Constraint Solving via Fractional Edge Covers

Martin Grohe and Dániel Marx

Humboldt-Universität zu Berlin
Institut für Informatik

Symposium on Discrete Algorithms (SODA) 2006
January 22, 2006
Many natural problems can be expressed as a **Constraint Satisfaction Problem**, where a conjunction of clauses has to be satisfied.

\[I = C_1(x_1, x_2, x_3) \land C_2(x_2, x_4) \land C_3(x_1, x_3, x_4) \]

A CSP instance is given by describing the

- variables,
- domain of the variables,
- constraints on the variables.

Task: Find an assignment that satisfies every constraint.
Constraint Satisfaction Problems (CSP)

Many natural problems can be expressed as a Constraint Satisfaction Problem, where a conjunction of clauses has to be satisfied.

\[I = C_1(x_1, x_2, x_3) \land C_2(x_2, x_4) \land C_3(x_1, x_3, x_4) \]

A CSP instance is given by describing the

- variables,
- domain of the variables,
- constraints on the variables.

Task: Find an assignment that satisfies every constraint.

Example: 3-COLORING is a CSP problem.
Variables: vertices, **Domain:** \{1, 2, 3\}, **Constraints:** one for each edge.
Tractable structures

Structural properties that can make a CSP instance tractable:

- tree width
- hypertree width [Gottlob et al. '99]
- fractional edge cover number
- fractional hypertree width
Representation issues

How are the constraints represented in the input?

- full truth table
- listing the satisfying tuples
- formula/circuit
- oracle
How are the constraints represented in the input?

- full truth table
- listing the satisfying tuples
- formula/circuit
- oracle

In this talk: Each constraint is given by listing all the tuples that satisfy it.

Motivation: Applications in database theory & AI.
Constraints are known databases, “satisfying” means “appears in the database.”
Tree width

Tree width: A measure of how “tree-like” the graph is. (Introduced by Robertson and Seymour.)

Tree decomposition: Bags of vertices are arranged in a tree structure satisfying the following properties:

1. If \(u \) and \(v \) are neighbors, then there is a bag containing both of them.

2. For every vertex \(v \), the bags containing \(v \) form a connected subtree.

Width of the decomposition:
size of the largest bag minus 1.

Tree width: width of the best decomposition.

Fact: Tree width = 1 \(\iff \) graph is a forest.
Bounded tree width graphs

Many problems are polynomial-time solvable for bounded tree width graphs:

- **Vertex Coloring**
- **Edge Coloring**
- **Hamiltonian Cycle**
- **Maximum Clique**
- **Vertex Disjoint Paths**
Bounded tree width graphs

Many problems are polynomial-time solvable for bounded tree width graphs:

- **Vertex Coloring**
- **Edge Coloring**
- **Hamiltonian Cycle**
- **Maximum Clique**
- **Vertex Disjoint Paths**

Usually, if a problem can be solved on trees by bottom-up dynamic programming, then the same approach works for bounded tree width graphs.
CSP and tree width

Primal (Gaifman) graph: vertices are the variables, and two vertices are connected if they appear in a common constraint.

Fact: For every w, there is a polynomial-time algorithm solving CSP instances where the primal graph have tree width at most w.
CSP and tree width

Primal (Gaifman) graph: vertices are the variables, and two vertices are connected if they appear in a common constraint.

Fact: For every w, there is a polynomial-time algorithm solving CSP instances where the primal graph have tree width at most w.

This result is best possible.

CSP(\mathcal{G}): the problem restricted to instances where the primal graph is in \mathcal{G}.

Theorem: [Grohe '03]

CSP(\mathcal{G}) is polynomial-time solvable \iff \mathcal{G} has bounded tree width (assuming $\text{FPT} \neq \text{W}[1]$).
CSP and hypergraphs

Hypergraph: edges are arbitrary subsets of vertices.

Hypergraph of a CSP instance: vertices are the variables, each constraint is an edge.
Hypergraph: edges are arbitrary subsets of vertices.

Hypergraph of a CSP instance: vertices are the variables, each constraint is an edge.

Considering the hypergraph instead of the primal graph makes the complexity analysis more precise.

\[I_1 = C(x_1, x_2, \ldots, x_n) \text{ vs.} \]
\[I_2 = C(x_1, x_2) \land C(x_1, x_3) \land \cdots \land C(x_{n-1}, x_n) \]

\(I_1, I_2 \) have the same primal graph \(K_n \), but \(I_1 \) is always easy, \(I_2 \) can be hard.
Hypergraph: edges are arbitrary subsets of vertices.

Hypergraph of a CSP instance: vertices are the variables, each constraint is an edge.

Considering the hypergraph instead of the primal graph makes the complexity analysis more precise.

\[I_1 = C(x_1, x_2, \ldots, x_n) \text{ vs. } I_2 = C(x_1, x_2) \land C(x_1, x_3) \land \cdots \land C(x_{n-1}, x_n) \]

\(I_1, I_2 \) have the same primal graph \(K_n \), but \(I_1 \) is always easy, \(I_2 \) can be hard.

Observation: If there is a constraint that covers every variable, then we have to test at most \(\| I \| \) possible assignments.

Observation: If the variables can be covered by \(k \) constraints, then we have to test at most \(\| I \|^k \) possible assignments.
In a **hypertree decomposition** [Gottlob et al. ’99] of width w, bags of vertices are arranged in a tree structure such that

1. If u and v are connected by an edge, then there is a bag containing both of them.
2. For every vertex v, the bags containing v form a connected subtree.
3. For each bag, there are w edges (called the **guards**) that cover the bag.

Hypertree width: width of the best decomposition.
In a **hypertree decomposition** [Gottlob et al. '99] of width w, bags of vertices are arranged in a tree structure such that

1. If u and v are connected by an edge, then there is a bag containing both of them.
2. For every vertex v, the bags containing v form a connected subtree.
3. For each bag, there are w edges (called the **guards**) that cover the bag.

Hypertree width: width of the best decomposition.

Footnote: This is actually called generalized hypertree width for historical reasons.
Hypertree width

Theorem: [Gottlob et al. ’99] For every w, there is a polynomial-time algorithm for solving CSP on instances with hypergraphs having hypertree width at most w.

Algorithm: Bottom up dynamic programming. There are at most $||I||^w$ possible satisfying assignments for each bag.
Hypertree width

Theorem: [Gottlob et al. ’99] For every w, there is a polynomial-time algorithm for solving CSP on instances with hypergraphs having hypertree width at most w.

Algorithm: Bottom up dynamic programming. There are at most $||I||^w$ possible satisfying assignments for each bag.

Generalization: Is there some more general property that makes the number of satisfying assignments of a bag polynomial?
An edge cover of a hypergraph is a subset of the edges such that every vertex is covered by at least one edge.

\(\varrho(H) \): size of the smallest edge cover.

A fractional edge cover is a weight assignment to the edges such that every vertex is covered by total weight at least 1.

\(\varrho^*(H) \): smallest total weight of a fractional edge cover.
An edge cover of a hypergraph is a subset of the edges such that every vertex is covered by at least one edge.

$\varrho(H)$: size of the smallest edge cover.

A fractional edge cover is a weight assignment to the edges such that every vertex is covered by total weight at least 1.

$\varrho^*(H)$: smallest total weight of a fractional edge cover.

$\varrho(H) = 2$
(Fractional) edge covering

An edge cover of a hypergraph is a subset of the edges such that every vertex is covered by at least one edge.
\(g(H) \): size of the smallest edge cover.

A fractional edge cover is a weight assignment to the edges such that every vertex is covered by total weight at least 1.
\(g^*(H) \): smallest total weight of a fractional edge cover.

\[
\begin{align*}
g(H) &= 2 \\
g^*(H) &= 1.5
\end{align*}
\]
Fractional edge covering

Lemma: (trivial) If the hypergraph of the instance has edge covering number w, then there are at most $\|I\|^w$ satisfying assignments.

Lemma: If the hypergraph of the instance has fractional edge covering number w, then there are at most $\|I\|^w$ satisfying assignments.

This can be shown using the following combinatorial lemma:

Shearer’s Lemma: Let $H = (V, E)$ be a hypergraph, and let A_1, A_2, \ldots, A_p be (not necessarily distinct) subsets of V such that each $v \in V$ is contained in at least q of the A_i’s. Denote by E_i the edge set of the hypergraph projected to A_i. Then

$$|E| \leq \prod_{i=1}^{p} |E_i|^{1/q}.$$
Lemma: (trivial) If the hypergraph of the instance has edge covering number w, then there are at most $\|I\|^w$ satisfying assignments.

Lemma: If the hypergraph of the instance has fractional edge covering number w, then there are at most $\|I\|^w$ satisfying assignments, and they can be enumerated in $\|I\|^{O(w)}$ time.

This can be shown using the following combinatorial lemma:

Shearer’s Lemma: Let $H = (V, E)$ be a hypergraph, and let A_1, A_2, \ldots, A_p be (not necessarily distinct) subsets of V such that each $v \in V$ is contained in at least q of the A_i’s. Denote by E_i the edge set of the hypergraph projected to A_i. Then

$$|E| \leq \prod_{i=1}^{p} |E_i|^{1/q}.$$
Fractional hypertree width

In a fractional hypertree decomposition of width w, bags of vertices are arranged in a tree structure such that

1. If u and v are connected by an edge, then there is a bag containing both of them.
2. For every vertex v, the bags containing v form a connected subtree.
3. A fractional edge cover of weight w is given for each bag.

Fractional hypertree width: width of the best decomposition.
Fractional hypertree width

In a fractional hypertree decomposition of width w, bags of vertices are arranged in a tree structure such that

1. If u and v are connected by an edge, then there is a bag containing both of them.
2. For every vertex v, the bags containing v form a connected subtree.
3. A fractional edge cover of weight w is given for each bag.

Fractional hypertree width: width of the best decomposition.

Theorem: For every w, there is a polynomial-time algorithm for solving CSP if a fractional hypertree decomposition of width at most w is given in the input.

Currently we do not know if deciding fractional hypertree width $\leq w$ is possible in polynomial time for every fixed value of w.
Law enforcement on graphs

Robber and Cops Game: k cops try to capture a robber in the graph.

- In each step, the cops can move from vertex to vertex arbitrarily with helicopters.
- The robber moves infinitely fast, and sees where the cops will land.
- The robber cannot go through the vertices blocked by the cops.
Robber and Cops Game: k cops try to capture a robber in the graph.

- In each step, the cops can move from vertex to vertex arbitrarily with helicopters.
- The robber moves infinitely fast, and sees where the cops will land.
- The robber cannot go through the vertices blocked by the cops.

Theorem: [Seymour and Thomas '93]

k cops can win the game \iff the tree width of the graph is at most $k - 1$.

The winner of the game can be determined in $n^{O(k)}$ time \Rightarrow tree width $\leq k$ can be checked in polynomial time for fixed k.

"Law enforcement on graphs"
Robber and Marshals:
Played on a hypergraph, a marshal can occupy an edge blocking all the vertices of the edge at the same time.

Theorem: [Adler et al. ’05] k marshals can win the game if hypertree width is $\leq k$, and they cannot win the game if hypertree width is $\geq 3k + 1$.

$\Rightarrow n^{O(k)}$ algorithm for approximating the hypertree width.
Robber and Marshals:
Played on a hypergraph, a marshal can occupy an edge blocking all the vertices of the edge at the same time.

Theorem: [Adler et al. ’05] \(k \) marshals can win the game if hypertree width is \(\leq k \), and they cannot win the game if hypertree width is \(\geq 3k + 1 \).

\[\Rightarrow n^{O(k)} \] algorithm for approximating the hypertree width.

Robber and Army:
A general has \(k \) battalions. A battalion can be divided arbitrarily, each part can be assigned to an edge. A vertex is blocked if it is covered by one full battalion.

Theorem: \(k \) battalions can win the game if fractional hypertree width is \(\leq k \), and they cannot win the game if fractional hypertree width is \(\geq 3k + 2 \).

We don’t know how to turn this result into an algorithm (there are too many army positions).
Conclusions

- CSP where constraints are represented as lists of satisfying tuples.
- Bounded tree width and bounded hypertree width make the problem polynomial-time solvable.
- New: Bounded fractional edge cover number.
- New: Rational hypertree width.
- Open: Finding fractional hypertree decompositions.
- Robber and Army Game: equivalent to fractional hypertree width (up to a constant factor).
- Are there other classes of hypergraphs where CSP is easy? Can we prove that bounded fractional hypertree width is best possible?