
Fine-Grained Complexity and Algorithm Design Boot Camp

Recent Advances in FPT and Exact Algorithms for
NP-Complete Problems

Dániel Marx

Institute for Computer Science and Control,
Hungarian Academy of Sciences (MTA SZTAKI)

Budapest, Hungary

Simons Institute, Berkeley, CA
September 1, 2015

1

Overview

Today:
Introduction to FPT, classical and more recent examples.

Definition of FPT.
Simple classical examples.
Treewidth.
Algorithms and applications of treewidth.

Wednesday 3pm:
Parameterized reductions — negative evidence for FPT.
Thursday 3pm:
(Tight) lower bounds based on ETH.
Friday 3pm:
(Even tighter) lower bounds based on SETH.

2

Parameterized problems

Main idea
Instead of expressing the running time as a function T (n) of n, we
express it as a function T (n, k) of the input size n and some
parameter k of the input.

In other words: we do not want to be efficient on all inputs of size
n, only for those where k is small.

What can be the parameter k?
The size k of the solution we are looking for.
The maximum degree of the input graph.
The dimension of the point set in the input.
The length of the strings in the input.
The length of clauses in the input Boolean formula.
. . .

3

Parameterized problems

Main idea
Instead of expressing the running time as a function T (n) of n, we
express it as a function T (n, k) of the input size n and some
parameter k of the input.

In other words: we do not want to be efficient on all inputs of size
n, only for those where k is small.
What can be the parameter k?

The size k of the solution we are looking for.
The maximum degree of the input graph.
The dimension of the point set in the input.
The length of the strings in the input.
The length of clauses in the input Boolean formula.
. . .

3

Parameterized complexity

Problem: Vertex Cover Independent Set
Input: Graph G , integer k Graph G , integer k
Question: Is it possible to cover

the edges with k vertices?
Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete

Brute force: O(nk) possibilities O(nk) possibilities

O(2kn2) algorithm exists No no(k) algorithm
exists known

4

Parameterized complexity

Problem: Vertex Cover Independent Set
Input: Graph G , integer k Graph G , integer k
Question: Is it possible to cover

the edges with k vertices?
Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete
Brute force: O(nk) possibilities O(nk) possibilities

O(2kn2) algorithm exists No no(k) algorithm
exists known

4

Parameterized complexity

Problem: Vertex Cover Independent Set
Input: Graph G , integer k Graph G , integer k
Question: Is it possible to cover

the edges with k vertices?
Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete
Brute force: O(nk) possibilities O(nk) possibilities

O(2kn2) algorithm exists No no(k) algorithm
exists known

4

Bounded search tree method
Algorithm for Vertex Cover:

e1 = u1v1

5

Bounded search tree method
Algorithm for Vertex Cover:

e1 = u1v1

u1 v1

5

Bounded search tree method
Algorithm for Vertex Cover:

e1 = u1v1

u1 v1

e2 = u2v2

5

Bounded search tree method
Algorithm for Vertex Cover:

e1 = u1v1

u1 v1

e2 = u2v2

u2 v2

5

Bounded search tree method
Algorithm for Vertex Cover:

e1 = u1v1

u1 v1

e2 = u2v2

u2 v2
≤ k

Height of the search tree ≤ k ⇒ at most 2k leaves ⇒ 2k · nO(1)

time algorithm.

5

Fixed-parameter tractability

Main definition
A parameterized problem is fixed-parameter tractable (FPT) if
there is an f (k)nc time algorithm for some constant c .

Examples of NP-hard problems that are FPT:
Finding a vertex cover of size k .
Finding a path of length k .
Finding k disjoint triangles.
Drawing the graph in the plane with k edge crossings.
Finding disjoint paths that connect k pairs of points.
. . .

6

Fixed-parameter tractability

Main definition
A parameterized problem is fixed-parameter tractable (FPT) if
there is an f (k)nc time algorithm for some constant c .

Examples of NP-hard problems that are FPT:
Finding a vertex cover of size k .
Finding a path of length k .
Finding k disjoint triangles.
Drawing the graph in the plane with k edge crossings.
Finding disjoint paths that connect k pairs of points.
. . .

6

FPT techniques

Treewidth

Color coding

Iterative compression

Kernelization

Algebraic techniques

Bounded-depth search trees

7

Parameterized Algorithms

Marek Cygan, Fedor V. Fomin,
Lukasz Kowalik, Daniel Lokshtanov,
Dániel Marx, Marcin Pilipczuk,
Michał Pilipczuk, Saket Saurabh

8

W[1]-hardness

Negative evidence similar to NP-completeness. If a problem is
W[1]-hard, then the problem is not FPT unless FPT=W[1].

Some W[1]-hard problems:
Finding a clique/independent set of size k .
Finding a dominating set of size k .
Finding k pairwise disjoint sets.
. . .

More about this on Wednesday at 3pm.

9

Games to play

The FPT vs. W[1]-hard game
Is the problem fixed-parameter tractable?
The f (k) game for FPT problems
What is the best f (k) dependence on the parameter?
The exponent game for W[1]-hard problems
What is the best possible dependence on k in the exponent?

Significant progress on these questions in recent years, both from
the algorithmic and from the complexity side.

10

Color coding

11

Color Coding

k-Path
Input: A graph G , integer k .
Find: A simple path of length k .

Note: The problem is clearly NP-hard, as it contains the
Hamiltonian Path problem.

Theorem [Alon, Yuster, Zwick 1994]

k-Path can be solved in time 2O(k) · nO(1).

Previous best algorithms had running time kO(k) · nO(1).

12

Color Coding

Assign colors from [k] to vertices V (G) uniformly and
independently at random.

Check if there is a path colored 1− 2− · · · − k ; output “YES”
or “NO”.

If there is no k-path: no path colored 1− 2− · · · − k exists ⇒
“NO”.
If there is a k-path: the probability that such a path is colored
1− 2− · · · − k is k−k thus the algorithm outputs “YES” with
at least that probability.

13

Color Coding

Assign colors from [k] to vertices V (G) uniformly and
independently at random.

2

4544

3 3 2

21

Check if there is a path colored 1− 2− · · · − k ; output “YES”
or “NO”.

If there is no k-path: no path colored 1− 2− · · · − k exists ⇒
“NO”.
If there is a k-path: the probability that such a path is colored
1− 2− · · · − k is k−k thus the algorithm outputs “YES” with
at least that probability.

13

Color Coding

Assign colors from [k] to vertices V (G) uniformly and
independently at random.

2

44

3

54

3 2

21

Check if there is a path colored 1− 2− · · · − k ; output “YES”
or “NO”.

If there is no k-path: no path colored 1− 2− · · · − k exists ⇒
“NO”.
If there is a k-path: the probability that such a path is colored
1− 2− · · · − k is k−k thus the algorithm outputs “YES” with
at least that probability.

13

Error probability

Useful fact
If the probability of success is at least p, then the probability that
the algorithm does not say “YES” after 1/p repetitions is at most

(1− p)1/p <
(
e−p

)1/p
= 1/e ≈ 0.38

Thus if p > k−k , then error probability is at most 1/e after kk

repetitions.
Repeating the whole algorithm a constant number of times
can make the error probability an arbitrary small constant.
For example, by trying 100 · kk random colorings, the
probability of a wrong answer is at most 1/e100.

14

Error probability

Useful fact
If the probability of success is at least p, then the probability that
the algorithm does not say “YES” after 1/p repetitions is at most

(1− p)1/p <
(
e−p

)1/p
= 1/e ≈ 0.38

Thus if p > k−k , then error probability is at most 1/e after kk

repetitions.
Repeating the whole algorithm a constant number of times
can make the error probability an arbitrary small constant.
For example, by trying 100 · kk random colorings, the
probability of a wrong answer is at most 1/e100.

14

Finding a path colored 1− 2− · · · − k

2

2

5

5

5

5

4

3

3

3

3

2

22

1

1

1

1

4

4

4

Edges connecting nonadjacent color classes are removed.
The remaining edges are directed towards the larger class.
All we need to check if there is a directed path from class 1 to
class k .

15

Finding a path colored 1− 2− · · · − k

2

2

5

5

5

5

4

3

3

3

3

2

22

1

1

1

1

4

4

4

Edges connecting nonadjacent color classes are removed.
The remaining edges are directed towards the larger class.
All we need to check if there is a directed path from class 1 to
class k .

15

Finding a path colored 1− 2− · · · − k

2

2

5

5

5

5

4

3

3

3

3

2

22

1

1

1

1

4

4

4

Edges connecting nonadjacent color classes are removed.
The remaining edges are directed towards the larger class.
All we need to check if there is a directed path from class 1 to
class k .

15

Finding a path colored 1− 2− · · · − k

2

2

5

5

5

5

4

3

3

3

3

2

22

1

1

1

1

4

4

4

Edges connecting nonadjacent color classes are removed.
The remaining edges are directed towards the larger class.
All we need to check if there is a directed path from class 1 to
class k .

15

Finding a path colored 1− 2− · · · − k

2

2

5

5

5

5

4

3

3

3

3

2

22

1

1

1

1

4

4

4

Edges connecting nonadjacent color classes are removed.
The remaining edges are directed towards the larger class.
All we need to check if there is a directed path from class 1 to
class k .

15

Color Coding

k-PATH

Color Coding
success probability:

k−k Finding a
1− 2− · · · − k
colored path

polynomial-time
solvable

16

Improved Color Coding

Assign colors from [k] to vertices V (G) uniformly and
independently at random.

2

4544

3 3 2

21

Check if there is a colorful path where each color appears
exactly once on the vertices; output “YES” or “NO”.

17

Improved Color Coding

Assign colors from [k] to vertices V (G) uniformly and
independently at random.

2

4544

3 3 2

21

Check if there is a colorful path where each color appears
exactly once on the vertices; output “YES” or “NO”.

If there is no k-path: no colorful path exists ⇒ “NO”.
If there is a k-path: the probability that it is colorful is

k!

kk
>

(ke)
k

kk
= e−k ,

thus the algorithm outputs “YES” with at least that probability.

17

Improved Color Coding

Assign colors from [k] to vertices V (G) uniformly and
independently at random.

2

4544

3 3 2

21

Repeating the algorithm 100ek times decreases the error
probability to e−100.

How to find a colorful path?
Try all permutations (k! · nO(1) time)
Dynamic programming (2k · nO(1) time)

17

Finding a colorful path
Subproblems:
We introduce 2k · |V (G)| Boolean variables:

x(v ,C) = TRUE for some v ∈ V (G) and C ⊆ [k]
m

There is a path P ending at v such that each color in
C appears on P exactly once and no other color

appears.

Answer:
There is a colorful path ⇐⇒ x(v , [k]) = TRUE for some vertex v .

Initialization & Recurrence:
Exercise.

18

Improved Color Coding

k-PATH

Color Coding
success probability:

e−k

Finding a
colorful path

Solvable in time
2k · nO(1)

19

Derandomized Color Coding

k-PATH

k-perfect family
2O(k) log n functions

Finding a
colorful path

Solvable in time
2k · nO(1)

20

Treewidth

21

Generalizing trees
How could we define that a graph is “treelike”?

1 Number of cycles is bounded.

good bad bad bad
2 Removing a bounded number of vertices makes it acyclic.

good good bad bad
3 Bounded-size parts connected in a tree-like way.

bad bad good good

22

Generalizing trees
How could we define that a graph is “treelike”?

1 Number of cycles is bounded.

good bad bad bad

2 Removing a bounded number of vertices makes it acyclic.

good good bad bad
3 Bounded-size parts connected in a tree-like way.

bad bad good good

22

Generalizing trees
How could we define that a graph is “treelike”?

1 Number of cycles is bounded.

good bad bad bad
2 Removing a bounded number of vertices makes it acyclic.

good good bad bad

3 Bounded-size parts connected in a tree-like way.

bad bad good good

22

Generalizing trees
How could we define that a graph is “treelike”?

1 Number of cycles is bounded.

good bad bad bad
2 Removing a bounded number of vertices makes it acyclic.

good good bad bad
3 Bounded-size parts connected in a tree-like way.

bad bad good good
22

The Party Problem
Party Problem

Problem: Invite some colleagues for a party.
Maximize: The total fun factor of the invited people.
Constraint: Everyone should be having fun.

6

644

5

2

Input: A tree with
weights on the vertices.
Task: Find an
independent set of
maximum weight.

23

The Party Problem
Party Problem

Problem: Invite some colleagues for a party.
Maximize: The total fun factor of the invited people.
Constraint: Everyone should be having fun.

Do not invite a colleague and
his direct boss at the same time!

6

644

5

2

Input: A tree with
weights on the vertices.
Task: Find an
independent set of
maximum weight.

23

The Party Problem
Party Problem

Problem: Invite some colleagues for a party.
Maximize: The total fun factor of the invited people.
Constraint: Everyone should be having fun.

Do not invite a colleague and
his direct boss at the same time!

2

5

4 4 6

6
Input: A tree with
weights on the vertices.
Task: Find an
independent set of
maximum weight.

23

The Party Problem
Party Problem

Problem: Invite some colleagues for a party.
Maximize: The total fun factor of the invited people.
Constraint: Everyone should be having fun.

Do not invite a colleague and
his direct boss at the same time!

2

5

4 4 6

6
Input: A tree with
weights on the vertices.
Task: Find an
independent set of
maximum weight.

23

Solving the Party Problem

Dynamic programming paradigm:
We solve a large number of subproblems that depend on each
other. The answer is a single subproblem.

Subproblems:
Tv : the subtree rooted at v .

A[v]: max. weight of an independent set in Tv

B[v]: max. weight of an independent set in Tv

that does not contain v

Goal: determine A[r] for the root r .

24

Solving the Party Problem

Subproblems:
Tv : the subtree rooted at v .

A[v]: max. weight of an independent set in Tv

B[v]: max. weight of an independent set in Tv

that does not contain v

Recurrence:
Assume v1, . . . , vk are the children of v . Use the recurrence
relations

B[v] =
∑k

i=1 A[vi]

A[v] = max{B[v] , w(v) +
∑k

i=1 B[vi]}

The values A[v] and B[v] can be calculated in a bottom-up order
(the leaves are trivial).

24

Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

dcb

a

e f g h

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f

A subtree communicates with the outside world
only via the root of the subtree.

25

Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

hgfe

a

b c d

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f

A subtree communicates with the outside world
only via the root of the subtree.

25

Weighted Max Independent Set and treewidth
Theorem
Given a tree decomposition of width w , Weighted Max
Independent Set can be solved in time O(2w · wO(1) · n).

Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .

Generalizing our solution for trees:

Instead of computing 2 values A[v], B[v] for
each vertex of the tree, we compute 2|Bx | ≤
2w+1 values for each bag Bx .

M[x , S]:
the max. weight of an independent set
I ⊆ Vx with I ∩ Bx = S .

c, d , f

b, c, f d , f , g

a, b, c b, e, f g , h

∅ =? bc =?
b =? cf =?
c =? bf =?
f =? bcf =?

26

Weighted Max Independent Set and treewidth
Theorem
Given a tree decomposition of width w , Weighted Max
Independent Set can be solved in time O(2w · wO(1) · n).

Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .

Generalizing our solution for trees:

Instead of computing 2 values A[v], B[v] for
each vertex of the tree, we compute 2|Bx | ≤
2w+1 values for each bag Bx .

M[x , S]:
the max. weight of an independent set
I ⊆ Vx with I ∩ Bx = S .

How to determine M[x , S] if all the val-
ues are known for the children of x?

c, d , f

b, c, f d , f , g

a, b, c b, e, f g , h

∅ =? bc =?
b =? cf =?
c =? bf =?
f =? bcf =?

26

3-Coloring and tree decompositions

Theorem
Given a tree decomposition of width w , 3-Coloring can be
solved in time 3w · wO(1) · n.

Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .

For every node x and coloring c : Bx →
{1, 2, 3}, we compute the Boolean value
E [x , c], which is true if and only if c can
be extended to a proper 3-coloring of Vx .

Claim:
We can determine E [x , c] if all the values are
known for the children of x .

c, d , f

b, c, f d , f , g

a, b, c b, e, f g , h

bcf=T bcf=F
bcf=T bcf=F
.

27

Tree decompositions and dynamic programming

General scheme: Define subproblems for each subtree and solve
them in a bottom up manner.

Number of subproblems:
3-Coloring: 3w+1

(number of 3-colorings of the bag)
Independent Set: 2w+1

(each vertex of the bag is either in the solution or not)
Dominating Set: 3w+1

(each vertex of the bag is either (1) in the solution, (2) not in
the solution, but dominated, (3) not in the solution and not
yet dominated)
Hamiltonian Cycle: wO(w) = 2O(w logw)

(number of ways the paths of the partial solution can match
vertices of the bag).

28

Number of subproblems for Hamiltonian Cycle

To describe a partial solution, we need to describe the matching of
the bag formed by the paths in the partial solution.

Number of matchings: wO(w) ⇒ the textbook dynamic
programming algorithm has running time wO(w) · nO(1).

But, surprisingly, it is possible to solve Hamiltonian Cycle in
time 2O(w) · nO(1)!

29

Number of subproblems for Hamiltonian Cycle

To describe a partial solution, we need to describe the matching of
the bag formed by the paths in the partial solution.

Number of matchings: wO(w) ⇒ the textbook dynamic
programming algorithm has running time wO(w) · nO(1).

But, surprisingly, it is possible to solve Hamiltonian Cycle in
time 2O(w) · nO(1)!

29

Number of subproblems for Hamiltonian Cycle

To describe a partial solution, we need to describe the matching of
the bag formed by the paths in the partial solution.

Number of matchings: wO(w) ⇒ the textbook dynamic
programming algorithm has running time wO(w) · nO(1).

But, surprisingly, it is possible to solve Hamiltonian Cycle in
time 2O(w) · nO(1)!

29

Cut and count

A very powerful technique for many problems on graphs of
bounded-treewidth.

Classical result:

Theorem [textbook algorithm]

Given a tree decomposition of width w , Hamiltonian Cycle
can be solved in time wO(w) · nO(1) = 2O(w logw) · nO(1).

Improved algorithm:

Theorem [Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij,
Wojtaszczyk 2011]

Given a tree decomposition of width w , Hamiltonian Cycle
can be solved in time 4w · nO(1).

30

Isolation Lemma

Isolation Lemma [Mulmuley, Vazirani, Vazirani 1987]

Let F be a nonempty family of subsets of U and assign a weight
w(u) ∈ [N] to each u ∈ U uniformly and independently at random.
The probability that there is a unique S ∈ F having minimum
weight is at least

1− |U|
N

.

Let U = E (G) and F be the set of all Hamiltonian cycles.
By setting N := |V (G)|O(1), we can assume that there is a
unique minimum weight Hamiltonian cycle.
If N is polynomial in the input size, we can guess this
minimum weight.
So we are looking for a Hamiltonian cycle of weight exactly
C , under the assumption that there is a unique such cycle.

31

Isolation Lemma

Isolation Lemma [Mulmuley, Vazirani, Vazirani 1987]

Let F be a nonempty family of subsets of U and assign a weight
w(u) ∈ [N] to each u ∈ U uniformly and independently at random.
The probability that there is a unique S ∈ F having minimum
weight is at least

1− |U|
N

.

Let U = E (G) and F be the set of all Hamiltonian cycles.
By setting N := |V (G)|O(1), we can assume that there is a
unique minimum weight Hamiltonian cycle.
If N is polynomial in the input size, we can guess this
minimum weight.
So we are looking for a Hamiltonian cycle of weight exactly
C , under the assumption that there is a unique such cycle.

31

Cycle covers
Cycle cover: A subgraph having degree exactly two at each
vertex.

A Hamiltonian cycle is a cycle cover, but a cycle cover can
have more than one component.
Colored cycle cover: each component is colored black or
white.
A cycle cover with k components gives rise to 2k colored cycle
covers.

If there is no weight-C Hamiltonian cycle: the number of
weight-C colored cycle covers is 0 mod 4.
If there is a unique weight-C Hamiltonian cycle: the number of
weight-C colored cycle covers is 2 mod 4.

32

Cycle covers
Cycle cover: A subgraph having degree exactly two at each
vertex.

A Hamiltonian cycle is a cycle cover, but a cycle cover can
have more than one component.

Colored cycle cover: each component is colored black or
white.
A cycle cover with k components gives rise to 2k colored cycle
covers.

If there is no weight-C Hamiltonian cycle: the number of
weight-C colored cycle covers is 0 mod 4.
If there is a unique weight-C Hamiltonian cycle: the number of
weight-C colored cycle covers is 2 mod 4.

32

Cycle covers
Cycle cover: A subgraph having degree exactly two at each
vertex.

A Hamiltonian cycle is a cycle cover, but a cycle cover can
have more than one component.
Colored cycle cover: each component is colored black or
white.

A cycle cover with k components gives rise to 2k colored cycle
covers.

If there is no weight-C Hamiltonian cycle: the number of
weight-C colored cycle covers is 0 mod 4.
If there is a unique weight-C Hamiltonian cycle: the number of
weight-C colored cycle covers is 2 mod 4.

32

Cycle covers
Cycle cover: A subgraph having degree exactly two at each
vertex.

A Hamiltonian cycle is a cycle cover, but a cycle cover can
have more than one component.
Colored cycle cover: each component is colored black or
white.

A cycle cover with k components gives rise to 2k colored cycle
covers.

If there is no weight-C Hamiltonian cycle: the number of
weight-C colored cycle covers is 0 mod 4.
If there is a unique weight-C Hamiltonian cycle: the number of
weight-C colored cycle covers is 2 mod 4.

32

Cycle covers
Cycle cover: A subgraph having degree exactly two at each
vertex.

A Hamiltonian cycle is a cycle cover, but a cycle cover can
have more than one component.
Colored cycle cover: each component is colored black or
white.
A cycle cover with k components gives rise to 2k colored cycle
covers.

If there is no weight-C Hamiltonian cycle: the number of
weight-C colored cycle covers is 0 mod 4.
If there is a unique weight-C Hamiltonian cycle: the number of
weight-C colored cycle covers is 2 mod 4.

32

Cycle covers
Cycle cover: A subgraph having degree exactly two at each
vertex.

A Hamiltonian cycle is a cycle cover, but a cycle cover can
have more than one component.
Colored cycle cover: each component is colored black or
white.
A cycle cover with k components gives rise to 2k colored cycle
covers.

If there is no weight-C Hamiltonian cycle: the number of
weight-C colored cycle covers is 0 mod 4.
If there is a unique weight-C Hamiltonian cycle: the number of
weight-C colored cycle covers is 2 mod 4.

32

Cycle covers
Cycle cover: A subgraph having degree exactly two at each
vertex.

A Hamiltonian cycle is a cycle cover, but a cycle cover can
have more than one component.
Colored cycle cover: each component is colored black or
white.
A cycle cover with k components gives rise to 2k colored cycle
covers.

If there is no weight-C Hamiltonian cycle: the number of
weight-C colored cycle covers is 0 mod 4.
If there is a unique weight-C Hamiltonian cycle: the number of
weight-C colored cycle covers is 2 mod 4.

32

Cycle covers
Cycle cover: A subgraph having degree exactly two at each
vertex.

A Hamiltonian cycle is a cycle cover, but a cycle cover can
have more than one component.
Colored cycle cover: each component is colored black or
white.
A cycle cover with k components gives rise to 2k colored cycle
covers.

If there is no weight-C Hamiltonian cycle: the number of
weight-C colored cycle covers is 0 mod 4.
If there is a unique weight-C Hamiltonian cycle: the number of
weight-C colored cycle covers is 2 mod 4.

32

Cut and Count

Assign random weights ≤ 2|E (G)| to the edges.
If there is a Hamiltonian cycle, then with probability 1/2, there
is a C such that there is a unique weight-C Hamiltionian
cycle.
Try all possible C .
Count the number of weight-C colored cycle covers: can be
done in time 4w · nO(1) if a tree decomposition of width w is
given.
Answer YES if this number is 2 mod 4.

33

Cut and Count

HAMILTONIAN
CYCLE

Random weights
success probability:

1/2 Counting
weighted

colored cycle
covers

4k · nO(1) time

34

Treewidth

There are two ways in which we can encounter bounded-treewidth
graphs:

1 Designing algorithms for graphs of bounded treewidth.
Which problems can be solved efficiently on such graphs?
What is the best possible dependence of the running time on
treewidth?

2 Using bounded-treewidth algorithms as subroutines.
Most notably for planar graphs.

35

Planar graphs

36

Subexponential algorithm for 3-Coloring

Theorem [textbook dynamic programming]

3-Coloring can be solved in time 2O(w) · nO(1) on graphs of
treewidth w .

+

Theorem [Robertson and Seymour]

A planar graph on n vertices has treewidth O(
√
n).

⇓

Corollary

3-Coloring can be solved in time 2O(
√
n) on planar graphs.

textbook algorithm + combinatorial bound
⇓

subexponential algorithm

37

Subexponential algorithm for 3-Coloring

Theorem [textbook dynamic programming]

3-Coloring can be solved in time 2O(w) · nO(1) on graphs of
treewidth w .

+

Theorem [Robertson and Seymour]

A planar graph on n vertices has treewidth O(
√
n).

⇓

Corollary

3-Coloring can be solved in time 2O(
√
n) on planar graphs.

textbook algorithm + combinatorial bound
⇓

subexponential algorithm
37

Subexponential planar algorithms using treewidth

We need only the following basic facts:

Treewidth
1 If a graph G has treewidth w , then many classical NP-hard

problems can be solved in time 2O(w) · nO(1) or
2O(w logw) · nO(1) on G .

2 A planar graph on n vertices has treewidth O(
√
n).

This immediately gives subexponential-time (2O(
√
n) or 2O(

√
n log n))

algorithms for many problems on planar graphs.
3-Coloring

Hamiltonian Cycle

Independent Set

Vertex Cover

. . .

38

Subexponential planar algorithms using treewidth

We need only the following basic facts:

Treewidth
1 If a graph G has treewidth w , then many classical NP-hard

problems can be solved in time 2O(w) · nO(1) or
2O(w logw) · nO(1) on G .

2 A planar graph on n vertices has treewidth O(
√
n).

Next:

What about parameterized problems? Can we make f (k) subexpo-
nential for Vertex Cover or k-Path on planar graphs?

But first, let’s see the reason why an n-vertex planar graph has
treewidth O(

√
n).

38

Minors

Definition
Graph H is a minor of G (H ≤ G) if H can be obtained from G by
deleting edges, deleting vertices, and contracting edges.

deleting uv

vu w

u v
contracting uv

Note: length of the longest path in H is at most the length of the
longest path in G .

39

Planar Excluded Grid Theorem

Theorem [Robertson, Seymour, Thomas 1994]

Every planar graph with treewidth at least 5k has a k × k grid
minor.

Note: for general graphs, treewidth at least k100 or so guarantees
a k × k grid minor [Chekuri and Chuzhoy 2013]!

40

Bidimensionality for k-Path
Observation: If the treewidth of a planar graph G is at least 5

√
k

⇒ It has a
√
k ×
√
k grid minor (Planar Excluded Grid Theorem)

⇒ The grid has a path of length at least k .
⇒ G has a path of length at least k .

We use this observation to find a path of length at least k on
planar graphs:

41

Bidimensionality for k-Path
Observation: If the treewidth of a planar graph G is at least 5

√
k

⇒ It has a
√
k ×
√
k grid minor (Planar Excluded Grid Theorem)

⇒ The grid has a path of length at least k .
⇒ G has a path of length at least k .

We use this observation to find a path of length at least k on
planar graphs:

Set w := 5
√
k .

Find an O(1)-approximate tree
decomposition.

If treewidth is at least w : we answer
“there is a path of length at least k .”
If we get a tree decomposition of
width O(w), then we can solve the
problem in time
2O(w logw) ·nO(1) = 2O(

√
k log k) ·nO(1).

41

Bidimensionality
Definition
A graph invariant x(G) is minor-bidimensional if

x(G ′) ≤ x(G) for every minor G ′ of G , and
If Gk is the k × k grid, then x(Gk) ≥ ck2

(for some constant c > 0).

Examples: minimum vertex cover, length of the longest path,
feedback vertex set are minor-bidimensional.

42

Bidimensionality
Definition
A graph invariant x(G) is minor-bidimensional if

x(G ′) ≤ x(G) for every minor G ′ of G , and
If Gk is the k × k grid, then x(Gk) ≥ ck2

(for some constant c > 0).

Examples: minimum vertex cover, length of the longest path,
feedback vertex set are minor-bidimensional.

42

Bidimensionality
Definition
A graph invariant x(G) is minor-bidimensional if

x(G ′) ≤ x(G) for every minor G ′ of G , and
If Gk is the k × k grid, then x(Gk) ≥ ck2

(for some constant c > 0).

Examples: minimum vertex cover, length of the longest path,
feedback vertex set are minor-bidimensional.

42

Square root phenomenon for planar graphs

Simple 2O(
√
n) time algorithms for planar graphs by using that

planar graphs have treewidth O(
√
n).

Simple 2O(
√
k) · nO(1) time parameterized algoritms using

bidimensionality.
More complicated and problem-specific algorithms for
problems where bidimentsionality does not work (Steiner
Tree, Subset TSP).

nO(
√
k) time algorithms for W[1]-hard problems.

In many cases, these algorithms are optimal. More about this on
Thursday at 3pm. . .

43

Wrap up

The FPT vs. W[1]-hard game
The f (k) game for FPT problems
The exponent game for W[1]-hard problems

We have seen that many nontrivial positive results were obtained
for these questions.

Next: what about negative results?

44

