The Complexity Landscape of Fixed-Parameter Directed Steiner Network Problems

Dániel Marx

Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary

(Joint work with Andreas Feldmann)

SIWAG 2016
Polignano a Mare
September 26, 2016
Steiner Tree

Given an edge-weighted graph G and set $T \subseteq V(G)$ of terminals, find a minimum-weight tree in G containing every vertex of T.
Steiner Tree

Some known results:

- NP-hard
- Easy 2-approximation: use a minimum spanning tree.
- 1.386-approximation [Byrka et al. 2013].
- $3^k \cdot n^{O(1)}$ time algorithm for k terminals using dynamic programming (i.e., fixed-parameter tractable parameterized by the number of terminals)
- Can be improved to $2^k \cdot n^{O(1)}$ time using fast subset convolution [Björklund et al. 2006].
Steiner Forest

Given an edge-weighted graph \(G \) and a list \((s_1, t_1), \ldots, (s_k, t_k)\) of pairs of terminals, find a minimum-weight forest in \(G \) that connects \(s_i \) and \(t_i \) for every \(1 \leq i \leq k \).

Fixed-parameter tractable parameterized by \(k \): Guess a partition of the \(2k \) terminals \((k^O(k) = 2^O(k \log k)) \) possibilities) and solve a **Steiner Tree** for each class of the partition.
Variants of **Steiner Tree**

Steiner Tree

Connect all the terminals

Steiner Forest

Create connections satisfying every request
Variants of **Steiner Tree**

Steiner Tree
- Connect all the terminals

Steiner Forest
- Create connections satisfying every request

Steiner Tree
- Make every terminal reachable from the root

Strongly Connected Steiner Subgraph (SCSS)
- Make all the terminals reachable from each other

Directed Steiner Network (DSN)
- Create connections satisfying every request
Directed Steiner vs. SCSS

The DP for Steiner Tree generalizes to the directed version:

Directed Steiner Tree with k terminals can be solved in time $2^k \cdot n^{O(1)}$.
Directed Steiner vs. SCSS

The DP for **Steiner Tree** generalizes to the directed version:

Directed Steiner Tree with k terminals can be solved in time $2^k \cdot n^{O(1)}$.

SCSS seems to be much harder:

Theorem [Feldman and Ruhl 2006]

Strongly Connected Steiner Subgraph with k terminals can be solved in time $n^{O(k)}$.

Theorem [Chitnis, Hajiaghayi, and M. 2014]

Assuming ETH, **Strongly Connected Steiner Subgraph** is W[1]-hard and has no $f(k)n^{o(k/\log k)}$ time algorithm for any function f.
Directed Steiner Network

Theorem [Feldman and Ruhl 2006]

Directed Steiner Network with k requests can be solved in time $n^{O(k)}$.

Corollary: Strongly Connected Steiner Subgraph with k terminals can be solved in time $n^{O(k)}$.

Proof is based on a “pebble game”: $O(k)$ pebbles need to reach their destinations using certain allowed moves, tracing the solution.
A new combinatorial result:

Theorem [Feldmann and M. 2016]

[The underlying undirected graph of] every minimum cost solution of *Directed Steiner Network* with k requests has cutwidth and treewidth $O(k)$.

A new algorithmic result:

Theorem [Feldmann and M. 2016]

If a *Directed Steiner Network* instance with k requests has a minimum cost solution with treewidth w of the underlying undirected graph, then it can be solved in time $f(k, w) \cdot n^{O(w)}$.

Corollary: A new proof that DSN and SCSS can be solved in time $f(k) n^{O(k)}$.
Directed Steiner Network

A new combinatorial result:

Theorem [Feldmann and M. 2016]

[The underlying undirected graph of] every minimum cost solution of Directed Steiner Network with k requests has cutwidth and treewidth $O(k)$.

A new algorithmic result:

Theorem [Feldmann and M. 2016]

If a Directed Steiner Network instance with k requests has a minimum cost solution with treewidth w [of the underlying undirected graph], then it can be solved in time $f(k, w) \cdot n^{O(w)}$.

Corollary: A new proof that DSN and SCSS can be solved in time $f(k)n^{O(k)}$.

Special cases of Directed Steiner Network

Directed Steiner Tree and Strongly Connected Steiner Subgraph are both restrictions of Directed Steiner Network to certain type of patterns:

Goal: characterize the patterns that give rise to FPT/W[1]-hard problems.
Patterns for Directed Steiner Network

Question:
What is the complexity of Directed Steiner Network for this pattern?
Patterns for Directed Steiner Network

Question:
What is the complexity of Directed Steiner Network for this pattern?

Answer:
Directed Steiner Network has an $n^{O(k)}$ algorithm for k requests, so it is polynomial-time solvable for every fixed pattern.
Patterns for Directed Steiner Network

Goal: For every class of \mathcal{H} of directed patterns, characterize the complexity of Directed Steiner Network when restricted to demand patterns from \mathcal{H}.

Example:
- If \mathcal{H} is the class of all directed in-stars (or out-stars), then \mathcal{H}-DSN is FPT.
- If \mathcal{H} is the class of all directed cycles, then \mathcal{H}-DSN is W[1]-hard.
Patterns for **Directed Steiner Network**

Goal: For every class of \mathcal{H} of directed patterns, characterize the complexity of **Directed Steiner Network** when restricted to demand patterns from \mathcal{H}.

Example:
- If \mathcal{H} is the class of all directed in-stars (or out-stars), then \mathcal{H}-DSN is FPT.
- If \mathcal{H} is the class of all directed cycles, then \mathcal{H}-DSN is W[1]-hard.

Main result:

Theorem [Feldmann and M. 2016]

For any class \mathcal{H} of directed patterns,
- if \mathcal{H} has combinatorial property X, then \mathcal{H}-DSN and \mathcal{H}-DSN is W[1]-hard otherwise.
FPT special cases

What classes \mathcal{H} give FPT cases of \mathcal{H}-DSN?

We know that out-stars are FPT.
What classes \mathcal{H} give FPT cases of \mathcal{H}-DSN?

This is also FPT: minimal solutions have bounded treewidth.
FPT special cases

What classes \mathcal{H} give FPT cases of \mathcal{H}-DSN?

This is also FPT: minimal solutions have bounded treewidth.
FPT special cases

What classes \mathcal{H} give FPT cases of \mathcal{H}-DSN?

C_λ: in- or out-caterpillar of length λ.

Lemma

If the pattern is in C_λ, then every minimal solution has treewidth $O(\lambda^2)$.
FPT special cases

What classes \mathcal{H} give FPT cases of \mathcal{H}-DSN?

What about this pattern?
FPT special cases

What classes \mathcal{H} give FPT cases of \mathcal{H}-DSN?

Lemma

If the pattern is transitivey equivalent to a member of \mathcal{C}_λ, then every minimal solution has treewidth $O(\lambda^2)$.
FPT special cases

What classes \mathcal{H} give FPT cases of \mathcal{H}-DSN?

$C_{\lambda,\delta}$: in- or out-caterpillar of length λ with δ additional edges.

Lemma

If the pattern is transitively equivalent to a member of $C_{\lambda,\delta}$, then every minimal solution has treewidth $O((1 + \lambda)(\lambda + \delta))$.
FPT special cases

Theorem

If every $H \in \mathcal{H}$ is **transitively equivalent** to a member of $\mathcal{C}_{\lambda,\delta}$ for some constants $\lambda, \delta \geq 0$, then \mathcal{H}-DSN is FPT.

Does this cover all the FPT cases?
Theorem

If every $H \in \mathcal{H}$ is transitivity equivalent to a member of $\mathcal{C}_{\lambda,\delta}$ for some constants $\lambda, \delta \geq 0$, then \mathcal{H}-DSN is FPT.

Does this cover all the FPT cases?

(Yes)
W[1]-hard special cases

We show that the following classes \mathcal{H} make \mathcal{H}-DSN W[1]-hard:

- cycles (SCSS)
- out-diamonds
- in-diamonds
- flawed out-diamonds
- flawed in-diamonds
Identifying terminals

If H' is obtained from H by identifying terminals, then the problem cannot be harder for H' than for H:

H \Rightarrow H'

G \Rightarrow G'

\Rightarrow We can assume that \mathcal{H} is closed under identifying terminals.
The following combinatorial result connects the algorithmic and the hardness results:

Theorem

Let \mathcal{H} be a class of patterns closed under identifying terminals and transitive equivalence. Then exactly one of the following holds:

1. There are constants λ, δ such that every $H \in \mathcal{H}$ is transitively equivalent to a member of $C_{\lambda,\delta}$

2. \mathcal{H} contains either
 - all directed cycles,
 - all in-diamonds,
 - all out-diamonds,
 - all flawed in-diamonds, or
 - all flawed out-diamonds.
Our main result:

Theorem [Feldmann and M. 2016]

Let \mathcal{H} be a class of patterns.

1. If there are constants λ, δ such that every $H \in \mathcal{H}$ is transitively equivalent to a member of $C_{\lambda, \delta}$, then \mathcal{H}-DSN is FPT,

2. and it is W[1]-hard otherwise.