Tight bounds for planar strongly connected Steiner subgraph with fixed number of terminals (and extensions)

#### Rajesh Chitnis<sup>1</sup> MohammadTaghi Hajiaghayi<sup>1</sup> <u>Dániel Marx</u><sup>2</sup>

<sup>1</sup>Computer Science Department University of Maryland

<sup>2</sup>Institute for Computer Science and Control Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary

> SODA 2014 January 7, 2014 Portland, OR

#### Connecting terminals

#### Undirected graphs:

| STEINER | TREE                                                        |
|---------|-------------------------------------------------------------|
| Input:  | An undirected graph $G$ with terminals $t_1, \ldots, t_k$ . |
| Find:   | A tree $T$ of $G$ containing every $t_i$ .                  |
| Goal:   | Minimize the size of $F$ .                                  |

A classical dynamic programming algorithm:

Theorem [Dreyfus and Wagner 1972]

STEINER TREE can be solved in time  $3^k \cdot n^{O(1)}$ .

Recent improvement:

Theorem [Björklund et al. 2007]

STEINER TREE can be solved in time  $2^k \cdot n^{O(1)}$ .

#### Connecting terminals

#### Directed graphs:

| Strongly Connected Steiner Subgraph |                                                                            |  |
|-------------------------------------|----------------------------------------------------------------------------|--|
| Input:                              | A directed graph G with terminals $t_1, \ldots, t_k$ .                     |  |
| Find:                               | A subgraph <i>F</i> of <i>G</i> such that there is a $t_i \rightarrow t_i$ |  |
|                                     | path in F for every $1 \le i, j \le k$ .                                   |  |
| Goal:                               | Minimize the size of $F$ .                                                 |  |

What is the complexity of STRONGLY CONNECTED STEINER SUBGRAPH for fixed *k*?

#### Edge vs. vertex versions

We can minimize either the number of edges or vertices — can lead to different optimum solutions.



We focus here on the vertex version (which is typically harder).

## STRONGLY CONNECTED STEINER SUBGRAPH

Theorem

 $\label{eq:strongly connected Steiner Subgraph on general directed graphs$ 

- can be solved in time  $n^{O(k)}$  [Feldman and Ruhl 2006],
- is W[1]-hard parameterized by k [Guo, Niedermeier, Suchý 2011], thus an  $f(k) \cdot n^{O(1)}$  algorithm is unlikely.

# STRONGLY CONNECTED STEINER SUBGRAPH

Theorem

 $\label{eq:strongly connected Steiner Subgraph on general directed graphs$ 

- can be solved in time  $n^{O(k)}$  [Feldman and Ruhl 2006],
- is W[1]-hard parameterized by k [Guo, Niedermeier, Suchý 2011], thus an  $f(k) \cdot n^{O(1)}$  algorithm is unlikely.

Revisiting the W[1]-hardness proof of [Guo, Niedermeier, Suchý 2011] more carefully gives:

#### Theorem

There is no  $f(k) \cdot n^{o(k/\log k)}$  time algorithm for STRONGLY CONNECTED STEINER SUBGRAPH, unless the Exponential Time Hypothesis (ETH) fails.

[ETH: *n*-variable 3SAT cannot be solved in time  $2^{o(n)}$ .]

### Planar graphs

- Parameterized problems are typically much easier on planar graphs.
- Bidimensionality theory or other techniques often give  $2^{O(\sqrt{k})} \cdot n^{O(1)}$  time algorithms.
- Do we get such an improvement for STRONGLY CONNECTED STEINER SUBGRAPH?

### Planar graphs

- Parameterized problems are typically much easier on planar graphs.
- Bidimensionality theory or other techniques often give  $2^{O(\sqrt{k})} \cdot n^{O(1)}$  time algorithms.
- Do we get such an improvement for STRONGLY CONNECTED STEINER SUBGRAPH?

#### Main Result

 $\label{eq:strongly connected Steiner Subgraph on planar directed graphs$ 

- can be solved in time  $2^{O(k \log k)} \cdot n^{O(\sqrt{k})}$ ,
- has no  $f(k) \cdot n^{o(\sqrt{k})}$  time algorithm (assuming ETH).

Upper bound: The algorithm

# Algorithm of Feldman and Ruhl

#### The Feldman-Ruhl game

- Let an arbitrary terminal be the root *r*.
- Put a forward pebble and a backward pebble on each of the remaining k 1 terminals (2(k 1)) pebbles in total).
- A set of legal moves and their cost are defined.

# Algorithm of Feldman and Ruhl

#### The Feldman-Ruhl game

- Let an arbitrary terminal be the root *r*.
- Put a forward pebble and a backward pebble on each of the remaining k-1 terminals (2(k-1)) pebbles in total).
- A set of legal moves and their cost are defined.

The following equivalence is proved:

```
Theorem [Feldman and Ruhl 2006]

There is a sequence of legal moves with total

cost C moving all the pebbles to the root r.

There is a solution of STRONGLY

CONNECTED STEINER SUBGRAPH

with C vertices.
```

The existence of the required sequence of moves can be tested in time  $n^{O(k)}$ .

• Forward move: a forward pebble at u moves on an edge  $u \rightarrow v$  to v.

Cost: 0 if v was already occupied, 1 otherwise.

• Backward move: a backward pebble at u moves on an edge  $v \rightarrow u$  to v.

Cost: 0 if v was already occupied, 1 otherwise.

Flip move: Let f be a forward pebble at u, let b be a backward pebble at v, and let W be a u → v walk. Move pebble f to v, pebble b to u, and remove every other pebble on W.

Cost: the number of unoccupied vertices on W.

• Forward move: a forward pebble at u moves on an edge  $u \rightarrow v$  to v.

Cost: 0 if v was already occupied, 1 otherwise.

• Backward move: a backward pebble at u moves on an edge  $v \rightarrow u$  to v.

Cost: 0 if v was already occupied, 1 otherwise.

Flip move: Let f be a forward pebble at u, let b be a backward pebble at v, and let W be a u → v walk. Move pebble f to v, pebble b to u, and remove every other pebble on W.

Cost: the number of unoccupied vertices on W.

W



• Forward move: a forward pebble at u moves on an edge  $u \rightarrow v$  to v.

Cost: 0 if v was already occupied, 1 otherwise.

• Backward move: a backward pebble at u moves on an edge  $v \rightarrow u$  to v.

Cost: 0 if v was already occupied, 1 otherwise.

Flip move: Let f be a forward pebble at u, let b be a backward pebble at v, and let W be a u → v walk. Move pebble f to v, pebble b to u, and remove every other pebble on W.

Cost: the number of unoccupied vertices on W.

W



• Forward move: a forward pebble at u moves on an edge  $u \rightarrow v$  to v.

Cost: 0 if v was already occupied, 1 otherwise.

• Backward move: a backward pebble at u moves on an edge  $v \rightarrow u$  to v.

Cost: 0 if v was already occupied, 1 otherwise.

Flip move: Let f be a forward pebble at u, let b be a backward pebble at v, and let W be a u → v walk. Move pebble f to v, pebble b to u, and remove every other pebble on W.

Cost: the number of unoccupied vertices on W.

Slight generalization: we allow the forward/backward moves on arbitrary  $u \rightarrow v$  walks, not only on edges (and define the costs appropriately).

- Bound somehow the number of moves in an optimum solution.
- Argue that the moves form a planar graph with treewidth  $O(\sqrt{k})$ .
- Use standard treewidth techniques to find the best possible way this planar graph can appear.

- Bound somehow the number of moves in an optimum solution.
- Argue that the moves form a planar graph with treewidth  $O(\sqrt{k})$ .
- Use standard treewidth techniques to find the best possible way this planar graph can appear.



- Bound somehow the number of moves in an optimum solution.
- Argue that the moves form a planar graph with treewidth  $O(\sqrt{k})$ .
- Use standard treewidth techniques to find the best possible way this planar graph can appear.



- Bound somehow the number of moves in an optimum solution.
- Argue that the moves form a planar graph with treewidth  $O(\sqrt{k})$ .
- Use standard treewidth techniques to find the best possible way this planar graph can appear.



- Bound somehow the number of moves in an optimum solution.
- Argue that the moves form a planar graph with treewidth  $O(\sqrt{k})$ .
- Use standard treewidth techniques to find the best possible way this planar graph can appear.



- Bound somehow the number of moves in an optimum solution.
- Argue that the moves form a planar graph with treewidth  $O(\sqrt{k})$ .
- Use standard treewidth techniques to find the best possible way this planar graph can appear.



- Bound somehow the number of moves in an optimum solution.
- Argue that the moves form a planar graph with treewidth  $O(\sqrt{k})$ .
- Use standard treewidth techniques to find the best possible way this planar graph can appear.



- Bound somehow the number of moves in an optimum solution.
- Argue that the moves form a planar graph with treewidth  $O(\sqrt{k})$ .
- Use standard treewidth techniques to find the best possible way this planar graph can appear.



- Bound somehow the number of moves in an optimum solution.
- Argue that the moves form a planar graph with treewidth  $O(\sqrt{k})$ .
- Use standard treewidth techniques to find the best possible way this planar graph can appear.



- Bound somehow the number of moves in an optimum solution.
- Argue that the moves form a planar graph with treewidth  $O(\sqrt{k})$ .
- Use standard treewidth techniques to find the best possible way this planar graph can appear.



- Bound somehow the number of moves in an optimum solution.
- Argue that the moves form a planar graph with treewidth  $O(\sqrt{k})$ .
- Use standard treewidth techniques to find the best possible way this planar graph can appear.



- Bound somehow the number of moves in an optimum solution.
- Argue that the moves form a planar graph with treewidth  $O(\sqrt{k})$ .
- Use standard treewidth techniques to find the best possible way this planar graph can appear.



- Bound somehow the number of moves in an optimum solution.
- Argue that the moves form a planar graph with treewidth  $O(\sqrt{k})$ .
- Use standard treewidth techniques to find the best possible way this planar graph can appear.



- Bound somehow the number of moves in an optimum solution.
- Argue that the moves form a planar graph with treewidth  $O(\sqrt{k})$ .
- Use standard treewidth techniques to find the best possible way this planar graph can appear.



- Bound somehow the number of moves in an optimum solution.
- Argue that the moves form a planar graph with treewidth  $O(\sqrt{k})$ .
- Use standard treewidth techniques to find the best possible way this planar graph can appear.



#### Optimum solutions

Closely looking at the  $n^{O(k)}$  algorithm of [Feldman and Ruhl 2006] shows that an optimum solution consists of directed paths and "bidirectional strips":



With some work, we can bound the number paths/strips by O(k).

# Algorithm

[Ignore the bidirectional strips for simplicity]



- We guess the topology of the solution  $(2^{O(k \log k)} \text{ possibilities})$ .
- As the number of moves is O(k) and they form a planar graph, treewidth of the topology is  $O(\sqrt{k})$ .
- We can find the best realization of this topology (matching the location of the terminals) in time  $n^{O(\sqrt{k})}$ .

# Algorithm

[Ignore the bidirectional strips for simplicity]



- We guess the topology of the solution  $(2^{O(k \log k)} \text{ possibilities})$ .
- As the number of moves is O(k) and they form a planar graph, treewidth of the topology is  $O(\sqrt{k})$ .
- We can find the best realization of this topology (matching the location of the terminals) in time  $n^{O(\sqrt{k})}$ .

Lower bound: The hardness result

## Tight lower bounds

#### Theorem [Chen et al. 2004]

Assuming ETH, there is no  $f(k) \cdot n^{o(k)}$  algorithm for k-CLIQUE for any computable function f.

[ETH: *n*-variable 3SAT cannot be solved in time  $2^{o(n)}$ .]

## Tight lower bounds

#### Theorem [Chen et al. 2004]

Assuming ETH, there is no  $f(k) \cdot n^{o(k)}$  algorithm for k-CLIQUE for any computable function f.

[ETH: *n*-variable 3SAT cannot be solved in time  $2^{o(n)}$ .]

Transfering to other problems:



#### **Bottom line:**

To rule out  $f(k) \cdot n^{o(\sqrt{k})}$  algorithms, we need a parameterized reduction that blows up the parameter at most quadratically.

# Grid Tiling

#### GRID TILING

- *Input:* A  $k \times k$  matrix and a set of pairs  $S_{i,j} \subseteq [D] \times [D]$  for each cell.
- *Find:* A pair  $s_{i,j} \in S_{i,j}$  for each cell such that
  - Horizontal neighbors agree in the first component.
  - Vertical neighbors agree in the second component.

| (1 1)                   | (1 E)          | (1 1)          |  |
|-------------------------|----------------|----------------|--|
| (1,1)                   | (1,5)          | (1,1)          |  |
| (1,3)                   | (4,1)          | (4,2)          |  |
| (4,2)                   | (3,5)          | (3,3)          |  |
| (2,2)<br>(4,1)          | (1,3)<br>(2,1) | (2,2)<br>(3,2) |  |
| (3,1)<br>(3,2)<br>(3,3) | (1,1)<br>(3,1) | (3,2)<br>(3,5) |  |
| k = 3, D = 5            |                |                |  |

# Grid Tiling

#### GRID TILING

- *Input:* A  $k \times k$  matrix and a set of pairs  $S_{i,j} \subseteq [D] \times [D]$  for each cell.
- *Find:* A pair  $s_{i,j} \in S_{i,j}$  for each cell such that
  - Horizontal neighbors agree in the first component.
  - Vertical neighbors agree in the second component.

| (1,1)                   | (1,5)          | (1,1)                       |  |
|-------------------------|----------------|-----------------------------|--|
| (1,3)                   | (4,1)          | (4,2)                       |  |
| (4,2)                   | (3,5)          | (3,3)                       |  |
| (2,2)<br>(4,1)          | (1,3)<br>(2,1) | <mark>(2,2)</mark><br>(3,2) |  |
| (3,1)<br>(3,2)<br>(3,3) | (1,1)<br>(3,1) | <mark>(3,2)</mark><br>(3,5) |  |
| k = 3, D = 5            |                |                             |  |

# Grid Tiling

#### GRID TILING

- *Input:* A  $k \times k$  matrix and a set of pairs  $S_{i,j} \subseteq [D] \times [D]$  for each cell.
- *Find:* A pair  $s_{i,j} \in S_{i,j}$  for each cell such that
  - Horizontal neighbors agree in the first component.
  - Vertical neighbors agree in the second component.

#### Fact

There is a parameterized reduction from k-CLIQUE to  $k \times k$  GRID TILING.

#### Consequence

There is no  $f(k)n^{o(k)}$  time algorithm for  $k \times k$  GRID TILING (assuming ETH).

### Lower bound

Theorem

STRONGLY CONNECTED STEINER SUBGRAPH has no  $f(k) \cdot n^{o(\sqrt{k})}$  time algorithm on planar directed graphs (assuming ETH).

The proof is by reduction from GRID TILING and complicated construction of gadgets (constant number of terminals per gadget).



### Lower bound

Theorem

STRONGLY CONNECTED STEINER SUBGRAPH has no  $f(k) \cdot n^{o(\sqrt{k})}$  time algorithm on planar directed graphs (assuming ETH).

The proof is by reduction from GRID TILING and complicated construction of gadgets (constant number of terminals per gadget).



An extension: DIRECTED STEINER FOREST

### Steiner Forest

Generalization of STRONGLY CONNECTED STEINER SUBGRAPH:

| Directed Steiner Forest |                                                                   |  |
|-------------------------|-------------------------------------------------------------------|--|
| Input:                  | A directed graph $G$ , pairs of vertices $(s_1, t_1), \ldots,$    |  |
|                         | $(s_k, t_k).$                                                     |  |
| Find:                   | A subgraph $F$ of $G$ such that there is an $s_i \rightarrow t_i$ |  |
|                         | path in $F$ for every $1 \le i \le k$ .                           |  |
| Goal:                   | Minimize the total weight of <i>F</i> .                           |  |

### Steiner Forest

Generalization of STRONGLY CONNECTED STEINER SUBGRAPH:

| Directed Steiner Forest |                                                                   |  |
|-------------------------|-------------------------------------------------------------------|--|
| Input:                  | A directed graph $G$ , pairs of vertices $(s_1, t_1), \ldots,$    |  |
|                         | $(s_k, t_k).$                                                     |  |
| Find:                   | A subgraph $F$ of $G$ such that there is an $s_i \rightarrow t_i$ |  |
|                         | path in $F$ for every $1 \le i \le k$ .                           |  |
| Goal:                   | Minimize the total weight of <i>F</i> .                           |  |

Theorem [Feldman and Ruhl 2006]

DIRECTED STEINER FOREST can be solved in time  $n^{O(k)}$ .

However, for DIRECTED STEINER FOREST  $n^{O(k)}$  is best possible even on planar graphs:

#### Theorem

There is no  $f(k)n^{o(k)}$  time algorithm for DIRECTED STEINER FOREST on planar graphs, unless ETH fails.

# Summary

- On general graphs, the *n*<sup>O(k)</sup> algorithm of [Feldman and Ruhl 2006] for STRONGLY CONNECTED STEINER SUBGRAPH is essentially best possible (assuming ETH).
- On planar graphs, we can improve the running time to  $f(k)n^{O(\sqrt{k})}$ , but this is essentially best possible (assuming ETH).
  - Upper bound: massaging the problem into finding a graph of treewidth  $O(\sqrt{k})$ .
  - $\bullet$  Lower bound: delicate reduction from  $G{\ensuremath{\mathrm{RID}}}$   $T{\ensuremath{\mathrm{ILING}}}.$
- DIRECTED STEINER FOREST: n<sup>O(k)</sup> algorithm of [Feldman and Ruhl 2006] is essentially best possible even on planar graphs (assuming ETH).