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Exponential Time Hypothesis (ETH)
Hypothesis introduced by Impagliazzo, Paturi, and Zane:

Exponential Time Hypothesis (ETH) [consequence of]

There is no 2o(n)-time algorithm for n-variable 3SAT.

Note: current best algorithm is 1.30704n [Hertli 2011].

Note: an n-variable 3SAT formula can have Ω(n3) clauses.

Sparsification Lemma [Impagliazzo, Paturi, Zane 2001]

There is a 2o(n)-time algorithm for n-variable 3SAT.
m

There is a 2o(m)-time algorithm for m-clause 3SAT.
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There is a 2o(m)-time algorithm for m-clause 3SAT.
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ETH 2f (n) f (k) · nO(1)

Lower bounds for exact and
parameterized problems
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Lower bounds based on ETH

Exponential Time Hypothesis (ETH)

There is no 2o(m)-time algorithm for m-clause 3SAT.

The textbook reduction from 3SAT to 3-Coloring:

3SAT formula φ
n variables
m clauses

⇒
Graph G

O(n + m) vertices
O(n + m) edges

Corollary

Assuming ETH, there is no 2o(n) algorithm for 3-Coloring on an
n-vertex graph G .
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Transfering bounds
There are polynomial-time reductions from, say, 3-Coloring to
many other problems such that the reduction increases the number
of vertices by at most a constant factor.

Consequence: Assuming ETH, there is no 2o(n) time algorithm on
n-vertex graphs for

Independent Set

Clique

Dominating Set

Vertex Cover

Hamiltonian Path

Feedback Vertex Set

. . .
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Transfering bounds
There are polynomial-time reductions from, say, 3-Coloring to
many other problems such that the reduction increases the number
of vertices by at most a constant factor.

Consequence: Assuming ETH, there is no 2o(k) · nO(1) time algo-
rithm for

k-Independent Set

k-Clique

k-Dominating Set

k-Vertex Cover

k-Path

k-Feedback Vertex Set

. . .

2O(k)
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Lower bounds based on ETH
What about 3-Coloring on planar graphs?

The textbook reduction from 3-Coloring to Planar
3-Coloring uses a “crossover gadget” with 4 external connectors:

In every 3-coloring of the gadget, opposite external connectors
have the same color.
Every coloring of the external connectors where the opposite
vertices have the same color can be extended to the whole
gadget.
If two edges cross, replace them with a crossover gadget. 6
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Lower bounds based on ETH

The reduction from 3-Coloring to Planar 3-Coloring
introduces O(1) new edges/vertices for each crossing.
A graph with m edges can be drawn with O(m2) crossings.

3SAT formula φ
n variables
m clauses

⇒
Graph G

O(m) vertices
O(m) edges

⇒
Planar graph G ′

O(m2) vertices
O(m2) edges

Corollary

Assuming ETH, there is no 2o(
√
n) algorithm for 3-Coloring on

an n-vertex planar graph G .

(Essentially observed by [Cai and Juedes 2001])
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Lower bounds for planar problems
Consequence: Assuming ETH, there is no 2o(

√
n) time algorithm

on n-vertex planar graphs for
Independent Set

Dominating Set

Vertex Cover

Hamiltonian Path

Feedback Vertex Set

. . .

Note: Reduction to planar graphs does not work for Clique
(why?).
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Treewidth

Recall from Tuesday:
FPT algorithms parameterized by treewidth.
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Treewidth

Given a tree decomposition of width w , FPT algorithms with
running time 2O(w) · nO(1) for

Independent Set

Dominating Set

3-Coloring

Hamiltonian Cycle

. . .

Observation: A 2o(w) · nO(1) algorithm implies a 2o(n) · nO(1)

algorithm.

⇒ Assuming ETH, no 2o(w) · nO(1) algorithms for these problems!
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Treewidth

The following problems have wO(w) · nO(1) = 2O(w logw) · nO(1)

algorithms:
Vertex Coloring

Cycle Packing

Vertex Disjoint Paths

. . . and assuming ETH, they do not have 2o(w logw) · nO(1)

algorithms.

Proof: Reduce an instance of a graph problem on N vertices to an
instance with treewidth O(N/ logN).
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Treewidth

The following problems have wO(w) · nO(1) = 2O(w logw) · nO(1)

algorithms:
Vertex Coloring

Cycle Packing

Vertex Disjoint Paths

. . . and assuming ETH, they do not have 2o(w logw) · nO(1)

algorithms.

Proof: Reduce an instance of a graph problem on N vertices to an
instance with treewidth O(N/ logN).
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Edge Clique Cover

Edge Clique Cover: Given a graph G and an integer k , cover
the edges of G with at most k cliques.

(the cliques need not be edge disjoint)

Equivalently: can G be represented as an intersection graph over a
k element universe?
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Edge Clique Cover

Edge Clique Cover: Given a graph G and an integer k , cover
the edges of G with at most k cliques.

(the cliques need not be edge disjoint)

Equivalently: can G be represented as an intersection graph over a
k element universe?

6 cliques
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Edge Clique Cover

Edge Clique Cover: Given a graph G and an integer k , cover
the edges of G with at most k cliques.

(the cliques need not be edge disjoint)

Equivalently: can G be represented as an intersection graph over a
k element universe?

5 cliques
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Edge Clique Cover

Edge Clique Cover: Given a graph G and an integer k , cover
the edges of G with at most k cliques.

(the cliques need not be edge disjoint)

Simple algorithm (sketch)
If two adjacent vertices have the same neighborhood (“twins”),
then remove one of them.
If there are no twins and |V (G )| > 2k , then there is no
solution.
Use brute force.

Running time: 22O(k) ·nO(1) — double exponential dependence on k!
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Edge Clique Cover

Edge Clique Cover: Given a graph G and an integer k , cover
the edges of G with at most k cliques.

(the cliques need not be edge disjoint)

Double-exponential dependence on k cannot be avoided!

Theorem [Cygan, Pilipczuk, Pilipczuk 2013]

Assuming ETH, there is no 22o(k) · nO(1) time algorithm for Edge
Clique Cover.

Proof: Reduce an n-variable 3SAT instance into and instance of
Edge Clique Cover with k = O(log n).
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ETH nf (k)

Lower bounds for W[1]-hard problems

13



Exponential Time Hypothesis

Engineers’ Hypothesis

k-Clique cannot be solved in time f (k) · nO(1).

Theorists’ Hypothesis
k-Step Halting Problem (is there a path of the given NTM
that stops in k steps?) cannot be solved in time f (k) · nO(1).

Exponential Time Hypothesis (ETH)

n-variable 3SAT cannot be solved in time 2o(n).

What do we have to show to prove that ETH implies Engineers’
Hypothesis?
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Exponential Time Hypothesis

Engineers’ Hypothesis

k-Clique cannot be solved in time f (k) · nO(1).

Theorists’ Hypothesis
k-Step Halting Problem (is there a path of the given NTM
that stops in k steps?) cannot be solved in time f (k) · nO(1).

Exponential Time Hypothesis (ETH)

n-variable 3SAT cannot be solved in time 2o(n).

What do we have to show to prove that ETH implies Engineers’
Hypothesis?

We have to show that an f (k) · nO(1) algorithm implies that there is
a 2o(n) time algorithm for n-variable 3SAT.
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Exponential Time Hypothesis

Engineers’ Hypothesis

k-Clique cannot be solved in time f (k) · nO(1).

Theorists’ Hypothesis
k-Step Halting Problem (is there a path of the given NTM
that stops in k steps?) cannot be solved in time f (k) · nO(1).

Exponential Time Hypothesis (ETH)

n-variable 3SAT cannot be solved in time 2o(n).

We actually show something much stronger and more interesting:

Theorem [Chen et al. 2004]

Assuming ETH, there is no f (k) · no(k) algorithm for k-Clique for
any computable function f . 14



Lower bound on the exponent

Theorem [Chen et al. 2004]

Assuming ETH, there is no f (k) · no(k) algorithm for k-Clique for
any computable function f .

Suppose that k-Clique can be solved in time f (k) · nk/s(k), where
s(k) is a monotone increasing unbounded function. We use this
algorithm to solve 3-Coloring on an n-vertex graph G in time
2o(n).

Let k be the largest integer such that f (k) ≤ n and kk/s(k) ≤ n.
Function k := k(n) is monotone increasing and unbounded.

Split the vertices of G into k groups. Let us build a graph H where
each vertex corresponds to a proper 3-coloring of one of the groups.
Connect two vertices if they are not conflicting.

Every k-clique of H corresponds to a proper 3-coloring of G .

⇒ A 3-coloring of G can be found in time
f (k) · |V (H)|k/s(k) ≤ n · (k3n/k)k/s(k) = n · kk/s(k) · 3n/s(k) = 2o(n).
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Tight bounds

Theorem [Chen et al. 2004]

Assuming ETH, there is no f (k) · no(k) algorithm for k-Clique for
any computable function f .

Transfering to other problems:

k-Clique
(x , k) ⇒ Problem A

(x ′,O(k))

f (k) · no(k)
algorithm

⇐ f (k) · no(k)
algorithm

Bottom line:

To rule out f (k) · no(k) algorithms, we need a parameterized
reduction that blows up the parameter at most linearly.
To rule out f (k) · no(

√
k) algorithms, we need a parameterized

reduction that blows up the parameter at most quadratically.
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Tight bounds
Assuming ETH, there is no f (k)no(k) time algorithms for

Set Cover

Hitting Set

Connected Dominating Set

Independent Dominating Set

Partial Vertex Cover

Dominating Set in bipartite graphs
. . .
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The odd case of Odd Set
Odd Set: Given a set system F over a universe U and an integer
k , find a set S of at most k elements such that |S ∩ F | is odd for
every F ∈ F .

We have seen:

Theorem
Odd Set is W[1]-hard parameterized by k .

E1,2 E1,3 E1,4 E2,3 E2,4 E3,4

V1 V4V2 V3

New parameter: k ′ := k +
(
k
2

)
= O(k2).
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The odd case of Odd Set
Odd Set: Given a set system F over a universe U and an integer
k , find a set S of at most k elements such that |S ∩ F | is odd for
every F ∈ F .

We have seen:

Theorem
Odd Set is W[1]-hard parameterized by k .

We immediately get:

Corollary

Assuming ETH, there is no f (k)no(
√
k) time algorithm for Odd

Set.

But this does not seem to be tight. . .

Problem: k-Clique is a very densely constrained problem, which
makes the reduction very expensive.
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Subgraph Isomorphism
Subgraph Isomorphism: Given two graphs H and G , decide if
H is isomorphic to a subgraph of G .

Trivial reduction from k-Clique:

Corollary (parameterized by no. of vertices of H)

Assuming ETH, Subgraph Isomorphism parameterized by
k := |V (H)| has no f (k)no(k) time algorithm.

An almost tight result:

Theorem [M. 2010]

Assuming ETH, Subgraph Isomorphism parameterized by
k := |E (H)| has no f (k)no(k/ log k) time algorithm.

Open question: can we remove the log k from this lower bound?

19



Subgraph Isomorphism
Subgraph Isomorphism: Given two graphs H and G , decide if
H is isomorphic to a subgraph of G .

Trivial reduction from k-Clique:

Corollary (parameterized by no. of edges of H)

Assuming ETH, Subgraph Isomorphism parameterized by
k := |E (H)| has no f (k)no(

√
k) time algorithm.
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Subgraph Isomorphism
Subgraph Isomorphism: Given two graphs H and G , decide if
H is isomorphic to a subgraph of G .

Trivial reduction from k-Clique:

Corollary (parameterized by no. of edges of H)

Assuming ETH, Subgraph Isomorphism parameterized by
k := |E (H)| has no f (k)no(

√
k) time algorithm.

Is this tight?

An almost tight result:

Theorem [M. 2010]

Assuming ETH, Subgraph Isomorphism parameterized by
k := |E (H)| has no f (k)no(k/ log k) time algorithm.
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Odd Set
Reduction from k-Clique to Odd Set:

E1,2 E1,3 E1,4 E2,3 E2,4 E3,4

V1 V4V2 V3

New parameter: k ′ := k +
(k
2

)
= O(k2).

Theorem
Assuming ETH, there is no f (k)no(k/ log k) time algorithm for Odd
Set.
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Odd Set
Reduction from Subgraph Isomorphism to Odd Set:

E1,2 E1,3 E1,4 E2,3 E2,4 E3,4

V1 V4V2 V3

New parameter: k ′ := |V (H)|+ |E (H)| = O(k).
(where k := |E (H)|)

Theorem
Assuming ETH, there is no f (k)no(k/ log k) time algorithm for Odd
Set.
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Odd Set
Reduction from Subgraph Isomorphism to Odd Set:

E1,2 E1,3 E1,4 E2,3 E2,4 E3,4

V1 V4V2 V3

New parameter: k ′ := |V (H)|+ |E (H)| = O(k).
(where k := |E (H)|)

Theorem
Assuming ETH, there is no f (k)no(k/ log k) time algorithm for Odd
Set.
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Tight bounds
Assuming ETH, there is no f (k)no(k) time algorithms for

Set Cover

Hitting Set

Connected Dominating Set

Independent Dominating Set

Partial Vertex Cover

Dominating Set in bipartite graphs
. . .

What about planar problems?
More problems are FPT, more difficult to prove W[1]-hardness.
The problem Grid Tiling is the key to many of these results.
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Grid Tiling

Grid Tiling

Input:
A k × k matrix and a set of pairs Si ,j ⊆ [D] × [D] for
each cell.

Find:

A pair si ,j ∈ Si ,j for each cell such that
Vertical neighbors agree in the 1st coordinate.
Horizontal neighbors agree in the 2nd coordinate.

(1,1)
(3,1)
(2,4)

(5,1)
(1,4)
(5,3)

(1,1)
(2,4)
(3,3)

(2,2)
(1,4)

(3,1)
(1,2)

(2,2)
(2,3)

(1,3)
(2,3)
(3,3)

(1,1)
(1,3)

(2,3)
(5,3)

k = 3, D = 5
22
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Grid Tiling

Grid Tiling

Input:
A k × k matrix and a set of pairs Si ,j ⊆ [D] × [D] for
each cell.

Find:

A pair si ,j ∈ Si ,j for each cell such that
Vertical neighbors agree in the 1st coordinate.
Horizontal neighbors agree in the 2nd coordinate.

Simple proof:

Fact
There is a parameterized reduction from k-Clique to k × k Grid
Tiling.

22



Grid Tiling is W[1]-hard

Reduction from k-Clique

Definition of the sets:

For i = j : (x , y) ∈ Si ,j ⇐⇒ x = y

For i 6= j : (x , y) ∈ Si ,j ⇐⇒ x and y are adjacent.

(vi , vi )

Each diagonal cell defines a value vi . . .
23



Grid Tiling is W[1]-hard

Reduction from k-Clique

Definition of the sets:

For i = j : (x , y) ∈ Si ,j ⇐⇒ x = y

For i 6= j : (x , y) ∈ Si ,j ⇐⇒ x and y are adjacent.

(vi , .)

(., vi ) (vi , vi ) (., vi ) (., vi ) (., vi )

(vi , .)

(vi ., )

(vi , .)

. . . which appears on a “cross”
23



Grid Tiling is W[1]-hard

Reduction from k-Clique

Definition of the sets:
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(vi , .)

(vi , .) (vj , vj)

(vi , .)

vi and vj are adjacent for every 1 ≤ i < j ≤ k .
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Grid Tiling is W[1]-hard

Reduction from k-Clique

Definition of the sets:

For i = j : (x , y) ∈ Si ,j ⇐⇒ x = y

For i 6= j : (x , y) ∈ Si ,j ⇐⇒ x and y are adjacent.

(vi , .) (vj , .)

(., vi ) (vi , vi ) (., vi ) (vj , vi ) (., vi )

(vi , .) (vj , .)

(., vj) (vi , vj) (., vj) (vj , vj) (., vj)

(vi , .) (vj , .)

vi and vj are adjacent for every 1 ≤ i < j ≤ k .
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Grid Tiling and planar problems

Theorem
k × k Grid Tiling is W[1]-hard and, assuming ETH, cannot be
solved in time f (k)no(k) for any function f .

This lower bound is the key for proving hardness results for planar
graphs.

Examples:
Multiway Cut on planar graphs with k terminals
Independent Set for unit disks

24



A classical problem

s − t Cut
Input: A graph G , an integer p, vertices s and t

Output:
A set S of at most p edges such that removing S sep-
arates s and t.

Theorem [Ford and Fulkerson 1956]

A minimum s − t cut can be found in polynomial time.

What about separating more than two terminals?

25



More than two terminals

k-Terminal Cut (aka Multiway Cut)

Input: A graph G , an integer p, and a set T of k terminals

Output:
A set S of at most p edges such that removing S sep-
arates any two vertices of T

Theorem [Dalhaus et al. 1994]

NP-hard already for k = 3.
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More than two terminals

k-Terminal Cut (aka Multiway Cut)

Input: A graph G , an integer p, and a set T of k terminals

Output:
A set S of at most p edges such that removing S sep-
arates any two vertices of T

Theorem [Dalhaus et al. 1994] [Hartvigsen 1998] [Bentz 2012]

Planar k-Terminal Cut can be solved in time nO(k).

Theorem [Klein and M. 2012]

Planar k-Terminal Cut can be solved in time 2O(k) · nO(
√
k).
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Lower bounds

Theorem [Klein and M. 2012]

Planar k-Terminal Cut can be solved in time 2O(k) · nO(
√
k).

Natural questions:

Is there an f (k) · no(
√
k) time algorithm?

Is there an f (k) · nO(1) time algorithm (i.e., is it
fixed-parameter tractable)?

Lower bounds:

Theorem [M. 2012]

Planar k-Terminal Cut is W[1]-hard and has no f (k) · no(
√
k)

time algorithm (assuming ETH).
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time algorithm (assuming ETH).
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Reduction from k × k Grid Tiling
to Planar k2-Terminal Cut

For every set Si ,j , we construct a gadget with 4 terminals such that
for every (x , y) ∈ Si ,j , there is a minimum multiway cut that
represents (x , y).
every minimum multiway cut represents some (x , y) ∈ Si ,j .

Main part of the proof: constructing these gadgets.
UL u1 u2 u3 u4 u5 UR

r1

r2

r3

r4

r5

DL d1 d2 d3 d4 d5 DR

`1

`2

`3

`4

`5

The gadget. 28



Reduction from k × k Grid Tiling
to Planar k2-Terminal Cut

For every set Si ,j , we construct a gadget with 4 terminals such that
for every (x , y) ∈ Si ,j , there is a minimum multiway cut that
represents (x , y).
every minimum multiway cut represents some (x , y) ∈ Si ,j .

Main part of the proof: constructing these gadgets.
UL u1 u2 u3 u4 u5 UR

r1

r2

r3

r4

r5

DL d1 d2 d3 d4 d5 DR

`1

`2

`3

`4

`5

A cut representing (4, 2). 28



Reduction from k × k Grid Tiling
to Planar k2-Terminal Cut

For every set Si ,j , we construct a gadget with 4 terminals such that
for every (x , y) ∈ Si ,j , there is a minimum multiway cut that
represents (x , y).
every minimum multiway cut represents some (x , y) ∈ Si ,j .

Main part of the proof: constructing these gadgets.
UL u1 u2 u3 u4 u5 UR

r1

r2

r3

r4

r5

DL d1 d2 d3 d4 d5 DR

`1

`2

`3

`4

`5

A cut not representing any pair. 28



Putting together the gadgets

29



Putting together the gadgets

Oops!

29



Putting together the gadgets
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Grid Tiling with ≤

Grid Tiling with ≤

Input:
A k × k matrix and a set of pairs Si ,j ⊆ [D] × [D] for
each cell.

Find:

A pair si ,j ∈ Si ,j for each cell such that
1st coordinate of si ,j ≤ 1st coordinate of si+1,j .
2nd coordinate of si ,j ≤ 2nd coordinate of si ,j+1.

(5,1)
(1,2)
(3,3)

(4,3)
(3,2)

(2,3)
(2,5)

(2,1)
(5,5)
(3,5)

(4,2)
(5,3)

(5,1)
(3,2)

(5,1)
(2,2)
(5,3)

(2,1)
(4,2)

(3,1)
(3,2)
(3,3)

k = 3, D = 5
30



Grid Tiling with ≤

Grid Tiling with ≤

Input:
A k × k matrix and a set of pairs Si ,j ⊆ [D] × [D] for
each cell.

Find:

A pair si ,j ∈ Si ,j for each cell such that
1st coordinate of si ,j ≤ 1st coordinate of si+1,j .
2nd coordinate of si ,j ≤ 2nd coordinate of si ,j+1.

Variant of the previous proof:

Theorem
There is a parameterized reduction from k × k-Grid Tiling to
O(k)× O(k) Grid Tiling with ≤.

Very useful starting point for geometric problems!
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k-Independent Set for unit disks

Theorem
Given a set of n unit disks in the plane, we can find k independent
disks in time nO(

√
k).

Matching lower bound:

Theorem
There is a reduction from k × k Grid Tiling with ≤ to
k2-Independent Set for unit disks. Consequently,
Independent Set for unit disks is

is W[1]-hard, and

cannot be solved in time f (k)no(
√
k) for any function f .
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k-Independent Set for unit disks

Theorem
Given a set of n unit disks in the plane, we can find k independent
disks in time nO(

√
k).

Matching lower bound:

Theorem
There is a reduction from k × k Grid Tiling with ≤ to
k2-Independent Set for unit disks. Consequently,
Independent Set for unit disks is

is W[1]-hard, and

cannot be solved in time f (k)no(
√
k) for any function f .
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Reduction to unit disks

(5,1)
(1,2)
(3,3)

(4,3)
(3,2)

(2,3)
(2,5)

(2,1)
(5,5)
(3,5)

(4,2)
(5,3)

(5,1)
(3,2)

(5,1)
(2,2)
(5,3)

(2,1)
(4,2)

(3,1)
(3,2)
(3,3)

Every pair is represented by a unit disk in the plane.
≤ relation between coordinates ⇐⇒ disks do not intersect.
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Reduction to unit disks

(5,1)
(1,2)
(3,3)

(4,3)
(3,2)

(2,3)
(2,5)

(2,1)
(5,5)
(3,5)

(4,2)
(5,3)

(5,1)
(3,2)

(5,1)
(2,2)
(5,3)

(2,1)
(4,2)

(3,1)
(3,2)
(3,3)

Every pair is represented by a unit disk in the plane.
≤ relation between coordinates ⇐⇒ disks do not intersect.
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Center-pivot irrigation
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Higher dimensions

Bidimensionalty for planar graphs:

2O(
√
n), 2O(

√
k) · nO(1), nO(

√
k) time algorithms.

There is no tridimensionalty!

“Limited blessing of low dimensionality:”
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Higher dimensions

Bidimensionality for 2-dimensional geometric problems:

2O(
√
n), 2O(

√
k) · nO(1), nO(

√
k) time algorithms.

What about higher dimensions?

“Limited blessing of low dimensionality:”
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Higher dimensions

Bidimensionality for 2-dimensional geometric problems:

2O(
√
n), 2O(

√
k) · nO(1), nO(

√
k) time algorithms.

What about higher dimensions?

“Limited blessing of low dimensionality:”

Theorem
Independent Set for unit spheres in d dimensions can be solved
in time nO(k1−1/d ).

Matching lower bound:

Theorem [M. and Sidiropoulos 2014]

Assuming ETH, Independent Set for unit spheres in d
dimensions cannot be solved in time no(k

1−1/d ).
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Higher dimensions

Bidimensionality for 2-dimensional geometric problems:

2O(
√
n), 2O(

√
k) · nO(1), nO(

√
k) time algorithms.

What about higher dimensions?

“Limited blessing of low dimensionality:”

Theorem [Smith and Wormald 1998]

Euclidean TSP in d dimensions can be solved in time
2O(n1−1/d+ε).

Matching lower bound:

Theorem [M. and Sidiropoulos 2014]

Assuming ETH, Euclidean TSP in d dimension cannot be
solved in time 2O(n1−1/d−ε) for any ε > 0.
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Summary
We used ETH to rule out

1 2o(n) time algorithms for, say, Independent Set.
2 2o(

√
n) time algorithms for, say, Independent Set on planar

graphs.
3 2o(k) · nO(1) time algorithms for, say, Vertex Cover.
4 2o(

√
k) · nO(1) time algorithms for, say, Vertex Cover on

planar graphs.
5 f (k)no(k) time algorithms for Clique.
6 f (k)no(

√
k) time algorithms for planar problems such as

k-Terminal Cut and Independent Set for unit disks.

Other tight lower bounds on f (k) having the form 2o(k log k), 2o(k
2),

or 22o(k) exist.
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