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Overview

Main message: Small separators in graphs have interesting extremal
properties that can be exploited in combinatorial and algorithmic results.

Bounding the number of “important” separators.
Edge/vertex versions, directed/undirected versions.

Algorithmic applications: FPT algorithm for MULTIWAY cUT and DIRECTED
FEEDBACK VERTEX SET.
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Important separators

Definition: §(R) is the set of edges with exactly one endpoint in R.

Definition: A set S of edges is an (X, Y)-separator if there is no X — Y path
in G \ S and no proper subset of S breaks every X — Y path.

Observation: Every (X, Y)-separator S can be expressed as S = §(R) for
some X CRand RNY = 0.
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Important separators

Definition:  An (X, Y)-separator §(R) is important if there is no (X, Y)-
separator 6(R") with R C R" and |0(R")| < [6(R)].

Note: Can be checked in polynomial time if a separator is important.
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Important separators

The number of important separators can be exponentially large.

Example:

1 2 k/2
X

This graph has exactly 2%/2 important (X, Y)-separators of size at most k.

Theorem: There are at most 4 important (X, Y)-separators of size at most k.
(Proof is implicit in [Chen, Liu, Lu 2007], worse bound in [M. 2004].)
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Submodularity

Fact: The function ¢ is submodular: for arbitrary sets A, B,

o(A)l + o(B)l = [o(ANB)| + [6(AUB)
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Submodularity

Fact: The function ¢ is submodular: for arbitrary sets A, B,

o(A)l + o(B)l = [o(ANB)| + [6(AUB)

Proof: Determine separately the contribution of the different types of edges.
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Submodularity

Consequence: Let A be the minimum (X, Y)-separator size. There is a
uniqgue maximal Rmax 2 X such that §( Rmax) is an (X, Y)-separator of size .
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Submodularity

Consequence: Let A be the minimum (X, Y)-separator size. There is a
uniqgue maximal Rmax 2 X such that §( Rmax) is an (X, Y)-separator of size .

Proof: Let R;, R» O X be two sets such that §(R1), 6(R») are (X, Y)-separators
of size .

10(R1)| + [0(R2)] > [0(Ri N R2)| + [6(R1 U Ry)| @
A A > )\

= |(5(R1 U R2)| <A

Note: Analogous result holds for a unique minimal Rqin.
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Important separators

Theorem: There are at most 4 important (X, Y)-separators of size at most k.

Proof: Let A be the minimum (X, Y)-separator size and let §( Rmax) be the
unigue important separator of size A such that Rnax is maximal.

First we show that Rnax C R for every important separator 6(R).
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Important separators

Theorem: There are at most 4 important (X, Y)-separators of size at most k.

Proof: Let A be the minimum (X, Y)-separator size and let §( Rmax) be the
unigue important separator of size A such that Rnax is maximal.

First we show that Rnax C R for every important separator 6(R).

By the submodularity of 4:

[0(Rmax)| + [0(R)] = [6(Rmax N R)| + |6(Rmax U R)|

A > A
4
[0(Rmax U R)| < |5(R)
4

If R # Rmax U R, then §(R) is not important.

Thus the important (X, Y)- and (Rmax, Y')-separators are the same.
= We can assume X = Rmax.

Important separators and narameterized alaorithms = p. 7/23



Important separators

Theorem: There are at most 4 important (X, Y)-separators of size at most .
Search tree algorithm for enumerating all these separators:

An (arbitrary) edge uv leaving X = Rmnax IS either in the separator or not.
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Important separators

Theorem: There are at most 4 important (X, Y)-separators of size at most .
Search tree algorithm for enumerating all these separators:

An (arbitrary) edge uv leaving X = Rmnax IS either in the separator or not.

Branch 1. If uv € S, then S\ uv is an important
(X, Y)-separator of size at most k —1in G \ uv.

Branch 2: If uv € S, then S is an important
(X U v, Y)-separator of size at most k in G.
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Important separators

Theorem: There are at most 4 important (X, Y)-separators of size at most .
Search tree algorithm for enumerating all these separators:

An (arbitrary) edge uv leaving X = Rmnax IS either in the separator or not.

Branch 1. If uv € S, then S\ uv is an important
(X, Y)-separator of size at most k —1in G \ uv.

— k decreases by one, \ decreases by at most 1.

Branch 2: If uv € S, then S is an important
(X U v, Y)-separator of size at most k in G.

— k remains the same, )\ increases by 1.

The measure 2k — X decreases in each step.
— Height of the search tree < 2k = < 2% important separators of size < k.

Important separators and narameterized alaorithms = p. 8/23



Important separators

Example: The bound 4% is essentially tight.

X

AR R R TR TR TR PR
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Important separators

Example: The bound 4% is essentially tight.

X

(dececedeceincecn |y

Any subtree with k leaves gives an important (X, Y')-separator of size k.
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Important separators

Example: The bound 4% is essentially tight.

AR R R TR TR TR PR

Any subtree with k leaves gives an important (X, Y')-separator of size k.
The number of subtrees with k leaves is the Catalan number

1 (2k—2 K
= — > .
Cr—1 k<k1>4/poly(k)
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MULTIWAY CUT

Definition: A multiway cut of a set of terminals T is a set S of edges such
that each component of G \ S contains at most one vertex of T.

t1 1)
MULTIWAY CUT e 1 \ \.
Input:  Graph G, set T of vertices, integer k t \\ \\ ts
Find: A multiway cut S of at most k edges. \\\\ ° AN i
tg - ty
® ®

Polynomial for | T| = 2, but NP-hard for any fixed | T| > 3 [Dalhaus et al. 1994].
Trivial to solve in polynomial time for fixed k (in time n°%)).

Theorem: MULTIWAY cUT can be solved in time 4% . n°W) ie. itis
fixed-parameter tractable (FPT) parameterized by the size k of the solution.
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MULTIWAY CUT

Intuition: Consider at € T. A subset of the solution S is a
(t, T \ t)-separator.
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MULTIWAY CUT

Intuition: Consider at € T. A subset of the solution S is a
(t, T \ t)-separator.

There are many such separators.
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MULTIWAY CUT

Intuition: Consider at € T. A subset of the solution S is a
(t, T \ t)-separator.
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There are many such separators.

But a separator farther from t and closer to T \ t seems to be more useful.
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MuLTIwWAY CUT and important separators

Pushing Lemma: Lett e T. The MULTIWAY CUT problem has a solution $
that contains an important (t, T \ t)-separator.
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MuLTIwWAY CUT and important separators

Pushing Lemma: Lett e T. The MULTIWAY CUT problem has a solution $
that contains an important (t, T \ t)-separator.

Proof: Let R be the vertices reachable from t in G \ S for a solution S.

o o
t \\\ ]
° /
o
R /
o o

Important separators and parameterized alaorithms — p. 12/23



MuLTIwWAY CUT and important separators

Pushing Lemma: Lett e T. The MULTIWAY CUT problem has a solution $
that contains an important (t, T \ t)-separator.

Proof: Let R be the vertices reachable from t in G \ S for a solution S.

/

Rl
If 5(R) is not important, then there is an important separator §(R") with R C R’
and |6(R’)| < |0(R)|. Replace S with " := (S\ 6(R)) UH(R") = |S'| < |S]
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MuLTIwWAY CUT and important separators

Pushing Lemma: Lett e T. The MULTIWAY CUT problem has a solution $
that contains an important (t, T \ t)-separator.

Proof: Let R be the vertices reachable from t in G \ S for a solution S.
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If 5(R) is not important, then there is an important separator §(R") with R C R’
and |6(R’)| < |0(R)|. Replace S with " := (S\ 6(R)) UH(R") = |S'| < |S]

S’ is a multiway cut: (1) There is no t-u path in G \ S’ and (2) a u-v path in
G \ S’ implies a t-u path, a contradiction.
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MuLTIwWAY CUT and important separators

Pushing Lemma: Lett e T. The MULTIWAY CUT problem has a solution $
that contains an important (t, T \ t)-separator.

Proof: Let R be the vertices reachable from t in G \ S for a solution S.
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If 5(R) is not important, then there is an important separator §(R") with R C R’
and |6(R’)| < |0(R)|. Replace S with " := (S\ 6(R)) UH(R") = |S'| < |S]

S’ is a multiway cut: (1) There is no t-u path in G \ S’ and (2) a u-v path in
G \ S’ implies a t-u path, a contradiction.
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Algorithm for MuLTIwAY CUT

If every vertex of T is in a different component, then we are done.
Let t € T be a vertex that is not separated from every T \ t.
Branch on a choice of an important (t, T \ t) separator S of size at most k.

SetG:=G\ Sand k .=k —|S|.

a A 0 DN PE

Go to step 1.

We branch into at most 4 directions at most k times.

(Better analysis gives 4% bound on the size of the search tree.)
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MULTICUT

MULTICUT
Input:  Graph G, pairs (s1, t1), ..., (se, te), integer k

Find: A set S of edges such that G \ S has no s;-t; path for any /.

Theorem: MULTICUT can be solved in time f(k, ¢) - n°Y (FPT parameterized
by combined parameters k and /).
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MULTICUT

MULTICUT
Input:  Graph G, pairs (s1, t1), ..., (se, te), integer k

Find: A set S of edges such that G \ S has no s;-t; path for any /.

Theorem: MULTICUT can be solved in time f(k, ¢) - n°Y (FPT parameterized
by combined parameters k and /).

Proof: The solution partitions {si, ti, ..., s¢, t¢} into components. Guess this
partition, contract the vertices in a class, and solve MuULTIWAY CUT.

Theorem: [Bousquet, Daligault, Thomasse 2011] [M., Razgon 2011]
MuLTIcUT is FPT parameterized by the size k of the solution.
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Directed graphs

Definition: &(R) is the set of edges leaving R.

Observation: Every inclusionwise-minimal directed (X, Y)-separator S can be
expressed as S = §(R) for some X C Rand RN'Y = 0.

—

Definition:  An (X, Y)-separator §(R) is important if there is no (X, Y)-
separator 6(R’) with R  R" and |6(R")| < |6(R).
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Directed graphs

Definition: &(R) is the set of edges leaving R.

Observation: Every inclusionwise-minimal directed (X, Y)-separator S can be
expressed as S = §(R) for some X C Rand RN'Y = 0.

—

Definition:  An (X, Y)-separator §(R) is important if there is no (X, Y)-
separator 6(R’) with R  R" and |6(R")| < |6(R).

The proof for the undirected case goes through for the directed case:

Theorem: There are at most 4 important directed (X, Y)-separators of size at
most k.
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DIRECTED MULTIWAY CUT

The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma: [for undirected graphs] Lett € T. The MULTIWAY CUT
problem has a solution S that contains an important (¢, T \ t)-separator.

Directed counterexample:

Unique solution with k = 1 edges, but it is not an important separator
(boundary of {s, a}, but the boundary of {s, a, b} is of the same size).
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The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma: [for undirected graphs] Lett € T. The MULTIWAY CUT
problem has a solution S that contains an important (¢, T \ t)-separator.

Directed counterexample:
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DIRECTED MULTIWAY CUT

The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma: [for undirected graphs] Lett € T. The MULTIWAY CUT
problem has a solution S that contains an important (¢, T \ t)-separator.

Problem in the undirected proof:

1, - to Y
<—>
t N\ °
& -~ | l u
Pl el L
-
= |74
- —_
R — o o
|
R/

Replacing R by R’ cannot create a t — u path, but can create a u — t path.
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DIRECTED MULTIWAY CUT

The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma: [for undirected graphs] Lett € T. The MULTIWAY CUT
problem has a solution S that contains an important (¢, T \ t)-separator.

Problem in the undirected proof:

1, - to Y
<—>
t N\ °
& -~ | l u
Pl el L
-
= |74
- —_
R — o o
|
R/

Replacing R by R’ cannot create a t — u path, but can create a u — t path.

Theorem: [Chitnis, Hajiaghayi, M. 2011] DIRECTED MULTIWAY CUT is FPT
parameterized by the size k of the solution.
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DIRECTED MULTICUT

DIRECTED MULTICUT
Input:  Graph G, pairs (s1, t1), ..., (se, te), integer k

Find: A set S of edges such that G \ S has no s; — t; path for any /.

Theorem: [M. and Razgon 2011] DIRECTED MuULTICUT is W[1]-hard
parameterized by k.
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DIRECTED MULTICUT

DIRECTED MULTICUT
Input:  Graph G, pairs (s1, t1), ..., (se, te), integer k

Find: A set S of edges such that G \ S has no s; — t; path for any /.

Theorem: [M. and Razgon 2011] DIRECTED MuULTICUT is W[1]-hard
parameterized by k.

But the case ¢ = 2 can be reduced to DIRECTED MULTIWAY CUT:
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o o
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DIRECTED MULTICUT

DIRECTED MULTICUT
Input:  Graph G, pairs (s1, t1), ..., (se, te), integer k

Find: A set S of edges such that G \ S has no s; — t; path for any /.

Theorem: [M. and Razgon 2011] DIRECTED MuULTICUT is W[1]-hard
parameterized by k.

But the case ¢ = 2 can be reduced to DIRECTED MULTIWAY CUT:
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DIRECTED MULTICUT

DIRECTED MULTICUT
Input:  Graph G, pairs (s1, t1), ..., (se, te), integer k

Find: A set S of edges such that G \ S has no s; — t; path for any /.

Theorem: [M. and Razgon 2011] DIRECTED MuULTICUT is W[1]-hard
parameterized by k.

But the case ¢ = 2 can be reduced to DIRECTED MULTIWAY CUT:

( N

N ) /5.1\/\;1\\ y
\. ./
tr S2
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DIRECTED MULTICUT

DIRECTED MULTICUT
Input:  Graph G, pairs (s1, t1), ..., (se, te), integer k

Find: A set S of edges such that G \ S has no s; — t; path for any /.

Theorem: [M. and Razgon 2011] DIRECTED MuULTICUT is W[1]-hard
parameterized by k.

Corollary: DIRECTED MuLTICUT with £ = 2 is FPT parameterized by the size k
of the solution.

Open: Is DIRECTED MuLTICUT with £ = 3 FPT?

! Open: Is there an f(k, £) - n°Y algorithm for DIRECTED MULTICUT?
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SKEW MULTICUT

SKEW MULTICUT
Input:  Graph G, pairs (s1, t1), ..., (se, te), integer k

A set S of k directed edges such that G\ S contains
no s; — t; path for any i <.

Find:
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G Il
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2 ‘. ¢ L4 2
¢,y . .,
"""""
¢ 1
,,,,,,
. 'y .
. 4 .
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‘Y o, TNyt
¢ P 'y
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SKEW MULTICUT

Input:

Find:

SKEW MULTICUT
Graph G, pairs (s, t1), ..

A set S of k directed edges such that G\ S contains
no s; — t; path for any i <.

., (se, te), integer k

Pushing Lemma:

important (s, {t1, ..

S]_ .'I ||||||||||||||||||||||||| . t]_
Zy "1y,
]
ll} l,"
¢ '
'''''
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LR 1,
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2 LT 2
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4 ] L4
,,,,,,
. 'y .
. 4 .
’ 31, 4
4 LN .
‘, * 'y 4
LN
L4 1,00
. 'y
53 . IIIIIIIIIII fl)llll'; ||||||| . t
''''' 3
’ ‘)
]
lllll
,,,,,
1y ’
] .
1, .
Yy, %
''''' ’
194
54 |||||||||||||||||||||||||| t4

SKEwW MULTCUT problem has a solution S that contains an

., te })-separator.

Theorem: [Chen, Liu, Lu, O’'Sullivan, Razgon 2008] SKEw MULTICUT can be

solved in time 4% -

no(l).
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DIRECTED FEEDBACK VERTEX SET

DIRECTED FEEDBACK VERTEX/EDGE SET
Input:  Directed graph G, integer k

A set S of k vertices/edges such that G \ S is
acyclic.

Find:

Note: Edge and vertex versions are equivalent, we will consider the edge
version here.

Theorem: [Chen, Liu, Lu, O’'Sullivan, Razgon 2008] DIRECTED FEEDBACK
EDGE SET is FPT parameterized by the size k of the solution.

Solution uses the technique of IT erative com pression introduced by [Reed,
Smith, Vetta 2004].
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The compression problem

DIRECTED FEEDBACK EDGE SET COMPRESSION

Input:  Directed graph G, integer k,
a set S’ of k + 1 edges such that G \ S’ is acyclic

Find: A set S of k edges such that G \ S is acyclic.

Easier than the original problem, as the extra input S’ gives us useful structural
information about G.

Lemma: The compression problem is FPT parameterized by k.
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The compression problem

Lemma: The compression problem is FPT parameterized by k.

Proof: Let S’ = {fs{, ooy bkt 1SKk4+1 }-

\ /AN RN A
TANAN

ty Sa t3 S3 th s t1 S1

By guessing and removing S N S’, we can assume that S and S’ are
disjoint [2*™ possibilities].

By guessing the order of {si, ..., sk+1} in the acyclic ordering of G \ S, we
can assume that s;1 < s < --- < sy in G\ S [(k + 1)! possibilities].
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The compression problem

Lemma: The compression problem is FPT parameterized by k.

Proof: Let S’ = {Fsi, ooy bkt 1SKk4+1 }-

\ /AN RN A
TANAN

ty Sa t3 S3 th s t1 S1

Claim: Suppose that S' NS = 0.
G \ S is acyclic and has an ordering with sx11 < s < -+ < 51

0

S covers every s; — t; path for every i <
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The compression problem

Lemma: The compression problem is FPT parameterized by k.

Proof: Let S’ = {fs{, ooy bkt 1SKk4+1 }-

ty Sa 3 S3 tr S2 t1 S1

Claim: Suppose that S' NS = 0.
G \ S is acyclic and has an ordering with sx11 < s < -+ < 51

0

S covers every s; — t; path for every i <

— We can solve the compression problem by 2! . (k 4- 1)! applications of
SKEW MULTICUT.
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lterative compression

We have given a f(k)n°® algorithm for the following problem:

DIRECTED FEEDBACK EDGE SET COMPRESSION

Input:  Directed graph G, integer k,
a set S’ of k + 1 edges such that G \ S’ is acyclic

Find: A set S of k edges such that G \ S is acyclic.

Nice, but how do we get a solution S’ of size k + 1?
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lterative compression

We have given a f(k)n°® algorithm for the following problem:

DIRECTED FEEDBACK EDGE SET COMPRESSION

Input:  Directed graph G, integer k,
a set S’ of k + 1 edges such that G \ S’ is acyclic

Find: A set S of k edges such that G \ S is acyclic.

Nice, but how do we get a solution S’ of size k + 1?

We get it for free!

useful trick: IT@rative com pression (introduced by [Reed, Smith, Vetta 2004]
for BIPARTITE DELETION).
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lterative compression

Let e, ..., en be the edges of G and let G; be the subgraph containing only the
first / edges (and all vertices).

Foreveryi=1,...,m, we find a set S; of k edges such that G; \ S; is acyclic.



lterative compression

Let e, ..., en be the edges of G and let G; be the subgraph containing only the
first / edges (and all vertices).

Foreveryi=1,...,m, we find a set S; of k edges such that G; \ S; is acyclic.

For i = k, we have the trivial solution S; = {ey, ..., ex}.

Suppose we have a solution S; for G;. Then S; U {e;j+1} is a solution of size
k + 1 in the graph Gj;1

Use the compression algorithm for G;;; with the solution S; U {ej1}.
If there is no solution of size k for G+, then we can stop.

Otherwise the compression algorithm gives a solution S;;; of size k for
Git1.

We call the compression algorithm m times, everything else is polynomial.
— DIRECTED FEEDBACK EDGE SET is FPT.
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Conclusions

A simple (but essentially tight) bound on the number of important
separators.

Algorithmic results: FPT algorithms for
MULTIWAY CUT in undirected graphs,
SKEW MULTICUT in directed graphs, and
DIRECTED FEEDBACK VERTEX/EDGE SET.
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