
A subexponential parameterized algorithm for
Subset TSP on planar graphs

Philip N. Klein Dániel Marx

http://xkcd.com/399/

SODA 2014
January 7, 2014
Portland, OR 1



TSP
TSP

Input: A set T of cities and a distance function d on T
Output: A tour on T with minimum total distance

Theorem [Held and Karp 1962]

TSP with n cities can be solved in time 2n · n2 · logD, where D is
the maximum (integer) distance.

Dynamic programming:
Let x(v ,T ′) be the minimum length of path from vstart to v
visiting all the cities T ′ ⊆ T .

2



c-change TSP

c-change operation: removing c steps of the tour and
connecting the resulting c paths in some other way.
A solution is c-OPT if no c-change can improve it.
We can find a c-OPT solution in nO(c) · D time, where D is
the maximum (integer) distance.

3



c-change TSP

c-change operation: removing c steps of the tour and
connecting the resulting c paths in some other way.
A solution is c-OPT if no c-change can improve it.
We can find a c-OPT solution in nO(c) · D time, where D is
the maximum (integer) distance.

3



c-change TSP

c-change operation: removing c steps of the tour and
connecting the resulting c paths in some other way.
A solution is c-OPT if no c-change can improve it.
We can find a c-OPT solution in nO(c) · D time, where D is
the maximum (integer) distance.

3



TSP on planar graphs
Assume that the cities correspond to the set of all vertices of a
(weighted) planar graph and distance is measured in this
(weighted) planar graph.

4



TSP on planar graphs
Assume that the cities correspond to the set of all vertices of a
(weighted) planar graph and distance is measured in this
(weighted) planar graph.

Can be solved in time nO(
√

n).
Admits a PTAS.

4



Subset TSP on planar graphs
Assume that the cities correspond to a subset T of vertices of a
planar graph and distance is measured in this planar graph.

5



Subset TSP on planar graphs
Assume that the cities correspond to a subset T of vertices of a
planar graph and distance is measured in this planar graph.

Can be solved in time nO(
√

n).
Can be solved in time 2k · nO(1).
Question: Can we restrict the exponential dependence to k
and exploit planarity?

5



Subset TSP on planar graphs
Assume that the cities correspond to a subset T of vertices of a
planar graph and distance is measured in this planar graph.

Theorem
Subset TSP for k cities in a unit-weight planar graph can be
solved in time 2O(

√
k log k) · nO(1).

5



Subset TSP on planar graphs
Assume that the cities correspond to a subset T of vertices of a
planar graph and distance is measured in this planar graph.

Theorem
Subset TSP for k cities in a weighted planar graph can be solved
in time (2O(

√
k log k) + W ) · nO(1) if the weights are integers not

more than W .
5



Partial solutions
General idea: build larger and larger partial solutions.

Held-Karp algorithm: the partial solutions are vstart − v paths
visiting a subset T ′ of cities.

1

2

3

4

5

6

Generalization: a partial solution is a set of at most d pairwise
disjoint paths with specified cities as endpoints.
The type of a partial solution can be described by

the set of endpoints of the paths,
a matching between the endpoints, and
the subset T ′ of visited cities.

6



Partial solutions
General idea: build larger and larger partial solutions.

Held-Karp algorithm: the partial solutions are vstart − v paths
visiting a subset T ′ of cities.

1

2

3

4

5

6

Generalization: a partial solution is a set of at most d pairwise
disjoint paths with specified cities as endpoints.
The type of a partial solution can be described by

the set of endpoints of the paths,
a matching between the endpoints, and
the subset T ′ of visited cities.

6



Merging partial solutions
Two compatible partial solutions can be merged in an obvious way:

1

2

3

4

5

6

0

1

2

3

6

7

⇒

0

4

5

7

Algorithm
Start with an initial set of trivial partial solutions.
Combine two partial solutions as long as possible.
Keep at most one partial solution from each type: the best
one encountered so far.
Return the best partial solution that consists of a single path
(cycle) visiting all vertices.

7



Merging partial solutions
Two compatible partial solutions can be merged in an obvious way:

1

2

3

4

5

6

0

1

2

3

6

7

⇒

0

4

5

7

Algorithm
Start with an initial set of trivial partial solutions.
Combine two partial solutions as long as possible.
Keep at most one partial solution from each type: the best
one encountered so far.
Return the best partial solution that consists of a single path
(cycle) visiting all vertices.

7



Merging partial solutions
Two compatible partial solutions can be merged in an obvious way:

1

2

3

4

5

6

0

1

2

3

6

7

⇒

0

4

5

7

Algorithm
Start with an initial set of trivial partial solutions.
Combine two partial solutions as long as possible.
Keep at most one partial solution from each type: the best
one encountered so far.
Return the best partial solution that consists of a single path
(cycle) visiting all vertices.

7



Running time
Algorithm

Start with an initial set of trivial partial solutions.
Combine two partial solutions as long as possible.
Keep at most one partial solution from each type: the best
one encountered so far.
Return the best partial solution that consists of a single path
(cycle) visiting all vertices.

With careful implementation, the running time is dominated by the
number of types, whose number has two factors:

endpoints described by at most d pairs of vertices
⇒ k2d possibilities,
describing the subset T ′ of visited cities
⇒ 2k possibilities.

We can increase d up to O(
√

k), but we need to reduce somehow
the number of possible subsets of cities!

8



Running time
Algorithm

Start with an initial set of trivial partial solutions.
Combine two partial solutions as long as possible.
Keep at most one partial solution from each type: the best
one encountered so far.
Return the best partial solution that consists of a single path
(cycle) visiting all vertices.

With careful implementation, the running time is dominated by the
number of types, whose number has two factors:

endpoints described by at most d pairs of vertices
⇒ k2d possibilities,
describing the subset T ′ of visited cities
⇒ 2k possibilities.

We can increase d up to O(
√

k), but we need to reduce somehow
the number of possible subsets of cities!

8



Restricting the subset of cities
We restrict attention to a collection T of subsets of cities and
consider only partial solutions that visit a subset in T .
We need: a collection T of size kO(

√
k) that guarantees finding an

optimum solution.

Definition of T :
Find a 4-OPT tour.

A subset is in T if and only if it induces O(
√

k) consecutive
intervals on the 4-OPT tour.

9



Restricting the subset of cities
We restrict attention to a collection T of subsets of cities and
consider only partial solutions that visit a subset in T .
We need: a collection T of size kO(

√
k) that guarantees finding an

optimum solution.

Definition of T :
Find a 4-OPT tour.

A subset is in T if and only if it induces O(
√

k) consecutive
intervals on the 4-OPT tour.

9



Restricting the subset of cities
We restrict attention to a collection T of subsets of cities and
consider only partial solutions that visit a subset in T .
We need: a collection T of size kO(

√
k) that guarantees finding an

optimum solution.

Definition of T :
Find a 4-OPT tour.
A subset is in T if and only if it induces O(

√
k) consecutive

intervals on the 4-OPT tour.
9



Main result

Definition of T :
Find a 4-OPT tour.
A subset is in T if and only if it induces O(

√
k) consecutive

intervals on the 4-OPT tour.

Theorem

After setting T as above and d = O(
√

k), the Algorithm finds an
optimum solution for Subset TSP on planar graphs.

Corollary
Subset TSP for k cities in a planar graph can be solved in time
(2O(

√
k log k) + W ) · nO(1) if the weights are integers at most W .

10



The treewidth bound
Consider the union of an optimum solution and a 4-OPT solution
as a graph on k vertices:

Lemma
For every 4-OPT solution, there is an optimum solution such that
their union has treewidth O(

√
k).

11



The treewidth bound

Lemma
For every 4-OPT solution, there is an optimum solution such that
their union has treewidth O(

√
k).

The union has separators of size O(
√

k).
In each component, the set of cities visited by the optimum
solution is nice: it is the same as what O(

√
k) segments of the

4-OPT tour visited.
We can use this tree decomposition to prove that the
Algorithm finds an optimum solution.

12



Proof of the treewidth bound
Consider the closed walk corresponding to the 4-OPT solution and
pick an optimum solution and a closed walk representing that.

The union is a planar graph (we ignore degree-2 vertices now):

Select the optimum solution and the closed walk such that the two
tours cross each other the minimum number of times.

13



Proof of the treewidth bound
Consider the closed walk corresponding to the 4-OPT solution and
pick an optimum solution and a closed walk representing that.

The union is a planar graph (we ignore degree-2 vertices now):

We give an O(
√

k) bound on the treewidth of this planar graph
⇓

A O(
√

k) bound follows for the k-vertex graph, as it is a minor of
this graph after duplicating the vertices.

13



Proof of the treewidth bound
Consider the closed walk corresponding to the 4-OPT solution and
pick an optimum solution and a closed walk representing that.

The union is a planar graph (we ignore degree-2 vertices now):

We give an O(
√

k) bound on the treewidth of this planar graph
⇓

A O(
√

k) bound follows for the k-vertex graph, as it is a minor of
this graph after duplicating the vertices.

13



Proof of the treewidth bound
Consider the closed walk corresponding to the 4-OPT solution and
pick an optimum solution and a closed walk representing that.

The union is a planar graph (we ignore degree-2 vertices now):

We prove that every 3-connected component of the planar graph
has O(k) vertices of degree > 2

⇓
O(
√

k) treewidth bound on the 3-connected components
⇓

same bound for the whole graph. 13



Grids
A grid is a 16-vertex subgraph of the union of the 4-OPT solution
and the optimum solution:

Lemma
If a 3-connected component of the union has size Ω(k), then there
is a grid.

Proof idea: 4-regular and O(k) faces have length < 4
⇒ Euler’s formula implies that most of the faces have length 4
⇒ a 4-face surrounded by 4-faces should be a grid.

14



Grids
A grid is a 16-vertex subgraph of the union of the 4-OPT solution
and the optimum solution:

Lemma
If a 3-connected component of the union has size Ω(k), then there
is a grid.

Proof idea: 4-regular and O(k) faces have length < 4
⇒ Euler’s formula implies that most of the faces have length 4
⇒ a 4-face surrounded by 4-faces should be a grid.

14



Grids
Suppose that the grid is used like this by two tours:

Let us exchange these two sets of edges between the two tours.
The 4-OPT tour cannot improve.
The optimum tour cannot improve.
We get another optimum tour that has fewer crossings with
the 4-OPT tour.

15



Grids
Suppose that the grid is used like this by two tours:

Let us exchange these two sets of edges between the two tours.

The 4-OPT tour cannot improve.
The optimum tour cannot improve.
We get another optimum tour that has fewer crossings with
the 4-OPT tour.

15



Grids
Suppose that the grid is used like this by two tours:

Let us exchange these two sets of edges between the two tours.
The 4-OPT tour cannot improve.
The optimum tour cannot improve.
We get another optimum tour that has fewer crossings with
the 4-OPT tour.

15



Grids — other cases:

C type + S type:

16



Grids — other cases:

C type + S type:

16



Grids — other cases:

C type + S type:

16



Grids — other cases:

S type + S type:

16



Grids — other cases:

S type + S type:

16



Grids — other cases:

S type + S type:

16



Grids — other cases:

S type + inverted S type:

16



Grids — other cases:

S type + inverted S type:

16



Grids — other cases:

S type + inverted S type:

16



Overview

Algorithm:
Find a 4-OPT tour.
Partial solutions: O(

√
k) disjoint paths, visiting O(

√
k)

consecutive intervals on the 4-OPT tour.
Merge partial solutions until the optimum solution is found.

Treewidth bound: the union of the 4-OPT tour and some
optimum tour is a k-vertex graph with treewidth O(

√
k).

Study the union in the planar graph.
Every 3-connected component has O(k) vertices of degree
> 2, otherwise there is a grid and an exchange argument could
be used.
Union in the planar graph has treewidth O(

√
k) ⇒ the

k-vertex graph has treewidth O(
√

k).

17


