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Abstract. We study a general family of facility location problems de-
fined on planar graphs and on the 2-dimensional plane. In these problems,
a subset of k objects has to be selected, satisfying certain packing (dis-
jointness) and covering constraints. Our main result is showing that, for
each of these problems, the nO(k) time brute force algorithm of selecting

k objects can be improved to nO(
√
k) time. The algorithm is based on

focusing on the Voronoi diagram of a hypothetical solution of k objects;
this idea was introduced recently in the design of geometric QPTASs, but
was not yet used for exact algorithms and for planar graphs. As concrete

consequences of our main result, we obtain nO(
√
k) time algorithms for the

following problems: d-Scattered Set in planar graphs (find k vertices
at pairwise distance d); d-Dominating Set/(k, d)-Center in planar
graphs (find k vertices such that every vertex is at distance at most d
from these vertices); select k pairwise disjoint connected vertex sets from
a given collection; select k pairwise disjoint disks in the plane (of possibly
different radii) from a given collection; cover a set of points in the plane
by selecting k disks/axis-parallel squares from a given collection. We
complement these positive results with lower bounds suggesting that
some similar, but slightly more general problems (such as covering points

with axis-parallel rectangles) do not admit nO(
√
k) time algorithms.

1 Introduction

Parameterized problems often become easier when restricted to planar graphs:
usually significantly better running times can be achieved and sometimes problems
that are W[1]-hard on general graphs become fixed-parameter tractable on
planar graphs. In most cases, the improved running time involves a square root
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dependence on the parameter: it is often of the form 2O(
√
k) · nO(1) or nO(

√
k).

The appearance of the square root can be usually traced back to the fact that
a planar graph with n vertices has treewidth O(

√
n). Indeed, the theory of

bidimensionality gives a quick explanation why problems such as Independent
Set, Longest Path, Feedback Vertex Set, Dominating Set, or even
distance-r versions of Independent Set and Dominating Set (for fixed r)

have algorithms with running time 2O(
√
k) · nO(1) (cf. survey [6]). In all these

problems, there is a relation between the size of the largest grid minor and the
size of the optimum solution, which allows us to bound the treewidth of the
graph in terms of the parameter of the problem. More recently, subexponential
parameterized algorithms have been explored also for problems where there is no
such straightforward parameter-treewidth bound: for examples, see [5,9,10,14].

A similar “square root phenomenon” has been observed in the case of geometric
problems: it is usual to see a square root in the exponent of the running time of
algorithms for NP-hard problems defined in the 2-dimensional Euclidean plane.
Most relevant to our paper is the fact that Independent Set for unit disks
(given a set of n unit disks, select k of them that are pairwise disjoint) and
the discrete k-center problem (given a set of n points and a set of n unit disks,

select k disks whose union covers every point) can be solved in time nO(
√
k) by

geometric separation theorems and shifting arguments [3,4,8,12], improving on
the trivial nO(k) time brute force algorithm. However, all of these algorithms are
crucially based on a notion of area and rely on the property that all the disks have
the same size (at least approximately). Therefore, it seems unlikely that these
techniques can be generalized to the case when the disks can have very different
radii or to planar-graph versions of the problem, where the notion of area is
meaningless. Using similar techniques, one can obtain approximation schemes
for these and related geometric problems, again with the limitation that the
objects need to have (roughly) the same area. Very recently, a new and powerful
technique emerged from a line of quasi-polynomial time approximation schemes
(QPTAS) for geometric problems [1,2,7,13]. As described explicitly by Har-Peled
[7], the main idea is to reason about the Voronoi diagram of the k objects in the
solution. In particular, we are trying to guess a separator consisting of O(

√
k)

segments that corresponds to a balanced separator of the Voronoi diagram. In
this paper, we show how this basic idea and its extensions can be implemented to

obtain nO(
√
k) time exact algorithms for a wide family of geometric packing and

covering problems in a uniform way. In fact, we show that the algorithms can be
made to work in the much more general context of planar graph problems.

Algorithmic results. We study a general family of facility location problems
for planar graphs, where a set of k objects has to be selected, subject to certain
independence and covering constraints. Two archetypal problems from this family
are (1) selecting k vertices of an edge-weighted planar graph that are at distance at
least d from each other (d-Scattered Set) and (2) selecting k vertices of an edge-
weighted planar graph such that every vertex of the graph is at distance at most d
from a selected vertex (d-Dominating Set); for both problems, d is a real value
being part of the input. We show that, under very general conditions, the trivial



nO(k) time brute force algorithm can be improved to nO(
√
k) time for problems

in this family. Our result is not just a simple consequence of bidimensionality
and bounding the treewidth of the input graph. Instead, we focus on the Voronoi
diagram of a hypothetical solution, which can be considered as a planar graph
with O(k) vertices. It is known that such a planar graph has a balanced separator
cycle of length O(

√
k), which can be translated into a separator that breaks the

instance in way suitable for using recursion on the resulting subproblems. Of
course, we do not know the Voronoi diagram of the solution and its balanced

separator cycle, but we argue that only nO(
√
k) separator cycles can be potential

candidates. Hence, by guessing one of these cycles, we define and solve nO(
√
k)

subproblems. The running time of the algorithm is thus governed by a recurrence

relation of the form f(k) = nO(
√
k)f(k/2), which resolves to f(k) = nO(

√
k).

In Section 3, we define a general facility location problem Disjoint Network
Coverage that contains numerous concrete problems of interest as special cases.
Now, we discuss specific algorithmic results following from the general result.

Informally, the input of Disjoint Network Coverage consists of an edge-
weighted planar graph G, a set D of objects (which are connected sets of vertices
in G) and a set C of clients (which are vertices of G). The task is to select a set
of exactly k pairwise-disjoint3 objects that maximizes the total number of the
covered clients. We define covering as follows: the input contains a radius for each
object in D and a sensitivity for each client in C, and a client is considered covered
by an object if the sum of the radius and the sensitivity is at least the distance
between the object and the client. When both the radius and the sensitivity are
0, then this means that the client is inside the object; when the radius is r and
the sensitivity is 0, then this means that the client is at distance at most r from
the object. The objects and the clients may be equipped with costs and prizes,
and we may want to maximize/minimize the total revenue of the solution.

The first special case of the problem is when there are no clients at all: then
the task is to select k objects that are pairwise disjoint. Our algorithm solves
this problem in complete generality: the only condition is that each object is a
connected vertex set (i.e. it induces a connected subgraph of G).

Theorem 1.1 (packing connected sets). Let G be a planar graph, D be a

family of connected vertex sets of G, and k be an integer. In time |D|O(
√
k) ·nO(1),

we can find a set of k pairwise disjoint objects in D, if such a set exists.

We can also solve the weighted version, where we want to select k members
of D maximizing the total weight. As a special case, Theorem 1.1 gives us an

nO(
√
k) time algorithm for d-Scattered Set, which asks for k vertices that are

at distance at least d from each other (with d being part of the input).

If each object in D is a single vertex and r(·) assigns a radius to each object
(potentially different radii for different objects), then we get a natural covering
problem. Thus, the following theorem is also a corollary of our general result.

3 More precisely, if objects have different radii, then instead of requiring disjointness,
we set up a technical condition called “normality,” which we define in Section 3.



Theorem 1.2 (covering vertices with centers of different radii). Let G
be a planar graph, let D,C ⊆ V (G) be two subsets of vertices, let r : D → Z+

be a function, and k be an integer. In time |D|O(
√
k) · nO(1), we can find a set

S ⊆ D of k vertices that maximizes the number of vertices covered in C, where a
vertex u ∈ C is covered by v ∈ S if the distance between u and v is at most r(v).

If D = C = V (G), r(v) = d for every v ∈ V (G), and we are looking for a
solution fully covering C, then we obtain as a special case d-Dominating Set

(also called (k, d)-Center). Theorem 1.2 gives an nO(
√
k) time algorithm for this

problem (with d being part of the input). Theorem 1.2 can be also interpreted as
covering the vertices in C by very specific objects: balls of radius r(v) around
a center v. If we require that the selected objects of the solution are pairwise
disjoint, then we can generalize this problem to arbitrary objects.

Theorem 1.3 (covering vertices with independent objects). Let G be a
planar graph, let D be a set of connected vertex sets in G, let C ⊆ V (G) be a set

of vertices, and let k be an integer. In time |D|O(
√
k) · nO(1), we can find a set S

of at most k pairwise disjoint objects in D that maximizes the number of vertices
of C in the union of the vertex sets in S.

By simple reductions, geometric packing/covering problems can be reduced to
problems on planar graphs. In particular, given a set of disks (of possibly different
radii), the problem of selecting k disjoint disks can be reduced to selecting disjoint
connected vertex sets in a planar graph, and Theorem 1.1 can be applied.

Theorem 1.4 (packing disks). Given a set D of disks (of possibly different

radii) in the plane, in time |D|O(
√
k) we can find a set of k pairwise disjoint disks,

if such a set exists.

This is a strong generalization of the results of Alber and Fiala [4], which gives an

|D|O(
√
k) time algorithm only if the ratio of the radii of the smallest and largest

disks can bounded by a constant (in particular, if all the disks are unit disks).
As Theorem 1.1 works for arbitrary connected sets of vertices, we can prove the
analog of Theorem 1.4 for most reasonable sets of connected geometric objects.

Theorem 1.5 (packing simple polygons). Given a set D of simple polygons

in the plane, in time |D|O(
√
k) · nO(1) we can find a set of k polygons in D with

pairwise disjoint closed interiors, if such a set exists. Here n is the total number
of vertices of the polygons in D.

Similarly, the problem of covering the maximum number of points by selecting
k disks from a given set D of disks can be reduced to a problem on planar graphs
and then Theorem 1.2 can be invoked.

Theorem 1.6 (covering with disks). Given a set C of points and a set D of

disks (of possibly different radii) in the plane, in time |D|O(
√
k) · |C|O(1) we can

find a set of k disks in D maximizing the total number of points they cover in C.



Covering points with axis-parallel squares (of different sizes) can be handled
similarly, by treating axis-parallel squares as balls in the in the `∞ metric.

Theorem 1.7 (covering with squares). Given a set C of points and a set D
of axis-parallel squares (of possibly different size) in the plane, in time |D|O(

√
k) ·

|C|O(1) we can find a set of k squares in D maximizing the total number of points
they cover in C.

Hardness results. Comparing packing results Theorems 1.1 and 1.5 with cover-
ing results Theorems 1.2, 1.6, and 1.7, one can observe that our algorithm solves
packing problems in much wider generality than covering problems. It seems
that we can handle arbitrary objects in packing problems, while it is essential for
covering problems that each object is a ball in some metric. We present a set of
hardness results suggesting that this apparent difference is not a shortcoming
of our algorithm, but it is inherent to the problem: there are natural geometric
covering problems where the square root phenomenon does not occur.

Using a result of Pătraşcu and Williams [15] and a simple reduction from
Dominating Set, we show that if the task is to cover points with convex
polygons, then improving upon a brute-force algorithm is unlikely.

Theorem 1.8 (covering with convex polygons, lower bound). Let D be a
set of convex polygons and let P be a set of points in the plane. Assuming SETH,
there is no f(k) · (|D|+ |P|)k−ε time algorithm for any computable function f
and ε > 0 that decides if there are k polygons in D that together cover P.

Theorem 1.8 gives a lower bound only if the covering problem allows arbitrary
convex polygons. We present also two lower bounds in the much more restricted
setting of covering with axis-parallel rectangles.

Theorem 1.9 (covering with rectangles, lower bound). Consider the prob-
lem of covering a point set P by selecting k axis-parallel rectangles from a set D.

1. Assuming ETH, there is no algorithm for this problem with running time
f(k) · (|P|+ |D|)o(k) for any computable function f , even if each rectangle in
D is of size 1× k or k × 1.

2. Assuming ETH, for every ε0 > 0, there is no algorithm for this problem with
running time f(k) · (|P|+ |D|)o(k/ log k) for any computable function f , even
if each rectangle in D has both width and height in the range [1− ε0, 1 + ε0].

This shows that even a minor deviation from the setting of Theorem 1.7 makes the

existence of nO(
√
k) algorithms implausible. It seems that for covering problems,

the square root phenomenon depends not on the objects being simple, or fat, or
similar in size, but really on the fact that the objects are balls in a metric.

2 Geometric problems

Our main algorithmic result is a technique for solving a general facility location

problem on planar graphs in time nO(
√
k). With simple reductions, we can use



this algorithm to solve 2-dimensional geometric problems. However, our main
algorithmic ideas can be implemented also directly in the geometric setting,
giving self-contained geometric algorithms. These algorithms avoid some of the
technical complications that arise in the planar graph counterparts, such as the
Voronoi diagram having bridges or shortest paths sharing subpaths. The full
algorithm appears in the full version [11], here we focus on these simpler cases.

Packing unit disks. We start with Independent Set for unit disks: given a
set D of closed disks of unit radius in the plane, the task is to select k disjoint

disks. This problem is known to be solvable in time nO(
√
k) [4,12]. We present

another nO(
√
k) algorithm for the problem, demonstrating how we can solve it

recursively by focusing on the Voronoi diagram of a hypothetical solution.

The main combinatorial idea behind the algorithm is the following. Let P be
a set of points in the plane. The Voronoi region of p ∈ P is the set of those points
x in the plane that are “closest” to p in the sense that the distance of x and P is
exactly the distance of x and p. Consider a hypothetical solution consisting of k
independent disks and let us consider the Voronoi diagram of the centers of these
k disks (see Figure 1(a)). To emphasize that we consider the Voronoi diagram of
the centers of the k disks in the solution and not the centers of the n disks in
the input, we call this diagram the solution Voronoi diagram. For simplicity, let
us assume that the solution Voronoi diagram is a 2-connected 3-regular graph
embedded on a sphere. We need a balanced separator theorem of the following
form. A noose of a plane graph G is a closed curve δ on the sphere such that δ
alternately travels through faces and vertices of G, and every vertex and face of
G is visited at most once. It is possible to show that every 3-regular planar graph
G with k faces has a noose δ of length O(

√
k) (that is, going through O(

√
k)

faces and vertices) that is face balanced, in the sense that there are at most 2
3k

faces of G strictly inside δ and at most 2
3k faces of G strictly outside δ.

Consider a face-balanced noose δ of length O(
√
k) as above (see Figure 1(b)).

Noose δ goes through O(
√
k) faces of the solution Voronoi diagram, which

correspond to a set Q of O(
√
k) disks of the solution. The noose can be turned

into a polygon Γ withO(
√
k) vertices the following way (see Figure 1(c)). Consider

a subcurve of δ that is contained in the face corresponding to disk p ∈ Q and
its endpoints are vertices x and y of the solution Voronoi diagram. Then we can
“straighten” this subcurve by replacing it with straight line segments connecting
the center of p with x and y. Thus, the vertices of polygon Γ are center points of
disks in Q and vertices of the solution Voronoi diagram. Observe that Γ intersects
the Voronoi regions of the points in Q only; this follows from the convexity of
the Voronoi regions. In particular, among the disks in the solution, Γ does not
intersect any disk outside Q.

The main idea is to use this polygon Γ to separate the problem into two
subproblems. Of course, we do not know the solution Voronoi diagram and hence
we have no way of computing from it the balanced noose δ and the polygon

Γ . However, we can efficiently list nO(
√
k) candidate polygons. By definition,

every vertex of the polygon Γ is either the center of a disk in D or a vertex of
the solution Voronoi diagram. Every vertex of the solution Voronoi diagram is



(a) Voronoi diagram of the
centers of disks in solution.

(b) A noose in the Voronoi di-
agram.

(c) The polygon correspond-
ing to the noose.

(d) The problem breaks into
two independent parts.

Fig. 1: Using a noose in the Voronoi diagram for divide and conquer.

equidistant from the centers of three disks in D and for any three such centers (in
general position) there is a unique point in the plane equidistant from them. Thus
every vertex of the polygon Γ is either a center of a disk in D or can be described
by a triple of disks in D, and hence Γ can be described by an O(

√
k)-tuple of

disks from D. By branching into nO(
√
k) directions, we may assume that we have

correctly guessed the subset Q of the solution and the polygon Γ .

Provided Q is indeed part of the solution (which we assume), we may remove
these disks from D and decrease the target number of disks by |Q|. We can also
perform the following cleaning steps: (1) Remove any disk that intersects a disk
in Q. (2) Remove any disk that intersects Γ . The correctness of the cleaning
steps above follows directly from our observations on the properties of Γ .

After these cleaning steps, the instance falls apart into two independent
parts: each remaining disk is either strictly inside Γ or strictly outside Γ (see
Figure 1(d)). As δ was face balanced, there are at most 2

3k faces of the solution
Voronoi diagram inside/outside δ, and hence the solution contains at most 2

3k
disks inside/outside Γ . Therefore, for k′ := 1, . . . , b 23kc, we recursively try to find
exactly k′ independent disks from the input restricted to the inside/outside Γ ,

resulting in 2· 23k recursive calls. Taking into account the nO(
√
k) guesses for Q and



Γ , the number of subproblems we need to solve is 2 · 23k ·n
O(
√
k) = nO(

√
k) and the

parameter value is at most 2
3k in each subproblem. Therefore, the running time of

the algorithm is governed by the recursion T (n, k) = nO(
√
k) ·T (n, (2/3)k), which

solves to T (n, k) = nO(
√
k). This proves the first result: packing unit disks in the

plane in time nO(
√
k). Let us repeat that this result was known before [4,12], but

as we shall see, our algorithm based on Voronoi diagrams can be generalized to
objects of different size, planar graphs, and covering problems.

Covering points by unit disks. Let us now consider the following problem:
given a set D of unit disks and a set C of client points, we need to select k disks
from D that together cover every point in C. We show that this problem can be

solved in time nO(
√
k) using a similar approach. Note that this time the disks in

the solution are not necessarily disjoint, but this does not change the fact that
their centers (which can be assumed to be distinct) define a Voronoi diagram.
Therefore, it will be convenient to switch to an equivalent formulation of the
problem described in terms of the centers of the disks: D is a set of points and we
say that a selected point in D covers a point in C if their distance is at most 1.

As before, we can try nO(
√
k) possibilities to guess a set Q ⊆ D of center

points and a polygon Γ corresponding to a face-balanced noose. The question
is how to use Γ to split the problem into two independent subproblems. The
cleaning steps (1) and (2) for the packing problem are no longer applicable: the
solution may contain disks intersecting the disks with centers in Q as well as
further disks intersecting Γ . Instead we do as follows. First, if we assume that Q
is part of the solution, then any point in C covered by some point in Q can be
removed. Second, we know that in the solution Voronoi diagram every point of Γ
belongs to the Voronoi region of some point in Q. Hence we can remove any point
from D that contradicts this assumption. That is, if there is p ∈ D and v ∈ Γ
such that v is closer to p than to every point in Q, then we can safely remove
p from D. Thus we have the following cleaning steps: (1) Remove every point
of C covered by Q. (2) Remove every point of D that is closer to a point of Γ
than every point in Q. Let Din,Dout (Cin, Cout) be the remaining points in D (C)
strictly inside and outside Γ , respectively. We know that the solution contains at
most 2

3k center points inside/outside Γ . Hence, for 1 ≤ k′ ≤ b 23kc, we solve two
subproblems, with point sets (Din, Cin) and (Dout, Cout).

If there is a set of kin center points in Din covering Cin and there is a set
of kout center points in Dout covering Cout, then, together with Q, they form a
solution of |Q| + kin + kout center points. By solving the defined subproblems
optimally, we know the minimum value of kin and kout required to cover Cin and
Cout, and hence we can determine the smallest solution that can be put together
this way. But is it true that we can always put together an optimum solution
this way? The problem is that, in principle, the solution may contain a center
point p ∈ Dout that covers some point q ∈ Cin that is not covered by any center
point in Din. In this case, in the optimum solution the number of center points
selected from Din can be strictly less than what is needed to cover Cin.

Fortunately, we can show that this problem never arises. Suppose that there
is such a p ∈ Dout and q ∈ Cin. As p is outside Γ and q is inside Γ , the



segment connecting p and q intersects Γ at some point v ∈ Γ , which means
dist(p, q) = dist(p, v) + dist(v, q). By cleaning step (2), there has to be a p′ ∈ Q
such that dist(p′, v) ≤ dist(p, v), otherwise p would be removed from D. This
means that dist(p, q) = dist(p, v) +dist(v, q) ≥ dist(p′, v) +dist(v, q) ≥ dist(p′, q).
Therefore, if p covers q, then so does p′ ∈ Q. But in this case we would have
removed q from C in the first cleaning step. Thus we can indeed obtain an optimum
solution the way we proposed, by solving optimally the defined subproblems.

Again we have nO(
√
k) subproblems, with parameter value at most 2

3k. Hence, the

same recursion applies to the running time, resulting in an nO(
√
k) time algorithm.

Packing in planar graphs. How can we translate the geometric ideas explained
above to the context of planar graphs? Let G be an edge-weighted planar graph
and let F be a set of disjoint “objects” — connected sets of vertices in G. Then
we can define the analog of the Voronoi regions: for every p ∈ F , let Mp contain
every vertex v to which p is the closest object in F , that is, dist(v,F) = dist(v, p).
It is easy to verify that region Mp has the following convexity property: if v ∈Mp

and P is a shortest path between v and p, then every vertex of P is in Mp.

While Voronoi regions are easy to define in graphs, the proper definition of
Voronoi diagrams and the construction of polygon Γ are far from obvious. We
omit the discussion of these technical details, and we only state in Lemma 2.1
below (a simplified version of) the main technical tool that is at the core of the
algorithm. Note that the statement of Lemma 2.1 involves only the notion of
Voronoi regions, hence there are no technical issues in interpreting and using it.
However, in the proof we have to define the analog of the Voronoi diagram for
planar graphs and address issues such that this diagram is not 2-connected etc.

Let us consider first the packing problem: given an edge-weighted graph G, a
set D of d objects (connected subsets of vertices), and an integer k, find a subset
F ⊆ D of k disjoint objects. Looking at the algorithm for packing unit disks, what
we need is a suitable guarded separator: a pair (Q,Γ ) consisting of a set Q ⊆ D
of O(

√
k) objects and a subset Γ ⊆ V (G) of vertices. If there is a hypothetical

solution F ⊆ D consisting of k disjoint objects, then a suitable guarded separator
(Q,Γ ) should satisfy the following three properties: (1) Q ⊆ F , (2) Γ is fully
contained in the Voronoi regions of the objects in Q, and (3) Γ separates the
objects in F in a balanced way. Our main technical result is that it is possible

to enumerate a set of dO(
√
k) guarded separators such that for every solution F ,

one of the enumerated guarded separators satisfies these three properties. We
state here a simplified version that is suitable for packing problems.

Lemma 2.1. Let G be an n-vertex edge-weighted planar graph, D a set of
d connected subsets of V (G), and k an integer. We can enumerate (in time

polynomial in the size of the output and n) a set N of dO(
√
k) pairs (Q,Γ ) with

Q ⊆ D, |Q| = O(
√
k), Γ ⊆ V (G) such that the following holds. If F ⊆ D is a

set of k pairwise disjoint objects, then there is a pair (Q,Γ ) ∈ N such that

1. Q ⊆ F ,
2. if (Mp)p∈F are the Voronoi regions of F , then Γ ⊆

⋃
p∈QMp,



3. for every connected component C of G− Γ , there are at most 2
3k objects of

F that are fully contained in C.

The proof goes along the same lines as the argument for the geometric setting.
After carefully defining the analog of the Voronoi diagram, we can use the planar
separator result to obtain a noose δ. As before, we “straighten” the noose into
a closed walk in the graph using shortest paths connecting O(

√
k) objects and

O(
√
k) vertices of the Voronoi diagram. The vertices of this walk separate the

objects that are inside/outside the noose, hence it has the required properties.
Thus by trying all sets of O(

√
k) objects and O(

√
k) vertices of the Voronoi

diagram, we can enumerate a suitable set N . A technical difficulty in the proof is
that the definition of the vertices of the Voronoi diagram is nontrivial. Moreover,

to achieve the bound dO(
√
k) instead of nO(

√
k), we need a more involved way

of finding a set of dO(1) candidate vertices; unlike in the geometric setting,
enumerating vertices equidistant from three objects is not sufficient.

Armed with set N from Lemma 2.1, the packing problem can be solved in a
way analogous to the case of unit disks. We guess a pair (Q,Γ ) ∈ N that satisfies
the properties of Lemma 2.1. Then objects of Q as well as those intersecting Γ
can be removed from D. In other words, we have to solve the problem on graph
G− Γ , so we can focus on each connected component separately. However, we
know that each such component contains at most 2

3k objects of the solution.
Hence, for each component C of G− Γ containing at least one object of D and
for k′ = 1, . . . , b 23kc, we recursively solve the problem on C with parameter k′. A
similar reasoning as before shows that we can put together an optimum solution
for the original problem from optimum solutions for the subproblems. As at most
d components of G − Γ contain objects from D, we recursively solve at most
d · 23k subproblems for a given (Q,Γ ). Hence, the total number of subproblems

we solve is at most d · 23k · |N | = d · 23k · d
O(
√
k) = dO(

√
k). The same analysis of

the recurrence shows that the running time of the algorithm is dO(
√
k) · nO(1).

Covering in planar graphs. Let us consider now the following analog of
covering points by unit disks: given an edge-weighted planar graph G, two sets
of vertices D and C, and integers k and r, the task is to find a set F ⊆ D of k
vertices that covers every vertex in C. Here p ∈ D covers q ∈ C if dist(p, q) ≤ r,
i.e., we can imagine that p represents a ball of radius r in the graph with center at
p. Unlike in the case of packing, D is a set of vertices, not a set of connected sets.

Let F be a hypothetical solution. We can construct the set N given by
Lemma 2.1 and guess a guarded separator (Q,Γ ) satisfying the three properties.
As we assume that Q is part of the solution, we remove from C every vertex
that is covered by some vertex in Q; let C′ be the remaining vertices. By the
third property of Lemma 2.1, we can assume that in the solution F , the set Γ is
fully contained in the Voronoi regions of the vertices in Q. This means that if
there is a p ∈ D \Q and v ∈ Γ such that dist(p, v) < dist(p,Q), then p can be
removed from D. Let D′ be the remaining set of vertices. For every component C
of G− S and k′ = 1, . . . , b 23kc, we recursively solve the problem restricted to C,
that is, with the restrictions D′[C] and C′[C] of the object and client sets. It is
very important to point out that now (unlike how we did the packing problem)



we do not change the graph G in each call: we use the same graph G, only with
the restricted sets D′[C] and C′[C]. The reason is that restricting to the graph
G[C] can change the distances between vertices in C.

If kC is the minimum number of vertices in D′[C] that can cover C′[C], then
we know that there are |Q|+

∑
kC vertices in D that cover every vertex in C. As

in the case of covering with disks, we argue that if there is a solution, then we can
obtain a solution this way. The reasoning is basically the same: we just replace
the Euclidean metric with the graph metric, and use the fact that the shortest
path connecting any two points of D′ ∪ C′ lying in different components of G−Γ
must intersect Γ . As in the case of packing, we have at most d · 23k · d

O(
√
k)

subproblems and the running time dO(
√
k) · nO(1) follows the same way.

Nonuniform radius. A natural generalization of the covering problem is when
every vertex p ∈ D is given a radius r(p) ≥ 0 and p covers a q ∈ C if dist(p, q) ≤
r(p). That is, now the vertices in D represent balls with possibly different radii.

There are two ways in which we can handle this more general problem. The
first is a simple graph-theoretic trick. For every p ∈ D, attach a path of length
R − r(p) to p, and replace p in D with the other end p′ of this path, where
R = maxp′∈D r(p

′). Now a vertex q ∈ C is at distance at most r(p) from p iff it
is at distance at most R from p′, so we can solve the problem by applying the
algorithm for uniform radius R. The second way is somewhat more complicated,
but it seems to be the robust solution of the issue. We can namely work with
the additively weighted Voronoi diagram, that is, instead of defining the Voronoi
regions of F by comparing distances dist(p, v) for p ∈ F , we compare the weighted
distances dist(p, v) − r(p). It can be verified that the main arguments of the
algorithm, like convexity of the Voronoi regions or the separability of subproblems
in the covering setting, all go through after redoing the same calculations.

3 The general problem

Suppose we are given an edge-weighted undirected graph G, a family of objects
D, and a family of clients C. Every object p ∈ D has three attributes. It has its
location loc(p), which is a nonempty subset of vertices of G such that G[loc(p)]
is connected. It has its cost λ(p), which is a real number (possibly negative).
Finally, it has its radius r(p), which is a nonnegative real value denoting the
strength of domination imposed by p. Every client q ∈ C has three attributes. It
has its placement pla(q), which is a vertex of G where the client resides. It has
also its sensitivity s(q), which is a real value denoting how sensitive the client
is to domination from objects. Finally, it has prize π(q), which is a real value
denoting the prize for dominating the client. Note that there can be multiple
clients placed in the same vertex and the prizes may be negative.

We say that a subfamily F ⊆ D is normal if locations of objects from F are
disjoint, and moreover dist(loc(p1), loc(p2)) > |r(p1)− r(p2)| for all pairs (p1, p2)
of different objects in F . In particular, normality implies disjointness of locations
of objects from F , but if all the radii are equal, then the two notions coincide. We
say that a client q is covered by an object p if dist(pla(q), loc(p)) ≤ s(q) + r(p).



We are finally ready to define Disjoint Network Coverage. As input we
get an edge-weighted graph G embedded on a sphere, families of objects D and
clients C (described using their attributes), and an integer k. For a subfamily
Z ⊆ D, we define its revenue Π(Z) as the total sum of prizes of clients covered
by at least one object from Z minus the total sum of costs of objects from Z. In
the Disjoint Network Coverage problem, the task is to find a subfamily
Z ⊆ D such that the following holds: (1) family Z is normal and has cardinality
exactly k and (2) subject to the previous constraint, family Z maximizes the
revenue Π(Z). The main result of this paper is the following theorem.

Theorem 3.1 (Main result). Disjoint Network Coverage can be solved

in time |D|O(
√
k) · (|C| · |V (G)|)O(1).
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