
Parameterized graph separation problems?

Dániel Marx

Department of Computer Science and Information Theory,
Budapest University of Technology and Economics

Budapest, H-1521, Hungary,
dmarx@cs.bme.hu

Abstract. We consider parameterized problems where some separation
property has to be achieved by deleting as few vertices as possible. The
following five problems are studied: delete k vertices such that (a) each
of the given ` terminals is separated from the others, (b) each of the
given ` pairs of terminals are separated, (c) exactly ` vertices are cut
away from the graph, (d) exactly ` connected vertices are cut away from
the graph, (e) the graph is separated into ` components, We show that
if both k and ` are parameters, then (a), (b) and (d) are fixed-parameter
tractable, while (c) and (e) are W[1]-hard.

1 Introduction

In this paper we study five problems where we have to delete vertices from a
graph to achieve a certain goal. In all four cases, the goal is related to making
the graph disconnected by deleting as few vertices as possible.

Classical flow theory gives us a way of deciding in polynomial time whether
two vertices t1 and t2 can be disconnected by deleting at most k vertices. How-
ever, for every ` ≥ 3, if we have ` terminals t1, t2, . . . , t`, then it is NP-hard
to find k vertices such that no two terminals are in the same component after
deleting these vertices [3]. In [8] a (2 − 2/`)-approximation algorithm was pre-
sented for the problem. Here we give an algorithm that is efficient if k is small:
in Section 2 it is shown that the Minimum terminal separation problem
is fixed-parameter tractable with parameter k. We also consider the more gen-
eral Minimum terminal pair separation problem where ` pairs (s1, t1), . . . ,
(s`, t`) are given, and it has to be decided whether there is a set of k vertices
whose deletion separates each of the ` pairs. We show that this problem is fixed-
parameter tractable if both k and ` are parameters. Our results can be used in
the edge deletion versions of these problems as well.

In Section 3 we consider two separation problems without terminals. In the
Separating ` Vertices problem exactly ` vertices have to be separated from
the rest of the graph by deleting at most k vertices. In Separating into `
Components problem k vertices have to be deleted such that the remaining

? Research is supported in part by grants OTKA 44733, 42559 and 42706 of the
Hungarian National Science Fund.

Problem Parameter(s)

k ` k and `

Minimum Terminal Separation FPT NP-hard FPT
(Theorem 1) for ` ≥ 3 [3] (Theorem 1)

Minimum Terminal Pair Separation Open NP-hard FPT
for ` ≥ 3 [3] (Theorem 2)

Separating ` Vertices W[1]-hard W[1]-hard W[1]-hard
(Theorem 4) (Theorem 4) (Theorem 4)

Separating ` Connected Vertices W[1]-hard W[1]-hard FPT
(Theorem 8) (Theorem 7) (Theorem 6)

Separating into ` Components W[1]-hard W[1]-hard W[1]-hard
(Theorem 9) (Theorem 9) (Theorem 9)

Table 1. Complexity of the problems with different parameterizations.

graph has at least ` connected components. The edge deletion variants of these
problems were considered in [5], where it is shown that both problems are W[1]-
hard with parameter `. Here we show that the vertex deletion versions of both
problems are W[1]-hard even if both k and ` are parameters. However, in the
case of Separating ` Vertices if we restrict the problem to bounded degree
graphs, then it becomes fixed-parameter tractable if both k and ` are parameters.
Moreover, we also consider the variant Separating ` Connected Vertices,
where it is also required that the separated vertices form a connected subgraph.
It turns out that this problems is fixed-parameter tractable if both k and ` are
parameters, but W[1]-hard if only one of them is parameter.

The results of the paper are summarized on Table 1.

2 Separating Terminals

The parameterized terminal separation problem studied in this section is for-
mally defined as follows:

Minimum Terminal Separation

Input: A graph G(V,E), a set of terminals T ⊆ V , and an integer k.
Parameter 1: k
Parameter 2: ` = |T |
Question: Is there a set of vertices S ⊆ V of size at most k such that no
two vertices of T belong to the same connected component of G \ S?

Note that S and T do not have to be disjoint, which means that it is allowed
to delete terminals. A deleted terminal is considered to be separated from all the
other terminals (later we will argue that our results remain valid for the slightly
different problem where the terminals cannot be deleted).

It follows from the graph minor theory of Robertson and Seymour that Mini-

mum Terminal Separation is fixed-parameter tractable. The celebrated result

2

of Robertson and Seymour states that graphs are well-quasi ordered with respect
to the minor relation. Moreover, the same holds for graphs where the edges are
colored with a fixed number of colors. For every terminal v ∈ T , we add a new
vertex v′ and a red edge vv′ (the original edges have color black). Now separating
the terminals and separating the red edges are the same problem. Consider the
set Gk that contains those red-black graphs where the red edges can be separated
by deleting at most k vertices. It is easy to see that Gk is closed with respect
to taking minors. Therefore by the Graph Minor Theorem, Gk has a finite set
of forbidden minors. Another result of Roberson and Seymour states that for
every graph H there is an O(|V |3) algorithm for finding an H-minor, therefore
membership in Gk can be tested in O(|V |3) time. This means that for every
k, Minimum Terminal Separation can be solved in O(|V |3) time, thus the
problem is (non-uniformly) fixed-parameter tractable. However, the constants
given by this non-constructive method are incredibly large. In this section we
give a direct combinatorial algorithm for the problem, which is more efficient.

The notion of important separator is the most important definition in this
section:

Definition 1. Let G(V,E) be a graph. For subsets X,S ⊆ V , the set of vertices
reachable from X \ S in G \ S is denoted by R(S,X). For X,Y ⊆ V , the set
S is called an (X,Y)-separator if Y ∩ R(S,X) = ∅. An (X,Y)-separator is
minimal if none of its proper subsets are (X,Y)-separators. An (X,Y)-separator
S′ dominates an (X,Y)-separator S, if |S ′| ≤ |S| and R(S,X) ⊂ R(S′, X). A
subset S is an important (X,Y)-separator if it is minimal, and there is no
(X,Y)-separator S′ that dominates S.

Abusing notations, the one element set {v} is denoted by v. We note that X and
Y can have non-empty intersection, but in this case every (X,Y)-separator has
to contain X ∩ Y .

We use Figure 1 to demonstrate the notion of important separator. Let X =
{x} and Y = {y1, y2, y3, y4}, we want separate these two sets. X and Y can be
separated by deleting x, this is the only separator of size 1. There are several
size 2 separators, for example {a, f}, {b, g}, {b, j}, {c, j}. However, only {c, j} is
an important separator: R({c, j}, x) = {x, a, b, f, g, h, i} and the set of vertices
reachable from x is smaller for the other size 2 separators. There are two size 3
important separators: {c, k, `} and {j, d, e}. Separator {c, h, i} is not important,
since it is dominated both by {c, j} and by {c, k, `}. Finally, there is only one
important size 4 separator, Y itself.

Testing whether a given (X,Y)-separator S is important can be done as
follows. First, minimality can be easily checked by testing for each vertex s ∈ S
whether S \ s remains separating. If it is minimal, then for every vertex s ∈ S,
we test whether there is an (R(S,X)∪s, Y)-separator S ′ of size at most |S|. This
separator can be found in O(|V |3) time using network flow techniques. If there
is such a separator, then S is not important. Notice that if S is not important,
then this method can be used to find an important separator that dominates S.
The test can be repeated for S ′, and if it is not important, then we get another
separator S′′ that dominates S′. We repeat this as many times as necessary.

3

PSfrag replacements

X

Y
`i

k

j

h

g

e

d

cba

f

y4

y3

y2

y1

x

Fig. 1.

Since the set of vertices reachable from X increases at each step, eventually we
arrive to an important separator.

Let X and Y be two sets of vertices, then there is at most one important
(X,Y)-separator of size 1. A size 1 separator has to be a cut vertex (here we
ignore the special cases where |X| = 1 or |Y | = 1). If there are multiple cut
vertices that separate X and Y , then there is a unique cut vertex that is farthest
from X and closest to Y . This vertex will be the only important (X,Y)-separator.

However, for larger sizes, there can be many important (X,Y)-separators of
a given size. For an example, see Figure 2. To separate the two large cliques X
and Y , for each 1 ≤ i ≤ t, either ai, or both bi and ci have to be deleted. If we
choose to delete both bi and ci, then we have to delete two vertices instead of
one, but the set of vertices reachable from X increases, it includes ai. Therefore
there are

(

t
t/2

)

important (X,Y)-separators of size 3t/2: for t/2 of the i’s we

delete ai, and for the remaining t/2 we delete bi and ci. All these separators are
important, since R(S′, X) and R(S′′, X) are pairwise incomparable for two such
separators S′ and S′′. Thus the number of important separators of a given size
k can be exponential in k. However, we show that this number is independent
of the size of the graph:

Lemma 1. For sets of vertices X,Y , there are at most 4k2

important (X,Y)-
separators of size k. Moreover, these separators can be enumerated in polynomial
time per separator.

Proof. The proof is by induction on k. We have seen above that the statement
holds for k = 1. Let S be an important (X,Y)-separator of size k in G. We count
how many other important separators can be in G. If H is another important
(X,Y)-separator of size k, then we consider two cases depending on whether
Z = S ∩ H is empty or not. If Z is not empty, then it is easy to see that H \ Z
is an important (X \Z, Y \Z)-separator in G \Z. Since |H \Z| < k, thus by the

induction hypotheses the number of such separators is at most 4(k−1)2 . There
are not more than 2k possibilities for the set Z, and for each set Z there are at
most 4(k−1)2 possibilities for the set H, hence the total number of different H
that intersect S is at most 2k4(k−1)2 .

4

PSfrag replacements

. . .

. . .

. . .

Y

X

ctbtc2b2c1b1

ata2a1

Fig. 2. A graph where there is an exponential number of important separators that
separate the large cliques X and Y .

Next we count those separators that do not intersect S. Such a separator H
contains ` vertices from R(S,X) and k−` vertices from R(S, Y). It is not possible
that ` = 0: that would imply that R(S,X) ∪ S ⊆ R(H,X) and S would not be
an important separator. Here we used the minimality of S: if none of R(S,X)
and S is deleted, then every vertex of S can be reached from X. Similarly, it
is not possible that ` = k because H would not be an important separator in
that case. To see this, notice that by the minimality of S, from every vertex of
S a vertex of Y can be reached using only the vertices in R(S, Y). Therefore
no vertex of S can be reached from X in G \ H, otherwise H would not be an
(X,Y)-separator. Since S is an (X,Y)-separator, thus this also means that no
vertex of R(S, Y) can be reached. Therefore R(H,X) is contained in R(S,X),
and since ` > 0, the containment is proper.

We divide H into two parts: let H1 = H ∩ R(S,X) and H2 = H ∩ R(S, Y)
(see Figure 3). The separator S is also divided into two parts: S1 = S ∩R(H,X)
contains those vertices that can be reached from X in G \H, while S2 = S \ S1

contains those that cannot be reached. Let G1 be the subgraph of G induced by
R(S,X) ∪ S, and G2 be the subgraph induced by R(S, Y) ∪ S. Now it is clear
that H1 is an (X ∪S1, S2)-separator in G1, and H2 is a (S1, Y ∪S2)-separator in
G2. Moreover, we claim that they are important separators. First, if H1 is not
minimal, i.e., it remains an (X∪S1, S2)-separator without v ∈ H1, then H would
be an (X,Y)-separator without v as well. Assume therefore that an (X∪S1, S2)-
separator H∗

1 in G1 dominates H1. In this case H∗
1 ∪ H2 is an (X,Y)-separator

in G with R(H,X) ⊂ R(H∗
1 ∪ H2, X), contradicting the assumption that H

is an important separator. A similar argument shows that H2 is an important
(S1, Y ∪ S2)-separator in G2. By the induction hypotheses, we have a bound on
the possible number of such separators. For a given division (S1, S2) and `, there

can be at most 4`24(k−`)2 possibilities. There are at most 2k possibilities for
(S1, S2), and the value of ` is between 1 and k − 1. Therefore the total number

of different separators (including S itself and the at most 2k4(k−1)2 sets in the

5

PSfrag replacements

YX
H2

H1

S2

S1

Fig. 3. Separators in the proof of Lemma 1.

first case) is at most

1 + 2k4(k−1)2 +

k−1
∑

`=1

2k4`24(k−`)2 ≤ 1 + 2k4(k−1)2 + (k − 1)2k4(k−1)2+1

≤ k2k4(k−1)2+1 ≤ 4k4(k−1)2+1 = 4k+k2−2k+2 ≤ 4k2

,

what we had to show (in the first inequality we used `2 +(k− `)2 ≤ (k− 1)2 +1,
which holds since 1 ≤ ` ≤ k − 1). The proof also gives an algorithm for finding
all the important separators. To handle the first case, we take every subset Z
of S, and recursively find all the important size k − |Z| separators in G \ S. In
the second case, we consider every 1 ≤ ` ≤ k − 1 and every division (S1, S2)
of S. We enumerate every important (X ∪ S1, S2)-separator S1 in G1 and every
important (S1, Y ∪ S2)-separator in G2. For each S1, S2, it has to be checked
whether S1 ∪S2 is an important (X,Y)-separator. As it was shown above, every
important separator can be obtained in such a form. Our algorithm makes a
constant number of recursive calls with smaller k, therefore the running time is
uniformly polynomial. ut

What makes important separators important is that a separator in a solution
can be always replaced by an important separator:

Lemma 2. If there is a set S of vertices that separates the terminals t1, . . . ,
tr, then there is a set H with |H| ≤ |S| that also separates the terminals and
contains an important ({t1}, {t2, t3, . . . , tr})-separator.

Proof. Let S0 ⊆ S be those vertices of S that can be reached from t1 without go-
ing through other vertices of S. Clearly, S0 is a ({t1}, {t2, t3, . . . , tr})-separator,
and it contains a minimal separator S1. If S1 is important, then we are ready,
otherwise there is an important ({t1}, {t2, t3, . . . , tr})-separator S′

1 that domi-
nates S1. We claim that S′ = (S \ S1) ∪ S′

1 also separates the terminals. If this
is true, then |S′

1| ≤ |S1| implies |S′| ≤ |S|, proving the lemma.
Since S′

1 is a ({t1}, {t2, t3, . . . , tr})-separator, thus S′ separates t1 from all
the other vertices. Assume therefore that there is a path P in G \ S ′ connecting
terminals ti and tj . Since S separates ti and tj , thus this is only possible if P goes
through a vertex v of S1. Every vertex of S1 ⊆ S0 has a neighbor in R(S, t1),

6

let w this neighbor of v. Since R(S, t1) ⊆ R(S′, t1), vertex w can be reached
from t1 in G \ S′. Therefore ti can be reached from t1 via w and v, which is a
contradiction, since S′ is a ({t1}, {t2, t3, . . . , tr})-separator. ut

Lemma 1 and Lemma 2 allows us to use the method of bounded search trees to
solve the Minimum Terminal Separation problem:

Theorem 1. Minimum Terminal Separation is fixed-parameter tractable
with parameter k.

Proof. We select an arbitrary terminal t that is not already separated from
every other terminal. By Lemma 2, there is a solution that contains an important
(t, T \t)-separator. Using Lemma 1, we enumerate all the at most k4k2

important
separators of size at most k, and select a separator S from this list. We delete
S from G, and recursively solve the problem for G \ S with problem parameter

k−|S|. At each step we can branch into at most k4k2

directions, and the problem
parameter is decreased by at least one, hence the search tree has height at most
k and has at most kk4k3

leaves. The work to be done is polynomial at each step,
hence the algorithm is uniformly polynomial. ut

A natural way to generalize Minimum Terminal Separation is to have a
more complicated restriction on which terminals should be separated. Instead
of a set of terminals where every terminal has to be separated from every other
terminal, in the following problem there are pairs of terminals, and every terminal
has to be separated only from its pair:

Minimum Terminal Pair Separation

Input: A graph G(V,E), pairs of vertices (s1, t1), (s2, t2), . . . , (s`, t`),
and an integer k.
Parameter 1: k
Parameter 2: `
Question: Is there a set of vertices S ⊆ V of size at most k such that for
every 1 ≤ i ≤ `, vertices si and ti are in different components of G \ S?

Let T =
⋃`

i=1{si, ti} be the set of terminals. We can prove an analog of
Lemma 2: there is an optimal solution containing an important separator.

Lemma 3. If there is a set S of vertices that separates every pair, then there is
a set S′ with |S′| ≤ |S| that also separates the pairs and S ′ contains an important
({s1}, T

′)-separator for some subset T ′ ⊆ T .

Proof. We proceed similarly as in the proof of Lemma 2. Let T ′ be the set of
those terminals that are separated from s1 in G \ S. Let S0 ⊆ S be the vertices
reachable from s1 without going through other vertices of S. Clearly, S0 is an
(s1, T

′)-separator, and it contains a minimal (s1, T
′)-separator S1. If S1 is not

important, then there is an important (s1, T
′)-separator S′

1 that dominates S1.
We claim that S′ = (S \S1)∪S′

1 also separates the pairs. Clearly, t1 ∈ T ′, hence
s1 and t1 are separated in S′. Assume therefore that si and ti are connected by

7

a path P in G \ S′. As in Lemma 2, path P goes through a vertex of S1, and it
follows that both si and ti are connected to s1 in G \ S′. Therefore si, ti 6= T ′.
However, this implies that s1 is connected to si and ti in G \ S, hence S does
not separate si from ti, a contradiction. ut

To find k vertices that separate the pairs, we use the same method as in The-
orem 1. In Lemma 3, there are 2` different possibilities for the set T ′, and by
Lemma 1, for each T ′ there are at most k4k2

different separators of size at most k.
Therefore we can generate 2` ·k2k2

separators such that one of them is contained
in an optimum solution. This results in a search tree with at most 2k` · kk4k3

leaves.

Theorem 2. The Minimum Terminal Pair Separation problem is fixed-
parameter tractable with parameters k and `. ut

Separating the terminals in T can be expressed as separating
(

|T |
2

)

pairs, hence
Minimum Terminal Separation is a special case of Minimum Terminal

Pair Separation. However, Theorem 2 does not imply Theorem 1. In Theo-
rem 2 the number of pairs is a parameter, while the size of T can be unbounded
in Theorem 1. We do not know the complexity of Minimum Terminal Pair

Separation if only k is the parameter.
As noted above, in the separation problems we assume that any vertex can

be deleted, even the terminals themselves. However, we can consider the slightly
more general problem, when the input contains a set V ∗ of distinguished vertices,
and these vertices cannot be deleted. All the results in this section hold for this
variant of the problem as well. In all of the proofs, when a new separator is
constructed, then it is constructed from vertices that were contained in some
other separator.

We can consider the variants of Minimum Terminal Separation and Min-

imum Terminal Pair Separation where the terminals have to be separated
by deleting at most k edges. The edge deletion problems received more attention
in the literature: they were consider in e.g. [4,3,7] under the names multiway cut,
multiterminal cut, and multicut. As noted in [8], it is easy to reduce the edge
deletion problem to vertex deletion, therefore our algorithms can be used for
these edge deletion problems as well. For completeness, we briefly describe a
possible reduction. The edge deletion problem can be solved by considering the
line graph (in the line graph L(G) of G the vertices correspond to the edges of
G, and two vertices are connected if the corresponding two edges have a com-
mon vertex.) However, we have to do some tinkering before we can define the
terminals in the line graph. For each terminal vi of G, add a new vertex v′

i and
a new edge viv

′
i. Let v′

i be the terminal instead of vi. If edge viv
′
i is marked

as unremovable, then this modification does not change the solvability of the
instance. Now the problem can be solved by using the vertex separation algo-
rithms (Thereom 1 and 2) on the line graph L(G). The terminals in the line
graph are the vertices corresponding to the edges viv

′
i. These edges were marked

as unremovable, hence these vertices are contained in the set V ∗ of distinguished
vertices in the line graph.

8

Theorem 3. The edge deletion versions of Minimum Terminal Separation

(with parameter k) and Minimum Terminal Pair Separation (with param-
eters k and `) are fixed-parameter tractable. ut

3 Cutting up a Graph

Finding a good separator that splits a graph into two parts of approximately
equal size is a useful algorithmic technique (see [9,10] for classic examples). This
motivates the study of the following problem, where a given number of vertices
has to be separated from the rest of the graph:

Separating ` Vertices

Input: A graph G(V,E), integers k and `.
Parameter 1: k
Parameter 2: `
Question: Is there a partition V = X ∪ S ∪ Y such that |X| = `, |S| ≤ k
and there is no edge between X and Y ?

It follows from [2] that the problem is NP-hard in general. Moreover, it is
not difficult to show that the parameterized version of the problem is hard as
well, even with both parameters:

Theorem 4. Separating ` Vertices is W[1]-hard with parameters k and `.

Proof. The proof is by reduction from Maximum Clique. Let G be a graph
with n vertices and m edges, it has to be determined whether G has a clique
of size k. We construct G′ as follows. In G′ there are n vertices v1, . . . , vn that
correspond to the vertices of G, these vertices form a clique in G′. Furthermore,
G′ has m vertices e1, . . . , em that correspond to the edges of G. If the end points
of edge ej in G are vertices vj1 and vj2 , then connect vertex ej with vertices vj1

and vj2 in G′. We set `′ =
(

k
2

)

and k′ = k.
If there is a clique of size k, then we can cut `′ vertices by removing k′

vertices. From v1, . . . , vn remove those k vertices that correspond to the clique.
Now the

(

k
2

)

vertices of G′ that correspond to the edges of the clique are isolated
vertices. On the other hand, assume that `′ vertices can be cut by deleting k′

vertices. The remaining vertices of v1, . . . , vn form a clique of size greater than
`′ (assuming n >

(

k
2

)

+ k), hence the `′ separated vertices correspond to `′ edges
of G. These vertices have to be isolated, since they cannot be connected to the
large clique formed by the remaining vi’s. This means that the end vertices of
the corresponding edges were all deleted. Therefore these `′ =

(

k
2

)

edges can
have at most k′ = k end points, which is only possible if the end points induce
a clique of size k in G. ut

If we consider only bounded degree graphs, then Separating ` Vertices

becomes fixed-parameter tractable:

Theorem 5. Separating ` Vertices is fixed-parameter tractable with param-
eters k, `, and d, where d is the maximum degree of the graph.

9

Proof. Consider a solution V = X ∪ S ∪ Y , and consider the subgraph induced
by X ∪ S. This subgraph consists of some number of connected components, let
Xi ∪ Si be the vertex set of the ith component. For each i, the pair (Si, Xi) has
the following two properties:

(1) in graph G the set Si separates Xi from the rest of the graph, and
(2) Xi ∪ Si induces a connected graph.

On the other hand, assume that the pairs (X1, S1), . . . , (Xt, St) satisfy (1),
(2), and the sets X1, . . . , Xt, S1, . . . , St are pairwise disjoint. In this case if
X = X1 ∪ · · · ∪ Xt has size exactly ` and S = S1 ∪ · · · ∪ St has size at most k,
then they form a solution. Therefore we generate all the pairs that satisfy these
requirements, and use color coding to decide whether there are disjoint pairs
with the required total size. If there is a solution, then this method will find one.

By requirement (2) a pair (Xi, Si) induces a connected subgraph of size
at most k + `. We enumerate each such connected subgraph. If a vertex v is
contained in a connected subgraph of size at most k + `, then all the vertices of
the subgraph are at a distance of less than k + ` from v. The maximum degree
of the graph is d, thus there are at most dk+` vertices at distance less than k + `
from v. Therefore the number of connected subgraphs that contain v and have
size at most k + ` is a constant, which means that there is a linear number of
such subgraphs in the whole graph. We can enumerate these subgraphs in linear
time. Each subgraph can be divided into a pair (Xi, Si) in at most 2k+` different
ways. From these pairs we retain only those that satisfy requirement (1).

Having generated all the possible pairs (X1, S1), . . . , (Xp, Sp), a solution
can be found as follows. We consider a random coloring of the vertices with
c := k + ` colors. Using dynamic programming, we try to find a solution where
every vertex of X ∪S has a distinct color. Subproblem (C ′, j, k′, `′) asks whether
it is possible to select some pairs from the first j pairs such that (a) they are
pairwise disjoint, (b) they use only vertices with color C ′, (c) the union of the Si’s
has size k′, and (d) the union of the Xi’s has size `′. For j = 0, the subproblems
are trivial. If the subproblems for j − 1 are solved, then the problem can be
solved for j using the following two recurrence relations. First, if subproblem
(C ′, j−1, k′, `′) is true, then clearly (C ′, j, k′, `′) is true as well. Moreover, if every
vertex of Xj ∪Sj has distinct color (denote by Cj these colors), and subproblem
(C ′ \ Cj , j − 1, k′ − |Sj |, `

′ − |Xj |) is true, then a solution for this subproblem
can be extended by the pair (Xj , Sj) to obtain a solution for (C ′, j, k′, `′). Using
these two rules, all the subproblems can be solved.

If there is a solution X∪S, then by probability at least c!/cc (where c = k+`
is the number of colors) these vertices receive distinct colors, and the algorithm
described above finds a solution. Therefore if there is a solution, then on average
we have to repeat the method cc/c! (constant) times to find a solution. The
algorithm can be derandomized using the standard method of k-perfect hash
functions, see [6, Section 8.3] and [1]. ut

A variant of Separating ` Vertices is the Separating ` Connected

Vertices problem where we also require that X induces a connected subgraph
of G. This problem is fixed-parameter tractable:

10

Theorem 6. The Separating ` Connected Vertices problems is fixed-
parameter tractable with parameters k and `.

Proof. A vertex with degree at most k + ` will be called a low degree vertex, let
G0 be the subgraph induced by these vertices. A vertex v with degree more than
k + ` cannot be part of X: at most k neighbors of v can be in S, hence v would
have more than ` neighbors in X, which is impossible if |X| = `. Therefore
X is a connected subgraph of G0. As in the proof of Theorem 5, a bounded
degree graph has a linear number of connected subgraphs of size `. For each
such subgraph, it has to be checked whether it can be separated from the rest
of the graph by deleting at most k vertices. ut

However, if only k is parameter, then the problem is W[1]-hard. This follows
from the proof of Theorem 4. We construct the n + m vertex graph as before,
but instead of asking whether it is possible to separate

(

k
2

)

vertices by deleting

k vertices, we ask whether it is possible to separate n + m −
(

k
2

)

− k connected
vertices by deleting k vertices. The two questions have the same answer, thus

Theorem 7. Separating ` Connected Vertices is W[1]-hard with param-
eter k. ut

Similarly, the problem is W[1]-hard if only ` is the parameter.

Theorem 8. Separating ` Connected Vertices is W[1]-hard with param-
eter `.

Proof. The reduction is from Maximum Clique. It is not difficult to show that
Maximum Clique remains W[1]-hard for regular graphs. Assume that we are
given an r-regular graph G, and it has to be decided whether there is a clique of
size k. If r ≤ k4, then the problem is fixed parameter tractable: for every vertex

v, we select k−1 neighbors of v in at most
(

k4

k−1

)

possible ways, and test whether

these k vertices form a clique. Thus it will be assumed that r > k4.

Consider the line graph L(G) of G, i.e., the vertices of L(G) correspond to
the edges of G. Set ` =

(

k
2

)

and k′ = k(r − k + 1). If G has a size k clique
then the ` edges induced by the clique can be separated from the rest of the line
graph: for each vertex of the clique, we have to delete the r−k +1 edges leaving
the clique. On the other hand, assume that ` vertices of G′ can be separated
by deleting k vertices. The corresponding ` edges in G span a set T of vertices
of size t ≤ 2`. We show that t = k, thus T is a clique of size k in G. Assume
that t > k. Each vertex of T has at least r − t + 1 edges that leave T . The
corresponding t(r − t + 1) vertices have to be deleted from the line graph of G,
hence k′ ≥ t(r − t + 1). However, this is not possible since

t(r − t + 1) − k′ = (t − k)r − t(t − 1) + k(k − 1) ≥ (t − k)r − 4`2 ≥ r − k4 > 0

(in the first inequality we use 4`2 ≥ t2, in the second t > k and ` < k2/2). ut

11

The vertex connectivity is the minimum number of vertices that has to be
deleted to make the graph disconnected. Using network flow techniques, vertex
connectivity can be determined in polynomial time. By essentially the same proof
as in Theorem 4, we can show hardness for this problem as well:

Separating into ` Components

Input: A graph G(V,E), integers k and `
Parameter 1: k
Parameter 2: `
Question: Is there a set S of k vertices such that G \ S has at least `
connected components?

Theorem 9. Separating into ` Components is W[1]-hard with parameters
k and `.

Proof. The construction is the same as in Theorem 4, but this time we set
`′ =

(

k
2

)

+ 1 and k′ = k. By deleting the vertices corresponding to a clique of
size k the graph is separated into `′ components. The converse is also easy to
see, the argument is the same as in Theorem 4. ut

References

1. N. Alon, R. Yuster, and U. Zwick. Finding and counting given length cycles.
Algorithmica, 17(3):209–223, 1997.

2. T. N. Bui and C. Jones. Finding good approximate vertex and edge partitions is
NP-hard. Inform. Process. Lett., 42(3):153–159, 1992.

3. W. H. Cunningham. The optimal multiterminal cut problem. In Reliability of
computer and communication networks (New Brunswick, NJ, 1989), volume 5 of
DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 105–120. Amer. Math.
Soc., Providence, RI, 1991.

4. E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yan-
nakakis. The complexity of multiterminal cuts. SIAM J. Comput., 23(4):864–894,
1994.

5. R. Downey, V. Estivill-Castro, M. Fellows, E. Prieto, and F. Rosamund. Cutting
up is hard to do. In J. Harland, editor, Electronic Notes in Theoretical Computer
Science, volume 78. Elsevier, 2003.

6. R. G. Downey and M. R. Fellows. Parameterized complexity. Monographs in
Computer Science. Springer-Verlag, New York, 1999.

7. N. Garg, V. V. Vazirani, and M. Yannakakis. Primal-dual approximation algo-
rithms for integral flow and multicut in trees. Algorithmica, 18(1):3–20, 1997.

8. N. Garg, V. V. Vazirani, and M. Yannakakis. Multiway cuts in node weighted
graphs. J. Algorithms, 50(1):49–61, 2004.

9. R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM J.
Appl. Math., 36(2):177–189, 1979.

10. R. J. Lipton and R. E. Tarjan. Applications of a planar separator theorem. SIAM
J. Comput., 9(3):615–627, 1980.

12

