Parameterized graph separation problems

Dániel Marx

Budapest University of Technology and Economics

dmarx@cs.bme.hu

International Workshop on Parameterized and Exact Computation

September 14, 2004

Bergen, Norway

Terminal separation

MINIMUM TERMINAL SEPARATION

- Given: a graph G, an integer k, and a set T of ℓ vertices (the terminals)
- Parameter: k, ℓ
- Find: a set S of k vertices such that S separates every two vertices of T

Note: deleting a vertex in *T* separates it from every other vertex.

Polynomial time solvable for $\ell = 2$ (network flows). NP-hard for every $\ell = 3$ [Cunningham, 1991]

Terminal separation

MINIMUM TERMINAL SEPARATION

- Given: a graph G, an integer k, and a set T of ℓ vertices (the terminals)
- Parameter: k, ℓ
- Find: a set S of k vertices such that S separates every two vertices of T

Note: deleting a vertex in *T* separates it from every other vertex.

Polynomial time solvable for $\ell = 2$ (network flows). NP-hard for every $\ell = 3$ [Cunningham, 1991]

Theorem: MINIMUM TERMINAL SEPARATION is fixed-parameter tractable with parameter k.

(Follows from graph minors theory, but here we give a direct proof.)

We try to separate t_1 from the rest of the terminals:

We try to separate t_1 from the rest of the terminals:

We try to separate t_1 from the rest of the terminals:

To separate t_1 , we try to delete vertices as far away from t_1 as possible.

We try to separate t_1 from the rest of the terminals:

To separate t_1 , we try to delete vertices as far away from t_1 as possible.

Definition: S is an (X,Y)-separator if it separates every vertex of X from every vertex of Y.

Definition: an (X, Y)-separator R dominates an (X, Y)-separator S if

- $|R| \leq |S|$,
- every vertex reachable from X in $G \setminus S$ is reachable from X in $G \setminus R$.

Definition: S is an (X,Y)-separator if it separates every vertex of X from every vertex of Y.

Definition: an (X, Y)-separator R dominates an (X, Y)-separator S if

- $|R| \leq |S|$,
- every vertex reachable from X in $G \setminus S$ is reachable from X in $G \setminus R$.

Definition: S is an (X,Y)-separator if it separates every vertex of X from every vertex of Y.

Definition: an (X, Y)-separator R dominates an (X, Y)-separator S if

- $|R| \leq |S|$,
- every vertex reachable from X in $G \setminus S$ is reachable from X in $G \setminus R$.

Definition: S is an (X,Y)-separator if it separates every vertex of X from every vertex of Y.

Definition: an (X, Y)-separator R dominates an (X, Y)-separator S if

- $|R| \leq |S|$,
- every vertex reachable from X in $G \setminus S$ is reachable from X in $G \setminus R$.

Definition: *S* is an **important** (X, Y)-separator, if it is not dominated by any other (X, Y)-separator.

Separator $\{b, f\}$ is dominated by $\{c, i\}$.

Definition: S is an (X,Y)-separator if it separates every vertex of X from every vertex of Y.

Definition: an (X, Y)-separator R dominates an (X, Y)-separator S if

- $|R| \leq |S|$,
- every vertex reachable from X in $G \setminus S$ is reachable from X in $G \setminus R$.

Definition: *S* is an **important** (X, Y)-separator, if it is not dominated by any other (X, Y)-separator.

Important separators:

 $\{c,i\}$

Definition: S is an (X,Y)-separator if it separates every vertex of X from every vertex of Y.

Definition: an (X, Y)-separator R dominates an (X, Y)-separator S if

- $|R| \leq |S|$,
- every vertex reachable from X in $G \setminus S$ is reachable from X in $G \setminus R$.

Definition: S is an (X,Y)-separator if it separates every vertex of X from every vertex of Y.

Definition: an (X, Y)-separator R dominates an (X, Y)-separator S if

- $|R| \leq |S|$,
- every vertex reachable from X in $G \setminus S$ is reachable from X in $G \setminus R$.

Definition: S is an (X,Y)-separator if it separates every vertex of X from every vertex of Y.

Definition: an (X, Y)-separator R dominates an (X, Y)-separator S if

- $|R| \leq |S|$,
- every vertex reachable from X in $G \setminus S$ is reachable from X in $G \setminus R$.

We want to bound the number of important separators.

We want to bound the number of important separators.

We want to bound the number of important separators.

We want to bound the number of important separators.

We want to bound the number of important separators.

Another example:

For every i, the separator has to contain either

• a_i or

• both b_i and c_i .

Another example:

For every i, the separator has to contain either

• a_i or

• both b_i and c_i .

Another example:

For every i, the separator has to contain either

• a_i or

• both b_i and c_i .

Another example:

For every i, the separator has to contain either

• a_i or

• both b_i and c_i .

Every combination gives an important separator \Rightarrow there are 2^{t} important separators of size at most 2t.

The two key lemmas

Lemma 1: There are at most 4^{k^2} important (X, Y)-separators of size $\leq k$.

Lemma 2: If the terminals t_1, t_2, \ldots, t_ℓ can be separated by deleting k vertices, then there is a solution that contains an important $(\{t_1\}, \{t_2, \ldots, t_\ell\})$ -separator.

The two key lemmas

Lemma 1: There are at most 4^{k^2} important (X, Y)-separators of size $\leq k$.

Lemma 2: If the terminals t_1, t_2, \ldots, t_ℓ can be separated by deleting k vertices, then there is a solution that contains an important $(\{t_1\}, \{t_2, \ldots, t_\ell\})$ -separator.

Algorithm:

- 1. Enumerate all the important $(\{t_1\}, \{t_2, \ldots, t_\ell\})$ -separators of size at most k.
- 2. Delete one of them from the graph.
- 3. Decrease the parameter k, and go to Step 1.

Bounded search tree: branch factor is at most 4^{k^2} , height is at most k.

Lemma 1: There are at most 4^{k^2} important (X, Y)-separators of size $\leq k$. **Proof:** By induction on k, we have seen the case k = 1. Let S be an important separator. How many other important separators are possible?

Lemma 1: There are at most 4^{k^2} important (X, Y)-separators of size $\leq k$. **Proof:** By induction on k, we have seen the case k = 1. Let S be an important separator. How many other important separators are possible?

Lemma 1: There are at most 4^{k^2} important (X, Y)-separators of size $\leq k$. **Proof:** By induction on k, we have seen the case k = 1. Let S be an important separator. How many other important separators are possible?

Lemma 1: There are at most 4^{k^2} important (X, Y)-separators of size $\leq k$. **Proof:** By induction on k, we have seen the case k = 1. Let S be an important separator. How many other important separators are possible?

Let $R = R_1 \cup R_2$ be an important separator disjoint from S.

Lemma 1: There are at most 4^{k^2} important (X, Y)-separators of size $\leq k$. **Proof:** By induction on k, we have seen the case k = 1. Let S be an important separator. How many other important separators are possible?

Let $R = R_1 \cup R_2$ be an important separator disjoint from S.

Lemma 1: There are at most 4^{k^2} important (X, Y)-separators of size $\leq k$. **Proof:** By induction on k, we have seen the case k = 1. Let S be an important separator. How many other important separators are possible?

Let $R = R_1 \cup R_2$ be an important separator disjoint from *S*. • If $k_1 = k \Rightarrow R$ is not important.

Lemma 1: There are at most 4^{k^2} important (X, Y)-separators of size $\leq k$. **Proof:** By induction on k, we have seen the case k = 1. Let S be an important separator. How many other important separators are possible?

Let $R = R_1 \cup R_2$ be an important separator disjoint from S.

- If $k_1 = k \Rightarrow R$ is not important.
- If $k_2 = k \Rightarrow S$ is not important.

Lemma 1: There are at most 4^{k^2} important (X, Y)-separators of size $\leq k$. **Proof:** By induction on k, we have seen the case k = 1. Let S be an important separator. How many other important separators are possible?

Let $R = R_1 \cup R_2$ be an important separator disjoint from S.

• If $k_1 = k \Rightarrow R$ is not important.

• If $k_2 = k \Rightarrow S$ is not important.

It can be shown that R_1 (resp. R_2) is an important (X', Y')-separator (for some $X', Y') \Rightarrow$ constant number of possibilities for R_1 and $R_2 \Rightarrow$ constant number of possibilities for R.

Lemma 2: If the terminals t_1, t_2, \ldots, t_ℓ can be separated by deleting k vertices, then there is a solution that contains an important $(\{t_1\}, \{t_2, \ldots, t_\ell\})$ -separator.

Lemma 2: If the terminals t_1, t_2, \ldots, t_ℓ can be separated by deleting k vertices, then there is a solution that contains an important $(\{t_1\}, \{t_2, \ldots, t_\ell\})$ -separator.

Lemma 2: If the terminals t_1, t_2, \ldots, t_ℓ can be separated by deleting k vertices, then there is a solution that contains an important $(\{t_1\}, \{t_2, \ldots, t_\ell\})$ -separator.

• Let $S_1 \subseteq S$ be those vertices that can be reached from t_1 without entering S.

• If S_1 is not an important separator, then it is dominated by some S_2 . We show that in this case $S' = (S \setminus S_1) \cup S_2$ separates the terminals.

Lemma 2: If the terminals t_1, t_2, \ldots, t_ℓ can be separated by deleting k vertices, then there is a solution that contains an important $(\{t_1\}, \{t_2, \ldots, t_\ell\})$ -separator.

• Let $S_1 \subseteq S$ be those vertices that can be reached from t_1 without entering S.

• If S_1 is not an important separator, then it is dominated by some S_2 . We show that in this case $S' = (S \setminus S_1) \cup S_2$ separates the terminals.

• t_1 is separated from every terminal by S_2 .

Lemma 2: If the terminals t_1, t_2, \ldots, t_ℓ can be separated by deleting k vertices, then there is a solution that contains an important $(\{t_1\}, \{t_2, \ldots, t_\ell\})$ -separator.

• Let $S_1 \subseteq S$ be those vertices that can be reached from t_1 without entering S.

• If S_1 is not an important separator, then it is dominated by some S_2 . We show that in this case $S' = (S \setminus S_1) \cup S_2$ separates the terminals.

• t_1 is separated from every terminal by S_2 .

Lemma 2: If the terminals t_1, t_2, \ldots, t_ℓ can be separated by deleting k vertices, then there is a solution that contains an important $(\{t_1\}, \{t_2, \ldots, t_\ell\})$ -separator.

• Let $S_1 \subseteq S$ be those vertices that can be reached from t_1 without entering S.

• If S_1 is not an important separator, then it is dominated by some S_2 . We show that in this case $S' = (S \setminus S_1) \cup S_2$ separates the terminals.

- t_1 is separated from every terminal by S_2 .
- If t_2 and t_3 are connected, then the path has to go through some $v \in S_1$

Lemma 2: If the terminals t_1, t_2, \ldots, t_ℓ can be separated by deleting k vertices, then there is a solution that contains an important $(\{t_1\}, \{t_2, \ldots, t_\ell\})$ -separator.

• Let $S_1 \subseteq S$ be those vertices that can be reached from t_1 without entering S.

• If S_1 is not an important separator, then it is dominated by some S_2 . We show that in this case $S' = (S \setminus S_1) \cup S_2$ separates the terminals.

• t_1 is separated from every terminal by S_2 .

• If t_2 and t_3 are connected, then the path has to go through some $v \in S_1 \Rightarrow t_1$ is connected to both t_2 and t_3 , a contradiction.

MINIMUM TERMINAL PAIR SEPARATION

- Given: a graph G, an integer k, and ℓ pairs of terminals $(s_1, t_1), \ldots, (s_\ell, t_\ell)$.
- Parameter: k, ℓ
- Find: a set S of k vertices such after deleting S, terminals s_i and t_i are separated for every $1 \le i \le \ell$.

MINIMUM TERMINAL PAIR SEPARATION

- Given: a graph G, an integer k, and ℓ pairs of terminals $(s_1, t_1), \ldots, (s_\ell, t_\ell)$.
- Parameter: k, ℓ
- Find: a set S of k vertices such after deleting S, terminals s_i and t_i are separated for every $1 \le i \le \ell$.

Theorem: MINIMUM TERMINAL PAIR SEPARATION is fixed-parameter tractable with parameters k and ℓ .

MINIMUM TERMINAL PAIR SEPARATION

- Given: a graph G, an integer k, and ℓ pairs of terminals $(s_1, t_1), \ldots, (s_\ell, t_\ell)$.
- Parameter: k, ℓ
- Find: a set S of k vertices such after deleting S, terminals s_i and t_i are separated for every $1 \le i \le \ell$.

Theorem: MINIMUM TERMINAL PAIR SEPARATION is fixed-parameter tractable with parameters k and ℓ .

Algorithm: s_1 is separated from t_1 , and from a subset X of $\{s_2, t_2, \ldots, s_\ell, t_\ell\}$. Make a guess for the set X, and separate s_1 with an important $(s_1, X \cup t_1)$ -separator.

MINIMUM TERMINAL PAIR SEPARATION

- Given: a graph G, an integer k, and ℓ pairs of terminals $(s_1, t_1), \ldots, (s_\ell, t_\ell)$.
- Parameter: k, ℓ
- Find: a set S of k vertices such after deleting S, terminals s_i and t_i are separated for every $1 \le i \le \ell$.

Theorem: MINIMUM TERMINAL PAIR SEPARATION is fixed-parameter tractable with parameters k and ℓ .

Algorithm: s_1 is separated from t_1 , and from a subset X of $\{s_2, t_2, \ldots, s_\ell, t_\ell\}$. Make a guess for the set X, and separate s_1 with an important $(s_1, X \cup t_1)$ -separator.

Open: What is the complexity of the problem if only k is the parameter?