Overview

- **Today:**
 - Introduction to FPT, classical and more recent examples.
 - Definition of FPT.
 - Simple classical examples.
 - Treewidth.
 - Algorithms and applications of treewidth.

- **Wednesday 3pm:**
 - Parameterized reductions — negative evidence for FPT.

- **Thursday 3pm:**
 - (Tight) lower bounds based on ETH.

- **Friday 3pm:**
 - (Even tighter) lower bounds based on SETH.
Parameterized problems

Main idea

Instead of expressing the running time as a function $T(n)$ of n, we express it as a function $T(n, k)$ of the input size n and some parameter k of the input.

In other words: we do not want to be efficient on all inputs of size n, only for those where k is small.
Parameterized problems

Main idea

Instead of expressing the running time as a function $T(n)$ of n, we express it as a function $T(n, k)$ of the input size n and some parameter k of the input.

In other words: we do not want to be efficient on all inputs of size n, only for those where k is small.

What can be the parameter k?

- The size k of the solution we are looking for.
- The maximum degree of the input graph.
- The dimension of the point set in the input.
- The length of the strings in the input.
- The length of clauses in the input Boolean formula.
- ...
Parameterized complexity

Problem:

Input: Graph G, integer k

Question: Is it possible to cover the edges with k vertices?

Complexity: NP-complete

Problem:

Input: Graph G, integer k

Question: Is it possible to find k independent vertices?

Complexity: NP-complete
Parameterized complexity

Problem:

Input: Graph G, integer k

Question: Is it possible to cover the edges with k vertices? Is it possible to find k independent vertices?

Complexity: NP-complete

Brute force: $O(n^k)$ possibilities

Vertex Cover

- Graph G, integer k
- Is it possible to cover the edges with k vertices?

Independent Set

- Graph G, integer k
- Is it possible to find k independent vertices?

Complexity: NP-complete

Brute force: $O(n^k)$ possibilities
Parameterized complexity

Problem:

Input:
Graph \(G \), integer \(k \)

Question:
Is it possible to cover the edges with \(k \) vertices?

Complexity: NP-complete

Brute force:
\(O(n^k) \) possibilities

\(O(2^k n^2) \) algorithm exists

Independent Set

Input:
Graph \(G \), integer \(k \)

Question:
Is it possible to find \(k \) independent vertices?

Complexity: NP-complete

Brute force:
\(O(n^k) \) possibilities

No \(n^{o(k)} \) algorithm known
Bounded search tree method

Algorithm for **Vertex Cover:**

\[e_1 = u_1 v_1 \]
Bounded search tree method

Algorithm for **VERTEX COVER**:

\[e_1 = u_1 v_1 \]
Bounded search tree method

Algorithm for \textbf{Vertex Cover}:

\[e_1 = u_1 v_1 \]

\[e_2 = u_2 v_2 \]
Bounded search tree method

Algorithm for **Vertex Cover:**

\[e_1 = u_1 v_1 \]

\[e_2 = u_2 v_2 \]
Bounded search tree method

Algorithm for **Vertex Cover**:

\[e_1 = u_1v_1 \]

\[e_2 = u_2v_2 \]

Height of the search tree \(\leq k \) \(\Rightarrow \) at most \(2^k \) leaves \(\Rightarrow \) \(2^k \cdot n^{O(1)} \)

time algorithm.
Main definition

A parameterized problem is fixed-parameter tractable (FPT) if there is an $f(k)n^c$ time algorithm for some constant c.

Examples of NP-hard problems that are FPT:
- Finding a vertex cover of size k.
- Finding a path of length k.
- Finding k disjoint triangles.
- Drawing the graph in the plane with k edge crossings.
- Finding disjoint paths that connect k pairs of points.

...
Fixed-parameter tractability

Main definition
A parameterized problem is **fixed-parameter tractable (FPT)** if there is an \(f(k)n^c \) time algorithm for some constant \(c \).

Examples of NP-hard problems that are FPT:

- Finding a vertex cover of size \(k \).
- Finding a path of length \(k \).
- Finding \(k \) disjoint triangles.
- Drawing the graph in the plane with \(k \) edge crossings.
- Finding disjoint paths that connect \(k \) pairs of points.
- ...
FPT techniques

- Bounded-depth search trees
- Kernelization
- Algebraic techniques
- Treewidth
- Color coding
- Iterative compression
Parameterized Algorithms

Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, Saket Saurabh
W[1]-hardness

Negative evidence similar to NP-completeness. If a problem is \textbf{W[1]-hard}, then the problem is not FPT unless FPT=\text{W[1]}.

Some W[1]-hard problems:

- Finding a clique/independent set of size \(k \).
- Finding a dominating set of size \(k \).
- Finding \(k \) pairwise disjoint sets.
- . . .

More about this on Wednesday at 3pm.
Games to play

- **The FPT vs. W[1]-hard game**
 Is the problem fixed-parameter tractable?
- **The \(f(k)\) game for FPT problems**
 What is the best \(f(k)\) dependence on the parameter?
- **The exponent game for W[1]-hard problems**
 What is the best possible dependence on \(k\) in the exponent?

Significant progress on these questions in recent years, both from the algorithmic and from the complexity side.
Color coding
Color Coding

k-Path

<table>
<thead>
<tr>
<th>Input:</th>
<th>A graph G, integer k.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find:</td>
<td>A simple path of length k.</td>
</tr>
</tbody>
</table>

Note: The problem is clearly NP-hard, as it contains the Hamiltonian Path problem.

Theorem [Alon, Yuster, Zwick 1994]

k-Path can be solved in time $2^{O(k)} \cdot n^{O(1)}$.

Previous best algorithms had running time $k^{O(k)} \cdot n^{O(1)}$.
Color Coding

- Assign colors from \([k]\) to vertices \(V(G)\) uniformly and independently at random.
Color Coding

- Assign colors from $[k]$ to vertices $V(G)$ uniformly and independently at random.

Check if there is a path colored $1 \rightarrow 2 \rightarrow \cdots \rightarrow k$; output "YES" or "NO". If there is no k-path: no path colored $1 \rightarrow 2 \rightarrow \cdots \rightarrow k$ exists \Rightarrow "NO". If there is a k-path: the probability that such a path is colored $1 \rightarrow 2 \rightarrow \cdots \rightarrow k$ is $\frac{1}{k^k}$ thus the algorithm outputs "YES" with at least that probability.
Color Coding

- Assign colors from \([k]\) to vertices \(V(G)\) uniformly and independently at random.

![Graph with colored edges]

- Check if there is a path colored \(1 - 2 - \cdots - k\); output “YES” or “NO”.
 - If there is no \(k\)-path: no path colored \(1 - 2 - \cdots - k\) exists \(\Rightarrow \) “NO”.
 - If there is a \(k\)-path: the probability that such a path is colored \(1 - 2 - \cdots - k\) is \(k^{-k}\) thus the algorithm outputs “YES” with at least that probability.
If the probability of success is at least p, then the probability that the algorithm does not say “YES” after $1/p$ repetitions is at most

$$(1 - p)^{1/p} < (e^{-p})^{1/p} = 1/e \approx 0.38$$
Error probability

Useful fact

If the probability of success is at least \(p \), then the probability that the algorithm does not say “YES” after \(1/p \) repetitions is at most

\[
(1 - p)^{1/p} < (e^{-p})^{1/p} = 1/e \approx 0.38
\]

- Thus if \(p > k^{-k} \), then error probability is at most \(1/e \) after \(k^k \) repetitions.
- Repeating the whole algorithm a constant number of times can make the error probability an arbitrary small constant.
- For example, by trying \(100 \cdot k^k \) random colorings, the probability of a wrong answer is at most \(1/e^{100} \).
Finding a path colored $1 - 2 - \cdots - k$

- Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check if there is a directed path from class 1 to class k.
Finding a path colored $1 - 2 - \cdots - k$

- Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check if there is a directed path from class 1 to class k.
Finding a path colored $1 - 2 - \cdots - k$

- Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check if there is a directed path from class 1 to class k.

Finding a path colored $1 - 2 - \cdots - k$

- Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check if there is a directed path from class 1 to class k.
Finding a path colored $1 - 2 - \cdots - k$

- Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check if there is a directed path from class 1 to class k.
Color Coding

Color Coding success probability: k^{-k}

Finding a $1 - 2 - \cdots - k$ colored path

k-PATH

polynomial-time solvable
Improved Color Coding

- Assign colors from $[k]$ to vertices $V(G)$ uniformly and independently at random.

- Check if there is a **colorful** path where each color appears exactly once on the vertices; output “YES” or “NO”.

![Graph with colored vertices and edges]
Improved Color Coding

- Assign colors from $[k]$ to vertices $V(G)$ uniformly and independently at random.

- Check if there is a **colorful** path where each color appears exactly once on the vertices; output “YES” or “NO”.
 - If there is no k-path: no **colorful** path exists \Rightarrow “NO”.
 - If there is a k-path: the probability that it is **colorful** is
 \[
 \frac{k!}{k^k} > \frac{\left(\frac{k}{e}\right)^k}{k^k} = e^{-k},
 \]
 thus the algorithm outputs “YES” with at least that probability.
Improved Color Coding

- Assign colors from $[k]$ to vertices $V(G)$ uniformly and independently at random.

- Repeating the algorithm $100e^k$ times decreases the error probability to e^{-100}.

How to find a colorful path?

- Try all permutations ($k! \cdot n^{O(1)}$ time)
- Dynamic programming ($2^k \cdot n^{O(1)}$ time)
Finding a colorful path

Subproblems:
We introduce $2^k \cdot |V(G)|$ Boolean variables:

$x(v, C) = \text{TRUE}$ for some $v \in V(G)$ and $C \subseteq [k]$

\iff

There is a path P ending at v such that each color in C appears on P exactly once and no other color appears.

Answer:
There is a colorful path $\iff x(v, [k]) = \text{TRUE}$ for some vertex v.

Initialization & Recurrence:
Exercise.
Improved Color Coding

k-PATH

Color Coding

success probability:

\[e^{-k} \]

Finding a colorful path

Solvable in time

\[2^k \cdot n^{O(1)} \]
Derandomized Color Coding

\[k\text{-PATH} \]

\[k\text{-perfect family} \]
\[2^{O(k)} \log n \text{ functions} \]

Finding a colorful path

Solvable in time \[2^k \cdot n^{O(1)} \]
Treewidth
Generalizing trees

How could we define that a graph is “treelike”?
Generalizing trees

How could we define that a graph is “treelike”?

1. Number of cycles is bounded.

- good
- bad
- bad
- bad
Generalizing trees

How could we define that a graph is “treelike”?

1. Number of cycles is bounded.

 - Good: \[\text{good} \]
 - Bad: \[\text{bad} \]

2. Removing a bounded number of vertices makes it acyclic.

 - Good: \[\text{good} \]
 - Bad: \[\text{bad} \]
Generalizing trees

How could we define that a graph is “treelike”?

1. Number of cycles is bounded.

 - good
 - bad
 - bad
 - bad

2. Removing a bounded number of vertices makes it acyclic.

 - good
 - good
 - bad
 - bad

 - bad
 - bad
 - good
 - good
The Party Problem

Party Problem

- **Problem:** Invite some colleagues for a party.
- **Maximize:** The total fun factor of the invited people.
- **Constraint:** Everyone should be having fun.

Input: A tree with weights on the vertices.
Task: Find an independent set of maximum weight.
The Party Problem

Party Problem

Problem: Invite some colleagues for a party.

Maximize: The total fun factor of the invited people.

Constraint: Everyone should be having fun. Do not invite a colleague and his direct boss at the same time!
The Party Problem

Party Problem

Problem: Invite some colleagues for a party.

Maximize: The total fun factor of the invited people.

Constraint: Everyone should be having fun.

Do not invite a colleague and his direct boss at the same time!

Input: A tree with weights on the vertices.

Task: Find an independent set of maximum weight.
The Party Problem

Party Problem

Problem: Invite some colleagues for a party.

Maximize: The total fun factor of the invited people.

Constraint: Everyone should be having fun.

Do not invite a colleague and his direct boss at the same time!

Input: A tree with weights on the vertices.

Task: Find an independent set of maximum weight.
Dynamic programming paradigm:
We solve a large number of subproblems that depend on each other. The answer is a single subproblem.

Subproblems:
- T_v: the subtree rooted at v.
- $A[v]$: max. weight of an independent set in T_v
- $B[v]$: max. weight of an independent set in T_v that does not contain v

Solving the Party Problem

Subproblems:
- T_v: the subtree rooted at v.
- $B[v]$: max. weight of an independent set in T_v that does not contain v.

Recurrence:
Assume v_1, \ldots, v_k are the children of v. Use the recurrence relations

\[
B[v] = \sum_{i=1}^{k} A[v_i]
\]
\[
A[v] = \max \{ B[v], \ w(v) + \sum_{i=1}^{k} B[v_i] \} \]

The values $A[v]$ and $B[v]$ can be calculated in a bottom-up order (the leaves are trivial).
Treewidth — a measure of “tree-likeness”

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

1. If \(u \) and \(v \) are neighbors, then there is a bag containing both of them.
2. For every \(v \), the bags containing \(v \) form a connected subtree.

Width of the decomposition: largest bag size \(-1\).

treewidth: width of the best decomposition.
Treewidth — a measure of “tree-likeness”

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

1. If \(u \) and \(v \) are neighbors, then there is a bag containing both of them.
2. For every \(v \), the bags containing \(v \) form a connected subtree.

Width of the decomposition: largest bag size \(-1\).

Treewidth: width of the best decomposition.

A subtree communicates with the outside world only via the root of the subtree.
Weighted Max Independent Set and treewidth

Theorem

Given a tree decomposition of width w, **Weighted Max Independent Set** can be solved in time $O(2^w \cdot w^{O(1)} \cdot n)$.

B_x: vertices appearing in node x.

V_x: vertices appearing in the subtree rooted at x.

Generalizing our solution for trees:

Instead of computing 2 values $A[v], B[v]$ for each vertex of the tree, we compute $2^{|B_x|} \leq 2^{w+1}$ values for each bag B_x.

$M[x, S]$: the max. weight of an independent set $I \subseteq V_x$ with $I \cap B_x = S$.

\[
\begin{align*}
\emptyset &= ? \\
b &= ? \\
c &= ? \\
f &= ? \\
bc &= ? \\
cf &= ? \\
bf &= ? \\
bcf &= ?
\end{align*}
\]
Theorem

Given a tree decomposition of width w, **Weighted Max Independent Set** can be solved in time $O(2^w \cdot w^{O(1)} \cdot n)$.

B_x: vertices appearing in node x.

V_x: vertices appearing in the subtree rooted at x.

Generalizing our solution for trees:

Instead of computing 2 values $A[v]$, $B[v]$ for each vertex of the tree, we compute $2 |B_x| \leq 2^{w+1}$ values for each bag B_x.

$M[x, S]$: the max. weight of an independent set $I \subseteq V_x$ with $I \cap B_x = S$.

How to determine $M[x, S]$ if all the values are known for the children of x?
3-Coloring and tree decompositions

Theorem
Given a tree decomposition of width \(w \), 3-Coloring can be solved in time \(3^w \cdot w^{O(1)} \cdot n \).

- \(B_x \): vertices appearing in node \(x \).
- \(V_x \): vertices appearing in the subtree rooted at \(x \).

For every node \(x \) and coloring \(c : B_x \rightarrow \{1, 2, 3\} \), we compute the Boolean value \(E[x, c] \), which is true if and only if \(c \) can be extended to a proper 3-coloring of \(V_x \).

Claim:
We can determine \(E[x, c] \) if all the values are known for the children of \(x \).
Tree decompositions and dynamic programming

General scheme: Define subproblems for each subtree and solve them in a bottom up manner.

Number of subproblems:

- **3-Coloring:** 3^{w+1}
 (number of 3-colorings of the bag)

- **Independent Set:** 2^{w+1}
 (each vertex of the bag is either in the solution or not)

- **Dominating Set:** 3^{w+1}
 (each vertex of the bag is either (1) in the solution, (2) not in the solution, but dominated, (3) not in the solution and not yet dominated)

- **Hamiltonian Cycle:** $w^{O(w)} = 2^{O(w \log w)}$
 (number of ways the paths of the partial solution can match vertices of the bag).
Number of subproblems for **Hamiltonian Cycle**

To describe a partial solution, we need to describe the matching of the bag formed by the paths in the partial solution.

Number of matchings: $w^{O(w)} \Rightarrow$ the textbook dynamic programming algorithm has running time $w^{O(w)} \cdot n^{O(1)}$.
Number of subproblems for Hamiltonian Cycle

To describe a partial solution, we need to describe the matching of the bag formed by the paths in the partial solution.

Number of matchings: $w^{O(w)} \Rightarrow$ the textbook dynamic programming algorithm has running time $w^{O(w)} \cdot n^{O(1)}$.
Number of subproblems for **Hamiltonian Cycle**

To describe a partial solution, we need to describe the matching of the bag formed by the paths in the partial solution.

Number of matchings: $w^{O(w)} \Rightarrow$ the textbook dynamic programming algorithm has running time $w^{O(w)} \cdot n^{O(1)}$.

But, surprisingly, it is possible to solve **Hamiltonian Cycle** in time $2^{O(w)} \cdot n^{O(1)}$!
Cut and count

A very powerful technique for many problems on graphs of bounded-treewidth.

Classical result:

Theorem [textbook algorithm]

Given a tree decomposition of width w, **Hamiltonian Cycle** can be solved in time $w^{O(w)} \cdot n^{O(1)} = 2^{O(w \log w)} \cdot n^{O(1)}$.

Improved algorithm:

Theorem [Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk 2011]

Given a tree decomposition of width w, **Hamiltonian Cycle** can be solved in time $4^w \cdot n^{O(1)}$.
Isolation Lemma

Isolation Lemma [Mulmuley, Vazirani, Vazirani 1987]

Let \mathcal{F} be a nonempty family of subsets of U and assign a weight $w(u) \in [N]$ to each $u \in U$ uniformly and independently at random. The probability that there is a unique $S \in \mathcal{F}$ having minimum weight is at least

$$1 - \frac{|U|}{N}.$$
Isolation Lemma

Isolation Lemma [Mulumley, Vazirani, Vazirani 1987]

Let \mathcal{F} be a nonempty family of subsets of U and assign a weight $w(u) \in [N]$ to each $u \in U$ uniformly and independently at random. The probability that there is a unique $S \in \mathcal{F}$ having minimum weight is at least

$$1 - \frac{|U|}{N}.$$

Let $U = E(G)$ and \mathcal{F} be the set of all Hamiltonian cycles.

- By setting $N := |V(G)|^{O(1)}$, we can assume that there is a unique minimum weight Hamiltonian cycle.
- If N is polynomial in the input size, we can guess this minimum weight.
- So we are looking for a Hamiltonian cycle of weight exactly C, under the assumption that there is a unique such cycle.
Cycle covers

- **Cycle cover**: A subgraph having degree exactly two at each vertex.

![Graph example]

- Hamiltonian cycle is a cycle cover, but a cycle cover can have more than one component.
- Colored cycle cover: each component is colored black or white.
- A cycle cover with k components gives rise to 2^k colored cycle covers.
- If there is no weight-C Hamiltonian cycle: the number of weight-C colored cycle covers is 0 mod 4.
- If there is a unique weight-C Hamiltonian cycle: the number of weight-C colored cycle covers is 2 mod 4.
Cycle covers

- **Cycle cover**: A subgraph having degree exactly two at each vertex.

- A Hamiltonian cycle is a cycle cover, but a cycle cover can have more than one component.
Cycle covers

- **Cycle cover**: A subgraph having degree exactly two at each vertex.

- A Hamiltonian cycle is a cycle cover, but a cycle cover can have more than one component.

- **Colored cycle cover**: each component is colored black or white.
Cycle covers

- **Cycle cover**: A subgraph having degree exactly two at each vertex.

- A Hamiltonian cycle is a cycle cover, but a cycle cover can have more than one component.

- **Colored cycle cover**: each component is colored black or white.
Cycle covers

- **Cycle cover**: A subgraph having degree exactly two at each vertex.

- A Hamiltonian cycle is a cycle cover, but a cycle cover can have more than one component.

- **Colored cycle cover**: each component is colored black or white.

- A cycle cover with k components gives rise to 2^k colored cycle covers.
Cycle covers

- **Cycle cover**: A subgraph having degree exactly two at each vertex.

- A Hamiltonian cycle is a cycle cover, but a cycle cover can have more than one component.

- **Colored cycle cover**: each component is colored black or white.

- A cycle cover with k components gives rise to 2^k colored cycle covers.

 - If there is no weight-C Hamiltonian cycle: the number of weight-C colored cycle covers is $0 \mod 4$.
 - If there is a unique weight-C Hamiltonian cycle: the number of weight-C colored cycle covers is $2 \mod 4$.
Cycle covers

- **Cycle cover:** A subgraph having degree exactly two at each vertex.

- A Hamiltonian cycle is a cycle cover, but a cycle cover can have more than one component.
- **Colored cycle cover:** each component is colored black or white.
- A cycle cover with k components gives rise to 2^k colored cycle covers.
 - If there is no weight-C Hamiltonian cycle: the number of weight-C colored cycle covers is $0 \mod 4$.
 - If there is a unique weight-C Hamiltonian cycle: the number of weight-C colored cycle covers is $2 \mod 4$.
Cycle covers

- **Cycle cover**: A subgraph having degree exactly two at each vertex.

![Diagram of a cycle cover](image)

- A Hamiltonian cycle is a cycle cover, but a cycle cover can have more than one component.

- **Colored cycle cover**: each component is colored black or white.

- A cycle cover with k components gives rise to 2^k colored cycle covers.

 - If there is no weight-C Hamiltonian cycle: the number of weight-C colored cycle covers is $0 \mod 4$.
 - If there is a unique weight-C Hamiltonian cycle: the number of weight-C colored cycle covers is $2 \mod 4$.
Assign random weights $\leq 2|E(G)|$ to the edges.

If there is a Hamiltonian cycle, then with probability $1/2$, there is a C such that there is a unique weight-C Hamiltonian cycle.

Try all possible C.

Count the number of weight-C colored cycle covers: can be done in time $4^w \cdot n^{O(1)}$ if a tree decomposition of width w is given.

Answer YES if this number is $2 \mod 4$.
Cut and Count

HAMILTONIAN CYCLE

Random weights
success probability:
1/2

Counting weighted colored cycle covers

$4^k \cdot n^{O(1)}$ time
There are two ways in which we can encounter bounded-treewidth graphs:

1. Designing algorithms for graphs of bounded treewidth.
 - Which problems can be solved efficiently on such graphs?
 - What is the best possible dependence of the running time on treewidth?

2. Using bounded-treewidth algorithms as subroutines.
 - Most notably for planar graphs.
Planar graphs
Subexponential algorithm for 3-COLORING

Theorem [textbook dynamic programming]

3-COLORING can be solved in time $2^{O(w)} \cdot n^{O(1)}$ on graphs of treewidth w.

+

Theorem [Robertson and Seymour]

A planar graph on n vertices has treewidth $O(\sqrt{n})$.

Subexponential algorithm for 3-COLORING

Theorem [textbook dynamic programming]

3-COLORING can be solved in time $2^{O(w)} \cdot n^{O(1)}$ on graphs of treewidth w.

+

Theorem [Robertson and Seymour]

A planar graph on n vertices has treewidth $O(\sqrt{n})$.

⇓

Corollary

3-COLORING can be solved in time $2^{O(\sqrt{n})}$ on planar graphs.

textbook algorithm + combinatorial bound

⇓

subexponential algorithm
Subexponential planar algorithms using treewidth

We need only the following basic facts:

<table>
<thead>
<tr>
<th>Treewidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. If a graph G has treewidth w, then many classical NP-hard problems can be solved in time $2^{O(w)} \cdot n^{O(1)}$ or $2^{O(w \log w)} \cdot n^{O(1)}$ on G.</td>
</tr>
<tr>
<td>2. A planar graph on n vertices has treewidth $O(\sqrt{n})$.</td>
</tr>
</tbody>
</table>

This immediately gives subexponential-time ($2^{O(\sqrt{n})}$ or $2^{O(\sqrt{n} \log n)}$) algorithms for many problems on planar graphs.

- **3-Coloring**
- **Hamiltonian Cycle**
- **Independent Set**
- **Vertex Cover**
- ...
Subexponential planar algorithms using treewidth

We need only the following basic facts:

Treewidth

1. If a graph G has treewidth w, then many classical NP-hard problems can be solved in time $2^{O(w)} \cdot n^{O(1)}$ or $2^{O(w \log w)} \cdot n^{O(1)}$ on G.

2. A planar graph on n vertices has treewidth $O(\sqrt{n})$.

Next:

What about parameterized problems? Can we make $f(k)$ subexponential for Vertex Cover or k-Path on planar graphs?

But first, let’s see the reason why an n-vertex planar graph has treewidth $O(\sqrt{n})$.
Minors

Definition

Graph H is a **minor** of G ($H \leq G$) if H can be obtained from G by deleting edges, deleting vertices, and contracting edges.

Note: length of the longest path in H is at most the length of the longest path in G.

![Diagram showing the deletion and contraction of edges in a graph](image-url)
Planar Excluded Grid Theorem

Theorem [Robertson, Seymour, Thomas 1994]

Every planar graph with treewidth at least $5k$ has a $k \times k$ grid minor.

Note: for general graphs, treewidth at least k^{100} or so guarantees a $k \times k$ grid minor [Chekuri and Chuzhoy 2013]!
Bidimensionality for k-Path

Observation: If the treewidth of a planar graph G is at least $5\sqrt{k}$

⇒ It has a $\sqrt{k} \times \sqrt{k}$ grid minor (Planar Excluded Grid Theorem)

⇒ The grid has a path of length at least k.

⇒ G has a path of length at least k.
Observation: If the treewidth of a planar graph G is at least $5\sqrt{k}$
\Rightarrow It has a $\sqrt{k} \times \sqrt{k}$ grid minor (Planar Excluded Grid Theorem)
\Rightarrow The grid has a path of length at least k.
\Rightarrow G has a path of length at least k.

We use this observation to find a path of length at least k on planar graphs:

- Set $w := 5\sqrt{k}$.
- Find an $O(1)$-approximate tree decomposition.
 - If treewidth is at least w: we answer “there is a path of length at least k.”
 - If we get a tree decomposition of width $O(w)$, then we can solve the problem in time
 $2^{O(w \log w)} \cdot n^{O(1)} = 2^{O(\sqrt{k} \log k)} \cdot n^{O(1)}$.
Bidimensionality

Definition

A graph invariant $x(G)$ is minor-bidimensional if

- $x(G') \leq x(G)$ for every minor G' of G, and
- If G_k is the $k \times k$ grid, then $x(G_k) \geq ck^2$ (for some constant $c > 0$).

Examples: minimum vertex cover, length of the longest path, feedback vertex set are minor-bidimensional.
Bidimensionality

Definition

A graph invariant \(x(G) \) is **minor-bidimensional** if

- \(x(G') \leq x(G) \) for every minor \(G' \) of \(G \), and
- If \(G_k \) is the \(k \times k \) grid, then \(x(G_k) \geq ck^2 \) (for some constant \(c > 0 \)).

Examples: minimum vertex cover, length of the longest path, feedback vertex set are minor-bidimensional.
Bidimensionality

Definition

A graph invariant $x(G)$ is **minor-bidimensional** if

- $x(G') \leq x(G)$ for every minor G' of G, and
- If G_k is the $k \times k$ grid, then $x(G_k) \geq ck^2$ (for some constant $c > 0$).

Examples: minimum vertex cover, length of the longest path, feedback vertex set are minor-bidimensional.
Square root phenomenon for planar graphs

- Simple $2^{O(\sqrt{n})}$ time algorithms for planar graphs by using that planar graphs have treewidth $O(\sqrt{n})$.
- Simple $2^{O(\sqrt{k})} \cdot n^{O(1)}$ time parameterized algorithms using bidimensionality.
- More complicated and problem-specific algorithms for problems where bidimensionality does not work (*Steiner Tree*, *Subset TSP*).
- $n^{O(\sqrt{k})}$ time algorithms for W[1]-hard problems.

In many cases, these algorithms are optimal. More about this on Thursday at 3pm...
Wrap up

- The FPT vs. W[1]-hard game
- The $f(k)$ game for FPT problems
- The exponent game for W[1]-hard problems

We have seen that many nontrivial positive results were obtained for these questions.

Next: what about negative results?