
An exact characterization of tractable demand
patterns for maximum disjoint path problems

Dániel Marx1 Paul Wollan2

1Institute for Computer Science and Control,
Hungarian Academy of Sciences (MTA SZTAKI)

Budapest, Hungary

2Department of Computer Science,
University of Rome, Rome, Italy

SODA 2015
San Diego, CA
January 4, 2015

1



Disjoint paths

Disjoint Paths
Input: graph G , two sets of vertices S and T , integer k .
Task: find k pairwise vertex-disjoint S − T paths.

S

T

Well-known to be polynomial-time solvable.
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Disjoint paths – specified endpoints

k-Disjoint Paths
Input: graph G and pairs of vertices (s1, t1), . . . , (sk , tk).
Task: find pairwise vertex-disjoint paths P1, . . . , Pk such that Pi
connects si and ti .

s1 s2 s3 s4

t1 t2 t3 t4

NP-hard, but FPT parameterized by k :

Theorem [Robertson and Seymour]

The k-Disjoint Paths problem can be solved in time f (k)n3.
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Maximization version
We consider now a maximization version of the problem.

Maximum Disjoint Paths
Input: graph G , pairs of vertices (s1, t1), . . . , (sm, tm), integer k .
Task: find k pairwise vertex-disjoint paths, each of them connecting
some pair (si , ti ).

Can be solved in time nO(k), but W[1]-hard in general.
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Maximization version
A different formulation:

Maximum Disjoint Paths
Input: supply graph G , set T ⊆ V (G ) of terminals and a demand
graph H on T .
Task: find k pairwise vertex-disjoint paths such that the two end-
points of each path are adjacent in H.

T

Can be solved in time nO(k), but W[1]-hard in general.
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Maximum Disjoint H-Paths
Maximum Disjoint H-Paths:
special case when H restricted to be a member of H.

s1 s2 s3 s4 s5

t1 t2 t3 t4 t5

bicliques: cliques: complete multipartite graphs:

two disjoint bicliques: matchings: skew bicliques:

in P in P in P

FPT W[1]-hard W[1]-hard
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Maximum Disjoint H-Paths
Questions:

Algorithmic: FPT vs. W[1]-hard.
complete multipartite graphs: FPT.
union of two bicliques: FPT.
what else is FPT?

Combinatorial (Erdős-Pósa): is there a function f such that
there is either a set of k vertex-disjoint good paths of a set of
f (k) vertices covering every good path?

bicliques: tight Erdős-Pósa property with f (k) = k − 1
(Menger’s Theorem)
cliques: Erdős-Pósa property with f (k) = 2k − 2
but false in general.
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Erdős-Pósa property
Erdős-Pósa property does not hold in general:

s1 s2 s3 s4 s5 s6 s7 s8

t8 t7 t6 t5 t4 t3 t1t2

Maximum number of disjoint valid paths is 1, but we need n
vertices to cover every valid path.
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Main result

Theorem
Let H be a hereditary class of graphs.

1 If H does not contain every matching and every skew biclique,
then Maximum Disjoint H-Paths is FPT and has the
Erdős-Pósa Property.

2 If H does not contain every matching, but contains every skew
biclique, then Maximum Disjoint H-Paths is W[1]-hard,
but has the Erdős-Pósa Property.

3 If H contains every matching, then Maximum Disjoint
H-Paths is W[1]-hard, and does not have the Erdős-Pósa
Property.
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Main result

FPT and Erdős-Pósa

W[1]-hard and Erdős-Pósa

W[1]-hard and not Erdős-Pósa
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Erdős-Pósa property

Theorem
If H is a hereditary class, then Maximum Disjoint H-Paths has
the Erdős-Pósa Property if and only H contains every matching.

A standard first step:

S

If there is small set S separating two valid paths, then we can do
recursion.
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Erdős-Pósa property

Theorem
If H is a hereditary class, then Maximum Disjoint H-Paths has
the Erdős-Pósa Property if and only H contains every matching.

We arrive to a large set T of terminals such that

T

T has a perfect matching in the demand graph and
T is highly connected in the supply graph: for any X ,Y ⊆ T
with |X | = |Y |, there exists |X | disjoint X − Y paths.
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Erdős-Pósa property

Theorem
If H is a hereditary class, then Maximum Disjoint H-Paths has
the Erdős-Pósa Property if and only H contains every matching.

We arrive to a large set T of terminals such that

T
X

Y

T has a perfect matching in the demand graph and
T is highly connected in the supply graph: for any X ,Y ⊆ T
with |X | = |Y |, there exists |X | disjoint X − Y paths.

What is this good for?
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A combinatorial lemma

Observation
If a graph H on n vertices has a perfect matching, then either

H contains an induced matching of size Ω(log n) or
H has two sets X ,Y of size Ω(log n) that are completely
connected to each other.

Ramsey’s Theorem: There is a monochromatic r -clique in every
c-coloring of the edges of a clique with at least ccr vertices.

For every i < j , there are 24 possibilities
for the 4 edges between {ai , bi} and {aj , bj}.
If there is a large matching, then there is a large
matching that is homogeneous with respect to
these 16 possibilities.
In each of the 16 cases, we find a matching,
clique, or biclique as induced subgraph.
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We arrive to a large set T of terminals such that

T

T has a perfect matching in the demand graph and
T is highly connected in the supply graph: for any X ,Y ⊆ T
with |X | = |Y |, there exists |X | disjoint X − Y paths.

If H has no large induced matching, then the observation shows
that the there are two large sets X ,Y ⊆ T that are completely
connected in the demand graph.

⇓
Connectedness condition implies that there are many disjoint
X − Y paths, which are valid paths.
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Approximation
The Erdős-Pósa result can be stated algorithmically, giving an
approximation algorithm as a byproduct:

Theorem
Let H be a hereditary class of graph not containing every
matching. Given an instance of Maximum Disjoint H-Paths,
in time 22O(k) · nO(1) we can either

find k disjoint valid paths or
find a set of 2O(k) vertices covering every valid path.

A standard consequence:

Theorem
If H is a hereditary class of graphs not containing every matching,
then there is a polynomial-time algorithm for Maximum Disjoint
H-Paths that finds a solution of size O(log logOPT ).
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From approximation to exact

Theorem
If H is a hereditary class of graphs that does not contain every
matching and every skew biclique, then Maximum Disjoint
H-Paths is FPT.

We use the approximation algorithm to find a small set S covering
every valid path.

S

Goal: reduce the number of terminals to f (k).
Then brute force + the Robertson-Seymour algorithm gives an FPT
algorithm.
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Representative sets
Main argument: we can mark f (k) terminals in each component
of G − S and show that every solution can be modified to use only
marked terminals.

Bad news: seems impossible to do in general without look-
ing at the other components.

Example: Suppose that the demand graph contains only the edges
aibi .

S

b1

bm

a1 am

ai bi

b2

We cannot decide which ai to mark without knowing which bi is on
the other side.
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Representative sets
Main argument: we can mark f (k) terminals in each component
of G − S and show that every solution can be modified to use only
marked terminals.

Good news: much easier if we exclude induced matchings
and induced skew bicliques from the demand graph.

Example: Suppose that the demand graph contains only the edges
aibj with i 6= j .

S

b1
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ai bi
b2

It is sufficient to mark, say, a1 and a2: no matter which bj is reach-
able, one of them is compatible.
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Representative sets
Main argument: we can mark f (k) terminals in each component
of G − S and show that every solution can be modified to use only
marked terminals.

If we exclude induced matchings and induced skew bi-
cliques, then we can compute a representative set of
f (k) partial solutions for each component such that every
solution can be modified to use only these partial solutions.

⇓
We can mark f (k) terminals in each component of G − S .

Conceptually similar to other FPT applications of representative sets,
but here works only if there are no induced matchings and induced
skew bicliques (again some Ramsey statement behind this).
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Summary
Complete characterization of classes H for which Maximum
Disjoint H-Paths is FPT or has the Erdős-Pósa properties.
Interesting collection of technical tools: Ramsey’s Theorem,
tangles, important separators, representative sets, . . .
Open: FPT-approximation for Maximum Disjoint Paths
for arbitrary patterns?

FPT and Erdős-Pósa

W[1]-hard and Erdős-Pósa

W[1]-hard and not Erdős-Pósa
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