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ABSTRACT
An important question in the study of constraint satisfac-
tion problems (CSP) is understanding how the graph or
hypergraph describing the incidence structure of the con-
straints influences the complexity of the problem. For bi-
nary CSP instances (i.e., where each constraint involves only
two variables), the situation is well understood: the com-
plexity of the problem essentially depends on the treewidth
of the graph of the constraints [19, 24]. However, this is
not the correct answer if constraints with unbounded num-
ber of variables are allowed, and in particular, for CSP in-
stances arising from query evaluation problems in database
theory. Formally, if H is a class of hypergraphs, then let
CSP(H) be CSP restricted to instances whose hypergraph
is in H. Our goal is to characterize those classes of hy-
pergraphs for which CSP(H) is polynomial-time solvable or
fixed-parameter tractable, parameterized by the number of
variables. In the applications related to database query eval-
uation, we usually assume that the number of variables is
much smaller than the size of the instance, thus parameter-
ization by the number of variables is a meaningful question.

The most general known property of H that makes CSP(H)
polynomial-time solvable is bounded fractional hypertree width.
Here we introduce a new hypergraph measure called submod-
ular width, and show that bounded submodular width of
H (which is a strictly more general property than bounded
fractional hypertree width) implies that CSP(H) is fixed-
parameter tractable. In a matching hardness result, we show
that if H has unbounded submodular width, then CSP(H)
is not fixed-parameter tractable (and hence not polynomial-
time solvable), unless the Exponential Time Hypothesis (ETH)
fails. The algorithmic result uses tree decompositions in a
novel way: instead of using a single decomposition depend-
ing on the hypergraph, the instance is split into a set of
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instances (all on the same set of variables as the original in-
stance), and then the new instances are solved by choosing
a different tree decomposition for each of them. The reason
why this strategy works is that the splitting can be done
in such a way that the new instances are “uniform” with
respect to the number extensions of partial solutions, and
therefore the number of partial solutions can be described
by a submodular function. For the hardness result, we prove
via a series of combinatorial results that if a hypergraph H
has large submodular width, then a 3SAT instance can be
efficiently simulated by a CSP instance whose hypergraph is
H. To prove these combinatorial results, we need to develop
a theory of (multicommodity) flows on hypergraphs and ver-
tex separators in the case when the function b(S) defining
the cost of separator S is submodular.

Categories and Subject Descriptors
F.2 [Theory of Computing]: Analysis of Algorithms and
Problem Complexity

General Terms
Algorithms, Design, Performance, Theory

Keywords
constraint satisfaction, conjunctive queries, submodular width,
fixed-parameter tractability

1. INTRODUCTION
There is a long line of research devoted to identifying hy-

pergraph properties that make the evaluation of conjunctive
queries tractable (see e.g. [15, 31, 18, 19]). In the early 80s,
it has been noted that acyclicity is one such property [5,
11, 32, 4]. Later, more general such properties were iden-
tified in the literature: for example, bounded query width
[7], bounded hypertree width [15], and bounded fractional
hypertree width [25, 20]. Our main contribution is giving
a complete theoretical answer to this question: in a very
precise technical sense, we characterize those hypergraph
properties that imply tractability for the evaluation of a
query. Efficient evaluation of queries is originally a question
of database theory; however, the problem can be treated as
a constraint satisfaction problem [23, 17, 31].

Constraint satisfaction. Constraint Satisfaction Prob-
lems (CSP) form a general framework that includes many
standard algorithmic problems such as satisfiability, graph



coloring, database queries, etc. [18, 12]. A CSP instance
consists of a set V of variables, a domain D, and a set C
of constraints, where each constraint is a relation on a sub-
set of the variables. The task is to assign a value from D
to each variable in such a way that every constraint is sat-
isfied. It is easy to see that Boolean Conjunctive Query
can be formulated as the problem of deciding if a CSP in-
stance has a solution: the variables of the CSP instance
correspond to the variables appearing in the query and the
constraints correspond to the database relations. A distinc-
tive feature of CSP instances obtained this way is that the
number of variables is small (as queries are typically small),
while the domain of the variables are large (as the database
relations usually contain a large number of entries). This
has to be contrasted with typical CSP problems from AI,
such as 3-colorability and satisfiability, where the domain is
small, but the number of variables is large. As our motiva-
tion is database-theoretic, in the rest of the paper the reader
should keep in mind that we are envisioning scenarios where
the number of variables is small and the domain is large.

A natural question is to investigate the effect of structural
restrictions on the complexity of CSP; that is, what kind of
restrictions on the structure induced by the constraints on
the variables make the problem tractable. The hypergraph of
a CSP instance is defined to be a hypergraph on the variables
of the instance such that for each constraint c ∈ C there is
a hyperedge ec containing exactly the variables appearing c.
If the hypergraph of the CSP instance has simple structure,
then the instance is easy to solve. It is well-known that a
CSP instance I with hypergraph H can be solved in time
‖I‖O(tw(H)) [14], where tw(H) denotes the treewidth of H
and ‖I‖ is the size of the representation of I.

Our goal is to characterize the “easy” and “hard” hyper-
graphs from the viewpoint of constraint satisfaction. How-
ever, formally speaking, CSP is polynomial-time solvable for
every fixed hypergraph H: since H has a constant number
k of vertices, every CSP instance with hypergraph H can
be solved by trying all ‖I‖k possible combinations on the k
variables. It makes more sense to characterize those classes
of hypergraphs where CSP is easy. For a class H of hyper-
graphs, let CSP(H) be the restriction of CSP to instances
whose hypergraphs are in H. For the characterization of
the complexity of CSP(H), we can investigate two notions
of tractability. CSP(H) is polynomial-time solvable if there
is an algorithm solving every instance of CSP(H) in time

(‖I‖)O(1), where ‖I‖ is the length of the representation of I
in the input. For example, if H is class of hypergraphs with
bounded treewidth, then CSP(H) is polynomial-time solv-
able. The following notion interprets tractability in a less
restrictive way: CSP(H) is fixed-parameter tractable (FPT)
if there is an algorithm solving every instance I of CSP(H)

in time f(H)(‖I‖)O(1), where f is an arbitrary function.
The case of bounded arities. If the constraints have

bounded arity (i.e., the edge size in H is bounded by a con-
stant r), then CSP(H) is well understood: bounded treewidth
is the only polynomial-time solvable case.

Theorem 1.1 ([19]). If H is a recursively enumerable
class of hypergraphs with bounded edge size, then (assuming
FPT 6= W[1]) the following are equivalent:

1. CSP(H) is polynomial-time solvable.

2. CSP(H) is fixed-parameter tractable.

3. H has bounded treewidth.

Theorem 1.1 proves the surprising result that whenever CSP(H)
is fixed-parameter tractable, it is polynomial-time solvable
as well. The following sharpening of Theorem 1.1 shows
that there is no algorithm whose running time is signifi-
cantly better than the ‖I‖O(tw(H)) bound of the treewidth
based algorithm. The result is proved under the Exponential
Time Hypothesis (ETH) [22], a somewhat stronger assump-

tion than FPT 6= W[1]: it is assumed that there is no 2o(n)

time algorithm for n-variable 3SAT.

Theorem 1.2 ([24]). If there is a function f and a re-
cursively enumerable class H of hypergraphs with bounded
edge size and unbounded treewidth such that CSP(H) can be

solved in time f(H)‖I‖o(tw(H)/ log tw(H)) for instances I with
hypergraph H ∈ H, then ETH fails.

Unbounded arities. The situation is less understood
in the unbounded arity case, i.e., when there is no bound
on the maximum edge size in H. First, the complexity in
the unbounded-arity case depends on how the constraints
are represented. In the bounded-arity case, if each con-
straint contains at most r variables (r being a fixed con-
stant), then every reasonable representation of a constraint

has size |D|O(r). Therefore, the size of the different represen-
tations can differ only by a polynomial factor. On the other
hand, if there is no bound on the arity, then there can be
exponential difference between the size of succinct represen-
tations (e.g., formulas [8]) and verbose representations (e.g.,
truth tables [26]). The running time of an algorithm is ex-
pressed as a function of the input size, hence the complexity
of the problem can depend on how the input is represented:
longer representation means that it is potentially easier to
obtain a polynomial-time algorithm.

The most well-studied representation of constraints is list-
ing all the tuples that satisfy the constraint. This represen-
tation is perfectly compatible with our database-theoretic
motivation: the constraints are relations of the database,
and a relation is physically stored as a table containing all
the tuples in the relation. For this representation, there
are classes H with unbounded treewidth such that CSP re-
stricted to this class is polynomial-time solvable. A trivial
example is the class H of all hypergraphs having only a single
hyperedge of arbitrary size. There are other classes of hyper-
graphs with unbounded treewidth such that CSP(H) is solv-
able in polynomial time: for example, classes with bounded
(generalized) hypertree width [16], bounded fractional edge
cover number [20], and bounded fractional hypertree width
[20, 25]. Thus treewidth is not the right measure for char-
acterizing the complexity of the problem.

Our results. We introduce a new hypergraph width mea-
sure that we call submodular width. Small submodular width
means that for every monotone submodular function b on the
vertices of the hypergraph H, there is a tree decomposition
where b(B) is small for every bag B of the decomposition.
(This definition makes sense only if we normalize the consid-
ered functions: for this reason, we require that b(e) ≤ 1 for
every edge e of H.) The main result of the paper is show-
ing that bounded submodular width is the property that
precisely characterizes the complexity of CSP(H):

Theorem 1.3 (Main). Let H be a recursively enumer-
able class of hypergraphs. Assuming ETH, CSP(H) param-
eterized by the hypergraph H is fixed-parameter tractable if
and only if H has bounded submodular width.



Theorem 1.3 has an algorithmic side (algorithm for bounded
submodular width) and a complexity side (hardness result
for unbounded submodular width). Unlike previous width
measures in the literature, where small value of the measure
suggests a way of solving CSP(H) it is not at all clear how
bounded submodular width is of any help. In particular, it
is not obvious what submodular functions have to do with
CSP instances. The main idea of our algorithm is that a
CSP instance can be “split” into a small number of “uni-
form” CSP instances; for this purpose, we use a partitioning
procedure inspired by a result of Alon et al. [3]. Concep-
tually, our algorithm goes beyond previous decomposition
techniques in two ways. First, the tree decomposition that
we use depends not only on the hypergraph, but on the
actual constraint relations in the instance (we remark that
this idea first appeared in [26] in a different context that
does not directly apply to our problem). Second, we are
not only decomposing the set of variables, but we also split
the constraint relations. This way, we can apply different
decompositions to different parts of the solution space.

The proof of the complexity side of Theorem 1.3 follows
the same high-level strategy as the proof of Theorem 1.2 in
[24]. In a nutshell, the argument of [24] is the following: if
treewidth is large, then there is subset of vertices which is
highly connected in the sense that the set does not have a
small balanced separator; such a highly connected set im-
plies that there is uniform concurrent flow (i.e., a compati-
ble set of flows connecting every pair of vertices in the set);
the paths in the flows can be used to embed the graph of
a 3SAT formula; and finally this embedding can be used
to reduce 3SAT to CSP. These arguments build heavily on
well-known characterizations of treewidth and results from
combinatorial optimization (such as the O(log k) integrality
gap of sparsest cut). The proof of Theorem 1.3 follows this
outline, but now no such well-known tools are available: we
are dealing with hypergraphs and submodular functions in
a way that was not explored before in the literature. One
of the main difficulties of obtaining Theorem 1.3 is that we
have to work in three different domains:

• CSP instances. As our goal is to investigate the
existence of algorithms solving CSP, the most obvious
domain is CSP instances. In light of previous results,
we are especially interested in algorithms based on tree
decompositions. For such algorithms, what matters is
the existence of subsets of vertices such that restricting
the instance to any of these subsets gives an instance
with “small” number of solutions. In order to solve the
instance, we would like to find a tree decomposition
where every bag is such a small set.

• Submodular functions. Submodular width is de-
fined in terms of submodular functions, thus submod-
ular functions defined on hypergraphs is our second
natural domain. We need to understand what large
submodular width means, that is, what property of
the submodular function and the hypergraph makes it
impossible to obtain a tree decomposition where every
bag has small value.

• Flows and embeddings in hypergraphs. In the
hardness proof, our goal is to embed the graph of a
3SAT formula into a hypergraph. Thus we need to
define an appropriate notion of embedding and study

what guarantees the existence of embeddings with suit-
able properties. As in [24], we use the paths appearing
in flows to construct embeddings. For our purposes,
the right notion of flow is a collection of weighted paths
where the total weight of the paths intersecting each
hyperedge is at most 1. This notion of flows has not
been studied in the literature before, thus we need to
obtain basic tools and results on such flows.

A key question is how to find connections between these
domains. As mentioned above and detailed in Section 3,
we have a procedure that reduces a CSP instance into a set
of uniform CSP instances, and the number of solutions on
the different subsets of variables in a uniform CSP instance
can be described by a submodular function. This method
allows us to move from the domain of CSP instances to the
domain of submodular functions. Section 4 is devoted to
showing that if submodular width of a hypergraph is large,
then there is a certain “highly connected” set in the hyper-
graph. Highly connected set is defined as a property of the
hypergraph and has no longer anything to do with submod-
ular functions. Thus this connection allows us to move from
the domain of submodular functions to the study of hyper-
graphs. In Section 5, we show that a highly connected set
in a hypergraph means that graphs can be efficiently em-
bedded into the hypergraph. In particular, the graph of a
3SAT formula can be embedded into the hypergraph, which
gives us (as shown in Section 6) a reduction from 3SAT to
CSP(H). This connection allows us to move from the do-
main of embeddings back to the domain of CSP instances.

We can show that bounded submodular width is a strictly
more general property than bounded fractional hypertree
width, which was previously the most general property known
to make CSP(H) FPT (see the full version of the paper).
Thus Theorem 1.3 not only gives a complete characterization
of the parameterized complexity of CSP(H), but its algo-
rithmic side proves fixed-parameter tractability in a strictly
more general case than what was known before.

2. PRELIMINARIES
Constraint satisfaction problems. We briefly recall

the most important notions related to CSP. For more back-
ground, see e.g., [18, 12]. An instance of a constraint sat-
isfaction problem is a triple (V,D, C), where: V is a set of
variables, D is a domain of values, C is a set of constraints,
{c1, c2, . . . , cq}. Each constraint ci ∈ C is a pair 〈si, Ri〉,
where si is a tuple of variables of length mi, called the con-
straint scope, and Ri is an mi-ary relation over D, called the
constraint relation.

For each constraint 〈si, Ri〉 the tuples of Ri indicate the al-
lowed combinations of simultaneous values for the variables
in si. The length mi of the tuple si is called the arity of the
constraint. A solution to a constraint satisfaction problem
instance is a function f from the set of variables V to the do-
main of values D such that for each constraint 〈si, Ri〉 with
si = 〈vi1 , vi2 , . . . , vim 〉, the tuple 〈f(vi1 ), f(vi2 ), . . . , f(vim )〉
is a member of Ri. We say that an instance is binary if
each constraint relation is binary, i.e., mi = 2 for each con-
straint. It can be assumed that the instance does not contain
two constraints 〈si, Ri〉, 〈sj , Rj〉 with si = sj , since in this
case the two constraints can be replaced by the constraint
〈si, Ri ∩ Rj〉. In the input, the relation in a constraint is
represented by listing all the tuples of the constraint. We



denote by ‖I‖ the size of the representation of the instance
I = (V,D, C).

Let I = (V,D, C) be a CSP instance and let V ′ ⊆ V be a
nonempty subset of variables. The projection prV ′ I of I to
V ′ is a CSP I ′ = (V ′, D, C′), where C′ is defined the follow-
ing way: For each constraint c = 〈(v1, . . . , vk), R〉 having at
least one variable in V ′, there is a corresponding constraint
c′ in C′. Suppose that vi1 , . . . , vi` are the variables among
v1, . . . , vk that are in V ′. Then the constraint c′ is defined
as 〈(vi1 , . . . , vi`), R′〉, where the relation R′ is the projection
of R to the components i1, . . . , i`, that is, R′ contains an
`-tuple (d′1, . . . , d

′
`) ∈ D` if and only if there is a k-tuple

(d1, . . . , dk) ∈ R such that d′j = dij for 1 ≤ j ≤ `. Clearly, if
f is a solution of I, then f|V ′ (f restricted to V ′) is a solution
of prV ′ I. For a subset V ′ ⊆ V , we denote by solI (V

′) the
set of all solutions of prV ′ I. If the instance I is clear from
the context, we drop the subscript.

The primal graph (or Gaifman graph) of a CSP instance
I = (V,D, C) is a graph with vertex set V such that u, v ∈ V
are adjacent if and only if they appear together in the scope
of some constraint. The hypergraph of a CSP instance I =
(V,D, C) is a hypergraph H with vertex set V , where e ⊆ V
is an edge if and only if there is a constraint whose scope is
e. Let CSP(H) be the problem restricted to instances whose
hypergraph is in H.

Paths, separators, and flows in hypergraphs. A
path P in hypergraph H is an ordered sequence v0, v1, . . . ,
vr of vertices such that vi and vi−1 are adjacent for every
1 ≤ i < r. We distinguish the endpoints of a path: vertex
v0 is the first endpoint of P and vr is the second endpoint of
P . A path is an X − Y path if its first endpoint is in X and
its second endpoint is in Y .

Let H be a hypergraph and X, Y ⊆ V (H) be two (not
necessarily disjoint) sets of vertices. An (X,Y )-separator is
a set S ⊆ V (H) of vertices such that every X − Y path
of H contains at least one vertex of S. In particular, this
means that X ∩ Y ⊆ S. An assignment s : E(H) → R

+ is a
fractional (X,Y )-separator if every X−Y path P is covered
by s, that is,

∑

e∈E(H),e∩P 6=∅ s(e) ≥ 1. The weight of the

fractional separator s is
∑

e∈E(H) s(e).
Let H be a hypergraph and let P be the set of all paths

in H. A flow of H is an assignment f : P → R
+ such that

∑

P∈P,P∩e6=∅ f(P ) ≤ 1 for every e ∈ E(H). The value of the

flow f is
∑

P∈P f(P ). We say that a path P appears in flow
f , or simply P is a path of f if f(P ) > 0. For some X,Y ⊆
V (H), an (X,Y )-flow is a flow f such that only X − Y
paths appear in f . A standard LP duality argument shows
that the minimum weight of a fractional (X,Y )-separator
is equal to the maximum value of an (X,Y )-flow. If f, f ′

are flows such that f ′(P ) ≤ f(P ) for every path P , then
f ′ is a subflow of f . The sum of the flows f1, . . . , fr is a
mapping that assigns weight

∑r
i=1 fi(P ) to each path P . If

the sum of f1, . . . , fr is a flow, then we say that f1, . . . , fr
are compatible.

Highly connected sets. An important step in under-
standing various width measures is showing that if the mea-
sure is large, then the (hyper)graph contains a highly con-
nected set (in a certain sense). We define here the notion
of highly connected that will be used in the paper. First,
recall that a fractional independent set of a hypergraph H
is a mapping µ : V (H) → [0, 1] such that

∑

v∈e µ(v) ≤ 1
for every e ∈ E(H). We extend functions on the vertices

of H to subsets of vertices of H the natural way by setting
µ(X) :=

∑

v∈X µ(v).
Let µ be a fractional independent set of hypergraph H

and let λ > 0 be a constant. We say that a set W ⊆ V (H)
is (µ, λ)-connected if for any two disjoint sets A,B ⊆W , the
minimum weight of a fractional (A,B)-separator is at least
λ·min{µ(A), µ(B)}. Note that ifW is (µ, λ)-connected, then
W is (µ, λ′)-connected for every λ′ < λ and every W ′ ⊆ W
is also (µ, λ)-connected. Informally, if W is (µ, λ)-lambda
connected for some fractional independent set µ such that
µ(W ) is “large”, then we call W a highly connected set. For
λ > 0, we denote by conλ(H) the maximum of µ(W ), taken
over all (µ, λ)-connected set W of H. Throughout the paper,
λ can be thought of as a sufficiently small universal constant,
say, 0.001.

Embeddings. The hardness result presented in the pa-
per and earlier hardness results for CSP(H) [19, 26, 24] are
based on embedding some other problem (with a certain
graph structure) in a CSP instance whose hypergraph is a
member of H. Thus we need appropriate notions of em-
bedding a graph in a (hyper)graph. A crucial difference
between the proof of Theorem 1.1 in [19] and the proof of
Theorem 1.2 in [24] is that the former result is a based on
finding a minor embedding of a grid, while the latter re-
sult uses an embedding where the images of distinct vertices
are not necessarily disjoint, but can overlap in a controlled
way. We define such embeddings the following way. We
say that two sets of vertices X,Y ⊆ V (H) touch if either
X ∩ Y 6= ∅, or there is an edge e ∈ E(H) intersecting both
X and Y . An embedding of graph G into hypergraph H is
a mapping ψ that maps each vertex of H to a connected
subset of V (G) such that if u and v are adjacent in G, then
ψ(u) and ψ(v) touch. The depth of a vertex v ∈ V (H) in em-
bedding ψ is dψ(v) := |{u ∈ V (G) | v ∈ ψ(u)}|, the number
of vertices of G whose images contain v. The vertex depth
of the embedding is maxv∈V (H) dψ(v). Because in our case
we want to control the size of the constraint relations, we
need a notion of depth that is sensitive to “what the edges
see.” We define edge depth of ψ to be maxe∈E(H)

∑

v∈e dψ(v).
Equivalently, we can define edge depth as the maximum of
∑

v∈V (G) |ψ(v) ∩ e|, taken over all edges of e of H.
Trivially, for any graph G and hypergraph H, there is an

embedding of G into H having vertex depth and edge depth
at most |V (G)|. If G has m edges and no isolated vertices,
then |V (G)| is at most 2m. We are interested in how much
we can gain compared to this trivial solution of depth O(m).
We define the embedding power emb(H) to be the maximum
(supremum) value of α for which there is an integer mα such
that every graph G with m ≥ mα edges has an embedding
into H with edge depth m/α.

Width parameters We follow the framework of width
functions introduced by Adler [1]. A tree decomposition of
a hypergraph H is a tuple (T, (Bt)t∈V (T )), where T is a
tree and (Bt)t∈V (T ) is a family of subsets of V (H) satisfying
the following two conditions: (1) for each e ∈ E(H) there
is a node t ∈ V (T ) such that e ⊆ Bt, and (2) for each
v ∈ V (H) the set {t ∈ V (T ) | v ∈ Bt} is connected in T .
The sets Bt are called the bags of the decomposition. Let
f : 2V (H) → R

+ be a function that assigns a nonnegative real
number to each nonempty subset of vertices. The f-width
of a tree-decomposition (T, (Bt)t∈V (T )) is max

{

f(Bt) | t ∈
V (T )}. The f-width of a hypergraph H is the minimum of
the f -widths of all its tree decompositions. In other words,



f -width(H) ≤ w if and only if there is a tree decomposition
of H where f(B) ≤ w for every bag B.

The main idea of tree decomposition based algorithms is
that if we have a tree decomposition for instance I such
that at most C assignments on Bt have to be considered for
each bag Bt, then the problem can be solved by dynamic
programming in time polynomial in C and ‖I‖. The var-
ious width notions try to guarantee the existence of such
decompositions. For example, the simplest such notion,
treewidth, can be defined as tw(H) := s-width(H), where
s(B) = |B| − 1. Further width notions defined in the lit-
erature, such as generalized hypertree width and fractional
hypertree width can also be conveniently defined using this
setup, see [1].

We generalize the notion of f -width from a single function
f to a class of functions F . Let F be an arbitrary (possi-
bly infinite) class of functions that assign nonnegative real
numbers to nonempty subsets of vertices. The F-width of a
hypergraph H is F-width(H) := sup

{

f -width(H) | f ∈ F
}

.
Thus if F-width(H) ≤ k, then for every f ∈ F , hypergraph
H has a tree decomposition with f -width at most k. Note
that this tree decomposition can be different for the different
functions f . For normalization purposes, we consider only
functions f on V (H) that are edge-dominated: f(e) ≤ 1
holds for every e ∈ E(H). The main new definition of the
paper is submodular width:

Definition 2.1. A function b : 2V (H) → R
+ is sub-

modular if b(X) + b(Y ) ≥ b(X ∩ Y ) + b(X ∪ Y ) holds for
every X, Y ⊆ V (H). Given a hypergraph H, let F con-
tain the edge-dominated monotone submodular functions on
V (H). The submodular width subw(H) of hypergraph H is
F-width(H).

3. FROM CSP INSTANCES TO SUBMODU-
LAR FUNCTIONS

We prove the main algorithmic result in this section: CSP(H)
is FPT if H has bounded submodular width.

Theorem 3.1. Let H be a class of hypergraphs such that
subw(H) ≤ c0 for every H ∈ H. Then CSP(H) can be

solved in time 22O(|V (H)|) · ‖I‖O(c0).

The proof of Theorem 3.1 is based on two main ideas:

1. A CSP instance I can be decomposed into a bounded
number of“uniform”CSP instances I1, . . . , It (Lemma 3.9).
Here uniform means that if B ⊆ A are two sets of vari-
ables, then every solution of prB Ij has roughly the
same number of extensions to prA Ij .

2. If I is a uniform CSP instance, then (the logarithm of)
the number of solutions on the different projections of
I can be described by an edge-dominated submodular
function (Lemma 3.10). Therefore, if the hypergraph
H of I has bounded submodular width, then it follows
that there is a tree decomposition where every bag has
a small number of solutions.

In the implementation of the first idea (Lemma 3.9), we
guarantee uniformity only to subsets of variables that are
“small” in the following hereditary sense:

Definition 3.2. For a CSP instance I and M ≥ 1, a set
S ⊆ V is M -small if | solI(S′)| ≤M for every S′ ⊆ S.

It is not difficult to find all the M -small sets, and every
solution of the instances projected onto these sets:

Lemma 3.3. Let I = (V,D,C) be a CSP instance and
M ≥ 1 an integer. There is an algorithm with running time
2O(|V |) ·poly(‖I‖,M) that finds the set S of all M-small sets
S ⊆ V and constructs solI(S) for each such S ∈ S.

The following definition gives the precise notion of unifor-
mity that we use:

Definition 3.4. Let I = (V,D, C) be a CSP instance.
For B ⊆ A ⊆ V and an assignment b : B → D, let
solI(A|B = b) := {a ∈ solI(A) | a(x) = b(x) for every x ∈ B},
the set of all extensions of b to a solution of prA I. Let
maxI(A|B) = maxb∈solI (B) | solI (A|B = b)|. We say that
A ⊆ V is c-uniform (for some integer c) if, for every B ⊆ A,
maxI(A|B) ≤ c| solI(A)|/| solI(B)|. We define maxI (A|∅) =
| solI (A)| and maxI(∅|∅) = 1. An instance is (N, c, ε)-uniform
if every Nc-small set is N ε-uniform.

Proposition 3.5. For every B ⊆ A ⊆ V and C ⊆ V , we
have

1. max(A|B) ≥ | sol(A)|/| sol(B)|,
2. max(A|B) ≥ max(A ∪ C|B ∪ C).

We want to avoid dealing with assignments b ∈ sol(B)
that cannot be extended to a member of sol(A) for some
A ⊇ B (that is, sol(A|B = b) = ∅). We require that there is
no such unextendable b if A and B are M -small:

Definition 3.6. A CSP instance isM -consistent if sol(B) =
prA sol(A) for all M-small sets B ⊆ A. A CSP instance is
nontrivial if sol({v}) 6= ∅ for any v ∈ V .

Proposition 3.7. If I is an M-consistent nontrivial CSP
instance, then sol(S) 6= ∅ for every M-small set S.

We can achieve M -consistency by throwing away partial so-
lutions that violate the requirements. Instance I ′ = (V,D,C′)
is a refinement of I = (V,D, C) if for every 〈s, R〉 ∈ C, there
is a 〈s, R′〉 ∈ C′ such that R′ ⊆ R.

Lemma 3.8. Let I = (V,D,C) be a CSP instance and
M ≥ 1 an integer. There is an algorithm with running time
2O(|V |) · poly(‖I‖,M) that produces an M-consistent CSP
instance I ′ that is a refinement of I with sol(I) = sol(I ′).

Our algorithm for decomposing a CSP instance into uni-
form CSP instances is inspired by a combinatorial result of
Alon et al. [3], which shows that, for every fixed n, an n-
dimensional point set S can be partitioned into polylog(|S|)
O(1)-uniform classes. We follow the same proof idea: the
instance is split into two instances if uniformity is violated
somewhere, and we analyze the change of a weight func-
tion to bound the number of splits performed. However, the
parameter setting is different in our proof: we want to par-
tition into f(|V |) classes, but we are satisfied with weaker
uniformity. A minor difference is that we require uniformity
only on Nc-small sets.

Lemma 3.9. Let I = (V,D,C) be a CSP instance and
let N , c be integers and ε > 0. There is an algorithm with

running time 22O(|V |)·c/ε·poly(‖I‖, Nc) that produces a set of
(N, c, ε)-uniform N c-consistent nontrivial instances I1, . . . ,

It with 0 ≤ t ≤ 22O(|V |)·c/ε, all on the set V of variables,
such that



1. every solution of I is a solution of exactly one Ii,

2. for every 1 ≤ i ≤ t, instance Ii is a refinement of I.

Proof. The main step of the algorithm takes a CSP
instance I and either makes it (N, c, ε)-uniform and N c-
consistent, or splits it into two instances Ismall, Ilarge. By
applying the main step recursively on Ismall and Ilarge, we
eventually arrive to a set of (N, c, ε)-uniform N c-consistent
instances. We will argue that the number of constructed

instances is 22O(|V |)·c/ε.
In the main step, we first check if the instance is trivial;

in this case we can stop with t = 0. Otherwise, we invoke
the algorithm of Lemma 3.8 to obtain an N c-consistent re-
finement of the instance, without losing any solution. Next
we check if this Nc-consistent instance I is (N, c, ε)-uniform.

This can be tested in time 2O(|V |) · poly(‖I‖, Nc) if we use
Lemma 3.3 to find all the N c-small sets and the correspond-
ing sets of solutions. Suppose that N c-small sets B ⊆ A vi-
olate uniformity, that is, max(A|B) > M ε| sol(A)|/| sol(B)|.
Let solsmall(B) contain those tuples b for which | sol(A|B =

b)| ≤
√
M ε| sol(A)|/| sol(B)| and let sollarge(B) = sol(B) \

solsmall(B). Note that

| sol(A)| ≥ | sollarge(B)| · (
√
M ε| sol(A)|/| sol(B)|)

(as every tuple b ∈ sollarge(B) has at least
√
M ε| sol(A)|/| sol(B)|

extensions to A), hence | sollarge(B)| ≤ | sol(B)|/
√
M ε. Let

instance Ismall (resp., Ilarge) be obtained from I by adding
the constraint 〈B, solsmall(B)〉 (resp., 〈B, sollarge(B)〉). Clearly,
the set of solutions of I is the disjoint union of the sets of
solutions of Ismall and Ilarge. This completes the description
of the main step.

It is clear that if the recursive procedure stops, then the
instances at the leaves of the recursion satisfy the two re-
quirements. We show that the height of the recursion tree
can be bounded from above by a function h(|V |, c, ε) depend-
ing only on |V |, c, and ε; in particular, this shows that the
recursive algorithm eventually stops and produces at most
2h(|V |,c,ε) instances.

Let us consider a path in the recursion tree starting at
the root, and let I1, I2, . . . , Ip be the corresponding N c

consistent instances. If a set S is N c-small in Ij , then it

is Nc-small in Ij
′

for every j′ > j: the main step cannot
increase | sol(S)| for any S. Thus, with the exception of at

most 2|V | values of j, instances Ij and Ij+1 have the same
Nc-small sets. Let us consider a subpath Ix, . . . , Iy such
that all these instances have the same N c-small sets. We
show that the length of this subpath is at most O(3|V | · c/ε),
hence p = O(2|V | · 3|V | · c/ε).

For the instance Ij , let us define the following weight:

W j =
∑

∅⊆B⊆A⊆V
A,B are Nc-small

log maxIj (A|B).

We bound the length of the subpath Ix, . . . , Iy by analyzing
how this weight changes in Ilarge and Ismall compared to I.

Note that 0 ≤ W j ≤ 3|V | logNc = 3|V | · c logN : the sum
consists of at most 3|V | terms and (as A is N c-small and the
instance Ij is Nc consistent and nontrivial) maxIj (A|B) is
between 1 and Nc. We show that W j+1 ≤W j−(ε/2) logN ,
which immediately implies that the length of the subpath is
O(3|V | ·c/ε). Let us inspect how W j+1 changes compared to
W j . Since Ij and Ij+1 have the same Nc-small sets, no new

term can appear in W j+1. It is clear that maxIi+1(A|B)
cannot be greater than maxIi(A|B) for any A,B. However,
there is at least one term that strictly decreases. Suppose
first that Ij+1 was obtained from Ij by adding the constraint
〈B, solsmall(B)〉. Then

log maxIj+1 (A|B) ≤ log
√
N ε

| solIj (A)|
| solIj (B)|

≤ log(maxIj (A|B)/
√
N ε) = log maxIj (A|B)−(ε/2) logN.

On the other hand, if Ij+1 was obtained by adding the con-
straint 〈B, sollarge(B)〉, then

log maxIj+1 (B|∅) = log | solIj+1 (B)|
≤ log(| solIj (B)|/

√
N ε) = log maxIj (B|∅) − (ε/2) logN.

In both cases, we get that at least one term decreases by at
least (ε/2) logN .

Assume for a moment that we have a 1-uniform instance
I with hypergraph H. Note that by Prop 3.5(1), this means
that max(A|B) = | sol(A)|/| sol(B)|. Suppose that every
constraint contains at most N tuples and let us define the
function b(S) = logN | sol(S)|. For every edge e ∈ E(H),
there is a corresponding constraint, which has at most N
tuples by the definition of N . Thus | sol(e)| ≤ N and hence
b(e) ≤ 1 for every e ∈ E(H), that is, b is edge dominated.
The crucial observation of this section is that this function
b is submodular:

b(X) + b(Y )

= logN | sol(X)| + logN

(

| sol(X ∩ Y )| | sol(Y )|
| sol(X ∩ Y )|

)

= logN | sol(X)| + logN (| sol(X ∩ Y )|max(Y |X ∩ Y ))

≥ logN | sol(X)| + logN (| sol(X ∩ Y )|max(X ∪ Y |X))

= logN

(

| sol(X)| | sol(X ∪ Y )|
| sol(X)|

)

+ logN | sol(X ∩ Y )|

= b(X ∩ Y ) + b(X ∪ Y )

(the equalities follow from 1-uniformity; the inequality uses
Prop. 3.5(2) with A = Y , B = X ∩ Y , C = X). Therefore,
if subw(H) ≤ c, then H has a tree decomposition where
b(B) ≤ c and hence | sol(B)| ≤ N c for every bag B. This
allows us to solve the problem by dynamic programming in
time polynomial in N c.

Lemma 3.9 guarantees some uniformity for the created
instances, but not perfect 1-uniformity and only for the N c-
small sets. In Lemma 3.10, we define b in a slightly differ-
ent way: we add small terms to correct errors arising from
weaker uniformity and we truncate the function at large val-
ues (i.e., for sets that are not N c-small).

Lemma 3.10. Let I = (V,D, C) be a CSP instance with
hypergraph H such that | sol(e)| ≤ N for every e ∈ E(H).
If I is Nc-consistent and (N, c, ε3)-uniform for some c ≥ 1
and ε := 1/|V |, then the following function b is an edge-
dominated, monotone, submodular function on V (H):

b(S) :=
{

(1 − ε)logN | sol(S)| + 2ε2|S| − ε3|S|2 if S is Nc-small,

(1 − ε)c+ 2ε2|S| − ε3|S|2 otherwise.



If subw(H) ≤ (1 − ε)c, then there is a tree decomposi-
tion where every bag is N c-small, and we can use this tree
decomposition to find a solution. In fact, in this case N c-
consistency implies that every nontrivial instance has a so-
lution. Putting together this observation with Lemmas 3.9
and 3.10, the proof of Theorem 3.1 follows.

4. FROM SUBMODULAR FUNCTIONS TO
HIGHLY CONNECTED SETS

The aim of this section is to show that if a hypergraph
H has large submodular width, then there is a large highly
connected set in H. The main result is the following:

Theorem 4.1. For every sufficiently small constant λ >
0, the following holds. Let b be an edge-dominated monotone
submodular function ofH. If the b-width ofH is greater than
3
2
(w + 1), then conλ(W ) ≥ w.

For the proof of Theorem 4.1, we need to show that if there
is no tree decomposition where b(B) is small for every bag
B, then a highly connected set exists. There is a standard
recursive procedure that either builds a tree decomposition
or finds a highly connected set (see e.g., [13, Section 11.2]).
Simplifying somewhat, the main idea is that if a the graph
can be decomposed into smaller graphs by splitting a cer-
tain set of vertices into two parts, then a tree decomposition
for each part is constructed using the algorithm recursively,
and the tree decompositions for the parts are joined in an
appropriate way to obtain a tree decomposition for the origi-
nal problem. On the other hand, if the set of vertices cannot
be split, then we can conclude that it is highly connected.
This high-level idea has been applied for various notions of
tree decompositions [30, 28, 2, 29], and it turns out to be
useful in our context as well. However, we need to overcome
two major difficulties:

1. Highly connected set in our context is defined as not
having certain fractional separators (i.e., weight assign-
ments). However, if we want to build a tree decomposi-
tion in a recursive manner, we need integer separators
(i.e., subsets of vertices) that decompose the hyper-
graph into smaller parts.

2. Measuring the sizes of sets with a submodular function
b can lead to problems, since the size of the union of
two sets can be much smaller the sum of the sizes of the
two sets. We need the property that, roughly speak-
ing, removing a “large” part from a set makes it “much
smaller.” For example, if A and B are components of
H \S, and both b(A) and b(B) are large, then we need
the property that both of them are much smaller than
b(A ∪ B). Adler [1, Section 4.2] investigates the rela-
tion between some notion of highly connected set and
f -width, but assumes that f is additive: if A and B
do not touch, then f(A∪B) = f(A)+f(B). However,
for a submodular function b, it very well may be that
b(A) = b(B) = b(A ∪B).

To overcome the first difficulty, we have to understand what
fractional separation really means. We show that if there
is a fractional (A,B)-separator of weight w, then for every
edge-dominated monotone submodular function b, there is
an (A,B)-separator S with b(S) = O(w). Note that this sep-
arator S can be different for different functions b, so we are

not claiming that there is a single (A,B)-separator S that
is small in every b. The converse is also true (we omit the
proof), thus this gives a novel characterization of fractional
separation, tight up to a constant factor. This result is the
key idea that allows us to move from the domain of submod-
ular functions to the domain of pure hypergraph properties:
if there is no (A,B)-separator such that b(S) is small, then
we know that there is no small fractional (A,B)-separator,
which is a property of the hypergraph H only and has no
longer anything to do with the submodular function b.

To overcome the second difficulty, we introduce a trans-
formation that turns a monotone submodular function b on
V (H) into a function b∗ that encodes somehow the neigh-
borhood structure of H as well. The new function b∗ is no
longer monotone and submodular, but is has a number of
remarkable properties, for example, b∗ remains edge domi-
nated and b∗(S) ≥ b(S) for every set S ⊆ V (H), implying
that b∗-width is not smaller than b-width. The main idea is
to prove Theorem 4.1 for b∗-width instead of b-width. Be-
cause of the way b∗ encodes the neighborhoods, the second
difficulty will disappear: for example, it will be true that
b∗(A ∪ B) = b∗(A) + b∗(B) if there are no edges between
A and B, that is, b∗ is additive on disjoint components.
Lemma 4.3 formulates (in a somewhat technical way) the
exact property of b∗ that we will need. It turns out that
the result mentioned in the previous paragraph remains true
with b replaced by b∗: if there is a fractional (A,B)-separator
of weight w, then there is an (A,B)-separator S such that
not only b(S), but even b∗(S) is O(w).

The function b∗. We define the function b∗ the follow-
ing way. Let H be a hypergraph and let b be a monotone
submodular function defined on V (H). Let SV (H) be the set
of all permutations of V (H). For a permutation π ∈ SV (H),

let N−
π (v) be the neighbors of v preceding v in the ordering

π. For π ∈ SV (H) and Z ⊆ V (H), we define

∂bπ,Z(v) := b(v ∪ (N−
π (v) ∩ Z)) − b(N−

π (v) ∩ Z).

In other words, ∂bπ,Z(v) is the marginal value of v with
respect to the set of its neighbors in Z preceding it. We
abbreviate ∂bπ,V (H) by ∂bπ. We extend the definition to
subsets by ∂bπ,Z(S) :=

∑

v∈S ∂bπ,Z(v). Next, we define

bπ(Z) := ∂bπ,Z(Z) =
∑

v∈Z

∂bπ,Z(v) b∗(Z) := min
π∈SV (H)

bπ(Z).

Thus bπ(Z) is the sum of the marginal values with respect
to a given ordering, while b∗(Z) is the smallest possible sum
taken over all possible orderings.

Proposition 4.2. Let H be a hypergraph and let b be a
monotone submodular function defined on V (H). For every
π ∈ SV (H) and Z ⊆ V (H) we have

1. bπ(Z) ≥ b(Z),

2. b∗(Z) ≥ b(Z),

3. bπ(Z) = b(Z)
if Z is a clique,

4. ∂bπ,Z1(v) ≤ ∂bπ,Z2(v) if
Z2 ⊆ Z1,

5. ∂bπ(v) ≤ ∂bπ,Z(v),

6. b∗(X ∪ Y ) ≤ b∗(X) +
b∗(Y ).

The following property of b∗ allows us to avoid the second
difficulty described at the beginning of Section 4.

Lemma 4.3. Let H be a hypergraph, let b be a monotone
submodular function defined on V (H) and let W be a set of



vertices. Let πW be an ordering of V (H), and let µ(v) :=
∂bπW ,W (v) for v ∈ W and µ(v) = 0 otherwise. Let A,B ⊆
W be two disjoint sets, and let S be an (A,B)-separator. If
b∗(S) < µ(A), µ(B), then b∗((C∩W )∪S) < µ(W ) for every
component C of H \ S.

Next we show that having a small fractional (A,B)-separator
means that for every monotone edge-dominated submodu-
lar function b, there is an (A,B)-separator S such that b∗(S)
(and hence b(S)) is small. The proof is based on a standard
trick that is often used for rounding fractional solutions for
separation problems: we define a distance function and show
by an averaging argument that cutting at some distance t
gives a small separator. However, in our setting, we need
significant new ideas to make this trick work: the main dif-
ficulty is that the cost function b is defined on subsets of
vertices and is not a function defined by the cost of vertices.
To overcome this problem, we use the function ∂bπ(v) to
assign a cost to every single vertex.

Theorem 4.4. Let H be a hypergraph, X,Y ⊆ V (H) two
sets of vertices, and b : V (H) → R

+ an edge-dominated
monotone submodular function. Suppose that s is a frac-
tional (X,Y )-separator of weight at most w. Then there is
an (X,Y )-separator S ⊆ V (H) with b∗(S) = O(w).

Proof. Let us define x(v) := max{1,∑e∈E(H),v∈e s(e)}.
It is clear that if P is a path from X to Y , then

∑

v∈P x(v) ≥
1. We define the distance d(v) to be the minimum of

∑

v′∈P x(v
′),

taken over all paths from X to v (this means that d(v) > 0
is possible for some v ∈ X). It is clear that d(v) ≥ 1 for
every v ∈ Y . Let us associate the closed interval ι(v) =
[d(v) − x(v), d(v)] to each vertex v. If v is in X, then the
left endpoint of ι(v) is 0, while if v is in Y , then the right
endpoint of ι(v) is at least 1. The following claim is easy to
see:

Claim 1: If u and v are adjacent, then ι(u) ∩ ι(v) 6= ∅.
The class of a vertex v ∈ V (H) is the largest integer κ(v)

such that x(v) ≤ 2−κ(v), and we define κ(v) := ∞ if x(v) =
0. Recall that x(v) ≤ 1, thus κ(v) is nonnegative. The

offset of a vertex v is the unique value 0 ≤ α < 2 · 2−κ(v)

such that d(v) = i(2 · 2−κ(v)) + α for some integer i. Let us
define an ordering π = (v1, . . . , vn) of V (H) such that κ(v)
is nondecreasing, and among vertices having the same class,
the offset is nondecreasing.

Let directed graph D be the orientation of the primal
graph of H such that if vi and vj are adjacent and i < j,
then there is a directed edge −−→vivj in D. If P is a directed
path in D, then the width of P is the length of the interval
⋃

v∈P ι(v) (note that by Claim 1, this union is indeed an
interval). The following claim bounds the maximum possible
width of a directed path:

Claim 2: If P is a directed path D starting at v, then the
width of P is at most 16x(v).

To prove Claim 2, we first show that if every vertex of
P has the same class κ(v), then the width of P is at most

4 · 2−κ(v). Since the class is nondecreasing along the path,
we can partition the path into subpaths such that every
vertex in a subpath has the same class and the classes are
distinct on the different subpaths. The width of P is at
most the sum of the widths of the subpaths, which is at
most

∑

i≥κ(v) 4 · 2−i = 8 · 2−κ(v) ≤ 16x(v).
Suppose now that every vertex of P has the same class

κ(v) as the first vertex v and let h := 2−κ(v). As the offset

is nondecreasing, path P can be partitioned into two parts: a
subpath P1 containing vertices with offset at least h, followed
by a subpath P2 containing vertices with offset less than h
(one of P1 and P2 can be empty). We show that each of P1

and P2 has width at most 2h, which implies that the width
of P is at most 4h. Observe that if v ∈ P1 and ι(v) contains
a point i · 2h for some integer i, then, considering x(v) ≤ h
and the bounds on the offset of v, this is only possible if
ι(v) = [i · 2h, i · 2h+h], i.e., i · 2h is the left endpoint of ι(v).
Thus if I1 =

⋃

v∈P1
ι(v) contains i · 2h, then it is the left

endpoint of I1. Therefore, I1 can contain i · 2h for at most
one value of i, which immediately implies that the length of
I1 is at most 2h. We can argue similarly for P2.

Claim 3:
∑

v∈V (H) x(v)c(v) ≤ w for c(v) := ∂bπ(v).

Let us examine the contribution of an edge e ∈ E(H) with
value s(e) to the sum. For every v ∈ e, edge e increases the
value x(v) by at most s(e). Thus the total contribution of e
is at most

s(e) ·
∑

v∈e

c(v) = s(e) ·
∑

v∈e

∂bπ(v) ≤ s(e) ·
∑

v∈e

∂bπ,e(v)

= s(e)bπ(e) ≤ s(e)b(e) ≤ s(e),

where the first inequality follows Prop. 4.2(5); the second
inequality follows form Prop. 4.2(3); the last inequality fol-
lows from the fact that b is edge dominated. Therefore,
∑

v∈V (H) x(v)c(v) ≤
∑

e∈E(H) s(e) ≤ w, proving Claim 3.

We define C(S) to be the set of all vertices from which a
vertex of S is reachable on a directed path in D.

Claim 4: For every S ⊆ V (H),
∑

v∈C(S) c(v) = bπ(C(S)).

Observe that for any v ∈ C(S), every inneighbor of v is
also in C(S), hence N−

π (v) ⊆ C(S). Therefore, ∂bπ,C(S)(v) =
∂bπ(v) = c(v) and Claim 4 follows.

Now we are ready to prove the lemma. Let S(t) be the
set of all vertices v ∈ V (H) for which t ∈ ι(v) and let
SC(t) = C(S(t)). Observe that for every 0 ≤ t ≤ 1, the
set S(t) (and hence SC(t)) separates X from Y . We use an
averaging argument to show that there is a 0 ≤ t ≤ 1 for
which bπ(SC(t)) is O(w). As b∗(SC(t)) ≤ bπ(SC(t)), the set
SC(t) satisfies the requirement of the lemma.

If we can show that
∫ 1

0
bπ(SC(t))dt = O(w), then the ex-

istence of the required t follows. Let Iv(t) = 1 if v ∈ SC(t)
and let Iv(t) = 0 otherwise. If Iv(t) = 1, then there is a path
P in D from v to S(t). By Claim 2, the width of this path
is at most 16x(v), thus t ∈ [d(v) − 16x(v), d(v) + 15x(v)].

Therefore,
∫ 1

0
Iv(t)dt ≤ 31x(v). Now we have

∫ 1

0

bπ(SC(t))dt =

∫ 1

0

∑

v∈SC(t)

c(v)dt

=

∫ 1

0

∑

v∈V (H)

c(v)Iv(t)dt =
∑

v∈V (H)

c(v)

∫ 1

0

Iv(t)dt

≤ 31
∑

v∈V (H)

x(v)c(v) ≤ 31w

(we used Claim 4 in the first equality and Claim 3 in the
last inequality).

By Prop 4.2(2), the following lemma implies Theorem 4.1.
The proof is a recursive procedure finding a tree decomposi-
tion, using Lemmas 4.3 and 4.4 to overcome the difficulties
described at the beginning of the section.



Lemma 4.5. Let b be an edge-dominated monotone sub-
modular function of H. If b∗-width(H) > 3

2
(w + 1), then

conλ(W ) ≥ w (for some universal constant λ).

5. FROM HIGHLY CONNECTED SETS TO
EMBEDDINGS

We show that the existence of highly connected sets im-
plies that the hypergraph has large embedding power:

Theorem 5.1. For every sufficiently small λ > 0 and hy-
pergraph H, there is a constant mH,λ such that every graph
G with m ≥ mH,λ edges has an embedding into H with edge

depth O(m/(λ
3
2 conλ(H)

1
4 )).

Our strategy is similar to [24]: we show that a highly con-
nected set implies that a uniform concurrent flow exists; the
paths appearing in the uniform concurrent flow can be used
to embed the line graph of a complete graph; and every
graph has an appropriate embedding in the line graph of a
complete graph. To make this strategy work, we need gener-
alizations of concurrent flows, multicuts, and multicommod-
ity flows in our hypergraph setting and we need to obtain
results that connect these concepts to highly connected sets.
Let W be a set of vertices and let (X1, . . . , Xk) be a partition
of W . A uniform concurrent flow of value ε on (X1, . . . , Xk)
is a compatible set of

(

k
2

)

flows Fi,j (1 ≤ i < j ≤ k) where
Fi,j is an (Xi, Xj)-flow of value ε. We will need a uniform
concurrent flow connecting a set of cliques, thus our first
goal is to find a highly connected set that can be partitioned
into k cliques in an appropriate way. (Proofs of this section
appear in the full version of the paper.)

Lemma 5.2. Let H be a hypergraph and let 0 < λ < 1/16
be a constant. Then there is fractional independent set µ,
a (µ, λ/6)-connected set W , and a partition (K1, . . . , Kk) of

W such that k = Ω(λ
√

conλ(H)), and for every 1 ≤ i ≤ k,
Ki is a clique with µ(Ki) ≥ 1/2.

If H is connected, then the maximum value of a uniform
concurrent flow on (X1, . . . , Xk) is at least 1/

(

k
2

)

= Ω(k−2):

if each of the
(

k
2

)

flows has value 1/
(

k
2

)

, then they are clearly
compatible. The following lemma shows that if X1, . . . , Xr
are appropriate cliques of a (µ, λ)-connected set, then we

can guarantee a better bound Ω(k−
3
2 ).

Lemma 5.3. Let H be a hypergraph, µ a fractional inde-
pendent set of H, and W ⊆ V (H) a (µ, λ)-connected set of
W for some 0 < λ < 1. Let (K1, . . . , Kk) be a partition
of W such that Ki is a clique and µ(Ki) ≥ 1/2 for every
1 ≤ i ≤ k. Then there is a uniform concurrent flow of value

Ω(λ/k
3
2 ) on (K1, . . . , Kk).

Intuitively, the intersection structure of the paths appear-
ing in a uniform concurrent flow on cliques K1, . . . , Kr is
reminiscent of the edges of the complete graph on r vertices:
if {i1, j1} ∩ {i2, j2} 6= ∅, then every path of Fi1,j1 touches
every path of Fi2,j2 . We use the following result from [24]
(restated using the terminology of this paper), which shows
that line graphs of cliques have good embedding properties.
Let Lk be the line graph of the k-clique.

Lemma 5.4. For every k > 1 there is a constant nk > 0
such that for every G(V, E) with |E| > nk and no isolated
vertices, the graph G has an embedding into Lk with vertex
depth O(|E|/k2).

The proof of Theorem 5.1 uses Lemmas 5.2 and 5.3 to
find highly connected set and a uniform concurrent flow on
it, and then uses Lemma 5.4 to embed the vertices of G into
the paths appearing in the flows.

6. FROM EMBEDDINGS TO HARDNESS OF
CSP

We prove the main hardness result in this section:

Theorem 6.1. Let H be a recursively enumerable class
of hypergraphs with unbounded submodular width. If there is
an algorithm A and a function f such that A solves every
instance I of CSP(H) with hypergraph H ∈ H in time f(H)·
‖I‖o(subw(H)

1
4 ), then the Exponential Time Hypothesis fails.

In particular, Theorem 6.1 implies that CSP(H) for such a
H is not fixed-parameter tractable:

Corollary 6.2. If H is a recursively enumerable class of
hypergraphs with unbounded submodular width, then CSP(H)
is not fixed-parameter tractable, unless ETH fails.

The Exponential Time Hypothesis (ETH) states that there

is no 2o(n) time algorithm for n-variable 3SAT. The Sparsi-
fication Lemma of Impagliazzo, Paturi, and Zane [22] shows
that ETH is equivalent to the assumption that there is no
algorithm for 3SAT whose running time is subexponential
in the number of clauses. This result will be crucial for our
hardness proof, as our reduction from 3SAT is sensitive to
the number of clauses.

To prove Theorem 6.1, we show that a“too fast” algorithm
A implies that a subexponential-time algorithm for 3SAT
exists. We use the characterization of submodular width
from Section 4 and the embedding results of Section 5 to
reduce 3SAT to CSP(H) by embedding the incidence graph
of a 3SAT formula into a hypergraph H ∈ H. The basic idea
of the proof is that if the 3SAT formula has m clauses and
the edge depth of the embedding is m/r, then we can gain a
factor r in the exponent of the running time. If submodular
width is unbounded in H, then we can make this gap r
between the number of clauses and the edge depth arbitrary
large, and hence the exponent can be arbitrarily smaller than
the number of clauses, i.e., the algorithm is subexponential
in the number of clauses.

The following simple lemma gives a transformation that
turns a 3SAT instance into a binary CSP instance.

Lemma 6.3 ([24]). Given an instance of 3SAT with n
variables and m clauses, it is possible to construct in polyno-
mial time an equivalent CSP instance with n+m variables,
3m binary constraints, and domain size 3.

Next we show that an embedding from graph G to hyper-
graph H can be used to simulate a binary CSP instance I1
having primal graph G by a CSP instance I2 whose hyper-
graph is H. The size of the constraint relations of I2 can
grow very large: the edge depth of the embedding deter-
mines how large is this increase.

Lemma 6.4. Let I1 = (V1, D1, C1) be a binary CSP in-
stance with primal graph G and let φ be an embedding of G
into a hypergraph H with edge depth q. Given I1, H, and
the embedding φ, it is possible to construct (in time polyno-
mial in the size of the output) an equivalent CSP instance
I2 = (V2, D2, C2) with hypergraph H where the size of every
constraint relation is at most |D1|q.



With these tools at hand, we can prove Theorem 6.1 the
following way. We show that if there is a class H of hyper-
graphs with unbounded submodular width and an algorithm
A as in Theorem 6.1, then this algorithm can be used to
solve 3SAT in subexponential time. The main ingredients
are the embedding result of Theorem 5.1, and Lemmas 6.3
and 6.4 above on reduction to CSP. Furthermore, we need a
way of choosing an appropriate hypergraph from the set H.
As discussed earlier, the larger the submodular width of the
hypergraph is, the more we gain in the running time. How-
ever, we should not spend too much time on constructing
the hypergraph and on finding an embedding. Therefore, we
use the same technique as in [24]: we enumerate a certain
number of hypergraphs and we try all of them simultane-
ously. The number of hypergraphs enumerated depends on
the size of the 3SAT instance. This will be done in such a
way that guarantees that we do not spend too much time
on the enumeration, but eventually every hypergraph in H
is considered for sufficiently large input sizes.
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