Finding small patterns in permutations in linear time

Sylvain Guillemot Dániel Marx

Institute for Computer Science and Control Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary

> SODA 2014 January 5, 2014 Portland, OR

Permutations

Different interpretations:

• Bijective mapping $\sigma : [n] \rightarrow [n]$:

• Ordering of [*n*]:

32784615

• *n* points in the plane "in general position":

Subpermutations

There is a natural way of defining the meaning of σ being a subpermutation of π (or a "permutation pattern" in π).

Example:

Subpermutations

There is a natural way of defining the meaning of σ being a subpermutation of π (or a "permutation pattern" in π).

Example:

Excluding subpermutations

There are n! permutations of length n, but their number is much smaller if we exclude a fixed permutation:

Theorem [Marcus and Tardos 2004]

For every fixed permutation σ , the number of permutations of length *n* avoiding σ is at most c^n for some constant *c* depending on σ .

Example:

The number of permutations of length *n* avoiding 231 is exactly the Catalan number $C_n = \frac{1}{n+1} {\binom{2n}{n}} < 4^n$.

Finding patterns in permutations

PERMUTATION PATTERNInput:Two permutations σ and π .Decide:Is σ a subpattern of π ?

- NP-hard in general [Bose, Buss, and Lubiw 1998].
- Can be solved in time $n^{\ell+O(1)}$ by brute force, where $\ell = |\sigma|$ and $n = |\pi|$.
- Can be solved in time $n^{0.47\ell+o(\ell)}$ [Ahal and Rabinovich 2008].

Finding patterns in permutations

PERMUTATION PATTERNInput:Two permutations σ and π .Decide:Is σ a subpattern of π ?

- NP-hard in general [Bose, Buss, and Lubiw 1998].
- Can be solved in time $n^{\ell+O(1)}$ by brute force, where $\ell = |\sigma|$ and $n = |\pi|$.
- Can be solved in time $n^{0.47\ell+o(\ell)}$ [Ahal and Rabinovich 2008].

Main result:

Theorem

PERMUTATION PATTERN can be solved in time $2^{O(\ell^2 \log \ell)} \cdot n$, where $\ell = |\sigma|$ and $n = |\pi|$.

We define the notion of *d*-wide decomposition and solve the problem using the following win/win strategy: $(\ell = |\sigma|, n = |\pi|)$

- There is an algorithm that either
 - finds σ in π or
 - finds a $2^{O(\ell \log \ell)}$ -wide decomposition of π .
- There is an algorithm that, given σ and a d-wide decomposition of π, decides if σ is a subpattern of π in time (dℓ)^{O(ℓ)} · n.

These two algorithms together give a $2^{O(\ell^2 \log \ell)} \cdot n$ time algorithm for PERMUTATION PATTERN.

$$(3,4) \rightarrow 9$$

 $(1,2) \rightarrow 10$

$$egin{array}{c} (3,4) o 9 \ (1,2) o 10 \ (6,7) o 11 \end{array}$$

$$egin{aligned} (3,4) & o 9 \ (1,2) & o 10 \ (6,7) & o 11 \ (5,8) \end{aligned}$$

$$egin{aligned} (3,4) & o 9 \ (1,2) & o 10 \ (6,7) & o 11 \ (5,8) & o 12 \end{aligned}$$

$$\begin{array}{c} (3,4) \rightarrow 9 & (3,12) \rightarrow 13 \\ (1,2) \rightarrow 10 & (13,11) \rightarrow 14 \\ (6,7) \rightarrow 11 & \\ (5,8) \rightarrow 12 \end{array}$$

$$\begin{array}{ll} (3,4) \rightarrow 9 & (9,12) \rightarrow 13 \\ (1,2) \rightarrow 10 & (13,11) \rightarrow 14 \\ (6,7) \rightarrow 11 & (10,14) \rightarrow 15 \\ (5,8) \rightarrow 12 \end{array}$$

- *R*₁ sees *R*₂ horizontally (resp., vertically) if there is a horizontal (resp., vertical) line intersecting both.
- A rectangle family is *d*-wide if every rectangle sees less than *d* other rectangles horizontally and less than *d* other rectangles vertically.
- The decomposition is *d*-wide if it is *d*-wide in every step.

Grids

 $r \times r$ -grid: partitioning the rows and the columns into r classes such that every cell contains a point.

Observation: If a point set has an $r \times r$ -grid, then it contains every permutation of length r.

Fact

If π has an $r \times r$ -grid, then every decomposition of π is $\Omega(r)$ -wide.

Large grids imply large width:

Fact

If π contains an $r \times r$ -grid, then every decomposition of π is $\Omega(r)$ -wide.

Large width implies large grids:

Theorem

There is an O(n) time algorithm that finds either an $r \times r$ grid in π or a $2^{O(r \log r)}$ -wide decomposition of π .

Large grids imply large width:

Fact

If π contains an $r \times r$ -grid, then every decomposition of π is $\Omega(r)$ -wide.

Large width implies large grids:

Theorem

There is an O(n) time algorithm that finds either an $r \times r$ grid in π or a $2^{O(r \log r)}$ -wide decomposition of π .

The algorithm relies on the following previous result:

Theorem (essentially [Marcus and Tardos 2004])

If *M* is a point set in $[p] \times [q]$ with $|M| > r^4 \binom{r^2}{r} (p+q)$, then we can find an $r \times r$ -grid in *M*.

- every row/column contains < r' rectangles and
- every two adjacent rows/columns contain $\geq r'$ rectangles.

- every row/column contains < r' rectangles and
- every two adjacent rows/columns contain $\geq r'$ rectangles.

Case 1: If a cell contains two rectangles, merge them. If two adjacent rows/columns contain < r' rectangles, then merge them.

- every row/column contains < r' rectangles and
- every two adjacent rows/columns contain $\geq r'$ rectangles.

Case 1: If a cell contains two rectangles, merge them. If two adjacent rows/columns contain < r' rectangles, then merge them.

- every row/column contains < r' rectangles and
- every two adjacent rows/columns contain $\geq r'$ rectangles.

Case 1: If a cell contains two rectangles, merge them. If two adjacent rows/columns contain < r' rectangles, then merge them.

We maintain a partition of rows and columns that is compatible with every current rectangle and satisfies that

- every row/column contains < r' rectangles and
- every two adjacent rows/columns contain $\geq r'$ rectangles.

Case 2: Every cell contains at most one rectangle

 \Rightarrow There are $\Omega((p+q)r')$ nonempty cells

 \Rightarrow Result of [Marcus and Tardos 2004] implies that there is an $r \times r$ -grid (if r' is sufficiently large).

We would like to design a dynamic programming algorithm to solve $\ensuremath{\mathrm{Permutation}}$ Pattern using a given decomposition.

Problem:

The decomposition does not break the problem into independent subproblems.

We would like to design a dynamic programming algorithm to solve $\ensuremath{\mathsf{Permutation}}$ Pattern using a given decomposition.

Problem:

The decomposition does not break the problem into independent subproblems.

We would like to design a dynamic programming algorithm to solve $\ensuremath{\mathrm{Permutation}}$ Pattern using a given decomposition.

Problem:

The decomposition does not break the problem into independent subproblems.

The interaction between the points in R_1 and R_2 can be arbitrary!

We would like to design a dynamic programming algorithm to solve $\ensuremath{\mathrm{Permutation}}$ Pattern using a given decomposition.

Problem:

The decomposition does not break the problem into independent subproblems.

The interaction between the points in R_1 and R_2 can be arbitrary!

Visibility graph: two rectangles are adjacent if they see each other horizontally or vertically.

Observation: The degree of the visibility graph is less than 2*d* if the rectangle family is *d*-wide. Therefore, there are $d^{O(\ell)} \cdot n$ sets *K* of size $\leq \ell$ that are connected in the visibility graph.

Visibility graph: two rectangles are adjacent if they see each other horizontally or vertically.

Subproblems defined by

- step *i* of the decomposition,
- a connected set K of size $\leq \ell$ in the visibility graph,
- a subpermutation σ' if σ , and
- a mapping of σ' into the rectangles of K.

How to solve a subproblem at step i using the subproblems at step i - 1?

How to solve a subproblem at step i using the subproblems at step i - 1?

- If a rectangle R of K was created at step i by merging R_1 and R_2 , then we have to distribute the points assigned to R in every possible way between R_1 and R_2 .
- In step i 1, set K falls apart into some number of connected sets, but the interaction between them is completely understood.

How to solve a subproblem at step i using the subproblems at step i - 1?

- If a rectangle R of K was created at step i by merging R_1 and R_2 , then we have to distribute the points assigned to R in every possible way between R_1 and R_2 .
- In step i 1, set K falls apart into some number of connected sets, but the interaction between them is completely understood.

Algorithm summary

Theorem

PERMUTATION PATTERN can be solved in time $2^{O(\ell^2 \log \ell)} \cdot n$, where $\ell = |\sigma|$ and $n = |\pi|$.

Win/win strategy:

- There is an algorithm that either
 - finds σ in π or
 - finds a $2^{O(\ell \log \ell)}$ -wide decomposition of π .
- There is an algorithm that, given σ and a d-wide decomposition of π, decides if σ is a subpattern of π in time (dℓ)^{O(ℓ)} · n.

Hardness

PARTITIONED PERMUTATION PATTERN: for every $i \in \sigma$, a subset $S_i \subseteq \pi$ is given where it can be mapped.

Theorem PARTITIONED PERMUTATION PATTERN is W[1]-hard parameterized by $|\sigma|$.

3-DIMENSIONAL PERMUTATION PATTERN: natural generalization to 3-dimensional points in general position.

Theorem

3-DIMENSIONAL PERMUTATION PATTERN is W[1]-hard parameterized by $|\sigma|$.

Conclusions

- Finding patterns in permutations is fixed-parameter tractable.
- Algorithm is based on a novel width measure for permutations.
- Win/win situation similar to certain algorithms based on minors and bidimensionality.
- But our decomposition is strictly speaking not a decomposition.