
Tight bounds for planar strongly connected
Steiner subgraph with fixed number of terminals

(and extensions)

Rajesh Chitnis1 MohammadTaghi Hajiaghayi1

Dániel Marx2

1Computer Science Department
University of Maryland

2Institute for Computer Science and Control
Hungarian Academy of Sciences (MTA SZTAKI)

Budapest, Hungary

SODA 2014
January 7, 2014
Portland, OR

1



Connecting terminals

Undirected graphs:

Steiner Tree
Input: An undirected graph G with terminals t1, . . ., tk .
Find: A tree T of G containing every ti .
Goal: Minimize the size of F .

A classical dynamic programming algorithm:

Theorem [Dreyfus and Wagner 1972]

Steiner Tree can be solved in time 3k · nO(1).

Recent improvement:

Theorem [Björklund et al. 2007]

Steiner Tree can be solved in time 2k · nO(1).

2



Connecting terminals

Directed graphs:

Strongly Connected Steiner Subgraph
Input: A directed graph G with terminals t1, . . ., tk .
Find: A subgraph F of G such that there is a ti → tj

path in F for every 1 ≤ i , j ≤ k .
Goal: Minimize the size of F .

What is the complexity of Strongly Connected Steiner
Subgraph for fixed k?

3



Edge vs. vertex versions

We can minimize either the number of edges or vertices — can lead
to different optimum solutions.

vs.

5 vertices 6 vertices
8 edges 7 edges

We focus here on the vertex version (which is typically harder).

4



Strongly Connected Steiner Subgraph

Theorem
Strongly Connected Steiner Subgraph on general
directed graphs

can be solved in time nO(k) [Feldman and Ruhl 2006],
is W[1]-hard parameterized by k [Guo, Niedermeier, Suchý 2011],
thus an f (k) · nO(1) algorithm is unlikely.

Revisiting the W[1]-hardness proof of [Guo, Niedermeier, Suchý 2011]
more carefully gives:

Theorem
There is no f (k) · no(k/ log k) time algorithm for Strongly
Connected Steiner Subgraph, unless the Exponential Time
Hypothesis (ETH) fails.

[ETH: n-variable 3SAT cannot be solved in time 2o(n).]

5



Strongly Connected Steiner Subgraph

Theorem
Strongly Connected Steiner Subgraph on general
directed graphs

can be solved in time nO(k) [Feldman and Ruhl 2006],
is W[1]-hard parameterized by k [Guo, Niedermeier, Suchý 2011],
thus an f (k) · nO(1) algorithm is unlikely.

Revisiting the W[1]-hardness proof of [Guo, Niedermeier, Suchý 2011]
more carefully gives:

Theorem
There is no f (k) · no(k/ log k) time algorithm for Strongly
Connected Steiner Subgraph, unless the Exponential Time
Hypothesis (ETH) fails.

[ETH: n-variable 3SAT cannot be solved in time 2o(n).]

5



Planar graphs

Parameterized problems are typically much easier on planar
graphs.
Bidimensionality theory or other techniques often give
2O(

√
k) · nO(1) time algorithms.

Do we get such an improvement for Strongly Connected
Steiner Subgraph?

Main Result
Strongly Connected Steiner Subgraph on planar directed
graphs

can be solved in time 2O(k log k) · nO(
√

k),
has no f (k) · no(

√
k) time algorithm (assuming ETH).

6



Planar graphs

Parameterized problems are typically much easier on planar
graphs.
Bidimensionality theory or other techniques often give
2O(

√
k) · nO(1) time algorithms.

Do we get such an improvement for Strongly Connected
Steiner Subgraph?

Main Result
Strongly Connected Steiner Subgraph on planar directed
graphs

can be solved in time 2O(k log k) · nO(
√

k),
has no f (k) · no(

√
k) time algorithm (assuming ETH).

6



Upper bound:
The algorithm

7



Algorithm of Feldman and Ruhl
The Feldman-Ruhl game

Let an arbitrary terminal be the root r .
Put a forward pebble and a backward pebble on each of the
remaining k − 1 terminals (2(k − 1) pebbles in total).
A set of legal moves and their cost are defined.

The following equivalence is proved:

Theorem [Feldman and Ruhl 2006]

There is a sequence of legal moves with total
cost C moving all the pebbles to the root r .

m
There is a solution of Strongly

Connected Steiner Subgraph
with C vertices.

The existence of the required sequence of moves can be tested in
time nO(k).

8



Algorithm of Feldman and Ruhl
The Feldman-Ruhl game

Let an arbitrary terminal be the root r .
Put a forward pebble and a backward pebble on each of the
remaining k − 1 terminals (2(k − 1) pebbles in total).
A set of legal moves and their cost are defined.

The following equivalence is proved:

Theorem [Feldman and Ruhl 2006]

There is a sequence of legal moves with total
cost C moving all the pebbles to the root r .

m
There is a solution of Strongly

Connected Steiner Subgraph
with C vertices.

The existence of the required sequence of moves can be tested in
time nO(k).

8



Legal moves
Forward move: a forward pebble at u moves on an edge
u → v to v .
Cost: 0 if v was already occupied, 1 otherwise.
Backward move: a backward pebble at u moves on an edge
v → u to v .
Cost: 0 if v was already occupied, 1 otherwise.
Flip move: Let f be a forward pebble at u, let b be a
backward pebble at v , and let W be a u → v walk. Move
pebble f to v , pebble b to u, and remove every other pebble
on W .
Cost: the number of unoccupied vertices on W .

9



Legal moves
Forward move: a forward pebble at u moves on an edge
u → v to v .
Cost: 0 if v was already occupied, 1 otherwise.
Backward move: a backward pebble at u moves on an edge
v → u to v .
Cost: 0 if v was already occupied, 1 otherwise.
Flip move: Let f be a forward pebble at u, let b be a
backward pebble at v , and let W be a u → v walk. Move
pebble f to v , pebble b to u, and remove every other pebble
on W .
Cost: the number of unoccupied vertices on W .

f bf f ′ b′ f ′′

W

9



Legal moves
Forward move: a forward pebble at u moves on an edge
u → v to v .
Cost: 0 if v was already occupied, 1 otherwise.
Backward move: a backward pebble at u moves on an edge
v → u to v .
Cost: 0 if v was already occupied, 1 otherwise.
Flip move: Let f be a forward pebble at u, let b be a
backward pebble at v , and let W be a u → v walk. Move
pebble f to v , pebble b to u, and remove every other pebble
on W .
Cost: the number of unoccupied vertices on W .

fb

W

9



Legal moves
Forward move: a forward pebble at u moves on an edge
u → v to v .
Cost: 0 if v was already occupied, 1 otherwise.
Backward move: a backward pebble at u moves on an edge
v → u to v .
Cost: 0 if v was already occupied, 1 otherwise.
Flip move: Let f be a forward pebble at u, let b be a
backward pebble at v , and let W be a u → v walk. Move
pebble f to v , pebble b to u, and remove every other pebble
on W .
Cost: the number of unoccupied vertices on W .

Slight generalization: we allow the forward/backward moves on
arbitrary u → v walks, not only on edges (and define the costs
appropriately).

9



Bounding the number of moves

Bound somehow the number of moves in an optimum solution.
Argue that the moves form a planar graph with treewidth
O(
√

k).
Use standard treewidth techniques to find the best possible
way this planar graph can appear.

However, it is not true that the number of moves in a solution is
bounded:

10



Bounding the number of moves

Bound somehow the number of moves in an optimum solution.
Argue that the moves form a planar graph with treewidth
O(
√

k).
Use standard treewidth techniques to find the best possible
way this planar graph can appear.

However, it is not true that the number of moves in a solution is
bounded:

10



Bounding the number of moves

Bound somehow the number of moves in an optimum solution.
Argue that the moves form a planar graph with treewidth
O(
√

k).
Use standard treewidth techniques to find the best possible
way this planar graph can appear.

However, it is not true that the number of moves in a solution is
bounded:

r

b, f

t1

10



Bounding the number of moves

Bound somehow the number of moves in an optimum solution.
Argue that the moves form a planar graph with treewidth
O(
√

k).
Use standard treewidth techniques to find the best possible
way this planar graph can appear.

However, it is not true that the number of moves in a solution is
bounded:

r

b

t1

f

10



Bounding the number of moves

Bound somehow the number of moves in an optimum solution.
Argue that the moves form a planar graph with treewidth
O(
√

k).
Use standard treewidth techniques to find the best possible
way this planar graph can appear.

However, it is not true that the number of moves in a solution is
bounded:

r

b

t1

f

10



Bounding the number of moves

Bound somehow the number of moves in an optimum solution.
Argue that the moves form a planar graph with treewidth
O(
√

k).
Use standard treewidth techniques to find the best possible
way this planar graph can appear.

However, it is not true that the number of moves in a solution is
bounded:

r

f

t1

b

10



Bounding the number of moves

Bound somehow the number of moves in an optimum solution.
Argue that the moves form a planar graph with treewidth
O(
√

k).
Use standard treewidth techniques to find the best possible
way this planar graph can appear.

However, it is not true that the number of moves in a solution is
bounded:

r

f

t1

b

10



Bounding the number of moves

Bound somehow the number of moves in an optimum solution.
Argue that the moves form a planar graph with treewidth
O(
√

k).
Use standard treewidth techniques to find the best possible
way this planar graph can appear.

However, it is not true that the number of moves in a solution is
bounded:

r

f

t1

b

10



Bounding the number of moves

Bound somehow the number of moves in an optimum solution.
Argue that the moves form a planar graph with treewidth
O(
√

k).
Use standard treewidth techniques to find the best possible
way this planar graph can appear.

However, it is not true that the number of moves in a solution is
bounded:

r

b

t1

f

10



Bounding the number of moves

Bound somehow the number of moves in an optimum solution.
Argue that the moves form a planar graph with treewidth
O(
√

k).
Use standard treewidth techniques to find the best possible
way this planar graph can appear.

However, it is not true that the number of moves in a solution is
bounded:

r

b

t1

f

10



Bounding the number of moves

Bound somehow the number of moves in an optimum solution.
Argue that the moves form a planar graph with treewidth
O(
√

k).
Use standard treewidth techniques to find the best possible
way this planar graph can appear.

However, it is not true that the number of moves in a solution is
bounded:

r

b

t1

f

10



Bounding the number of moves

Bound somehow the number of moves in an optimum solution.
Argue that the moves form a planar graph with treewidth
O(
√

k).
Use standard treewidth techniques to find the best possible
way this planar graph can appear.

However, it is not true that the number of moves in a solution is
bounded:

r

f

t1

b

10



Bounding the number of moves

Bound somehow the number of moves in an optimum solution.
Argue that the moves form a planar graph with treewidth
O(
√

k).
Use standard treewidth techniques to find the best possible
way this planar graph can appear.

However, it is not true that the number of moves in a solution is
bounded:

r

f

t1

b

10



Bounding the number of moves

Bound somehow the number of moves in an optimum solution.
Argue that the moves form a planar graph with treewidth
O(
√

k).
Use standard treewidth techniques to find the best possible
way this planar graph can appear.

However, it is not true that the number of moves in a solution is
bounded:

r

f

t1

b

10



Bounding the number of moves

Bound somehow the number of moves in an optimum solution.
Argue that the moves form a planar graph with treewidth
O(
√

k).
Use standard treewidth techniques to find the best possible
way this planar graph can appear.

However, it is not true that the number of moves in a solution is
bounded:

r

f , b

t1

10



Optimum solutions

Closely looking at the nO(k) algorithm of [Feldman and Ruhl 2006]
shows that an optimum solution consists of directed paths and
“bidirectional strips”:

With some work, we can bound the number paths/strips by O(k).

11



Algorithm

[Ignore the bidirectional strips for simplicity]

We guess the topology of the solution (2O(k log k) possibilities).
As the number of moves is O(k) and they form a planar
graph, treewidth of the topology is O(

√
k).

We can find the best realization of this topology (matching
the location of the terminals) in time nO(

√
k).

12



Algorithm

[Ignore the bidirectional strips for simplicity]

We guess the topology of the solution (2O(k log k) possibilities).
As the number of moves is O(k) and they form a planar
graph, treewidth of the topology is O(

√
k).

We can find the best realization of this topology (matching
the location of the terminals) in time nO(

√
k).

12



Lower bound:
The hardness result

13



Tight lower bounds

Theorem [Chen et al. 2004]

Assuming ETH, there is no f (k) · no(k) algorithm for k-Clique for
any computable function f .

[ETH: n-variable 3SAT cannot be solved in time 2o(n).]

Transfering to other problems:

k-Clique
(x , k)

⇒ Problem A
(x ′, k2)

f (k) · no(k)

algorithm
⇐ f (k) · no(

√
k)

algorithm

Bottom line:
To rule out f (k) · no(

√
k) algorithms, we need a parameterized

reduction that blows up the parameter at most quadratically.

14



Tight lower bounds

Theorem [Chen et al. 2004]

Assuming ETH, there is no f (k) · no(k) algorithm for k-Clique for
any computable function f .

[ETH: n-variable 3SAT cannot be solved in time 2o(n).]

Transfering to other problems:

k-Clique
(x , k)

⇒ Problem A
(x ′, k2)

f (k) · no(k)

algorithm
⇐ f (k) · no(

√
k)

algorithm

Bottom line:
To rule out f (k) · no(

√
k) algorithms, we need a parameterized

reduction that blows up the parameter at most quadratically.
14



Grid Tiling

Grid Tiling
Input: A k × k matrix and a set of pairs Si ,j ⊆ [D] × [D] for

each cell.
Find: A pair si ,j ∈ Si ,j for each cell such that

Horizontal neighbors agree in the first component.
Vertical neighbors agree in the second component.

(1,1)
(1,3)
(4,2)

(1,5)
(4,1)
(3,5)

(1,1)
(4,2)
(3,3)

(2,2)
(4,1)

(1,3)
(2,1)

(2,2)
(3,2)

(3,1)
(3,2)
(3,3)

(1,1)
(3,1)

(3,2)
(3,5)

k = 3, D = 5
15



Grid Tiling

Grid Tiling
Input: A k × k matrix and a set of pairs Si ,j ⊆ [D] × [D] for

each cell.
Find: A pair si ,j ∈ Si ,j for each cell such that

Horizontal neighbors agree in the first component.
Vertical neighbors agree in the second component.

(1,1)
(1,3)
(4,2)

(1,5)
(4,1)
(3,5)

(1,1)
(4,2)
(3,3)

(2,2)
(4,1)

(1,3)
(2,1)

(2,2)
(3,2)

(3,1)
(3,2)
(3,3)

(1,1)
(3,1)

(3,2)
(3,5)

k = 3, D = 5
15



Grid Tiling

Grid Tiling
Input: A k × k matrix and a set of pairs Si ,j ⊆ [D] × [D] for

each cell.
Find: A pair si ,j ∈ Si ,j for each cell such that

Horizontal neighbors agree in the first component.
Vertical neighbors agree in the second component.

Fact
There is a parameterized reduction from k-Clique to k × k Grid
Tiling.

Consequence

There is no f (k)no(k) time algorithm for k × k Grid Tiling
(assuming ETH).

15



Lower bound
Theorem
Strongly Connected Steiner Subgraph has no
f (k) · no(

√
k) time algorithm on planar directed graphs (assuming

ETH).

The proof is by reduction from Grid Tiling and complicated
construction of gadgets (constant number of terminals per gadget).

16



Lower bound
Theorem
Strongly Connected Steiner Subgraph has no
f (k) · no(

√
k) time algorithm on planar directed graphs (assuming

ETH).

The proof is by reduction from Grid Tiling and complicated
construction of gadgets (constant number of terminals per gadget).

k-Clique
(x , k)

⇓
k × k Grid

Tiling
⇓

Strongly Connected
Steiner Subgraph
with O(k2) terminals

16



An extension:
Directed Steiner Forest

17



Steiner Forest
Generalization of Strongly Connected Steiner Subgraph:

Directed Steiner Forest
Input: A directed graph G , pairs of vertices (s1, t1), . . .,

(sk , tk).
Find: A subgraph F of G such that there is an si → ti

path in F for every 1 ≤ i ≤ k .
Goal: Minimize the total weight of F .

Theorem [Feldman and Ruhl 2006]

Directed Steiner Forest can be solved in time nO(k).

The hardness result on Strongly Connected Steiner Sub-
graph implies:

Theorem
There is no f (k)no(k/ log k) time algorithm for Directed Steiner
Forest on general graphs, unless ETH fails.

18



Steiner Forest
Generalization of Strongly Connected Steiner Subgraph:

Directed Steiner Forest
Input: A directed graph G , pairs of vertices (s1, t1), . . .,

(sk , tk).
Find: A subgraph F of G such that there is an si → ti

path in F for every 1 ≤ i ≤ k .
Goal: Minimize the total weight of F .

Theorem [Feldman and Ruhl 2006]

Directed Steiner Forest can be solved in time nO(k).

However, for Directed Steiner Forest nO(k) is best possible
even on planar graphs:

Theorem
There is no f (k)no(k) time algorithm for Directed Steiner
Forest on planar graphs, unless ETH fails.

18



Summary

On general graphs, the nO(k) algorithm of [Feldman and Ruhl
2006] for Strongly Connected Steiner Subgraph is
essentially best possible (assuming ETH).
On planar graphs, we can improve the running time to
f (k)nO(

√
k), but this is essentially best possible (assuming

ETH).
Upper bound: massaging the problem into finding a graph of
treewidth O(

√
k).

Lower bound: delicate reduction from Grid Tiling.

Directed Steiner Forest: nO(k) algorithm of [Feldman
and Ruhl 2006] is essentially best possible even on planar
graphs (assuming ETH).

19


	Connecting terminals
	Connecting terminals
	Edge vs. vertex versions
	 Strongly Connected Steiner Subgraph
	 Strongly Connected Steiner Subgraph
	Planar graphs
	Planar graphs
	
	Algorithm of Feldman and Ruhl
	Algorithm of Feldman and Ruhl
	Legal moves
	Legal moves
	Legal moves
	Legal moves
	Bounding the number of moves
	Bounding the number of moves
	Bounding the number of moves
	Bounding the number of moves
	Bounding the number of moves
	Bounding the number of moves
	Bounding the number of moves
	Bounding the number of moves
	Bounding the number of moves
	Bounding the number of moves
	Bounding the number of moves
	Bounding the number of moves
	Bounding the number of moves
	Bounding the number of moves
	Bounding the number of moves
	Optimum solutions
	Algorithm
	Algorithm
	
	Tight lower bounds
	Tight lower bounds
	Grid Tiling
	Grid Tiling
	Grid Tiling
	Lower bound
	Lower bound
	
	Steiner Forest
	Steiner Forest
	Summary

