ for every M-small set S, it follows that this step can be repeated at most $2^{|V|} \cdot M$ times. Thus the total time required to ensure that instance I is M-consistent can be bounded by $f(|V|) \cdot \operatorname{poly}(\|I\|, M)$ for some function f.

We want to avoid degenerate cases where there is no solution for trivial reasons. A CSP instance is nontrivial if $\operatorname{sol}(\{v\}) \neq \emptyset$ for any $v \in V$.

Proposition 4.8. If I is an M-consistent nontrivial CSP instance, then $\operatorname{sol}(S) \neq \emptyset$ for every M-small set S.

4.1 Decomposition into uniform CSP instances

Our algorithm for decomposing a CSP instance into uniform CSP instances is inspired by a combinatorial result of Alon et al. [4], which shows that, for every fixed n, an n-dimensional point set S can be partitioned into polylog $(|S|)$ classes such that each class is $O(1)$-uniform. We follow the same proof idea: the instance is split into two instances if uniformity is violated somewhere, and we analyze the change of an appropriately defined weight function to bound the number of splits performed. However, the parameter setting is different in our proof: we want to partition into $f(|V|)$ classes, but we are satisfied with somewhat weaker uniformity. Another minor technical difference is that we require uniformity only on the N^{c}-small sets.

Lemma 4.9. Let $I=(V, D, C)$ be a CSP instance and let N, c be integers and $\varepsilon>0$. There is an algorithm with running time $f_{1}(|V|, c, \varepsilon) \cdot \operatorname{poly}\left(\|I\|, N^{c}\right)$ that produces a set of (N, c, ε)-uniform N^{c}-consistent nontrivial instances I_{1}, \ldots, I_{t} with $0 \leq t \leq f_{2}(|V|, c, \varepsilon)$, all on the set V of variables, such that

1. every solution of I is a solution of exactly one instance I_{i},
2. for every $1 \leq i \leq t$, instance I_{i} is a refinement of I.

Proof. The main step of the algorithm takes a CSP instance I and either makes it (N, c, ε)-uniform and N^{c}-consistent, or splits it into two instances $I_{\text {small }}, I_{\text {large }}$. By applying the main step recursively on $I_{\text {small }}$ and $I_{\text {large }}$, we eventually arrive to a set of (N, c, ε)-uniform N^{c}-consistent instances. We will argue that the number of constructed instances is at most $f_{2}(|V|, c, \varepsilon)$ and the total running time is at most $f_{1}(|V|, c, \varepsilon) \cdot \operatorname{poly}(\|I\|, M)$, for some functions f_{1}, f_{2}.

In the main step, we first check if the instance is trivial; in this case we can stop with $t=0$. Otherwise, we invoke the algorithm of Lemma 4.7 to obtain an N^{c}-consistent refinement of the instance, without losing any solution. Next we check if this N^{c}-consistent instance I is (N, c, ε)-uniform. This can be tested in time $f(|V|)$. poly $\left(\|I\|, N^{c}\right)$ if we use Lemma 4.3 to find all the N^{c}-small sets and the corresponding sets of solutions. Suppose that N^{c}-small sets $B \subseteq A$ violate uniformity, that is, $\max (A \mid B)>M^{\varepsilon}|\operatorname{sol}(A)| /|\operatorname{sol}(B)|$. Let sol small (B) contain those tuples b for which $|\operatorname{sol}(A \mid B=b)| \leq \sqrt{M^{\varepsilon}}|\operatorname{sol}(A)| /|\operatorname{sol}(B)|$ and let $\operatorname{sol}_{\text {large }}(B)=\operatorname{sol}(B) \backslash \operatorname{sol}_{\text {small }}(B)$. Note that $|\operatorname{sol}(A)| \geq\left|\operatorname{sol}_{\text {large }}(B)\right| \cdot\left(\sqrt{M^{\varepsilon}}|\operatorname{sol}(A)| /|\operatorname{sol}(B)|\right)\left(\right.$ as every tuple $b \in \operatorname{sol}_{\text {large }}(B)$ has at least $\sqrt{M^{\varepsilon}}|\operatorname{sol}(A)| /|\operatorname{sol}(B)|$ extensions to A), hence $\mid \operatorname{sol}$ large $(B)\left|\leq|\operatorname{sol}(B)| / \sqrt{M^{\varepsilon}}\right.$. Let instance $I_{\text {small }}$ (resp., $I_{\text {large }}$) be obtained from I by adding the constraint $\left\langle B\right.$, sol $\left._{\text {small }}(B)\right\rangle$ (resp., $\left.\left\langle B, \operatorname{sol}_{\text {large }}(B)\right\rangle\right)$. Note that the set of solutions of I is the disjoint union of the sets of solutions of $I_{\text {small }}$ and $I_{\text {large }}$. This completes the description of the main step.

It is clear that if the recursive procedure stops, then the instances at the leaves of the recursion satisfy the two requirements. We show that the height of the recursion tree can be bounded from above by a function $h(|V|, c, \varepsilon)$ depending only on $|V|, c$, and ε; in particular, this shows that the recursive algorithm eventually stops and produces at most $2^{h(|V|, c, \varepsilon)}$ instances.

Let us consider a path in the recursion tree starting at the root, and let $I^{1}, I^{2}, \ldots, I^{p}$ be the corresponding N^{c} consistent instances. If a set S is N^{c}-small in I^{j}, then it is N^{c}-small in $I^{j^{\prime}}$ for every $j^{\prime}>j$: the main step cannot increase $|\operatorname{sol}(S)|$ for any S. Thus, with the exception of at most $2^{|V|}$ values of j, instances I^{j} and I^{j+1} have the same N^{c}-small
sets. Let us consider a subpath I^{x}, \ldots, I^{y} such that all these instances have the same N^{c}-small sets. We show that the length of this subpath is at most $O\left(3^{|V|} \cdot c / \varepsilon\right)$, hence $p=O\left(2^{|V|} \cdot 3^{|V|} \cdot c / \varepsilon\right)$. As this holds for any path starting at the root, we obtain a bound on the height of the recursion tree.

For the instance I^{j}, let us define the following weight:

$$
W^{j}=\sum_{\substack{\emptyset \subseteq B \subseteq A \subseteq V \\ A, B \text { are } N^{c} \text {-small }}} \log \max _{I^{j}}(A \mid B)
$$

We bound the length of the subpath I^{x}, \ldots, I^{y} by analyzing how this weight changes in $I_{\text {large }}$ and $I_{\text {small }}$ compared to I. Note that $0 \leq W^{j} \leq 3^{|V|} \log N^{c}=3^{|V|} \cdot c \log N$: the sum consists of at most $3^{|V|}$ terms and (as A is N^{c}-small and the instance I^{j} is N^{c} consistent and nontrivial) $\max _{I^{j}}(A \mid B)$ is between 1 and N^{c}. We show that $W^{j+1} \leq W^{j}-(\varepsilon / 2) \log N$, which immediately implies that the length of the subpath is $O\left(3^{|V|} \cdot c / \varepsilon\right)$. Let us inspect how W^{j+1} changes compared to W^{j}. Since I^{j} and I^{j+1} have the same N^{c}-small sets, no new term can appear in W^{j+1}. It is clear that $\max _{I^{i+1}}(A \mid B)$ cannot be greater than $\max _{I^{i}}(A \mid B)$ for any A, B. However, there is at least one term that strictly decreases. Suppose first that I^{j+1} was obtained from I^{j} by adding the constraint $\left\langle B, \operatorname{sol}_{\text {small }}(B)\right\rangle$. Then

$$
\log \max _{I^{j+1}}(A \mid B) \leq \log \sqrt{N^{\varepsilon}} \frac{\left|\operatorname{sol}_{I^{j}}(A)\right|}{\left|\operatorname{sol}_{I^{j}}(B)\right|} \leq \log \left(\max _{I^{j}}(A \mid B) / \sqrt{N^{\varepsilon}}\right)=\log \max _{I^{j}}(A \mid B)-(\varepsilon / 2) \log N
$$

On the other hand, if I^{j+1} was obtained by adding the constraint $\left\langle B, \operatorname{sol}_{\text {large }}(B)\right\rangle$, then

$$
\log \max _{I^{j+1}}(B \mid \emptyset)=\log \left|\operatorname{sol}_{I^{j+1}}(B)\right| \leq \log \left(\left|\operatorname{sol}_{I^{j}}(B)\right| / \sqrt{N^{\varepsilon}}\right)=\log \max _{I^{j}}(B \mid \emptyset)-(\varepsilon / 2) \log N
$$

In both cases, we get that at least one term decreases by at least $(\varepsilon / 2) \log N$.

4.2 Uniform CSP instances and submodularity

Assume for a moment that we have a 1-uniform instance I with hypergraph H. Note that by Prop 4.5(1), this means that $\max (A \mid B)=|\operatorname{sol}(A)| /|\operatorname{sol}(B)|$. Suppose that every constraint contains at most N tuples and let us define the function $b(S)=\log _{N}|\operatorname{sol}(S)|$. For every edge $e \in E(H)$, there is a corresponding constraint, which has at most N tuples by the definition of N. Thus $|\operatorname{sol}(e)| \leq N$ and hence $b(e) \leq 1$ for every $e \in E(H)$, that is, b is edge dominated. The crucial observation of this section is that this function b is submodular:

$$
\begin{array}{r}
b(X)+b(Y)=\log _{N}|\operatorname{sol}(X)|+\log _{N}\left(|\operatorname{sol}(X \cap Y)| \frac{|\operatorname{sol}(Y)|}{|\operatorname{sol}(X \cap Y)|}\right)=\log _{N}|\operatorname{sol}(X)|+\log _{N}(|\operatorname{sol}(X \cap Y)| \max (Y \mid X \cap Y)) \\
\geq \log _{N}|\operatorname{sol}(X)|+\log _{N}(|\operatorname{sol}(X \cap Y)| \max (X \cup Y \mid X))=\log _{N}\left(\left\lvert\, \operatorname{sol}(X) \frac{|\operatorname{sol}(X \cup Y)|}{|\operatorname{sol}(X)|}\right.\right)+\log _{N}|\operatorname{sol}(X \cap Y)| \\
=b(X \cap Y)+b(X \cup Y)
\end{array}
$$

(the equalities follow from 1-uniformity; the inequality uses Prop.4.5(2) with $A=Y, B=X \cap Y, C=X$). Therefore, if the submodular width of H is at most c, then H has a tree decomposition where $b(B) \leq c$ and hence $|\operatorname{sol}(B)| \leq N^{c}$ for every bag B. Thus we can find a solution of the instance by dynamic programming in time polynomial in N^{c}.

Lemma 4.9 guarantees some uniformity for the created instances, but not perfect 1 -uniformity and only for the N^{c}-small sets. Thus in Lemma 4.10, we need to define b in a slightly different way: we add some small terms to correct errors arising from the weaker uniformity and we truncate the function at large values (i.e., for sets that are not N^{c}-small).

Lemma 4.10. Let $I=(V, D, C)$ be a CSP instance with hypergraph H such that $|\operatorname{sol}(e)| \leq N$ for every $e \in E(H)$. If I is N^{c}-consistent and $\left(N, c, \varepsilon^{3}\right)$-uniform for some $c \geq 1$ and $\varepsilon:=1 /|V|$, then the following function b is an edge-dominated, monotone, submodular function on $V(H)$:

$$
b(S):= \begin{cases}(1-\varepsilon) \log _{N}|\operatorname{sol}(S)|+2 \varepsilon^{2}|S|-\varepsilon^{3}|S|^{2} & \text { if } S \text { is } N^{c} \text {-small, } \\ (1-\varepsilon) c+2 \varepsilon^{2}|S|-\varepsilon^{3}|S|^{2} & \text { otherwise }\end{cases}
$$

Proof. Let $h(S):=2 \varepsilon^{2}|S|-\varepsilon^{3}|S|^{2}$. It is easy to see that $h(S)$ is monotone and $0 \leq h(S) \leq \varepsilon$ for every $S \subseteq V(H)$ (as $\varepsilon|S| \leq 1$). Furthermore, h is a submodular function:

$$
\begin{aligned}
& h(X)+h(Y)-h(X \cap Y)-h(X \cup Y)=2 \varepsilon^{2}(|X|+|Y|-|X \cap Y|-|X \cup Y|)+\varepsilon^{3}\left(-|X|^{2}-|Y|^{2}+|X \cap Y|^{2}+|X \cup Y|^{2}\right) \\
= & \varepsilon^{3}\left(-(|X \cap Y|+|X \backslash Y|)^{2}-(|X \cap Y|+|Y \backslash X|)^{2}+|X \cap Y|^{2}+(|X \cap Y|+|X \backslash Y|+|Y \backslash X|)^{2}\right)=2 \varepsilon^{3}|X \backslash Y| \cdot|Y \backslash X| \geq 0 .
\end{aligned}
$$

This calculation shows that if $|X \backslash Y|,|Y \backslash X| \geq 1$, then we actually have $h(X)+h(Y) \geq h(X \cap Y)+h(X \cup Y)+2 \varepsilon^{3}$. We will use this extra $2 \varepsilon^{3}$ term to dominate the error terms arising from assuming only $\left(N, c, \varepsilon^{3}\right)$-uniformity instead of perfect uniformity.

Let us first verify the monotonicity of b. If Y is N^{c}-small, then every $X \subseteq Y$ is N^{c}-small, which implies $|\operatorname{sol}(X)| \leq$ $|\operatorname{sol}(Y)|$ as I is N^{c}-consistent. Therefore, $b(X) \leq b(Y)$ follows from the monotonicity of h. If Y is not N^{c} small, then $b(Y)=(1-\varepsilon) c+h(Y)$ and $b(X) \leq b(Y)$ is clear for every $X \subseteq Y$, no matter whether X is N^{c}-small or not.

To see that b is edge-dominated, consider an edge $e \in E(H)$. By assumption, $\log _{N}|\operatorname{sol}(e)| \leq 1$ for every $e \in E(H)$ and hence (using N^{c}-consistency and $c \geq 1$) e is N^{c}-small. Thus $b(e) \leq(1-\varepsilon)+h(S) \leq 1$, as required.

Finally, let us verify the submodularity of b for some $X, Y \subseteq V$. If $X \subseteq Y$ or $Y \subseteq X$, then there is nothing to show. Thus we can assume that $|X \backslash Y|,|Y \backslash X| \geq 1$. We consider 3 cases depending on which of X and Y are N^{c}-small. Suppose first that X and Y are both N^{c}-small. In this case,

$$
\begin{aligned}
& b(X)+b(Y)=(1-\varepsilon) \log _{N}|\operatorname{sol}(X)|+(1-\varepsilon) \log _{N}|\operatorname{sol}(Y)|+h(X)+h(Y) \\
&=(1-\varepsilon) \log _{N}|\operatorname{sol}(X)|+(1-\varepsilon) \log _{N}\left(|\operatorname{sol}(X \cap Y)| \cdot \frac{|\operatorname{sol}(Y)|}{|\operatorname{sol}(X \cap Y)|}\right)+h(X)+h(Y) \\
& \geq(1-\varepsilon) \log _{N}|\operatorname{sol}(X)|+(1-\varepsilon) \log _{N} \operatorname{sol}(X \cap Y)+(1-\varepsilon) \log _{N}\left(\max (Y \mid X \cap Y) / N^{\varepsilon^{3}}\right)+h(X)+h(Y) \\
& \geq(1-\varepsilon) \log _{N}|\operatorname{sol}(X \cap Y)|+(1-\varepsilon) \log _{N}(|\operatorname{sol}(X)| \max (X \cup Y \mid X))-(1-\varepsilon) \cdot \varepsilon^{3}+h(X \cap Y)+h(X \cup Y)+2 \varepsilon^{3} \\
& \geq(1-\varepsilon) \log _{N}|\operatorname{sol}(X \cap Y)|+(1-\varepsilon) \log _{N}|\operatorname{sol}(X \cup Y)|+h(X \cap Y)+h(X \cup Y) \geq b(X \cap Y)+b(X \cup Y)
\end{aligned}
$$

(in the first inequality, we used the definition of $\left(N, c, \varepsilon^{3}\right)$-uniformity on $X \cap Y$ and Y; in the second inequality, we used the submodularity of h and Prop.4.5(2) for $A=Y, B=X \cap Y$, and $C=X$; in the third inequality, we used Prop. 4.5(1) for $A=X \cup Y, B=X$; the last inequality is strict only if $X \cup Y$ is not N^{c}-small).

For the second case, suppose that, say, X is N^{c}-small but Y is not. In this case, $X \cap Y$ is N^{c}-small but $X \cup Y$ is not. Thus

$$
\begin{array}{r}
b(X)+b(Y)=(1-\varepsilon) \log _{N}|\operatorname{sol}(X)|+(1-\varepsilon) c+h(X)+h(Y) \geq(1-\varepsilon) \log _{N}|\operatorname{sol}(X \cap Y)|+(1-\varepsilon) c+h(X \cap Y)+h(X \cup Y) \\
=b(X \cap Y)+b(X \cup Y)
\end{array}
$$

(in the inequality, we used the N^{c}-consistency on $X \cap Y$ and Y, and the submodularity of h).
Finally, suppose that neither X nor Y is N^{c}-small. In this case, $X \cup Y$ is not N^{c}-small either. Now

$$
b(X)+b(Y)=2(1-\varepsilon) c+h(X)+h(Y) \geq 2(1-\varepsilon) c+h(X \cap Y)+h(X \cup Y) \geq b(X \cap Y)+b(X \cup Y)
$$

Having constructed the submodular function b as in Lemma4.10, we can use the argument described at the beginning of the section: if H has submodular width at most $(1-\varepsilon) c$, then there is a tree decomposition where every bag is N^{c}-small, and we can use this tree decomposition to find a solution. In fact, in this case N^{c}-consistency implies that every nontrivial instance has a solution.

Lemma 4.11. Let $I=(V, D, C)$ be a nontrivial CSP instance, let H be a hypergraph on the variables of I, and let N be an integer such that $|\operatorname{sol}(e)| \leq N$ for every $e \in E(H)$. If I is N^{c}-consistent and $\left(N, c, \varepsilon^{3}\right)$-uniform for $\varepsilon=1 /|V|$ and some $c \geq \operatorname{subw}(H) /(1-\varepsilon)$, then there is an assignment g of I that satisfies every edge of H (i.e., $g_{\mid e} \in \operatorname{sol}(e)$ for every $e \in E(H)$). Furthermore, such an assignment can be constructed in time $f(|V|) \cdot \operatorname{poly}\left(\|I\|, N^{c}\right)$.

Proof. Let b be the edge-dominated monotone submodular function defined in Lemma4.10. By definition of submodular width, H has a tree decomposition $\left(T,\left(B_{t}\right)_{t \in V(T)}\right)$ such that $b\left(B_{t}\right) \leq \operatorname{subw}(H) \leq(1-\varepsilon) c$ for every $t \in V(T)$. Since $b(S) \leq(1-\varepsilon) c$ implies $|\operatorname{sol}(S)| \leq N^{c}$ and b is monotone, this means that B_{t} is N^{c}-small for every $t \in V(T)$. As I is nontrivial, this also means that $\operatorname{sol}\left(B_{t}\right) \neq \emptyset$ for every $t \in V(T)$.

Suppose that T is rooted and for every node $t \in V(T)$, let V_{t} be the union of the bags that are descendants of t (including B_{t}). We claim that every assignment in $\operatorname{sol}\left(B_{t}\right)$ can be extended to an assignment of V_{t} that satisfies every edge of H fully contained in V_{t}. Applying this statement to the root of T proves that there exists a solution for I that satisfies every edge of H.

We prove the claim for every node of T in a bottom up order. The statement is trivial for the leaves. Let t_{1}, \ldots, t_{ℓ} be the children of t and suppose the claim is true for these nodes. Consider an assignment $g \in \operatorname{sol}\left(B_{t}\right)$. Since I is N^{c}-consistent and $B_{t_{i}}$ is N^{c}-small, assignment $g_{\mid B_{t} \cap B_{t_{i}}}$ can be extended to an assignment $g_{i} \in \operatorname{sol}\left(B_{t_{1}}\right)$. As the claim is true for node t_{i}, assignment g_{i} can be extended to an assignment g_{i}^{\prime} of $V_{t_{i}}$. The assignments $g, g_{1}^{\prime}, \ldots, g_{\ell}^{\prime}$ can be combined to obtain an assignment g^{\prime} on V_{t} (note that this is well defined: the intersection of $V_{t_{i}}$ and $V_{t_{j}}$ is in V_{t}, which means that a variable appearing in both $V_{t_{i}}$ and $V_{t_{j}}$ has the same value in g, g_{i}^{\prime}, and g_{j}^{\prime}). Furthermore, every edge e of H that is fully contained in V_{t} is fully contained in at least one of $B_{t}, V_{t_{1}}, \ldots, V_{t_{\ell}}$, and the corresponding assignment g, g_{1}^{\prime}, $\ldots, g_{\ell}^{\prime}$ shows that g^{\prime} satisfies the edge e.

The argument in the previous paragraph gives an algorithm for finding extensions: in bottom up order of the nodes, for every node $t \in V(T)$ and every $g \in \operatorname{sol}\left(B_{t}\right)$, we construct an appropriate extension g^{\prime}. We need to store and handle at most N^{c} assignments for each bag, thus the total running time is poly $\left(\|I\|, N^{c}\right)$. However, we need a tree decomposition where every bag is N^{c}-small. As discussed above, such a tree decomposition is guaranteed to exist, thus we can find one in time $f(|V|) \cdot \operatorname{poly}\left(\|I\|, N^{c}\right)$ by trying all possible tree decompositions.

Putting together Lemmas 4.9, 4.10, and 4.11 we can easily prove Theorem 4.1, the main result of Section 4 ,
Proof (of Theorem 4.1). Let I be an instance of $\operatorname{CSP}(\mathcal{H})$ having hypergraph $H \in \mathcal{H}$. We solve I the following way. Let N be the size of the largest constraint in I. Set $\varepsilon:=1 /|V|$, and let $c:=2 c_{0} \geq c_{0} /(1-\varepsilon)$ (assuming $|V| \geq 2$). Let us use the algorithm of Lemma4.9 to produce the nontrivial N^{c}-consistent $\left(N, c, \varepsilon^{3}\right)$-uniform instances I_{1}, \ldots, I_{t}. The running time of this step is $f_{1}(|V|, c, \varepsilon) \cdot \operatorname{poly}\left(\|I\|, N^{c}\right)$, which is at most $f(H) \cdot\|I\|^{O\left(c_{0}\right)}$ for some appropriate function f.

If $t=0$, then we can conclude that I has no solution. Otherwise, we argue that I has a solution. More precisely, we show that every I_{i} has an assignment that satisfies every edge of H, which means that it satisfies every constraint of I. Indeed, the conditions of Lemma 4.11 hold for every I_{i} : for every edge $e,\left|\operatorname{sol}_{I_{i}}(e)\right| \leq\left|\operatorname{sol}_{I}(e)\right| \leq N$ holds by the definition of N and instance I_{i} is an N^{c}-consistent $\left(N, c, \varepsilon^{3}\right)$-uniform instance for $c=\operatorname{subw}(H) /(1-\varepsilon)$.

5 From submodular functions to highly connected sets

The aim of this section is to show that if a hypergraph H has large submodular width, then there is a large highly connected set in H. The main result is the following:

Theorem 5.1. For every sufficiently small constant $\lambda>0$, the following holds. Let b be an edge-dominated monotone submodular function of H. If the b-width of H is greater than $\frac{3}{2}(w+1)$, then $\operatorname{con}_{\lambda}(W) \geq w$.

For the proof of Theorem 5.1, we need to show that if there is no tree decomposition where $b(B)$ is small for every bag B, then a highly connected set exists. There is a standard recursive procedure that either builds a tree decomposition or finds a highly connected set (see e.g., [21, Section 11.2]). Simplifying somewhat, the main idea is that if a the graph can be decomposed into smaller graphs by splitting a certain set of vertices into two parts, then a tree decomposition for each part is constructed using the algorithm recursively, and the tree decompositions for the parts are joined in an appropriate way to obtain a tree decomposition for the original problem. On the other hand, if the set of vertices cannot be split, then we can conclude that it is highly connected. This high-level idea has been applied for various notions tree decompositions [48, 46, 2, 47], and it turns out to be useful in our context as well. However, we need to overcome two major difficulties:

1. Highly connected set in our context is defined as not having certain fractional separators (i.e., weight assignments). However, if we want to build a tree decomposition in a recursive manner, we need integer separators (i.e., subsets of vertices) that decompose the hypergraph into smaller parts.
2. Measuring the sizes of sets with a submodular function b can lead to problems, since the size of the union of two sets can be much smaller the sum of the sizes of the two sets. We need the property that, roughly speaking, removing a "large" part from a set makes it "much smaller." For example, if A and B are components of $H \backslash S$, and both $b(A)$ and $b(B)$ are large, then we need the property that both of them are much smaller than $b(A \cup B)$. Adler [1] Section 4.2] investigates the relation between some notion of highly connected set and f width, but assumes that f is additive: if A and B do not touch, then $f(A \cup B)=f(A)+f(B)$. However, for a submodular function b, there is no reason to assume that additivity holds: for example, it very well may be that $b(A)=b(B)=b(A \cup B)$.

To overcome the first difficulty, we have to understand what fractional separation really means. The first question is whether fractional separation is equivalent to some notion of integral separation, perhaps up to constant factors. The first, naive, question is whether a fractional (X, Y)-separator of weight w implies that there are $O(w)$ edges whose union is an (X, Y)-separator, i.e., there is a (X, Y)-separator S with $\rho_{H}(S)=O(w)$. There is a simple counterexample showing that this is not true. It is well-known that for every integer $k>0$ there is a hypergraph H such that $\rho^{*}(H)=2$ and $\rho(H)=k$. Let V be the set of vertices of H and let H^{\prime} be obtained from H by extending it with two independent sets X, Y, each of size k, and connecting every vertex of $X \cup Y$ with every vertex of V. It is clear that there is a fractional (X, Y)-separator of weight 2 , but every (X, Y)-separator S has to fully contain at least one of X, Y, or V, implying $\rho_{H^{\prime}}(S) \geq k$.

A less naive question is whether a fractional (X, Y)-separator with weight w in H implies that there exists an (X, Y) separator S with $\rho_{H}^{*}(S)=O(w)$ (or at most $f(w)$ for some function f). It can be shown that this is not true either: using the hypergraph family presented in [44] Section 5], one can construct counterexamples where the minimum weight of a fractional (X, Y)-separator is a constant, but $\rho_{H}^{*}(S)$ has to be arbitrarily large if S is an (X, Y)-separator (we omit the details).

We will characterize fractional separation in a very different way. We show that if there is a fractional (A, B) separator of weight w, then there is a (A, B)-separator S with $b(S)=O(w)$ for every edge-dominated monotone submodular function b. The converse is also true, thus this gives a novel characterization of fractional separation, tight up to a constant factor. This result is the key idea that allows us to move from the domain of submodular functions to the domain of pure hypergraph properties: if there is no (A, B)-separator such that $b(S)$ is small, then we know that there is no small fractional (A, B)-separator, which is a property of the hypergraph H and has no longer anything to do with the submodular function b.

To overcome the second difficulty, we introduce a transformation that turns a monotone submodular function b on $V(H)$ into a function b^{*} that encodes somehow the neighborhood structure of H as well. The new function b^{*} is no longer monotone and submodular, but is has a number of remarkable properties, for example, b^{*} remains edge dominated and $b^{*}(S) \geq b(S)$ for every set $S \subseteq V(H)$, implying that b^{*}-width is not smaller than b-width. The main idea is to prove Theorem 5.1 for b^{*}-width instead of b-width. Because of the way b^{*} encodes the neighborhoods, the second difficulty will disappear: for example, it will be true that $b^{*}(A \cup B)=b^{*}(A)+b^{*}(B)$ if there are no edges between A and B, that is, b^{*} is additive on disjoint components. Lemma 5.6 formulates (in a somewhat technical way) the exact property of b^{*} that we will need. Furthermore, luckily it turns out that the result mentioned in the previous paragraph remains true with b replaced by b^{*} : if there is no fractional (A, B)-separator of weight w, then there is (A, B)-separator S such that not only $b(S)$, but even $b^{*}(S)$ is $O(w)$.

5.1 The function b^{*}

We define the function b^{*} the following way. Let H be a hypergraph and let b be a monotone submodular function defined on $V(H)$. Let $S_{V(H)}$ be the set of all permutations of $V(H)$. For a permutation $\pi \in S_{V(H)}$, let $N_{\pi}^{-}(v)$ be the neighbors of v preceding v in the ordering π. For $\pi \in S_{V(H)}$ and $Z \subseteq V(H)$, we define

$$
\partial b_{\pi, Z}(v):=b\left(v \cup\left(N_{\pi}^{-}(v) \cap Z\right)\right)-b\left(N_{\pi}^{-}(v) \cap Z\right) .
$$

In other words, $b_{\pi, Z}(v)$ is the marginal value of v with respect to the set of its neighbors in Z preceding it. We abbreviate $\partial b_{\pi, V(H)}$ by ∂b_{π}. As usual, we extend the definition to subsets by letting $\partial b_{\pi, Z}(S):=\sum_{v \in S} \partial b_{\pi, Z}(v)$. Furthermore, we define

$$
\begin{gathered}
b_{\pi}(Z):=\partial b_{\pi, Z}(Z)=\sum_{v \in Z} \partial b_{\pi, Z}(v), \\
b^{*}(Z):=\min _{\pi \in S_{V(H)}} b_{\pi}(Z)
\end{gathered}
$$

Thus $b_{\pi}(Z)$ is the sum of the marginal values with respect to a given ordering, while $b^{*}(Z)$ is the smallest possible sum taken over all possible orderings. Let us prove some simple properties of the function b^{*}. Properties (1)-(3) and their proofs show why b^{*} was defined this way, the other properties are only technical statements that we will need later.

Proposition 5.2. Let H be a hypergraph and let be be monotone submodular function defined on $V(H)$. For every $\pi \in S_{V(H)}$ and $Z \subseteq V(H)$ we have

1. $b_{\pi}(Z) \geq b(Z)$,
2. $b^{*}(Z) \geq b(Z)$,
3. $b_{\pi}(Z)=b(Z)$ if Z is a clique,
4. $\partial b_{\pi, Z_{1}}(v) \leq \partial b_{\pi, Z_{2}}(v)$ if $Z_{2} \subseteq Z_{1}$,
5. $\partial b_{\pi}(v) \leq \partial b_{\pi, Z}(v)$,
6. $b^{*}(X \cup Y) \leq b^{*}(X)+b^{*}(Y)$.

Proof. (1) We prove the statement by induction on $|Z|$; for $Z=\emptyset$, the claim is true. Otherwise, let v be the last element of Z according to the ordering π. As v is not preceding any element of Z, we have $N_{\pi}^{-}(u) \cap Z=N_{\pi}^{-}(u) \cap(Z \backslash v)$, and hence $\partial b_{\pi, Z}(u)=\partial b_{\pi, Z \backslash v}(u)$ for every $u \in Z$.

$$
\begin{aligned}
b_{\pi}(Z)=\sum_{u \in Z \backslash v} \partial b_{\pi, Z}(u)+\partial b_{\pi, Z}(v) & =\sum_{u \in Z \backslash v} \partial b_{\pi, Z \backslash v}(u)+\partial b_{\pi, Z}(v) \\
& =b_{\pi}(Z \backslash v)+\partial b_{\pi, Z}(v) \geq b(Z \backslash v)+b\left(v \cup\left(N_{\pi}^{-}(v) \cap Z\right)\right)-b\left(N_{\pi}^{-}(v) \cap Z\right) \geq b(Z)
\end{aligned}
$$

In the first inequality, we used the induction hypothesis and the definition of $\partial b_{\pi, Z}(v)$; in the second inequality, we used the submodularity of b : the marginal value of v with respect to $Z \backslash v$ is not greater than with respect to $N_{\pi}^{-}(v) \cap Z$.
(2) Follows immediately from (1) and from the definition of b^{*}.
(3) By (1), we need to prove only $b_{\pi}(Z) \leq b(Z)$, which we prove by induction on $|Z|$. As in (1), let v be the last vertex of Z in π. Note that since Z is a clique, $N_{\pi}^{-}(v) \cap Z$ is exactly $Z \backslash v$.

$$
\begin{aligned}
b_{\pi}(Z)=\sum_{u \in Z \backslash v} \partial b_{\pi, Z}(u)+\partial b_{\pi, Z}(v)= & \sum_{u \in Z \backslash v} \partial b_{\pi, Z \backslash v}(u)+b\left(v \cup\left(N_{\pi}^{-}(v) \cap Z\right)\right)-b\left(N_{\pi}^{-}(v) \cap Z\right) \\
& =b_{\pi}(Z \backslash v)+b(v \cup(Z \backslash v))-b(Z \backslash v) \leq b(Z \backslash v)+b(Z)-b(Z \backslash v)=b(Z)
\end{aligned}
$$

(4) Follows from the submodularity of b : $\partial b_{\pi, Z_{1}}(v)$ is the marginal value of v with respect to $N_{\pi}^{-}(v) \cap Z_{1}$, while $\partial b_{\pi, Z_{2}}(v)$ is the marginal value of v with respect to the subset $N_{\pi}^{-}(v) \cap Z_{2}$ of $N_{\pi}^{-}(v) \cap Z_{1}$.
(5) Immediate from (4).
(6) Let π_{X} be an ordering such that $b_{\pi_{x}}(X)=b^{*}(X)$ and define π_{Y} similarly. Let us define ordering π such that it starts with the elements of X, in the order of π_{X}, followed by the elements of $Y \backslash X$, in the order of π_{Y}, and completed by an arbitrary ordering of $V(H) \backslash(X \cup Y)$. It is clear that for every $v \in X$, we have $\partial b_{\pi, X \cup Y}(v)=\partial b_{\pi_{X}}(v)$. Furthermore, for every $v \in Y \backslash X, N_{\pi_{Y}}^{-}(v) \cap Y \subseteq N_{\pi}^{-}(v) \cap(X \cup Y)$: if u is a neighbor of v in Y that precedes it in π_{Y}, then u is either in X or in $Y \backslash X$; in both cases u precedes v in π. Thus, similarly to (4), we have $\partial b_{\pi, X \cup Y}(v) \leq \partial b_{\pi_{Y}, Y}(v)$ for every
$v \in Y \backslash X: \partial b_{\pi, X \cup Y}(v)$ is the increase obtained by adding v to $N_{\pi}^{-}(v) \cap(X \cup Y)$, while $\partial b_{\pi_{Y}, Y}(v)$ is the increase obtained by adding v to the subset $N_{\pi_{Y}}^{-}(v) \cap Y$. Now we have

$$
b^{*}(X \cup Y) \leq b_{\pi}(X \cup Y)=\sum_{v \in X \cup Y} \partial b_{\pi, X \cup Y}(v) \leq \sum_{v \in X} \partial b_{\pi_{X}, X}(v)+\sum_{v \in Y \backslash X} \partial b_{\pi_{Y}, Y}(v) \leq b^{*}(X)+b^{*}(Y)
$$

Prop. 5.2 3) implies that $\partial b_{w, Z}$ can be used to define a fractional independent set:
Lemma 5.3. Let H be a hypergraph and let b be a monotone submodular function defined on $V(H)$. Let $W \subseteq V(H)$ and let π be a ordering of W. Let us define $\mu(v)=\partial b_{\pi, W}(v)$ for $v \in W$ and $\mu(v)=0$ otherwise. Then μ is a fractional independent set of H with $\mu(W)=b_{\pi}(W) \geq b^{*}(W)$.

Proof. Let e be an edge of H and let $Z:=e \cap W$. We have

$$
\mu(e)=\mu(Z)=\partial b_{\pi, W}(Z) \leq \partial b_{\pi, Z}(Z)=b_{\pi}(Z)=b(Z) \leq 1
$$

where the fist inequality follows from Prop. $5.2(4)$, the last equality follows from Prop. $5.2(3)$, and the second inequality follows from the fact that b is edge dominated. Furthermore, we have $\mu(W)=\partial b_{\pi, W}(W)=b_{\pi}(W) \geq b(W)$ from Prop. 5.2(1).

We close this section by proving the main property of b^{*} that allows us to avoid the second difficulty described at the beginning of Section 55 First, although it is not used directly, let us state that b^{*} is additive on sets that are independent from each other:

Lemma 5.4. Let H be a hypergraph, let b be an edge-dominated monotone submodular function defined on $V(H)$, and let $A, B \subseteq V(H)$ be disjoint sets such that there is no edge between A and B. Then $b^{*}(A \cup B)=b^{*}(A)+b^{*}(B)$.

Proof. By Prop. 5.2 6), we have to show only $b^{*}(A \cup B) \geq b^{*}(A)+b^{*}(B)$. Let π be an ordering of $V(H)$ such that $b_{\pi}(A \cup B)=b^{*}(A \cup B)$; we can assume that π starts with the vertices of $A \cup B$. Since there are no edges between A and B and no vertex outside $A \cup B$ precedes a vertex $u \in A \cup B$, we have $N_{\pi}^{-}(u) \subseteq A$ for every $u \in A$ and $N_{\pi}^{-}(u) \subseteq B$ for every $u \in B$. Thus $\partial b_{\pi, A \cup B}(u)=\partial b_{\pi, A}(u)$ for every $u \in A$ and $\partial b_{\pi, A \cup B}(u)=\partial b_{\pi, B}(u)$ for every $u \in B$. Therefore, $b^{*}(A \cup B)=b_{\pi}(A \cup B)=b_{\pi}(A)+b_{\pi}(B) \geq b^{*}(A)+b^{*}(B)$, what we had to show.

The actual statement that we use is more complicated than Lemma 5.4 there can be edges between A and B, but we assume that there is a small (A, B)-separator. We want to generalize the following trivial statement to our setting:

Proposition 5.5. Let G be a graph, $W \subseteq V(G)$ a set of vertices, $A, B \subseteq W$ two disjoint subsets, and an (A, B)-separator S. If $|S|<|A|,|B|$, then $(C \cap W) \cup S<|W|$ for every component C of $G \backslash S$.

The proof of Prop. 5.5 is easy to see: every component C of $G \backslash S$ is disjoint from either A or B, thus $|C \cap W|$ is at most $|W|-\min \{|A|,|B|\}<|W|-|S|$, implying that $|(C \cap W) \cup S|$ is less than $|W|$. In our setting, we want to measure the size of the sets using the function b^{*}, not by the number of vertices. More precisely, we measure the size of S and $(C \cap W) \cup S$ using b^{*}, while the size of W, A, and B are measured using the fractional independent set μ defined by Lemma 5.3. The reason for this will be apparent in the proof of Lemma 5.10. we want to claim that if such a separator S does not exist for any $A, B \subseteq W$, then W is a (μ, λ)-connected set for this fractional independent set μ.

Lemma 5.6. Let H be a hypergraph, let b be a monotone submodular function defined on $V(H)$ and let W be a set of vertices. Let π_{W} be an ordering of $V(H)$, and let $\mu(v):=\partial b_{\pi_{W}, W}(v)$ for $v \in W$ and $\mu(v)=0$ otherwise. Let $A, B \subseteq W$ be two disjoint sets, and let S be an (A, B)-separator. If $b^{*}(S)<\mu(A), \mu(B)$, then $b^{*}((C \cap W) \cup S)<\mu(W)$ for every component C of $H \backslash S$.

Proof. Let C be a component of $H \backslash S$ and let $Z:=(C \cap W) \cup S$. Let π_{S} be the ordering reaching the minimum in the definition of $b^{*}(S)$. Let us define the ordering π that starts with S in the order of π_{S}, followed by $C \cap W$ in the order of π_{W}, and finished by an arbitrary ordering of the remaining vertices. It is clear that for every $v \in S$, we have $\partial b_{\pi, Z}(v)=\partial b_{\pi_{S}, S}(v)$. Let us consider a vertex $v \in C \cap W$ and let $u \in W$ be a neighbor of v that precedes it in π_{W}. Since
$v \in C$ and C is a component of $H \backslash S$, either $u \in S$ or $u \in C \cap W$. In both cases, u precedes v in π. This means that $N_{\pi_{W}}^{-}(v) \cap W \subseteq N_{\pi}^{-}(v) \cap Z$, which implies that $\partial b_{\pi, Z}(v) \leq \partial b_{\pi_{W}, W}(v)=\mu(v)$ for every $v \in C \cap W$. As S separates A and B, component C intersects at most one of A and B; suppose, without loss of generality, that C is disjoint from A. Thus

$$
b^{*}(Z) \leq b_{\pi}(Z)=\sum_{v \in S} \partial b_{\pi, Z}(v)+\sum_{v \in C \cap W} \partial b_{\pi, Z}(v) \leq b^{*}(S)+\mu(C \cap W)<\mu(A)+\mu(W \backslash A)=\mu(W) .
$$

5.2 Submodular separation

This section is devoted to understanding what fractional separation means: we show that having a small fractional (A, B)-separator is essentially equivalent to the property that for every edge-dominated submodular function b, there is an (A, B)-separator S such that $b(S)$ is small. The proof is based on a standard trick that is often used for rounding fractional solutions for separation problems: we define a distance function and show by an averaging argument that cutting at some distance t gives a small separator. However, in our setting, we need significant new ideas to make this trick work: the main difficulty is that the cost function b is defined on subsets of vertices and is not a modular function defined by the cost of vertices. To overcome this problem, we use the definitions in Section 5.1 (in particular, the function $\partial b_{\pi}(v)$) to assign a cost to every single vertex.

Theorem 5.7. Let H be a hypergraph, $X, Y \subseteq V(H)$ two sets of vertices, and $b: V(H) \rightarrow \mathbb{R}^{+}$an edge-dominated monotone submodular function. Suppose that s is a fractional (X, Y)-separator of weight at most w. Then there is an (X, Y)-separator $S \subseteq V(H)$ with $b^{*}(S)=O(w)$.

Proof. Let us define $x(v):=\max \left\{1, \sum_{e \in E(H), v \in e} s(e)\right\}$. It is clear that if P is a path from X to Y, then $\sum_{v \in P} x(v) \geq 1$. We define the distance $d(v)$ to be the minimum of $\sum_{v^{\prime} \in P} x\left(v^{\prime}\right)$, taken over all paths from X to v (this means that $d(v)>0$ is possible for some $v \in X$). It is clear that $d(v) \geq 1$ for every $v \in Y$. Let us associate the closed interval $t(v)=[d(v)-x(v), d(v)]$ to each vertex v. If v is in X, then the left endpoint of $t(v)$ is 0 , while if v is in Y, then the right endpoint of $l(v)$ is at least 1 .

Let u and v be two adjacent vertices in H such that $d(u) \leq d(v)$. It is easy to see that $d(v) \leq d(u)+x(u)$: there is a path P from X to u such that $\sum_{u^{\prime} \in P} x\left(u^{\prime}\right)=d(u)$, thus the path P^{\prime} obtained by appending v to P has $\sum_{v^{\prime} \in P^{\prime}} x\left(v^{\prime}\right)=$ $\sum_{u^{\prime} \in P} x\left(u^{\prime}\right)+x(v)=d(u)+x(v)$. Therefore, we have:

Claim 1: If u and v are adjacent, then $v(u) \cap \imath(v) \neq \emptyset$.
The class of a vertex $v \in V(H)$ is the largest integer $\kappa(v)$ such that $x(v) \leq 2^{-\kappa(v)}$, and we define $\kappa(v):=\infty$ if $x(v)=0$. Recall that $x(v) \leq 1$, thus $\kappa(v)$ is nonnegative. The offset of a vertex v is the unique value $0 \leq \alpha<2 \cdot 2^{-\kappa(v)}$ such that $d(v)=i\left(2 \cdot 2^{-\kappa(v)}\right)+\alpha$ for some integer i. Let us define an ordering $\pi=\left(v_{1}, \ldots, v_{n}\right)$ of $V(H)$ such that

- $\kappa(v)$ is nondecreasing,
- among vertices having the same class, the offset is nondecreasing.

Let directed graph D be the orientation of the primal graph of H such that if v_{i} and v_{j} are adjacent and $i<j$, then there is a directed edge $\overrightarrow{v_{i} v_{j}}$ in D. If P is a directed path in D, then the width of P is the length of the interval $\bigcup_{v \in P} l(v)$ (note that by Claim 1, this union is indeed an interval). The following claim bounds the maximum possible width of a path:

Claim 2: If P is a directed path D starting at v, then the width of P is at most $16 x(v)$.
We first prove that if every vertex of P has the same class $\kappa(v)$, then the width of P is at most $4 \cdot 2^{-\kappa(v)}$. Since the class is nondecreasing along the path, we can partition the path into subpaths such that every vertex in a subpath has the same class and the classes are distinct on the different subpaths. The width of P is at most the sum of the widths of the subpaths, which is at most $\sum_{i \geq \kappa(v)} 4 \cdot 2^{-i}=8 \cdot 2^{-\kappa(v)} \leq 16 x(v)$.

Suppose now that every vertex of P has the same class $\kappa(v)$ as the first vertex v and let $h:=2^{-\kappa(v)}$. As the offset is nondecreasing, path P can be partitioned into two parts: a subpath P_{1} containing vertices with offset at least h, followed by a subpath P_{2} containing vertices with offset less than h (one of P_{1} and P_{2} can be empty). We show that each of P_{1} and P_{2} has width at most $2 h$, which implies that the width of P is at most $4 h$. Observe that if $v \in P_{1}$ and $\imath(v)$ contains a point $i \cdot 2 h$ for some integer i, then, considering $x(v) \leq h$ and the bounds on the offset of v, this is only possible if $l(v)=[i \cdot 2 h, i \cdot 2 h+h]$, i.e., $i \cdot 2 h$ is the left endpoint of $t(v)$. Thus if $I_{1}=\bigcup_{v \in P_{1}} l(v)$ contains $i \cdot 2 h$, then it is the left endpoint of I_{1}. Therefore, I_{1} can contain $i \cdot 2 h$ for at most one value of i, which immediately implies that the length of I_{1} is at most $2 h$.

We argue similarly for P_{2}. If $v \in P_{2}$, then $t(v)$ can contain the point $i \cdot 2 h+h$ only if $t(v)=[i \cdot 2 h+h,(i+1) \cdot 2 h]$. Thus if $I_{2}=\bigcup_{v \in P_{2}} l(v)$ contains $i \cdot 2 h+h$, then it is the left endpoint of I_{2}. We get that I_{2} can contain $i \cdot 2 h+h$ for at most one value of i, which immediately implies that the width of I_{2} is at most $2 h$. This concludes the proof of Claim 2.

Let $c(v):=\partial b_{\pi}(v)$.
Claim 3: $\sum_{v \in V(H)} x(v) c(v) \leq w$.
Let us examine the contribution of an edge $e \in E(H)$ with value $s(e)$ to the sum. For every vertex $v \in e$, edge e increases the value $x(v)$ by at most $s(e)$. Thus the total contribution of edge e is at most

$$
s(e) \cdot \sum_{v \in e} c(v)=s(e) \cdot \sum_{v \in e} \partial b_{\pi}(v) \leq s(e) \cdot \sum_{v \in e} \partial b_{\pi, e}(v)=s(e) b_{\pi}(e) \leq s(e) b(e) \leq s(e),
$$

where the first inequality follows Prop. 5.2.5); the second inequality follows form Prop. 5.2(3); the last inequality follows from the fact that b is edge dominated. Therefore, $\sum_{v \in V(H)} x(v) c(v) \leq \sum_{e \in E(H)} s(e) \leq w$, proving Claim 3 .

Let S be a set of vertices. We define $\mathcal{C}(S)$ to be the set of all vertices from which a vertex of S is reachable on a directed path in D (in particular, this means that $S \subseteq \mathcal{C}(S)$).

Claim 4: For every $S \subseteq V(H), \sum_{v \in \mathcal{C}(S)} c(v)=b_{\pi}(\mathcal{C}(S))$.
Observe that for any $v \in \mathcal{C}(S)$, every inneighbor of v is also in $\mathcal{C}(S)$, hence $N_{\pi}^{-}(v) \subseteq \mathcal{C}(S)$. Therefore, $\partial b_{\pi, \mathcal{C}(S)}(v)=$ $\partial b_{\pi}(v)=c(v)$ and the claim follows.

Let $S(t)$ be the set of all vertices $v \in V(H)$ for which $t \in t(v)$. Observe that for every $0 \leq t \leq 1$, the set $S(t)$ separates X from Y. We use an averaging argument to show that there is a $0 \leq t \leq 1$ for which $b_{\pi}(\mathcal{C}(S(t)))$ is $O(w)$. In this case, the set $\mathcal{C}(S(t))$ is the required separator: by Prop5.2(1), $b^{*}(\mathcal{C}(S(t))) \leq b_{\pi}(\mathcal{C}(S(t)))=O(w)$.

If we are able to show that $\int_{0}^{1} b_{\pi}(\mathcal{C}(S(t))) d t=O(w)$, then the existence of the required t clearly follows. Let $I_{v}(t)=1$ if $v \in \mathcal{C}(S(t))$ and let $I_{v}(t)=0$ otherwise. If $I_{v}(t)=1$, then there is a path P in D from v to a member of $S(t)$. By Claim 2, the width of this path is at most $16 x(v)$, thus $t \in[d(v)-16 x(v), d(v)+15 x(v)]$. Therefore, $\int_{0}^{1} I_{v}(t) d t \leq 31 x(v)$. Now we have

$$
\begin{aligned}
\int_{0}^{1} b_{\pi}(\mathcal{C}(S(t))) d t=\int_{0}^{1} \sum_{v \in \mathcal{C}(S(t))} c(v) d t=\int_{0}^{1} \sum_{v \in V(H)} c(v) I_{v}(t) d t & \\
& =\sum_{v \in V(H)} c(v) \int_{0}^{1} I_{v}(t) d t \leq 31 \sum_{v \in V(H)} x(v) c(v) \leq 31 w
\end{aligned}
$$

(we used Claim 4 in the first equality and Claim 3 in the last inequality).

Although it is not used in this paper, we can prove the converse of Theorem 5.7 in a very simple way.
Theorem 5.8. Let H be a hypergraph, and let $X, Y \subseteq V(H)$ be two sets of vertices. Suppose that for every edgedominated monotone submodular function on H, there is an (X, Y)-separator S with $b(S) \leq w$. Then there is a fractional (X, Y)-separator of weight at most w.

Proof. If there is no fractional (X, Y)-separator of weight at most w, then by LP duality, there is an (X, Y)-flow F of value greater than w. Let $b(S)$ be defined as the total weight of the paths in F intersecting S; it is easy to see that f is a monotone submodular function, and since F is a flow, $b(e) \leq 1$ for every $e \in E(H)$. Thus by assumption, there is an (X, Y)-separator S with $b(S) \leq w$. However, every path of F intersects S, which implies $b(S)>w$, a contradiction.

We close this section by pointing out that finding an (A, B)-separator S with $b(S)$ small for a given submodular function b is not an instance of submodular function minimization, and hence the well-known algorithms (see [36, 37, 52]) cannot be used for this problem. If a submodular function $g(X)$ describes the weight of the boundary of X, then finding a small (A, B)-separator is equivalent to minimizing $g(X)$ subject to $A \subseteq X, X \cap B=\emptyset$, which can be expressed as an instance of submodular function minimization (and hence solvable in polynomial time). In our case, however, $b(S)$ is the weight of S itself, which means that we have to minimize $g(S)$ subject to S being an (A, B)-separator and this latter constraint cannot be expressed in the framework of submodular function minimization. A possible workaround is to define $\delta(X)$ as the neighborhood of X (the set of vertices outside X adjacent to X) and $b^{\prime}(X):=b(\delta(S))$; now minimizing $b^{\prime}(X)$ subject to $A \subseteq X \cup \delta(X), X \cap B=\emptyset$ is the same as finding an (X, Y)-separator S minimizing $b(S)$. However, the function b^{\prime} is not necessarily a submodular function in general. Therefore, transforming b to b^{\prime} this way does not lead to a polynomial-time algorithm using submodular function minimization. In fact, it is quite easy to show that finding an (A, B)-separator S with $b(S)$ minimum possible can be an NP-hard problem even if b is a submodular function of very simple form.

Theorem 5.9. Given a graph G, subsets of vertices X, Y, and collection \mathcal{S} of subsets of vertices, it is NP-hard to find an (X, Y)-separator that intersects the minimum number of members of \mathcal{S}.

Proof. The proof is by reduction from 3-Coloring. Let H be a graph with n vertices and m edges; we identify the vertices of H with the integers from 1 to n. We construct a graph G consisting of $3 n+2$ vertices, vertex sets X, Y, and a collection \mathcal{S} of 6 m sets such that there is an (X, Y)-separator S intersecting at most 5 m members of \mathcal{S} if and only if G is 3-colorable.

The graph G consists of two vertices x, y, and for every $1 \leq i \leq n$, a path $x v_{i, 1} v_{i, 2} v_{i, 3} y$ of length 4 connecting x and y. The collection \mathcal{S} is constructed such that for every edge $i j \in E(H)$ and $1 \leq a, b \leq 3, a \neq b$, there is a corresponding set $\left\{v_{i, a}, v_{j, b}, x, y\right\}$. Let $X:=\{x\}$ and $Y:=\{y\}$.

Let $c: V(G) \rightarrow\{1,2,3\}$ be a 3-coloring of G. The set $\left\{v_{i, c(i)} \mid 1 \leq i \leq n\right\}$ is clearly an (X, Y)-separator. For every $i j \in E(G)$, separator S intersects only 5 of the 6 sets $\left\{v_{i, a}, v_{i, b}, x, y\right\}$: as $c(i) \neq c(j)$, the set $\left\{v_{i, c(i)}, v_{j, c(j)}, x, y\right\}$ appears in \mathcal{S} and it is disjoint from S. Therefore, S intersects exactly $5 m$ members of \mathcal{S}.

Consider now an (X, Y)-separator S intersecting at most $5 m$ members of \mathcal{S}. Since every member of \mathcal{S} contains both x and y, it follows that $x, y \notin S$. This S has to contain at least one internal vertex of every path $x v_{i, 1} v_{i, 2} v_{i, 3} y$. For every $1 \leq i \leq n$, let us fix a vertex $v_{i, c(i)} \in S$. We claim that c is a 3-coloring of G. For every $i j \in E(G), S$ intersects at least 5 of the sets $\left\{v_{i, a}, v_{i, b}, x, y\right\}$, and intersects all 6 of them if $c(i)=c(j)$. Thus the assumption that S intersects at most $5 m$ members of \mathcal{S} immediately implies that c is a proper 3-coloring.

5.3 Obtaining a highly connected set

The following lemma is the same as the main result of Section 5 (Theorem 5.1) with the exception that b-width is replaced by b^{*}-width. By Prop $5.2(2), b^{*}(S) \geq b(S)$ for every set $S \subseteq V(H)$, thus b-width is greater than b^{*}-width. Therefore, the following lemma immediately implies Theorem 5.1

Lemma 5.10. Let be an edge-dominated monotone submodular function of H. If the b^{*}-width of H is greater than $\frac{3}{2}(w+1)$, then $\operatorname{con}_{\lambda}(W) \geq w($ for some universal constant λ).

Proof. Let $\lambda:=1 / c$, where c is the universal constant of Lemma 5.7 hidden by the big-O notation. Suppose that $\operatorname{con}_{\lambda}(W)<w$, that is, there is no fractional independent set μ and (μ, λ)-connected set W with $\mu(W) \geq w$. We show that H has a tree decomposition of b^{*}-width at most $\frac{3}{2}(w+1)$, or more precisely, we show the following stronger statement:

For every subhypergraph H^{\prime} of H and every $W \subseteq V\left(H^{\prime}\right)$ with $b^{*}(W) \leq w+1$, there is a tree decomposition of H^{\prime} having b^{*}-width at most $\frac{3}{2}(w+1)$ such that W is contained in one of the bags.

We prove this statement by induction on $\left|V\left(H^{\prime}\right)\right|$. If $b^{*}\left(V\left(H^{\prime}\right)\right) \leq \frac{3}{2}(w+1)$, then a decomposition consisting of a single bag proves the statement. Let W^{\prime} be an inclusionwise maximal superset of W such that $w \leq b^{*}\left(W^{\prime}\right) \leq w+1$. Observe that there has to be at least one such set: from the fact that $b^{*}(v) \leq 1$ for every vertex v and from Prop. 5.2(6), we know that adding a vertex increases $b^{*}\left(W^{\prime}\right)$ by at most 1 . Since $b^{*}\left(V\left(H^{\prime}\right)\right) \geq \frac{3}{2}(w+1)$, by adding vertices to W in an arbitrary order, we eventually find a set W^{\prime} with $b^{*}\left(W^{\prime}\right) \geq w$, and the first such set satisfies $b^{*}\left(W^{\prime}\right) \leq w+1$ as well.

Let π be an ordering of $V\left(H^{\prime}\right)$ such that $b_{\pi}\left(W^{\prime}\right)=b^{*}\left(W^{\prime}\right)$. As in Lemma5.3, let us define the fractional independent set μ by $\mu(v):=\partial b_{\pi, W^{\prime}}(v)$ if $v \in W^{\prime}$ and $\mu(v)=0$ otherwise. Clearly, we have $\mu\left(W^{\prime}\right)=b^{*}\left(W^{\prime}\right) \geq w$.

By assumption, W^{\prime} is not (μ, λ)-connected, hence there are disjoint sets $A, B \subseteq W^{\prime}$ and a fractional (A, B)-separator of weight less than $\lambda \cdot \min \{\mu(A), \mu(B)\}$. Thus by Lemma 5.7] there is an (A, B)-separator $S \subseteq V\left(H^{\prime}\right)$ with $b^{*}(S)<$ $\min \{\mu(A), \mu(B)\} \leq \mu\left(W^{\prime}\right) / 2 \leq(w+1) / 2$ (the second inequality follows from the fact that A and B are disjoint subsets of $\left.W^{\prime}\right)$. Let C_{1}, \ldots, C_{r} be the connected components of $H^{\prime} \backslash S$; by Lemma5.6 $b^{*}\left(\left(C_{i} \cap W^{\prime}\right) \cup S\right)<b_{\pi}\left(W^{\prime}\right)=b^{*}\left(W^{\prime}\right) \leq$ $w+1$ for every $1 \leq i \leq r$. As $b^{*}\left(V\left(H^{\prime}\right)\right) \geq \frac{3}{2}(w+1)$ and $b^{*}(S) \leq(w+1) / 2$, it is not possible that $S=V\left(H^{\prime}\right)$, hence $r>0$. It is not possible that $r=1$ either: $\left(C_{1} \cap W^{\prime}\right) \cup S$ would be a superset of W^{\prime} with b^{*}-value less than $b^{*}\left(W^{\prime}\right)$, contradicting the maximality of W^{\prime}. Thus $r \geq 2$, which means that each hypergraph $H_{i}^{\prime}:=H^{\prime}\left[C_{i} \cup S\right]$ has strictly fewer vertices than H^{\prime}.

By the induction hypothesis, each H_{i}^{\prime} has a tree decomposition \mathcal{T}_{i} having b^{*}-width at most $\frac{3}{2}(w+1)$ such that $W_{i}:=\left(C_{i} \cap W^{\prime}\right) \cup S$ is contained in one of the bags. Let B_{i} be the bag of \mathcal{T}_{i} containing W_{i}. We build a tree decomposition \mathcal{T} of H by joining together the tree decompositions $\mathcal{T}_{1}, \ldots, \mathcal{T}_{r}$: let $B_{0}:=W \cup S$ be a new bag that is adjacent to bags B_{1}, \ldots, B_{r}. It can be easily verified that \mathcal{T} is indeed a tree decomposition of H^{\prime}. Furthermore, by Prop. 5.2(6), $b^{*}\left(B_{0}\right) \leq b^{*}(W)+b^{*}(S)<w+1+(w+1) / 2=\frac{3}{2}(w+1)$ and by the assumptions on $\mathcal{T}_{1}, \ldots, \mathcal{T}_{r}$, every other bag has b^{*} value at most $\frac{3}{2}(w+1)$.

6 From highly connected sets to embeddings

The main result of this section is showing that the existence of highly connected sets imply that the hypergraph has large embedding power:

Theorem 6.1. For every sufficiently small $\lambda>0$ and hypergraph H, there is a constant $m_{H, \lambda}$ such that every graph G with $m \geq m_{H, \lambda}$ edges has an embedding into H with edge depth $O\left(m /\left(\lambda^{\frac{3}{2}} \operatorname{con}_{\lambda}(H)^{\frac{1}{4}}\right)\right)$. Furthermore, there is an algorithm that, given G and H, produces such an embedding in time $f(H, \lambda) n^{O(1)}$.

In other words, Theorem 6.1 gives a lower bound on the embedding power of H :
Corollary 6.2. For every sufficiently small $\lambda>0$ and hypergraph $H, \operatorname{emb}(H)=\Omega\left(\lambda^{\frac{3}{2}} \operatorname{con}_{\lambda}(H)^{\frac{1}{4}}\right)$.
Theorem6.1]is stated in algorithmic form, since the reduction in the hardness result of Section7 needs to find such embeddings. For the proof, our strategy is similar to the embedding result of [41]: we show that a highly connected set implies that a uniform concurrent flow exists, the paths appearing in the uniform concurrent flow can be used to embed (a blowup of) the line graph of a complete graph, and every graph has an appropriate embedding in the line graph of a complete graph. To make this strategy work, we need generalizations of concurrent flows, multicuts, and multicommodity flows in our hypergraph setting and we need to obtain results that connect these concepts to highly connected sets. Some of these results are similar in spirit to the $O(\sqrt{n})$-approximation algorithms appearing in the combinatorial optimization literature [30, 31, 3]. However, those approximation algorithms are mostly based on clever rounding of fractional solutions, while in our setting rounding is not an option: as discussed in Section 5, the existence of a fractional (X, Y)-separator of small weight does not imply the existence of a small integer separator. Thus we have to work directly with the fractional solution and use the properties of the highly connected set.

It turns out that the right notion of uniform concurrent flow for our purposes is a collection of flows that connect cliques: that is, a collection $F_{i, j}(1 \leq i<j \leq k)$ of compatible flows, each of value ε, such that $F_{i, j}$ is a $\left(K_{i}, K_{j}\right)$-flow, where K_{1}, \ldots, K_{k} are disjoint cliques. Thus our first goal is to find a highly connected set that can be partitioned into k cliques in an appropriate way.

6.1 Highly connected sets with cliques

Let $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{k}, Y_{k}\right)$ be pairs of vertex sets such that the minimum weight of a fractional $\left(X_{i}, Y_{i}\right)$-separator is s_{i}. Analogously to multicut problems in combinatorial optimization, we investigate weight assignments that simultaneously separate all these pairs. Clearly, the minimum weight of such an assignment is at least the minimum of the s_{i} 's and at most the sum of the s_{i} 's. The following lemma shows that in a highly connected set, such a simultaneous separator cannot be very efficient: roughly speaking, its weight is at least the square root of the sum of the s_{i} 's.

Lemma 6.3. Let μ be a fractional independent set in hypergraph H and let W be a (μ, λ)-connected set for some $0<\lambda \leq 1$. Let $\left(X_{1}, \ldots, X_{k}, Y_{1}, \ldots, Y_{k}\right)$ be a partition of W, let $w_{i}:=\min \left\{\mu\left(X_{i}\right), \mu\left(Y_{i}\right)\right\} \geq 1 / 2$, and let $w:=\sum_{i=1}^{k} w_{i}$. Let $s: E(H) \rightarrow \mathbb{R}^{+}$be a weight assignment of total weight p such that s is a fractional $\left(X_{i}, Y_{i}\right)$-separator for every $1 \leq i \leq k$. Then $p \geq(\lambda / 7) \cdot \sqrt{w}$.

Proof. Let us define the function s^{\prime} by $s^{\prime}(e)=6 s(e)$ and let $x(v):=\sum_{e \in E(H), v \in e} s^{\prime}(e)$. We define the distance $d(u, v)$ to be the minimum of $\sum_{v^{\prime} \in P} x\left(v^{\prime}\right)$, taken over all paths P from u to v. It is clear that the triangle inequality holds, i.e., $d(u, v) \leq d(u, z)+d(z, v)$ for every $u, v, z \in V(H)$. If s covers every path between u to v, then $d(u, v) \geq 6$: every edge e intersecting a $u-v$ path P contributes at least $s^{\prime}(e)$ to the sum $\sum_{v^{\prime} \in P} x\left(v^{\prime}\right)$ (as e can intersect P in more than one vertices, e can increase the sum by more than $s^{\prime}(e)$). On the other hand, if $d(u, v) \geq 2$, then s^{\prime} covers every $u-v$ path. Clearly, it is sufficient to verify this for minimal paths. Such a path P can intersect an edge e at most twice, hence e contributes at most $2 s^{\prime}(e)$ to the sum $\sum_{v^{\prime} \in P} x\left(v^{\prime}\right) \geq 2$, implying that the edges intersecting P have total weight at least 1 in s^{\prime}.

Suppose for contradiction that $p<(\lambda / 7) \cdot \sqrt{w}$, that is, $w>49 p^{2} / \lambda^{2}$. Let $A:=\emptyset$ and $B:=\bigcup_{i=1}^{k}\left(X_{i} \cup Y_{i}\right)$. Note that $\mu(B) \geq 2 \sum_{i=1}^{k} w_{i}=2 w$. We will increase A and decrease B while maintaining the invariant condition that the distance of A and B is at least 2 . Let T be the smallest integer such that $\sum_{i=1}^{T} w_{i}>6 p / \lambda$; if there is no such T, then $w \leq 6 p / \lambda$, a contradiction. As $w_{i} \geq 1 / 2$ for every i, it follows that $T \leq\lceil 12 p / \lambda+1\rceil \leq 13 p / \lambda$ (since $p / \lambda \geq 2$).

For $i=1,2, \ldots, T$, we perform the following step. Let X_{i}^{\prime} (resp., Y_{i}^{\prime}) be the set of all vertices of W that are at distance at most 2 from X_{i} (resp., Y_{i}). As the distance of X_{i} and Y_{i} is at least 6, the distance of X_{i}^{\prime} and Y_{i}^{\prime} is at least 2, hence s^{\prime} is a fractional $\left(X_{i}^{\prime}, Y_{i}^{\prime}\right)$-separator. Since W is (μ, λ)-connected and s^{\prime} is an assignment of weight $6 p$, we have $\min \left\{\mu\left(X_{i}^{\prime}\right), \mu\left(Y_{i}^{\prime}\right)\right\} \leq 6 p / \lambda$. If $\mu\left(X_{i}^{\prime}\right) \leq 6 p / \lambda$, then let us put X_{i} into A and let us remove X_{i}^{\prime} from B. The set X_{i}^{\prime}, which we remove from B, contains all the vertices that are at distance at most 2 from any new vertex in A, hence it remains true that the distance of A and B is at least 2. Similarly, if $\mu\left(X_{i}^{\prime}\right)>6 p / \lambda$ and $\mu\left(Y_{i}^{\prime}\right) \leq 6 p / \lambda$, then let us put Y_{i} into A and let us remove Y_{i}^{\prime} from B.

In the i-th step of the procedure, we increase $\mu(A)$ by at least w_{i} (as $\mu\left(X_{i}\right), \mu\left(Y_{i}\right) \geq w_{i}$ and these sets are disjoint from the sets already contained in A) and $\mu(B)$ is decreased by at most $6 p / \lambda$. Thus at the end of the procedure, we have $\mu(A) \geq \sum_{i=1}^{T} w_{i}>6 p / \lambda$ and

$$
\mu(B) \geq 2 w-T \cdot 6 p / \lambda>98 p^{2} /\left(\lambda^{2}\right)-(13 p /(\lambda))(6 p / \lambda)>6 p / \lambda,
$$

that is, $\min \{\mu(A), \mu(B)\}>6 p / \lambda$. By construction, the distance of A and B is at least 2 , thus s^{\prime} is a fractional $(A, B)-$ separator of weight exactly $6 p$, contradicting the assumption that W is (μ, λ)-connected.

In the rest of the section, we need a more constrained notion of flow, where the endpoints "respect" a particular fractional independent set. Let μ_{1}, μ_{2} be fractional independent sets of hypergraph H and let $X, Y \subseteq V(H)$ be two sets of vertices. A $\left(\mu_{1}, \mu_{2}\right)$-demand (X, Y)-flow is a (X, Y)-flow F such that for each $x \in X$, the total weight of the paths in F having first endpoint x is at most $\mu_{1}(x)$, and similarly, the total weight of the paths in F having second endpoint y is at most $\mu_{2}(y)$. Note that there is no bound on the weight of the paths going through an $x \in X$, we only bound the paths whose first/second endpoint is x. The definition is particularly delicate if X and Y are not disjoint, in this case, a vertex $z \in X \cap Y$ can be the first endpoint of some paths and the second endpoint of some other paths, or it can be even both the first and second endpoint of a path of length 0 . We use the abbreviation μ-demand for (μ, μ)-demand.

The following lemma shows that if a flow connects a set U with a highly connected set W, then U is highly connected as well (" W can be moved to U "). This observation will be used in the proof of Lemma 6.5, where we locate cliques and show that their union is highly connected, since there is a flow that connects the cliques to a highly connected set.

Lemma 6.4. Let H be a hypergraph, μ_{1}, μ_{2} fractional independent sets, and $W \subseteq V(H)$ a $\left(\mu_{1}, \lambda\right)$-connected set for some $0<\lambda \leq 1$. Suppose that $U \subseteq V(H)$ is a set of vertices and F is a $\left(\mu_{1}, \mu_{2}\right)$-demand (W, U)-flow of value $\mu_{2}(U)$. Then U is $\left(\mu_{2}, \lambda / 6\right)$-connected.

Proof. Suppose that there are disjoint sets $A, B \subseteq U$ and a fractional (A, B)-separator s of weight $w<(\lambda / 6) \cdot \min \left\{\mu_{2}(A), \mu_{2}(B)\right.$ (Note that this means $\mu_{2}(A), \mu_{2}(B)>6 w / \lambda \geq 6 w$.) For a path P, let $s(P)=\sum_{e \in E(H), e \cap P \neq \emptyset} s(e)$ be the total weight of the edges intersecting P. Let $A^{\prime} \subseteq W$ (resp., $B^{\prime} \subseteq W$) contain a vertex $v \in W$ if there is a path P in F with first endpoint v and second endpoint in A (resp., B) and $s(P) \leq 1 / 3$. If $A^{\prime} \cap B^{\prime} \neq \emptyset$, then it is clear that there is a path P with $s(P) \leq 2 / 3$ connecting a vertex of A and a vertex of B via a vertex of $A^{\prime} \cap B^{\prime}$, a contradiction. Thus we can assume that A^{\prime} and B^{\prime} are disjoint.

Since F is a flow, the total weight of the paths in F with $s(P) \geq 1 / 3$ is at most $3 w$. As the value of F is exactly $\mu_{2}(U)$, the total weight of the paths in F with second endpoint in A is exactly $\mu_{2}(A)$. If $s(P) \leq 1 / 3$ for such a path, then its first endpoint is in A^{\prime} by definition. Therefore, the total weight of the paths in F with first endpoint in A^{\prime} is at least $\mu_{2}(A)-3 w$, which means that $\mu_{1}\left(A^{\prime}\right) \geq \mu_{2}(A)-3 w \geq \mu_{2}(A) / 2$. Similarly, we have $\mu_{1}\left(B^{\prime}\right) \geq \mu_{2}(B) / 2$. Since W is $\left(\mu_{1}, \lambda\right)$-connected and s is an assignment with weight less than $(\lambda / 6) \cdot \min \left\{\mu_{2}(A), \mu_{2}(B)\right\} \leq(\lambda / 3)$. $\min \left\{\mu_{1}\left(A^{\prime}\right), \mu_{1}\left(B^{\prime}\right)\right\}$, there is an $A^{\prime}-B^{\prime}$ path P with $s(P)<1 / 3$. Now path P, together with an $A^{\prime}-A$ path P_{A} having $s\left(P_{A}\right) \leq 1 / 3$, and a $B^{\prime}-B$ path P_{B} having $s\left(P_{B}\right) \leq 1 / 3$ forms an $A-B$ path that is not covered by s, a contradiction.

A μ-demand multicommodity flow between pairs $\left(A_{1}, B_{1}\right), \ldots,\left(A_{r}, B_{r}\right)$ is a set F_{1}, \ldots, F_{r} of compatible flows such that F_{i} is a μ-demand $\left(A_{i}, B_{i}\right)$-flow. The value of a multicommodity flow is the sum of the values of the r flows. Let $A=\bigcup_{i=1}^{r} A_{i}, B=\bigcup_{i=1}^{r} B_{i}$, and suppose for simplicity that $\left(A_{1}, \ldots, A_{r}, B_{1}, \ldots, B_{r}\right)$ is a partition of $A \cup B$. In this case, the maximum value of a μ-demand multicommodity flow between pairs $\left(A_{1}, B_{1}\right), \ldots,\left(A_{r}, B_{r}\right)$ can be expressed as the optimum values of the following primal and dual linear programs (we denote by $\mathcal{P}_{u v}$ the set of all $u-v$ paths):

$$
\begin{gathered}
\text { Primal LP } \\
\text { maximize } \sum_{i=1}^{r} \sum_{\substack{u \in A_{i}, v \in B_{i} \\
P \in \mathcal{P}_{u v}}} x(P) \\
\text { s. t. } \\
\sum_{i=1}^{r} \sum_{\substack{u \in A_{i}, v \in B_{i} \\
P \in \mathcal{P}_{u v}, P \cap e \neq \emptyset}} x(P) \leq 1 \quad \forall e \in E(H) \\
\sum_{v \in B_{i}, P \in \mathcal{P}_{u v}} x(P) \leq \mu(u) \quad \forall 1 \leq i \leq r, u \in A_{i} \\
\sum_{u \in A_{i}, P \in \mathcal{P}_{u v}} x(P) \leq \mu(v) \quad \forall 1 \leq i \leq r, v \in B_{i} \\
x(P) \geq 0 \quad \\
\quad \forall 1 \leq i \leq r, u \in A_{i}, v \in B_{i}, \\
\\
P \in \mathcal{P}_{u v}
\end{gathered}
$$

Dual LP

$$
\operatorname{minimize} \sum_{e \in e(H)} y(e)+\sum_{u \in A} \mu(u) y(u)+\sum_{v \in B} \mu(v) y(v)
$$

s. t.

$$
\begin{aligned}
\sum_{\substack{e \in E(H), e \cap P \neq \emptyset}} y(e)+y(u)+y(v) \geq 1 & \forall 1 \leq i \leq r, u \in A_{i}, v \in B_{i}, \\
& P \in \mathcal{P}_{u v} \\
y(e) \geq 0 & \forall e \in E(H) \\
y(u) \geq 0 & \forall u \in A \\
y(v) \geq 0 & \forall v \in B
\end{aligned}
$$

The following lemma shows that if $\operatorname{con}_{\lambda}(H)$ is sufficiently large, then there is a highly connected set that is the union of k cliques (satisfying the requirement that they are not too small with respect to μ).

Lemma 6.5. Let H be a hypergraph and let $0<\lambda<1 / 16$ be a constant. Then there is fractional independent set μ, a $(\mu, \lambda / 6)$-connected set W, and a partition $\left(K_{1}, \ldots, K_{k}\right)$ of W such that $k=\Omega\left(\lambda \sqrt{\operatorname{con}_{\lambda}(H)}\right)$, and for every $1 \leq i \leq k$, K_{i} is a clique with $\mu\left(K_{i}\right) \geq 1 / 2$.

Proof. Let k be the largest integer such that $\operatorname{con}_{\lambda}(H) \geq 6 T+4 k$ holds, where $T:=(56 / \lambda)^{2} \cdot k^{2}$; it is clear that $k=$ $\Omega\left(\lambda \sqrt{\operatorname{con}_{\lambda}(H)}\right)$. Let μ_{0} be a fractional independent set and W be a $\left(\mu_{0}, \lambda\right)$-connected set with $\mu_{0}(W)=\operatorname{con}_{\lambda}(H)$. We can assume that $\mu_{0}(v)>0$ if and only if $v \in W$.

Highly loaded edges. First, we want to modify μ_{0} such that there is no edge e with $\mu_{0}(e) \geq 1 / 2$. Let us choose edges g_{1}, g_{2}, \ldots as long as possible with the requirement $\mu_{0}\left(G_{i}\right) \geq 1 / 2$ for $G_{i}:=g_{i} \backslash \bigcup_{j=1}^{i-1} g_{j}$. If we can select at least k such edges, then the required structure can be found in an easy way. In this case, let $K_{i}:=G_{i} \cap W$, clearly $W^{\prime}:=\bigcup_{i=1}^{k} G_{i} \subseteq W$ is a $\left(\mu_{0}, \lambda\right)$-connected set, $\mu_{0}\left(K_{i}\right) \geq 1 / 2$, and $\left(K_{1}, \ldots, K_{k}\right)$ is a partition of W into cliques.

Thus we can assume that the selection of the edges stops at edge g_{t} for some $t<k$. Let $W_{0}:=W \backslash \bigcup_{i=1}^{t} g_{i}$. Observe that there is no edge $e \in E(H)$ with $\mu_{0}\left(e \cap W_{0}\right) \geq 1 / 2$, as in this case the selection of the edges could be continued with $g_{t+1}:=e$. Thus if we define μ such that $\mu(v)=2 \mu_{0}(v)$ if $v \in W_{0}$ and $\mu(v)=0$ otherwise, then μ is a fractional independent set. Note that $\mu\left(W_{0}\right)=2 \mu_{0}\left(W \backslash \bigcup_{i=1}^{t} g_{i}\right)>2\left(\mu_{0}(W)-k\right)=2 \mu_{0}(W)-2 k$.

Moderately connected pairs. The set W_{0} is $\left(\mu_{0}, \lambda\right)$-connected, but not necessarily (μ, λ)-connected. In the next step, we further decrease W_{0} by removing those parts that violate (μ, λ)-connectivity. We repeat the following step for $i=1,2, \ldots$ as long as possible. If there are disjoint subsets $A_{i}, B_{i} \subseteq W_{i-1}$ such that there is a fractional $\left(A_{i}, B_{i}\right)$ separator with value less than λw_{i} for $w_{i}:=\min \left\{\mu\left(A_{i}\right), \mu\left(B_{i}\right)\right\}$, then define $W_{i}:=W_{i-1} \backslash\left(A_{i} \cup B_{i}\right)$. Informally, we can say that these pairs $\left(A_{i}, B_{i}\right)$ are "moderately connected": the minimum value of a fractional $\left(A_{i}, B_{i}\right)$-separator is less than λw_{i}, but at least $\lambda w_{i} / 2=\lambda \min \left\{\mu_{0}\left(A_{i}\right), \mu_{0}\left(B_{i}\right)\right\}$ (using the fact that W is $\left(\mu_{0}, \lambda\right)$-connected). Note that every fractional separator has value at least 1 (as W is in a single component of H), thus $\lambda w_{i}>1$ holds, implying $w_{i} \geq 1 / \lambda \geq 1$. In each step, we select A_{i} and B_{i} such that $\left|A_{i}\right|+\left|B_{i}\right|$ is minimum possible. In particular, this implies that $\mu\left(A_{i}\right), \mu\left(B_{i}\right) \leq w_{i}+1 \leq 2 w_{i}$: if, say, $\mu\left(A_{i}\right)>\mu\left(B_{i}\right)+1$, then removing an arbitrary vertex of A_{i} decreases $\mu\left(A_{i}\right)$ by at most one (as μ is a fractional independent set) without changing $\min \left\{\mu\left(A_{i}\right), \mu\left(B_{i}\right)\right\}$, hence there would be a smaller pair of sets with the required properties. Therefore, we have $2 w_{i} \leq \mu\left(A_{i} \cup B_{i}\right) \leq 2 w_{i}+1 \leq 3 w_{i}$ for every $1 \leq i \leq r$.

Suppose that the procedure stops after finding the pairs $\left(A_{1}, B_{1}\right), \ldots,\left(A_{r}, B_{r}\right)$ for some $r \geq 0$. Suppose first that $w:=\sum_{i=1}^{r} w_{i}<T$. Then $\mu\left(\bigcup_{i=1}^{r}\left(A_{i} \cup B_{i}\right)\right) \leq 3 w<3 T$, hence $\mu\left(W_{r}\right)>\mu\left(W_{0}\right)-3 T \geq 2 \mu_{0}(W)-2 k-3 T \geq \mu_{0}(W)=$ $\operatorname{con}_{\lambda}(H)$. Since the procedure stopped, there is no fractional $\left(A^{\prime}, B^{\prime}\right)$-separator of value less than $\lambda \cdot \min \left\{\mu\left(A^{\prime}\right), \mu\left(B^{\prime}\right)\right\}$ for any $A^{\prime}, B^{\prime} \subseteq W_{r}$, that is, W_{r} is (μ, λ)-connected with $\mu\left(W_{r}\right)>\operatorname{con}_{\lambda}(H)$, contradicting the definition of $\operatorname{con}_{\lambda}(H)$. Thus in the following, we can assume that $w \geq T$.

Finding a multicommodity flow. By construction, there is a fractional $\left(A_{i}, B_{i}\right)$-separator of value less than λw_{i}, hence the maximum value of a μ-demand multicommodity flow between pairs $\left(A_{1}, B_{1}\right), \ldots,\left(A_{r}, B_{r}\right)$ is less than λw. Let $A:=\bigcup_{i=1}^{r} A_{i}$ and $B:=\bigcup_{i=1}^{r} B_{i}$. Let us consider an optimum dual solution with value $Y=Y_{1}+Y_{2}$, where Y_{1} is the contribution of the variables $y(u), y(v)(a \in A, b \in B)$, and Y_{2} is the contribution of the variables $y(e)(e \in E(H))$. Let $A^{*}:=\{u \in A \mid y(u) \leq 1 / 4\}, B^{*}:=\{v \in B \mid y(v) \leq 1 / 4\}, A_{i}^{*}=A_{i} \cap A^{*}, B_{i}^{*}=B_{i} \cap B^{*}$, and $w_{i}^{*}=\min \left\{\mu\left(A_{i}^{*}\right), \mu\left(B_{i}^{*}\right)\right\}$. For each i, the value of w_{i}^{*} is either at least $w_{i} / 2$, or less than that. Assume without loss of generality that there is a $1 \leq r^{*} \leq r$ such that $w_{i}^{*} \geq w_{i} / 2$ if and only if $i \leq r^{*}$. Let $w^{*}=\sum_{i=1}^{r^{*}} w_{i}^{*}$.

We claim that $w^{*} \geq w / 4$. Note that $w_{i}^{*}<w_{i} / 2$ means that either $\mu\left(A_{i}^{*}\right)<\mu\left(A_{i}\right) / 2$ or $\mu\left(B_{i}^{*}\right)<\mu\left(B_{i}\right) / 2$; as $\mu\left(A_{i}\right), \mu\left(B_{i}\right) \geq w_{i}$, this is only possible if $\mu\left(A_{i} \backslash A^{*}\right)+\mu\left(B_{i} \backslash B^{*}\right)>w_{i} / 2$. Suppose first that $\sum_{i=r^{*}+1}^{r} w_{i}>w / 2$. This would imply

$$
\mu\left(\left(A \backslash A^{*}\right) \cup\left(B \backslash B^{*}\right)\right) \geq \sum_{i=r^{*}+1}^{r}\left(\mu\left(A_{i} \backslash A^{*}\right)+\mu\left(B_{i} \backslash B^{*}\right)\right)>\sum_{i=r^{*}+1}^{r} w_{i} / 2>w / 4
$$

However, $y(u)>1 / 4$ for every $u \in\left(A \backslash A^{*}\right) \cup\left(B \backslash B^{*}\right)$, thus $Y \geq Y_{1} \geq \mu\left(\left(A \backslash A^{*}\right) \cup\left(B \backslash B^{*}\right)\right) / 4 \geq w / 16>\lambda w$ (since $\lambda<1 / 16$), a contradiction with our earlier observation that the optimum is at most λw. Thus we can assume that $\sum_{i=r^{*}+1}^{r} w_{i} \leq w / 2$ and hence $\sum_{i=1}^{r^{*}} w_{i} \geq w / 2$. Together with $w_{i}^{*} \geq w_{i} / 2$ for every $1 \leq i \leq r^{*}$, this implies $w^{*} \geq w / 4$.

As $y(a), y(b) \leq 1 / 4$ for every $a \in A_{i}^{*}, b \in B_{i}^{*}$, it is clear that for every $A_{i}^{*}-B_{i}^{*}$ path P, the total weight of the edges intersecting P has to be at least $1 / 2$ in assignment y. Therefore, if we define $y^{*}: E(H) \rightarrow \mathbb{R}^{+}$by $y^{*}(e)=2 y(e)$ for every $e \in E(H)$, then y^{*} covers every $A_{i}^{*}-B_{i}^{*}$ path. Let $W^{*}=\bigcup_{i=1}^{r^{*}}\left(A_{i}^{*} \cup B_{i}^{*}\right)$. We use Lemma 6.3 for the (μ, λ)-connected set W^{*} and for the pairs $\left(A_{1}^{*}, B_{1}^{*}\right), \ldots,\left(A_{r^{*}}^{*}, B_{r^{*}}^{*}\right)$. Note that $w_{i}^{*} \geq w_{i} / 2 \geq 1 / 2$ for every i. It follows that y^{*} has weight at least $(\lambda / 7) \cdot \sqrt{w^{*}} \geq(\lambda / 14) \cdot \sqrt{w}$, which means that $Y_{2}=\sum_{e \in E(H)} y(e) \geq(\lambda / 28) \cdot \sqrt{w} \geq(\lambda / 28) \cdot \sqrt{T} \geq 2 k$.

Locating the cliques. Let us fix and optimum primal and dual solution for the maximum multicommodity flow problem with pairs $\left(A_{1}^{*}, B_{1}^{*}\right), \ldots,\left(A_{r^{*}}^{*}, B_{r^{*}}^{*}\right)$ and let F_{0} be the flow obtained from the primal solution. We select k cliques K_{1}, \ldots, K_{k} and associate a subflow F_{i} of F_{0} with each clique K_{i}. Let $F^{(i)}$ be the flow obtained from F_{0} by removing F_{1}, \ldots, F_{i}. For every $u-v$ path P appearing in F_{0}, we get $\sum_{e \in E(H), e \cap P \neq \emptyset} y(e)+y(u)+y(v)=1$ from complementary slackness: if the primal variable corresponding to P is nonzero, then the corresponding dual constraint is tight. In particular, this means that the total weight of the edges intersecting such a path P is at most 1 . Let $c\left(e, F^{(i)}\right)$ be the total
weight of the paths in $F^{(i)}$ intersecting edge e and let $C_{i}=\sum_{e \in E(H)} y(e) c\left(e, F^{(i)}\right)$. Again by complementary slackness, $c\left(e, F_{0}\right)=1$ for each $e \in E(H)$ with $y(e)>0$ and hence $C_{0}=\sum_{e \in E(H)} y(e) \geq 2 k$.

Let us select e_{i} to be an edge such that $c\left(e_{i}, F^{(i-1)}\right)$ is maximum possible and let $K_{i}:=e_{i} \backslash \bigcup_{j=1}^{i-1} e_{j}$. Let the flow F_{i} contain all the paths of $F^{(i-1)}$ intersecting e_{i}. Observe that the paths appearing in F_{i} do not intersect e_{1}, \ldots, e_{i-1} (otherwise they would no longer be in $F^{(i-1)}$), thus clique K_{i} intersects every path in F_{i}. As $F^{(i-1)}$ is a subflow of F_{0}, for every path P in $F^{(i-1)}$, the total weight of the edges intersecting P in y is at most 1 . This means that if we remove a path of weight γ from $F^{(i-1)}$, then C_{i-1} decreases by at most γ. As the total weight of the paths intersecting e_{i} is at most 1 , we get that $C_{i} \geq C_{i-1}-1$ and hence $C_{i} \geq C_{i}-k \geq C_{0} / 2$ for $i \leq k$. Since $C_{0}=\sum_{e \in E(H)} y(e)$ and $C_{i}=\sum_{e \in E(H)} y(e) c\left(e, F^{(i)}\right)$, it is easy to see that $C_{i} \geq C_{0} / 2$ implies that there has to be at least one edge e with $c\left(e, F^{(i)}\right) \geq 1 / 2$. Thus in each step, we can select an edge e_{i} such that that the total weight of the paths intersecting e_{i} is at least $1 / 2$, and hence the value of F_{i} is at least $1 / 2$ for every $1 \leq i \leq k$.

Moving the highly connected set. Let $U=\bigcup_{i=1}^{k} K_{i}$. Each path P in F_{i} is a path with endpoints in W^{*} and intersecting K_{i}. Let us truncate each path P such that its first endpoint is still in W^{*} and its second endpoint is in K_{i}; let F_{i}^{\prime} be the $\left(W, K_{i}\right)$-flow obtained by truncating every path in F_{i}. Note that F_{i}^{\prime} is still a flow and the sum F^{\prime} of $F_{1}^{\prime}, \ldots, F_{k}^{\prime}$ is a $\left(W^{*}, U\right)$-flow. Let $\mu_{1}=\mu$ and let $\mu_{2}(v)$ be the total weight of the paths in F^{\prime} with second endpoint v. It is clear that μ_{2} is a fractional independent set, $\mu_{2}\left(K_{i}\right) \geq 1 / 2$, and F is a $\left(\mu_{1}, \mu_{2}\right)$-demand (W^{*}, U)-flow with value $\mu_{2}(U)$. Thus by Lemma6.4 U is a $\left(\mu_{2}, \lambda / 6\right)$-connected set with the required properties.

6.2 Concurrent flows and embedding

Let W be a set of vertices and let $\left(X_{1}, \ldots, X_{k}\right)$ be a partition of W. A uniform concurrent flow of value ε on $\left(X_{1}, \ldots, X_{k}\right)$ is a compatible set of $\binom{k}{2}$ flows $F_{i, j}(1 \leq i<j \leq k)$ where $F_{i, j}$ is an $\left(X_{i}, X_{j}\right)$-flow of value ε. The maximum value of a uniform concurrent flow on W can be expressed as the optimum values of the following primal and dual linear programs (we denote by $\mathcal{P}_{i, j}$ the set of all $X_{i}-X_{j}$ paths):

$$
\begin{aligned}
& \text { Primal LP } \\
& \text { maximize } \varepsilon \\
& \text { s. t. } \\
& \sum_{\substack{1 \leq i<j \leq k}} \sum_{\substack{P \in \mathcal{P}_{i, j}, n \\
P \cap \neq \emptyset}} x(P) \leq 1 \quad \forall e \in E(H) \\
& \sum_{P \in \mathcal{P}_{i, j}} x(P) \geq \varepsilon \quad \forall 1 \leq i<j \leq k \\
& x(P) \geq 0 \quad \forall 1 \leq i<j \leq k, P \in \mathcal{P}_{i, j} \\
& \text { Dual LP } \\
& \operatorname{minimize} \sum_{e \in e(H)} y(e) \\
& \sum_{e \in E(H), e \cap P \neq \emptyset} y(e) \geq \ell_{i, j} \quad \forall 1 \leq i<j \leq k, P \in \mathcal{P}_{i, j} \\
& \sum_{1 \leq i<j \leq k} \ell_{i, j} \geq 1 \\
& y(e) \geq 0 \quad \forall e \in E(H) \\
& \ell_{i, j} \geq 0 \quad \forall 1 \leq i<j \leq k
\end{aligned}
$$

If H is connected, then the maximum value of a uniform concurrent flow on $\left(X_{1}, \ldots, X_{k}\right)$ is at least $1 /\binom{k}{2}=\Omega\left(k^{-2}\right)$: if each of the $\binom{k}{2}$ flows has value $1 /\binom{k}{2}$, then they are clearly compatible. The following lemma shows that in a (μ, λ) connected set, if the sets X_{1}, \ldots, X_{r} are cliques (and they are not too small with respect to μ), then we can guarantee a better bound of $\Omega\left(k^{-\frac{3}{2}}\right)$.

Lemma 6.6. Let H be a hypergraph, μ a fractional independent set of H, and $W \subseteq V(H)$ a (μ, λ)-connected set of W for some $0<\lambda<1$. Let $\left(K_{1}, \ldots, K_{k}\right)$ be a partition of W such that K_{i} is a clique and $\mu\left(K_{i}\right) \geq 1 / 2$ for every $1 \leq i \leq k$. Then there is a uniform concurrent flow of value $\Omega\left(\lambda / k^{\frac{3}{2}}\right)$ on $\left(K_{1}, \ldots, K_{k}\right)$.
Proof. Suppose that there is no uniform concurrent flow of value $\beta \cdot \lambda / k^{\frac{3}{2}}$, where $\beta>0$ is a sufficiently small constant specified later. This means that the dual linear program has a solution having value less than that. Let us fix such a solution $\left(y, \ell_{i, j}\right)$ of the dual linear program. In the following, for every path P, we denote by $y(P):=\sum_{e \in E(H), e \cap P \neq \emptyset} y(e)$ the total weight of the edges intersecting P.

We construct two graphs G_{1} and G_{2} : the vertex set of both graphs is $\{1, \ldots, k\}$ and for every $1 \leq i<j \leq k$, vertices i and j are adjacent in G_{1} (resp., G_{2}) if and only if $\ell_{i, j}>1 /\left(3 k^{2}\right)$ (resp., $\ell_{i, j}>1 / k^{2}$). Note that G_{2} is a subgraph of G_{1}. First we prove the following claim:

Claim: If the distance of u and v is at most 3 in the complement of G_{1}, then u and v are not adjacent in G_{2}.
Suppose that $u w_{1} w_{2} v$ is a path of length 3 in the complement of G_{1} (the same argument works for paths of length less than 3). By definition of G_{1}, there is a $K_{u}-K_{w_{1}}$ path P_{1}, a $K_{w_{1}}-K_{w_{2}}$ path P_{2}, and a $K_{w_{2}}-K_{v}$ path P_{3} such that $y\left(P_{1}\right), y\left(P_{2}\right), y\left(P_{3}\right) \leq 1 /\left(3 k^{2}\right)$. Since $K_{w_{1}}$ and $K_{w_{2}}$ are cliques, paths P_{1} and P_{2} touch, and paths P_{2} and P_{3} touch. Thus by concatenating the three paths, we can obtain a $K_{u}-K_{v}$ path P with $y(P) \leq y\left(P_{1}\right)+y\left(P_{2}\right)+y\left(P_{3}\right) \leq 1 / k^{2}$, implying that u and v are not adjacent in G_{2}, proving the claim. Note that the proof of this claim is the only point where we use that the K_{i} 's are cliques.

Let $y^{\prime}: E(H) \rightarrow \mathbb{R}^{+}$defined by $y^{\prime}(e):=3 k^{2} \cdot y(e)$, thus y^{\prime} has total weight less than $3 \beta \cdot \lambda \sqrt{k}$. Suppose first that G_{1} has a matching of size $\lceil k / 4\rceil$. Without loss of generality, assume that $(i, i+\lceil k / 4\rceil)$ is an edge of G_{1} for every $1 \leq i \leq\lceil k / 4\rceil$. This means that y^{\prime} covers every $K_{i}-K_{i+\lceil k / 4\rceil}$ path for every i. Therefore, by Lemma6.3, y^{\prime} has weight at least $(\lambda / 7) \cdot \sqrt{\lceil k / 4\rceil \cdot(1 / 2)}>3 \beta \cdot \lambda \sqrt{k}$, if β is sufficiently small, yielding a contradiction.

Thus the size of the maximum matching in G_{1} is less than $k / 4$, which means that there is a vertex cover S_{1} of size less than $k / 2$. Let $S_{2} \subseteq S_{1}$ contain those vertices that are adjacent to every vertex outside S_{1} in G_{1}. We claim that S_{2} is a vertex cover of G_{2}. Suppose that there is an edge $u v$ of G_{2} for some $u, v \notin S_{2}$. Since u is not in S_{2}, either $u \notin S_{1}$, or there is a vertex $w_{1} \notin S_{1}$ such that u and w_{1} are not adjacent in G_{1}. Similarly, either v is not in S_{1}, or it is not adjacent in G_{1} to some $w_{2} \notin S_{1}$. Since vertices not in S_{1} are not adjacent in G_{1} (as S_{1} is a vertex cover of G_{1}), we get that the distance of u and v is at most 3 in the complement of G_{1}. Thus by the claim, u and v are not adjacent in G_{2}.

The total weight of y, which is less than $\beta \cdot \lambda / k^{\frac{3}{2}}$, is an upper bound on any $\ell_{i, j}$. Furthermore, if i and j are not adjacent in G_{2}, then we have $\ell_{i, j} \leq 1 / k^{2}$. The number of edges in G_{2} is at most $\left|S_{2}\right| k$ (as S_{2} is vertex cover), hence we have

$$
1 \leq \sum_{1 \leq i<j \leq k} \ell_{i, j} \leq\left|S_{2}\right| k \cdot \beta \cdot \lambda / k^{\frac{3}{2}}+\binom{k}{2}\left(1 / k^{2}\right) \leq \beta \cdot \lambda\left|S_{2}\right| / \sqrt{k}+1 / 2
$$

which implies that $\left|S_{2}\right| \geq 2 \sqrt{k} /(\beta \lambda)$. Let $A:=\bigcup_{i \in S_{2}} K_{i}$ and $B:=\bigcup_{i \notin S_{1}} K_{i}$; we have $\mu(A) \geq\left|S_{2}\right| \cdot(1 / 2) \geq \sqrt{k} /(\beta \lambda)$ and $\left.\mu(B) \geq(1 / 2) \cdot\left(k-\left|S_{1}\right|\right)\right) \geq k / 4$. As every vertex of S_{2} is adjacent in G_{1} with every vertex outside S_{1}, assignment y^{\prime} covers every $A-B$ path. However, y^{\prime} has weight less than $3 \beta \cdot \lambda \sqrt{k}<\min \{\sqrt{k} /(\beta \lambda), k / 4\}$ (using that $\lambda \leq 1$ and assuming that β is sufficiently small), contradicting the assumption that W is (μ, λ)-connected.

Intuitively, the intersection structure of the paths appearing in a uniform concurrent flow on cliques K_{1}, \ldots, K_{r} is reminiscent of the edges of the complete graph on r vertices: if $\left\{i_{1}, j_{1}\right\} \cap\left\{i_{2}, j_{2}\right\} \neq \emptyset$, then every path of $F_{i_{1}, j_{1}}$ touches every path of $F_{i_{2}, j_{2}}$. We use the following result from [41], which shows that the line graph of cliques have good embedding properties. If G is a graph and $q \geq 1$ is an integer, then the blow up $G^{(q)}$ is obtained from G by replacing every vertex v with a clique K_{v} of size q and for every edge $u v$ of G, connecting every vertex of the clique K_{u} with every vertex of the clique K_{v}. Let L_{k} be the line graph of the complete graph on k vertices.

Lemma 6.7. For every $k>1$ there is a constant $n_{k}>0$ such that for every $G(V, E)$ with $|E|>n_{k}$ and no isolated vertices, the graph G is a minor of $L_{k}^{(q)}$ for $q=\left\lceil 130|E| / k^{2}\right\rceil$. Furthermore, a minor mapping can be found in time polynomial in the size of G.

Using the terminology of embeddings, a minor mapping of G into $L_{k}^{(q)}$ can be considered as an embedding from G to L_{k} where every vertex of L_{k} appears in the image of at most q vertices, i.e., the vertex depth of the embedding is at most q. Thus we can restate Lemma 6.7 the following way:

Lemma 6.8. For every $k>1$ there is a constant $n_{k}>0$ such that for every $G(V, E)$ with $|E|>n_{k}$ and no isolated vertices, the graph G has an embedding into L_{k} with vertex depth $O\left(|E| / k^{2}\right)$. Furthermore, such an embedding can be found in time polynomial in the size of G.

Now we are ready to prove Theorem 6.1 the main result of the section:
Proof (of Theorem 6.1). By Lemma 6.5 and Lemma 6.6, for some $k=\Omega\left(\lambda \sqrt{\operatorname{con}_{\lambda}(H)}\right)$, there are cliques K_{1}, \ldots, K_{k} and a uniform concurrent flow $F_{i, j}(1 \leq i<j \leq k)$ of value $\varepsilon=\Omega\left(\lambda / k^{\frac{3}{2}}\right)$ on $\left(K_{1}, \ldots, K_{k}\right)$. By trying all possibilities for the cliques and then solving the uniform concurrent flow linear program, we can find these flows (the time required for
this step is a constant $f(H, \lambda)$ depending only on H and $\lambda)$. Let w_{0} be the smallest positive weight appearing in the flows.

Let $m=|E(G)|$ and suppose that $m \geq n_{k}$, for the constant n_{k} in Lemma6.7 Thus the algorithm of Lemma6.8 can be used to find a an embedding ψ from G to L_{k} with vertex depth $q=O\left(m / k^{2}\right)$. Let us denote by $v_{\{i, j\}}(1 \leq i<j \leq k)$ the vertices of L_{k} with the meaning that distinct vertices $v_{\left\{i_{1}, j_{1}\right\}}$ and $v_{\left\{i_{2}, j_{2}\right\}}$ are adjacent if and only if $\left\{i_{1}, j_{1}\right\} \cap\left\{i_{2}, j_{2}\right\} \neq \emptyset$.

We construct an embedding ϕ from G to H the following way. The set $\phi(u)$ is obtained by replacing each vertex of $\psi(u)$ by a path from one of the flows (thus $\phi(u)$ is the union of $|\psi(u)|$ paths). More precisely, for every $v_{\{i, j\}} \in \psi(u)$, let us add a path from $F_{i, j}$ to $\phi(u)$. We select the paths in such a way that the following requirement is satisfied: a path P of $F_{i, j}$ having weight w is selected into the images of at most $\lceil(q / \varepsilon) \cdot w\rceil$ vertices of G. We set $m_{H, \lambda}$ sufficiently large that $(q / \varepsilon) \cdot w_{0} \geq 1$ (note that q depends on m, but ε and w_{0} depends only on H and λ). Thus if $m \geq m_{H, \lambda}$, then $\lceil(q / \varepsilon) \cdot w\rceil \leq 2(q / \varepsilon) \cdot w$. Since the total weight of the paths in $F_{i, j}$ is ε, these paths can accommodate the image of at least $(q / \varepsilon) \cdot \varepsilon=q$ vertices. As each vertex $v_{\{i, j\}}$ of L_{k} appears in the image of at most q vertices of G in the mapping ψ, we can satisfy the requirement.

It is easy to see that if u_{1} and u_{2} are adjacent in G, then $\phi\left(u_{1}\right)$ and $\phi\left(u_{2}\right)$ touch: in this case, there are vertices $v_{\left\{i_{1}, j_{1}\right\}} \in \psi\left(u_{1}\right), v_{\left\{i_{2}, j_{2}\right\}} \in \psi\left(u_{2}\right)$ that are adjacent or the same in L_{k} (that is, there is a $\left.t \in\left\{i_{1}, j_{1}\right\} \cap\left\{i_{2}, j_{2}\right\} \neq \emptyset\right)$, and the corresponding paths of $F_{i_{1}, j_{1}}$ and $F_{i_{2}, j_{2}}$ selected into $\phi\left(u_{1}\right)$ and $\phi\left(u_{2}\right)$ touch, as they both intersect the clique K_{t}. With a similar argument, we can show that $\phi(u)$ is connected.

To bound the edge depth of the embedding ϕ, consider an edge e. The total weight of the paths intersecting e is at most 1 and a path with weight w is used in the image of at most $2(q / \varepsilon) \cdot w$ vertices. Each path intersects e in at most 2 vertices (as we can assume that the paths appearing in the flows are minimal), thus a path with weight w contributes at most $4(q / \varepsilon) \cdot w$ to the depth of e. Thus the edge depth of ϕ is at most $4(q / \varepsilon)=O(m /(\lambda \sqrt{k}))=$ $O\left(m /\left(\lambda^{\frac{3}{2}} \operatorname{con}_{\lambda}(H)^{\frac{1}{4}}\right)\right)$.

6.3 Connection with adaptive width

As an easy consequence of the embedding result Corollary 6.2 we can show that large submodular width implies large adaptive width:

Lemma 6.9. For every hypergraph $H, \operatorname{adw}(H)=\Omega(\operatorname{emb}(H))$
Proof. Suppose that $\operatorname{emb}(H)>\alpha$. This means that there is an integer m_{α} such that every graph with $m \geq m_{\alpha}$ edges has an embedding into H with edge depth m / α. It is well-known that there are arbitrarily large sparse graphs whose treewidth is linear in the number of vertices (see e.g., [29]): for some universal constant β, there is a graph G with $m \geq m_{\alpha}$ edges and treewidth at least βm. Thus there is an embedding ϕ from G to H with edge depth $q \leq m / \alpha$. Let $d(v)$ be the depth of vertex v in the embedding and let us define $\mu(v):=d(v) / q$. From the definition of edge depth, it is clear that μ is a fractional independent set. Suppose that there is a tree decomposition $\left(T, B_{v \in V(T)}\right)$ of H having μ-width w. This tree decomposition can be turned into a tree decomposition (T, $\left.B_{v \in V(T)}^{\prime}\right)$ of G : for every $B_{t} \subseteq V(H)$, let $B_{t}^{\prime}:=\left\{u \in V(G) \mid \phi(u) \cap B_{t} \neq \emptyset\right\}$ contain those vertices of G whose images intersect B_{t}. Furthermore, $\mu\left(B_{t}\right) \leq w$ means that $\sum_{v \in B_{t}} d(v) \leq q w$, which implies that $\left|B_{t}^{\prime}\right| \leq q w$. Thus the width of $\left(T, B_{v \in V(T)}^{\prime}\right)$ is less than $q w$, which means that w has to be at least $\beta m / q=\Omega(\alpha)$, the required lower bound on the adaptive width of H.

Combining Theorem 5.1 and Lemma 6.9 gives:
Corollary 6.10. For every hypergraph $H, \operatorname{subw}(H)=O\left(\operatorname{adw}(H)^{4}\right)$.

7 From embeddings to hardness of CSP

We prove the main hardness result of the paper in this section:
Theorem 7.1. If \mathcal{H} is a recursively enumerable class of hypergraphs with unbounded submodular width, then $\operatorname{CSP}(\mathcal{H})$ is not fixed-parameter tractable, unless the Exponential Time Hypothesis fails.

The Exponential Time Hypothesis (ETH) states that there is no $2^{o(n)}$ time algorithm for n-variable 3SAT. The Sparsification Lemma of Impagliazzo, Paturi, and Zane [35] shows that ETH is equivalent to the assumption that there is no algorithm for 3SAT whose running time is subexponential in the number of clauses. This result will be crucial for our hardness proof, as our reduction from 3SAT is sensitive to the number of clauses.

Theorem 7.2 (Impagliazzo, Paturi, and Zane [35]). If there is a $2^{o(m)}$ time algorithm for m-clause 3-SAT, then there is a $2^{o(n)}$ time algorithm for n-variable 3-SAT.

To prove Theorem 7.1, we show that a subexponential-time algorithm for 3SAT exists if $\operatorname{CSP}(\mathcal{H})$ is FPT for some \mathcal{H} with unbounded submodular width. We use the characterization of submodular width from Section 5 and the embedding results of Section 6 to reduce $3 \operatorname{SAT}$ to $\operatorname{CSP}(\mathcal{H})$ by embedding the incidence graph of a 3SAT formula into a hypergraph $H \in \mathcal{H}$. The basic idea of the proof is that if the 3SAT formula has m clauses and the edge depth of the embedding is m / r, then we can gain a factor r in the exponent of the running time. If submodular width is unbounded in \mathcal{H}, then we can make this gap r between the number of clauses and the edge depth arbitrary large, and hence the exponent can be arbitrarily smaller than the number of clauses, i.e., the algorithm is subexponential in the number of clauses.

The following simple lemma gives a transformation that turns a 3SAT instance into a binary CSP instance.
Lemma 7.3. [41] Given an instance of $3 S A T$ with n variables and m clauses, it is possible to construct in polynomial time an equivalent CSP instance with $n+m$ variables, $3 m$ binary constraints, and domain size 3 .

Next we show that an embedding from graph G to hypergraph H can be used to simulate a binary CSP instance I_{1} having primal graph G by a CSP instance I_{2} whose hypergraph is H. The domain size and the size of the constraint relations of I_{2} can grow very large in this transformation: the edge depth of the embedding determines how large is this increase.

Lemma 7.4. Let $I_{1}=\left(V_{1}, D_{1}, C_{1}\right)$ be a binary CSP instance with primal graph G and let ϕ be a embedding of G into a hypergraph H with edge depth q. Given I_{1}, H, and the embedding ϕ, it is possible to construct (in time polynomial in the size of the output) an equivalent CSP instance $I_{2}=\left(V_{2}, D_{2}, C_{2}\right)$ with hypergraph H where the size of every constraint relation is at most $\left|D_{1}\right|^{q}$.

Proof. For every $v \in V(H)$, let $U_{v}:=\{u \in V(G) \mid v \in \phi(u)\}$ be the set of vertices in G whose images contain v, and for every $e \in E(H)$, let $U_{e}:=\bigcup_{v \in e} U_{v}$. Observe that for every $e \in E(H)$, we have $\sum_{v \in e}\left|U_{v}\right| \leq q$, since the edge depth of ϕ is q. Let D_{2} be the set of integers between 1 and $\left|D_{1}\right|^{q}$. For every $v \in V(H)$, the number of assignments from U_{v} to D_{1} is clearly $\left|D_{1}\right|^{\left|U_{v}\right|} \leq\left|D_{1}\right|^{q}$. Let us fix a bijection h_{v} between these assignments on U_{v} and the set $\left\{1, \ldots,\left|D_{1}\right|^{\left|U_{v}\right|}\right\}$.

The set C_{2} of constraints of I_{2} are constructed as follows. For each $e \in E(H)$, there is a constraint $\left\langle s_{e}, R_{e}\right\rangle$ in C_{2}, where s_{e} is an $|e|$-tuple containing an arbitrary ordering of the elements of e. The relation R_{e} is defined the following way. Suppose that v_{i} is the i-th coordinate of s_{e} and consider a tuple $t=\left(d_{1}, \ldots, d_{\left|U_{e}\right|}\right) \subseteq D_{2}^{|e|}$ where $1 \leq d_{i} \leq\left|D_{1}\right|^{\left|U_{v_{i}}\right|}$ for every $1 \leq i \leq|e|$. This means that d_{i} is in the image of $h_{v_{i}}$ and hence $f_{i}:=h_{v_{i}}^{-1}\left(d_{i}\right)$ is an assignment from $U_{v_{i}}$ to D_{1}. We define relation R_{e} such that it contains tuple t if the following two conditions hold. First, we require that the assignments $f_{1}, \ldots, f_{|e|}$ are consistent in the sense that $f_{i}(u)=f_{j}(u)$ for any $u \in U_{v_{i}} \cap U_{v_{j}}$. In this case, f_{1}, \ldots, $f_{|e|}$ together define an assignment f on $\bigcup_{i=1}^{|e|} U_{v_{i}}=U_{e}$. The second requirement is that assignment f satisfies every constraint of I_{1} whose scope is contained in U_{e}, that is, for every constraint $\left\langle\left(u_{1}, u_{2}\right), R\right\rangle \in C_{1}$ with $\left\{u_{1}, u_{2}\right\} \subseteq U_{e}$, we have $\left(f\left(u_{1}\right), f\left(u_{2}\right)\right) \in R$. This completes the description of the instance I_{2}.

Let us bound the maximum size of a relation of I_{2}. Consider the relation R_{e} constructed in the previous paragraph. It contains tuples $\left(d_{1}, \ldots, d_{\left|U_{e}\right|}\right) \subseteq D_{2}^{|e|}$ where $1 \leq d_{i} \leq\left|D_{1}\right|^{\left|U_{v_{i}}\right|}$ for every $1 \leq i \leq|e|$. This means that

$$
\left|R_{e}\right| \leq \prod_{i=1}^{|e|}\left|D_{i}\right|^{\left|U_{v_{i}}\right|}=\left|D_{1}\right|^{\sum_{i=1}^{|e|}\left|U_{v_{i}}\right|} \leq\left|D_{1}\right|^{q}
$$

where the last inequality follows from the fact that ϕ has edge depth at most q.
To prove that I_{1} and I_{2} are equivalent, assume first that I_{1} has a solution $f_{1}: V_{1} \rightarrow D_{1}$. For every $v \in V_{2}$, let us define $f_{2}(v):=h_{v}\left(f_{2 \mid U_{v}}\right)$, that is, the integer between 1 and $\left|D_{1}\right|^{\left|U_{v}\right|}$ corresponding to assignment f_{2} restricted to U_{v}. It is easy to see that f_{2} is a solution of I_{2}.

Assume now that I_{2} has a solution $f_{2}: V_{2} \rightarrow D_{2}$. For every $v \in V(H)$, let $f_{z}:=h_{v}^{-1}\left(f_{2}(v)\right)$ be the assignment from U_{v} to D_{1} that corresponds to $f_{2}(v)$ (note that by construction, $f_{2}(v)$ is at most $\left|D_{1}\right|^{\left|U_{v}\right|}$, hence $h_{v}^{-1}\left(f_{2}(v)\right)$ is welldefined). We claim that these assignments are compatible: if $u \in U_{v^{\prime}} \cap U_{v^{\prime \prime}}$ for some $u \in V(G)$ and $v^{\prime}, v^{\prime \prime} \in V(H)$, then $f_{v^{\prime}}(u)=f_{v^{\prime \prime}}(u)$. Recall that $\phi(u)$ is a connected set in H, hence there is a path between v^{\prime} and $v^{\prime \prime}$ in $\phi(u)$. We prove the claim by induction on the distance between v^{\prime} and $v^{\prime \prime}$ in $\phi(u)$. If the distance is 0 , that is, $v^{\prime}=v^{\prime \prime}$, then the statement is trivial. Suppose now that the distance of v^{\prime} and $v^{\prime \prime}$ is $d>0$. This means that v^{\prime} has a neighbor $z \in \phi(u)$ such that the distance of z and $v^{\prime \prime}$ is $d-1$. Therefore, $f_{z}(u)=f_{v^{\prime \prime}}(u)$ by the induction hypothesis. Since v^{\prime} and z are adjacent in H, there is an edge $E \in E(H)$ containing both v^{\prime} and z. From the way I_{2} is defined, this means that $f_{v^{\prime}}$ and f_{z} are compatible and $f_{v^{\prime}}(u)=f_{z}(u)=f_{v^{\prime \prime}}(u)$ follows, proving the claim. Thus the assignments $f_{v}, v \in V(H)$ are compatible and these assignments together define an assignment $f_{1}: V(G) \rightarrow D$. We claim that f_{1} is a solution of I_{1}. Let $c=\left\langle\left(u_{1}, u_{2}\right), R\right\rangle$ be an arbitrary constraint of I_{1}. Since $u_{1} u_{2}^{\prime} \in E(G)$, sets $\phi\left(u_{1}\right)$ and $\phi\left(u_{2}\right)$ touch, thus there is an edge $e \in E\left(H_{k}\right)$ that contains a vertex $v_{1} \in \phi\left(u_{1}\right)$ and a vertex $v_{2} \in \phi\left(u_{2}\right)$ (or, in other words, $u_{1} \in U_{v_{1}}$ and $u_{2} \in U_{v_{2}}$). The definition of c_{e} in I_{2} ensures that f_{1} restricted to $U_{v_{1}} \cup U_{v_{2}}$ satisfies every constraint of I_{1} whose scope is contained in $U_{v_{1}} \cup U_{v_{2}}$; in particular, f_{1} satisfies constraint c.

Now we are ready to prove Theorem 7.1 the main result of the section. We show that if there is a class \mathcal{H} of hypergraphs with unbounded submodular width such that $\operatorname{CSP}(\mathcal{H})$ is FPT , then this algorithm can be used to solve 3SAT in subexponential time. The main ingredients are the embedding result of Theorem 6.1 and Lemmas 7.3 and 7.4 above on reduction to CSP. Furthermore, we need a way of choosing an appropriate hypergraph from the set \mathcal{H}. The reduction enumerates the first k hypergraphs from the class \mathcal{H} (for an appropriate value of k), and uses the hypergraph that is the best for embedding the 3SAT instance. Choosing the right value of k will be done in a somewhat technical way, but it should be clear that (1) if k is sufficiently small compared to the input size, then any operations and any constants related to the first k hypergraphs is dominated by the input size, and (2) if k is allowed to grow arbitrarily large (for sufficiently large input sizes), then every hypergraph in \mathcal{H} is considered. As discussed above, the gain in the exponent of the running time depends on the submodular width of the hypergraph. Thus if \mathcal{H} has unbounded submodular width and every hypergraph $H \in \mathcal{H}$ is considered in the reduction, then the gain in the exponent can be arbitrarily large.

Proof (of Theorem 7.1). Let us fix a $\lambda>0$ that is sufficiently small for Theorems 5.1 and 6.1 Suppose that there is an $f_{1}(H) n^{c_{1}}$ time algorithm for $\operatorname{CSP}(\mathcal{H})$. We use this algorithm to solve 3SAT in subexponential time. Given an instance I of 3SAT with n variables and m clauses, we use Lemma 7.3 to transform it into a CSP instance $I_{1}=\left(V_{1}, D_{1}, C_{1}\right)$ with $\left|V_{1}\right|=n+m,\left|D_{1}\right|=3$, and $\left|C_{1}\right|=3 m$. Let G be the primal graph of I_{1}, which is a graph having $3 m$ edges. We can assume that m is greater than some constant m_{0} (specified later), otherwise the instance can be solved in constant time.

Let us fix an arbitrary computable enumeration H_{1}, H_{2}, \ldots of the hypergraphs in \mathcal{H}. Let us spend m steps on enumerating these hypergraphs; let k_{m} be the last hypergraph produced by this enumeration. If we set m_{0} sufficiently large, then $k_{m} \geq 1$, that is, the enumeration produces at least one hypergraph. Consider the algorithm of Theorem 6.1 having running time $f_{2}(H, \lambda)|E(G)|^{c_{2}}$. For $i=1, \ldots, k_{m}$, let us simulate the first $|E(G)|^{c_{2}+1}$ steps of this algorithm with input $\left(G, H_{i}\right)$. If the algorithm terminates in at most $m^{c_{2}+1}$ steps, then it produces an embedding ϕ_{i} from G to H_{i}. If we set $m_{0} \geq f_{2}\left(H_{1}, \lambda\right)$, then m is sufficiently large that the simulation terminates and produces an embedding for at least one i. Among these embeddings, let ϕ_{k} be the one whose edge depth is minimum. We use ϕ_{k} and Lemma 7.4 to construct an equivalent instance $I_{2}=\left(V_{2}, D_{2}, C_{2}\right)$ whose hypergraph is H_{k}. By solving I_{2} using the assumed algorithm for $\operatorname{CSP}(\mathcal{H})$, we can answer if I_{1} has a solution, or equivalently, if the 3SAT instance I has a solution.

We claim that for every $s \geq 1$, the running time of this algorithm is $2^{O(m / s)}$ if m is sufficiently large. If con ${ }_{\lambda}(H)$ is sufficiently large and m is sufficiently large, then the embedding from a graph with m edges to H produced by the algorithm of Theorem 6.1 has edge depth m / s. Since \mathcal{H} has unbounded submodular width and hence $\operatorname{con}_{\lambda}(H)$ is unbounded, there is a graph $H_{i_{s}} \in H$ and a constant m_{s} such that if G is a graph with $m \geq m_{s}$ edges, then the algorithm of Theorem6.1 produces an embedding from G to $H_{i_{s}}$ with edge depth at most m / s. If furthermore m is sufficiently large, then $k_{m} \geq i_{s}$, i.e., the enumeration finds $H_{i_{s}}$ in at most m steps. If $m \geq f_{2}\left(H_{i_{s}}, \lambda\right)$ and m is greater than the constant $m_{H_{i_{s}}, \lambda}$ in Theorem6.1, then the simulation of the algorithm on $\left(G, H_{i_{s}}\right)$ for $|E(G)|^{c_{2}+1} \geq f_{2}\left(H_{i_{s}}, \lambda\right)|E(G)|^{c_{2}}$ steps terminates with an embedding $\phi_{i_{s}}$. Thus if q is the edge depth of ϕ_{k} (the embedding minimum edge depth), then $q \leq m / s$. Therefore, every relation in I_{2} has size at most $\left|D_{1}\right|^{q} \leq 3^{m / s}$. Note that the time required to construct I_{2} is polynomial in the size $\left\|I_{2}\right\|$ of the output, which is $3^{m / s}\left(\left|V\left(H_{i_{s}}\right)\right|+\left|E\left(H_{i_{s}}\right)\right|+\left\|I_{1}\right\|\right)^{O(1)}$. Therefore, the time required to solve I_{2} using
the the assumed algorithm for $\operatorname{CSP}(\mathcal{H})$ is $f_{2}\left(H_{i_{s}}, \lambda\right) \cdot\left\|I_{2}\right\|^{c_{1}}$, which is $\left\|I_{1}\right\|^{O(1)} \cdot 3^{m / s}$, if $m \geq f_{2}\left(H_{i_{s}}, \lambda\right),\left|V\left(H_{i_{s}}\right)\right|, \mid E\left(H_{i_{s}} \mid\right.$. Thus, suppressing factors polynomial in m, we get that the running time is dominated by $3^{m / s}$ if m is sufficiently large. This means that the running time of the algorithm is $2^{o(m)}$, implying that ETH fails.

8 Conclusions

The main result of the paper is introducing submodular width and proving that bounded submodular width is the property that determines the fixed-parameter tractability of $\operatorname{CSP}(\mathcal{H})$. The hardness result is proved assuming the Exponential Time Hypothesis. This conjecture was formulated relatively recently [35], but it turned out to be very useful in proving lower bounds in a variety of settings [41, 6, 42, 49].

For the hardness proof, we had to understand what large submodular width means and connected submodular width with other combinatorial properties. We have obtained several equivalent characterizations of bounded submodular width, in particular, we have showed that bounded submodular width is equivalent to bounded adaptive width:

Corollary 8.1. The following are equivalent for every class \mathcal{H} of hypergraphs:

1. There is a constant c_{1} such that μ-width $(H) \leq c_{1}$ for every $H \in \mathcal{H}$ and fractional independent set μ.
2. There is a constant c_{2} such that b-width $(H) \leq c_{2}$ for every $H \in \mathcal{H}$ and edge-dominated monotone submodular function b on $V(H)$.
3. There is a constant c_{3} such that b^{*}-width $(H) \leq c_{3}$ for every $H \in \mathcal{H}$ and edge-dominated monotone submodular function b on $V(H)$.
4. There is a constant c_{4} such that $\operatorname{con}_{\lambda}(H) \leq c_{4}$ for every $H \in \mathcal{H}$, where $\lambda>0$ is a universal constant.
5. There is a constant c_{5} such that $\mathrm{emb}(H) \leq c_{5}$ for every $H \in \mathcal{H}$.

Implications $(2) \Rightarrow(1)$ and $(3) \Rightarrow(2)$ are trivial; $(4) \Rightarrow(3)$ follows from Theorem 5.1] $(5) \Rightarrow(4)$ follows from Corollary 6.2, $(1) \Rightarrow(5)$ follows from Corollary 6.10

Let us briefly review the main ideas that were necessary for proving the main result of the paper:

- Recognizing that submodular width is the right property characterizing the complexity of the problem.
- A CSP instance can be partitioned into a bounded number of uniform instances (Section 4.1).
- The number of solutions in a uniform CSP instance can be described by a submodular function (Section 4.2).
- There is a connection between fractional separation and finding a separator minimizing an edge-dominated submodular cost function (Section 5.2).
- The transformation that turns b into b^{*}, the properties of b^{*} (Section5.1).
- Our results on fractional separation and the standard framework of finding tree decompositions show that large submodular width implies that there is highly connected set (Section 5.3).
- A highly connected set can be turned into a highly connected set that is partitioned into cliques in an appropriate way (Section 6.1).
- A highly connected set with appropriate cliques implies that there is a uniform concurrent flow of large value between the cliques (Section 6.2).
- Similarly to [41], we use the observation that a concurrent flow is analogous to a line graph of a clique, hence it has good embedding properties (Section 6.2).
- Similarly to [41], an embedding in a hypergraph gives a way of simulating 3SAT with $\operatorname{CSP}(\mathcal{H})$ (Section 7).

An obvious question for further research is whether it is possible to prove a similar dichotomy result with respect to polynomial time solvability. At this point, it is hard to see what the answer could be if we investigate the same question using the more restricted notion of polynomial time solvability. We know that bounded fractional hypertree width implies polynomial-time solvability [43] and Theorem 7.1]show that unbounded submodular width implies that the problem is not polynomial-time solvable (as it is not even fixed-parameter tractable). So only those classes are in the "grey zone" of hypergraph classes that have bounded submodular width but unbounded fractional hypertree width.

What could be the truth in this grey zone? A first possibility is that $\operatorname{CSP}(\mathcal{H})$ is polynomial-time solvable for every such classes, i.e., Theorem 4.1 can be improved from fixed-parameter tractability to polynomial-time solvability. However, Theorem 4.1 uses the power of fixed-parameter tractability in an essential way (splitting into an exponential number of uniform instances), so it is not clear how such improvement is possible. A second possibility is that unbounded fractional hypertree width implies that $\operatorname{CSP}(\mathcal{H})$ is not polynomial-time solvable. Substantially new techniques would be required for such a hardness proof. The hardness proofs of this paper and of [27, 41] are based on showing that a large problem space can be efficiently embedded into an instance with a particular hypergraph. However, the fixed-parameter tractability results show that no such embedding is possible in case of classes with bounded submodular width. Therefore, a possible hardness proof should embed a problem space that is comparable (in some sense) with the size of the hypergraph and should create instances where the domain size is bounded by a function of the size of the hypergraph. A third possibility is that the boundary of polynomial-time solvability is somewhere between bounded fractional hypertree width and bound submodular width. Currently, there is no natural candidate for a property that could correspond to this boundary and, again, the hardness part of the characterization should be substantially different than what was done before. Finally, there is a fourth possibility: the boundary of the polynomial-time cases cannot be elegantly characterized by a simple combinatorial property. In general, if we consider the restriction of a problem to all possible classes of (hyper)graphs, then there is no a priori reason why an elegant characterization should exist that that describes the easy and hard classes. For example, it is highly unlikely that there is an elegant characterization of those classes of graphs where solving the MAXIMUM IndEPENDENT SET problem is polynomial-time solvable. As discussed earlier, the fixed-parameter tractability of $\operatorname{CSP}(\mathcal{H})$ is a more robust question than its polynomial-time solvability, hence it is very well possible that only the former question has an elegant answer.

References

[1] I. Adler. Width functions for hypertree decompositions. PhD thesis, Albert-Ludwigs-Universität Freiburg, 2006.
[2] I. Adler, G. Gottlob, and M. Grohe. Hypertree width and related hypergraph invariants. European J. Combin., 28(8):2167-2181, 2007.
[3] A. Agarwal, N. Alon, and M. Charikar. Improved approximation for directed cut problems. In STOC'07Proceedings of the 39th Annual ACM Symposium on Theory of Computing, pages 671-680. ACM, New York, 2007.
[4] N. Alon, I. Newman, A. Shen, G. Tardos, and N. Vereshchagin. Partitioning multi-dimensional sets in a small number of "uniform" parts. European J. Combin., 28(1):134-144, 2007.
[5] O. Amini, F. Mazoit, N. Nisse, and S. Thomassé. Submodular partition functions. Discrete Mathematics, 309(20):6000-6008, 2009.
[6] A. Andoni, P. Indyk, and M. Patrascu. On the optimality of the dimensionality reduction method. In FOCS '06: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06), pages 449-458, Washington, DC, USA, 2006. IEEE Computer Society.
[7] A. Atserias, A. A. Bulatov, and V. Dalmau. On the power of k-consistency. In ICALP, pages 279-290, 2007.
[8] C. Beeri, R. Fagin, D. Maier, A. O. Mendelzon, J. D. Ullman, and M. Yannakakis. Properties of acyclic database schemes. In STOC, pages 355-362, 1981.
[9] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of acyclic database schemes. J. Assoc. Comput. Mach., 30(3):479-513, 1983.
[10] A. A. Bulatov. A dichotomy theorem for constraints on a three-element set. In Proc. 43th Symp. Foundations of Computer Science, pages 649-658. IEEE, November 2002.
[11] A. A. Bulatov. Tractable conservative constraint satisfaction problems. In 18th Annual IEEE Symposium on Logic in Computer Science (LICS'03), page 321, Los Alamitos, CA, USA, 2003. IEEE Computer Society.
[12] A. A. Bulatov, A. A. Krokhin, and P. Jeavons. The complexity of maximal constraint languages. In Proceedings of the 33rd ACM Symposium on Theory of Computing, pages 667-674, 2001.
[13] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries in relational data bases. In STOC, pages 77-90, 1977.
[14] C. Chekuri and A. Rajaraman. Conjunctive query containment revisited. Theoret. Comput. Sci., 239(2):211-229, 2000.
[15] H. Chen and M. Grohe. Constraint satisfaction problems with succinctly specified relations, 2006. Manuscript. Preliminary version in Dagstuhl Seminar Proceedings 06401: Complexity of Constraints.
[16] F. R. K. Chung, R. L. Graham, P. Frankl, and J. B. Shearer. Some intersection theorems for ordered sets and graphs. J. Combin. Theory Ser. A, 43(1):23-37, 1986.
[17] V. Dalmau, P. G. Kolaitis, and M. Y. Vardi. Constraint satisfaction, bounded treewidth, and finite-variable logics. In CP '02: Proceedings of the 8th International Conference on Principles and Practice of Constraint Programming, pages 310-326, London, UK, 2002. Springer-Verlag.
[18] R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in Computer Science. Springer, New York, 1999.
[19] R. Fagin. Degrees of acyclicity for hypergraphs and relational database schemes. J. Assoc. Comput. Mach., 30(3):514-550, 1983.
[20] T. Feder and M. Y. Vardi. The computational structure of monotone monadic SNP and constraint satisfaction: a study through Datalog and group theory. SIAM J. Comput., 28(1):57-104, 1999.
[21] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, Berlin, 2006.
[22] E. C. Freuder. Complexity of k-tree structured constraint satisfaction problems. In Proc. of AAAI-90, pages 4-9, Boston, MA, 1990.
[23] G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions and tractable queries. Journal of Computer and System Sciences, 64:579-627, 2002.
[24] G. Gottlob, F. Scarcello, and M. Sideri. Fixed-parameter complexity in AI and nonmonotonic reasoning. Artificial Intelligence, 138(1-2):55-86, 2002.
[25] G. Gottlob and S. Szeider. Fixed-parameter algorithms for artificial intelligence, constraint satisfaction and database problems. The Computer Journal, 51(3):303-325, 2008.
[26] M. Grohe. The structure of tractable constraint satisfaction problems. In MFCS 2006, pages 58-72, 2006.
[27] M. Grohe. The complexity of homomorphism and constraint satisfaction problems seen from the other side. J. ACM, 54(1):1, 2007.
[28] M. Grohe and D. Marx. Constraint solving via fractional edge covers. In SODA '06: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 289-298, New York, NY, USA, 2006. ACM Press.
[29] M. Grohe and D. Marx. On tree width, bramble size, and expansion. Journal of Combinatorial Theory Ser. B, 99(1):218-228, 2009.
[30] A. Gupta. Improved results for directed multicut. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (Baltimore, MD, 2003), pages 454-455, New York, 2003. ACM.
[31] M. T. Hajiaghayi and H. Räcke. An $O(\sqrt{n})$-approximation algorithm for directed sparsest cut. Inform. Process. Lett., 97(4):156-160, 2006.
[32] P. Hliněný. A parametrized algorithm for matroid branch-width. SIAM J. Comput., 35(2):259-277, 2005.
[33] P. Hliněný and S.-i. Oum. Finding branch-decompositions and rank-decompositions. SIAM J. Comput., 38(3):1012-1032, 2008.
[34] P. Hliněný and G. Whittle. Matroid tree-width. European J. Combin., 27(7):1117-1128, 2006.
[35] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential complexity? J. Comput. System Sci., 63(4):512-530, 2001.
[36] S. Iwata. Submodular function minimization. Math. Program., 112(1, Ser. B):45-64, 2008.
[37] S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial strongly polynomial algorithm for minimizing submodular functions. J. ACM, 48(4):761-777 (electronic), 2001.
[38] P. Jeavons, D. A. Cohen, and M. Gyssens. Closure properties of constraints. Journal of the ACM, 44(4):527-548, 1997.
[39] P. G. Kolaitis and M. Y. Vardi. Conjunctive-query containment and constraint satisfaction. J. Comput. Syst. Sci., 61(2):302-332, 2000.
[40] P. G. Kolaitis and M. Y. Vardi. A game-theoretic approach to constraint satisfaction. In AAAI/IAAI, pages 175181, 2000.
[41] D. Marx. Can you beat treewidth? In 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07), pages 169-179, 2007.
[42] D. Marx. On the optimality of planar and geometric approximation schemes. In 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07), pages 338-348, 2007.
[43] D. Marx. Approximating fractional hypetree width. In Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA'09), 2009.
[44] D. Marx. Tractable structures for constraint satisfaction with truth tables. In S. Albers and J.-Y. Marion, editors, 26th International Symposium on Theoretical Aspects of Computer Science (STACS 2009), pages 649-660, Dagstuhl, Germany, 2009. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.
[45] R. Niedermeier. Invitation to fixed-parameter algorithms, volume 31 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 2006.
[46] S. Oum. Approximating rank-width and clique-width quickly. In Proceedings of the 31st International Workshop on Graph-Theoretic Concepts in Computer Science, pages 49-58, 2005.
[47] S. Oum and P. Seymour. Testing branch-width. J. Combin. Theory Ser. B, 97(3):385-393, 2007.
[48] S.-i. Oum and P. Seymour. Approximating clique-width and branch-width. J. Combin. Theory Ser. B, 96(4):514528, 2006.
[49] M. Pǎtraşcu and R. Williams. On the possibility of faster sat algorithms. In Proc. 21st ACM/SIAM Symposium on Discrete Algorithms (SODA), 2010. To appear.
[50] F. Scarcello, G. Gottlob, and G. Greco. Uniform constraint satisfaction problems and database theory. In Complexity of Constraints, pages 156-195, 2008.
[51] T. J. Schaefer. The complexity of satisfiability problems. In Conference Record of the Tenth Annual ACM Symposium on Theory of Computing (San Diego, Calif., 1978), pages 216-226. ACM, New York, 1978.
[52] A. Schrijver. A combinatorial algorithm minimizing submodular functions in strongly polynomial time. J. Combin. Theory Ser. B, 80(2):346-355, 2000.
[53] M. Yannakakis. Algorithms for acyclic database schemes. In VLDB, pages 82-94, 1981.

[^0]: *School of Computer Science, Tel Aviv University, Tel Aviv, Israel. dmarx@cs.bme . hu

[^1]: ${ }^{1}$ This assumption is valid only for evaluation problems (where the problem instance includes a large database) and not for problems that involves only queries, such as the Conjunctive Query Containment problem.

