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CHAPTER 1

Introduction

Color possesses me. I don’t have to pursue it.
It will possess me always, I know it.

That is the meaning of this happy hour:
Color and I are one. I am a painter.

Paul Klee (1879–1940)

The birth of graph theory is usually attributed to Leonhard Euler’s solution of the Königsberg Bridge
problem. The citizens of Königsberg (now Kaliningrad, Russia) asked the famous mathematician whether
it is possible to visit all the bridges of the city in such a way that we go through every bridge exactly
once. Euler observed that if such a walk exists, then there can be at most two land masses (the islands
and the two banks of the river Pregel) that have odd number of bridges. There were more than two such
islands in Königsberg (see Figure 1.1), hence he concluded that it is not possible to have a walk that
visits each bridge exactly once. Possibly this negative answer made the citizens disappointed, but the
argument opened a new chapter in mathematics. In order to answer the question, Euler reasoned about
objects (land masses in this case) and connections between objects (bridges). This is precisely the notion
of graph, hence graph theory was born.

Graph theory opened a treasure trove of deep questions and results. There seems to be an unstoppable
flow of interesting questions about graphs. Some of these questions were investigated because they appear
to be very fundamental and natural (in the mathematical sense), or follow naturally from earlier results.
Moreover, this new paradigm of “objects” and “connections” turned out to be a very powerful tool in
modeling a wide range of real-life problems. For example, the German physicist Kirchhoff analyzed
electrical circuits using graphs. Roads, railways, and other transportation networks can be described
as graphs. More recently, computer networks and the internet offer a particularly good example where
graph-theoretic concepts and methods can be used successfully to solve real-life engineering problems.
But graphs are useful not only in situations involving network-like physical structures, they can be used
to model more abstract problems. For example, graphs hold the key to the solution in such diverse
application areas as optimizing register allocations in compilers or reassembling DNA fragments.

Graph coloring is one of the earliest areas of graph theory. It was motivated by the famous Four Color
Conjecture. Map makers in the nineteenth century observed that apparently every planar map can be
colored using four colors in such a way that countries sharing a boundary have different colors. In the
language of graph theory, the conjecture says that every planar graph can be colored with 4 colors such
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Figure 1.1: The original illustration of the Königsberg Bridge problem from [Eul36].

that neighboring vertices receive different colors. It was proved that 5 colors are always sufficient, but
despite heavy efforts, the conjecture remained open for more than a century. The conjecture was settled
only in 1977 (which happens to be the year when the author was born) by Appel and Haken, with a proof
that requires the use of computers.

Meanwhile, coloring became a well-studied area of graph theory. As with other parts of graph theory
(and with mathematics in general), the new directions were motivated both by pure theoretical interest
and by possible practical applications. It turned out that besides coloring maps, there are several other
situations that can be modeled by graph coloring and its variants. There are numerous examples in
scheduling theory, where the assignment of resources can be reduced to a problem of assigning colors in a
graph. Here we briefly recall six classical examples to give the flavor of these applications.

1. Scheduling committees. Assume that an organization has a number of committees, each com-
mittee requires one full day for a meeting. We have to allocate a day for each committee. However,
it has to be taken into account that a person can be member in several committees, thus there are
committees whose meetings cannot be scheduled to the same day. The conflict graph of the problem
is a graph where vertices are the committees, and two vertices are connected by an edge if the
corresponding two committees share at least one member. The meetings of the committees can be
scheduled for k days if and only if the conflict graph can be colored with k colors. As we will see in
the following, defining a conflict graph and reducing the problem to finding an appropriate coloring
of the conflict graph is a widely used technique in the modeling of scheduling problems.

2. Aircraft assignment. We have a limited number of aircrafts, and these aircrafts have to be used
to perform certain flights. Of course, an aircraft cannot be assigned to two flights at the same
time. The problem can be formulated as a coloring of the conflict graph: the vertices of the conflict
graph are the flights, and two flights are connected if they overlap in time. The colors correspond
to the aircraft. Now the flights can be performed with k aircrafts if and only if the conflict graph is
k-colorable. In the solution of the problem, we can make use of the fact that in this case the conflict
graph will be an interval graph.

3. WDM all-optical networks. Modern networking technology is based on the large bandwidth
available in the optical fiber. Wavelength Division Multiplexing (WDM) further increases the avail-
able bandwidth by allowing the use of multiple independent channels on the different wavelengths
of the same fiber. A typical system can have 96 channels with 10Gb/sec each. However, the full
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capacity of the optical fiber can be exploited only if the network devices are capable of routing
these channels optically: processing 96×10Gb/sec of data electronically requires too much comput-
ing power. An all-optical network is built from optical switches that can select a specific wavelength
of an incoming fiber and can transmit it without any changes on one of the outgoing fibers. Thus
by appropriately configuring the optical switches, we can establish lightpaths between distant nodes
of the network: the two ends of a lightpath are in direct optical contact through some number of
fibers and switches. The switches cannot change the wavelength of a data stream, therefore the same
wavelength is used on the whole length of the lightpath. When we want to configure an all-optical
network, the first step is to determine how many lightpaths are required between the different nodes.
Next we set a route for each lightpath. Finally, we have to assign a wavelength to each lightpath
in such a way that lightpaths going through the same fiber have different wavelength. This last
step can be formulated as a coloring problem by defining a conflict graph. The conflict graph has
one vertex for each lightpath and two vertices are connected if the corresponding lightpaths share
a fiber. The colors correspond to the wavelengths, thus by properly coloring the vertices of the
conflict graph we can obtain an assignment of wavelengths such that two lightpaths that go through
the same fiber do not use the same color. This coloring problem is discussed for different network
topologies in several papers (see e.g., [EJ01, EJK+99, BGP+00, CMLF00]).

4. Optimizing register allocations. Processors can work fastest if they are working on data stored
in the registers. A register is capable of storing a single value, and it can be accessed very quickly,
much faster than ordinary memory. However, there is a limited number of registers, typically on
the order of 10. When the compiler turns the source code of a program into machine code, it has
to decide where to store the variables. Preferably, we would like to store all the variables in the
registers. Since the number of registers is limited, this can be done only if we reuse the registers:
two variables can be stored in the same register if they are not “live” at the same time. The register
allocation problem can be modeled by graph coloring: the conflict graph has one vertex for each
variable and two vertices are connected if the corresponding variables cannot be stored in the same
register. The colors correspond to the registers: the variables can be stored in k registers if and
only if the vertices of the conflict graph can be colored with k colors. An extensive treatment of the
problem and further references can be found in [Bri92].

5. Timetable design. To model the timetable design problem, consider a school having a set of
teachers and a set of classes. Every week, a teacher has to teach certain classes for a given number
of hours. The design of the weekly timetable can be turned into a graph coloring problem as follows.
Consider the bipartite graph where one bipartition class corresponds to the teachers, the other to the
classes. A teacher is connected to a class if the teacher has to meet this class every week (if she has
to teach the class d hours a week, then add d parallel edges). Let k be the number of available (one
hour long) time slots in the week, the colors correspond to these time slots. A complete timetable
for all the teachers and students exists if and only if the edges of the bipartite graph can be colored
with k colors. The requirement that two edges with the same color cannot be incident to the same
vertex corresponds to the requirement that a teacher cannot teach two classes in the same time slot,
and a class cannot be taught by two teachers at the same time.

6. Biprocessor task scheduling. Assume we have a set of jobs, each job requires the simultaneous
work of two preassigned processors for a unit amount of time. For example, the jobs can be file
transfers between computers. A processor can work only on one job at the same time. We want
to schedule the jobs such that every job is finished in at most k units of time. We create a graph
(possible with multiple parallel edges) where each vertex corresponds to a processor and each edge
corresponds to a biprocessor task. Clearly, the jobs can be finished in k units of time if and only if
the edges of the graph can be colored with k colors.
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In the last two examples we have to color the edges of a graph. These examples motivate the study
of the edge coloring versions of the coloring problems. In fact, a large fraction of the results presented in
this work concerns edge colorings. Edge coloring can be considered as a special case of vertex coloring:
edge coloring of G is nothing else than the vertex coloring of the line graph of G. The line graph L(G) of
G contains one vertex ve for each edge e of G, vertices ve and vf are connected if e and f have a common
vertex. However, when we want to solve an edge coloring problem, it is almost always advantageous not
to consider it as a general vertex coloring problem, but to make use of the special properties of edge
colorings.

In most cases, however, the real-life problem does not appear in such a pure form as in the examples
above, there are additional constraints that have to be satisfied. For example, a flight can be performed
only by certain aircrafts, or a teacher is not available on certain days. In this work we will consider
variants of the basic graph coloring problem that allow us to take into account such constraints.

The concept of list coloring was introduced by Vizing [Viz76] and independently by Erdős, Rubin, and
Taylor [ERT80]. In a graph each vertex v has a list L(v) of admissible colors, and the coloring has to
satisfy the requirement that the color of vertex v has to be taken from its list L(v). The combinatorial
properties of list colorings have been intensively studied, several nice conjectures and results appear in
the literature. Moreover, the lists allow us to model the type of requirements mentioned in the previous
paragraph. If a flight can be served only by certain aircrafts, then the list of the corresponding vertex in
the conflict graph contains only the colors representing these aircrafts. If a teacher can teach only during
certain time slots, then only these colors appear in the list of the edges incident to the teacher’s vertex.
The downside of this approach is that this more general problem can be more difficult algorithmically
than traditional vertex coloring. For example, list coloring is NP-hard even for bipartite graphs [HT93]
and for the edges of bipartite graphs (see e.g., [Col84]).

In the precoloring extension problem some vertices of a graph have preassigned colors, and this pre-
coloring has to be extended to the whole graph using the given number of colors. The problem is not
equivalent to vertex coloring: it is possible that a graph is k-colorable, but there is an unfortunate precol-
oring that cannot be finished using k-colors. Precoloring extension can be viewed as a special case of list
coloring: the list of a precolored vertex contains only a single color, while the list of a not precolored vertex
contains all the available colors. Thus we can expect that in certain situations, this special case of list
coloring is easier to solve than the general problem. For example, list coloring is NP-hard for split graphs
[Tuz97] and for the complements of bipartite graphs [Jan97], while the precoloring extension problem
is polynomial-time solvable for these classes [HT93]. However, for some other classes, such as bipartite
graphs [HT93] and interval graphs [BHT92], not only list coloring is NP-hard, but the special case of
precoloring extension is hard as well. For such graphs, it is worthwhile to study some restricted form of
precoloring extension, in the hope of finding a polynomial time solvable case. One possible restriction is
to give a bound on the number of precolored vertices, or on the number of times a color can appear in the
precoloring.

List coloring and precoloring extension are examples of local constraints. We are looking for a coloring
that satisfies some additional requirements, and these requirements are local in the sense that they restrict
the color of individual vertices. There are other coloring problems where the constraints involve a small
neighborhood of the vertices. In the H-coloring problem it is not sufficient that adjacent vertices have
different colors: there are some prescribed pairs of colors that cannot be neighbors. For example, we might
require that colors 2 and 3 cannot be neighbors, or we might require that if a vertex has color 1, then its
neighbors can have only color 4 or 5, etc. One application of H-coloring is assigning frequencies to base
stations in mobile networks. The base stations are the vertices and the two base stations are connected
by an edge if they are “near” to each other. The colors correspond to the available frequencies. Due to
interference, stations near to each other cannot receive the same frequency, which means we have a coloring
problem. Moreover, to further reduce the possibility of interference problems, it is also required that the
frequencies of near stations differ at least by a given number. This problem is exactly H-coloring: there
are forbidden pairs of colors. Distance constrained coloring generalizes this setting (see e.g., [FKP01]): we
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have two parameters p, q, now the requirement is that the colors of neighboring vertices differ by at least
p, and the colors of vertices at distance 2 differ by at least q. This is also a local requirement: whether a
color is allowed on a vertex or not depends only on the coloring of a small neighborhood of the vertex.

Coloring problems with global constraints are very different from the local problems. A local constraint
can be violated by a small part of the coloring. For example, if a vertex receives a color not on its list in
the list coloring problem, or a forbidden pair of colors appears on an edge in the H-coloring problem, then
the coloring is invalid. If the constraints are global, then there are no such bad configurations: anything
is acceptable, as long as the constraints on the whole graph are not violated.

Let us assume that the colors are the positive integers. In traditional vertex coloring, we are assigning
positive integers to vertices and the goal is to minimize the maximum number assigned. In the minimum
sum coloring problem the goal is to minimize the sum of the assigned numbers. This is a global constraint:
it does not say anything about the smaller parts of the coloring, only the total sum is important.

To see an application of minimum sum coloring, we will revisit our first example above, the committee
scheduling problem. If the conflict graph can be colored with k colors, then the committee meetings can
be finished in k days. Solving this problem is useful if there is a deadline, and the only important thing is
to finish all the meetings in at most k days. However, it is possible that, instead of minimizing the number
of days, we have some other goal. For example, it seems natural to ask for a schedule that ensures that
the committee meetings are finished quickly on average (and not that every committee is ready before a
given deadline). Minimizing the average time is exactly the same as minimizing the sum of the coloring
of the conflict graph. Thus minimum sum coloring can be used in scheduling problems where we want to
minimize the average completion times of the jobs.

Minimizing the sum of the coloring and minimizing the number of colors can be very different. There
are graphs that can be colored with few colors, but many colors are required to minimize the sum. The
chromatic strength of a graph is the minimum number of colors that is required for a minimum sum
coloring. The strength can be much larger than the chromatic number: trees are 2-colorable, but there
are trees with arbitrarily large strength [KS89]. In some other respects, chromatic strengths behaves
very much like the chromatic number: for example, there are analogs of Brooks’s Theorem and Vizing’s
Theorem [MMS97, HMT00] for the chromatic strength.

If we look at the application examples sketched above, then it is natural to consider variants of the
problems where we have to assign more than one color to each vertex. Maybe a committee meeting
requires more than one day, or the base stations require several frequencies. The most basic setup is when
we have to assign the same number m of colors to each vertex such that neighboring vertices have to
receive disjoint sets of colors. As m goes to infinity, this gives us the notion of fractional coloring. From
the point of view of applications, it is more useful to allow different color requirements on the different
vertices. In the multicoloring (or weighted coloring) problem each vertex has a demand x(v), which is the
number of colors it requires. The multicoloring version of list coloring is defined similarly.

Multicoloring problems always have two versions. In a preemptive multicoloring problem any color
set can be assigned to a vertex. On the other hand, in a non-preemptive problem it is required that the
color set contains a consecutive interval of colors. For example, in the committee scheduling problem, if a
committee needs more than one days, then it is natural to ask for a schedule where the committee meets
on consecutive days. Thus the problem can be modeled by non-preemptive multicoloring. Preemptive
problems arise when we have jobs that can be interrupted arbitrarily (such jobs are most commonly found
in computing environments), while non-preemptive problems model jobs that cannot be interrupted once
they are started (this is often the case with machine scheduling in factories). The preemptive and non-
preemptive versions of the same coloring problem can be very different; the two versions might require
different techniques and often the complexity is different.

The multicoloring version of minimum sum coloring has to be defined carefully. The natural general-
ization of minimum sum coloring is to minimize the total sum of all the colors assigned. This leads to the
Optimum Cost Chromatic Partition problem [Jan00]. However, applications in scheduling theory suggest
a different objective function. Recall that minimum sum coloring was introduced to model problems where
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the average completion time has to be minimized. The vertices are the jobs, two jobs are connected if
they cannot be performed at the same time for some reason. In the multicoloring version, each vertex has
a demand, which is the number of time slots the jobs require. A multicoloring corresponds to a scheduling
of the jobs: by assigning colors to the vertices we select the time slots when the job will be active. The
highest color assigned to the vertex corresponds to the time slot when the job will be finished. Thus if we
want to minimize the average completion times of the jobs, then our goal is to minimize the sum of the
highest colors. In the minimum sum multicoloring problem the finish time of a vertex is defined to be the
highest color assigned to it, and the goal is to minimize the sum of the finish times. This problem received
considerable attention lately [BNHK+00, HKP+03, HK02, Kov04]. It turns out that the problem is hard
in most cases, but it is better approximable than the traditional coloring problems.

Clique coloring is another example of a coloring problem with global constraints. Unlike the previous
problems that demand a coloring with some additional requirements, clique coloring is less restrictive
than ordinary vertex coloring. We relax the requirement that neighbors have to receive different colors,
the only thing we require is that every inclusion-wise maximal (non-extendable) clique contains at least
2 colors. In this problem it is hard even to check the correctness of a coloring: it is not sufficient to
check the coloring locally, the requirement has to be verified for all the (possibly exponentially many)
maximal cliques. Since clique coloring is a relaxation of vertex coloring, it is possible that a graph is
k-clique-colorable, but its chromatic number is much larger than k. For example, it is conjectured that
every perfect graph is 3-clique-colorable (see [BGG+04]).

Results

Unless noted otherwise, all the Theorems, Lemmas, etc. in this work are new results. The introduction of
each chapter lists where the new results were published.

List coloring is a more general problem than ordinary vertex coloring, hence it is NP-hard in those cases
where vertex coloring is NP-hard. Therefore polynomial-time algorithms can be expected only in those
cases where vertex coloring is polynomial-time solvable. For trees and for graphs with bounded treewidth
list coloring can be solved in polynomial time [JS97] (see Appendix A.1 for background on treewidth).
But for some other classes of graphs, such as bipartite graphs [HT93], complements of bipartite graphs
[Jan97], and interval graphs [BHT92], graph coloring is easy, but list coloring is NP-hard.

In Chapter 2, we study the edge coloring version of list coloring. Unlike ordinary edge coloring, list
edge coloring is NP-hard for bipartite graphs (this follows from e.g., [Col84, Fia03, EP01]). We improve
on this result by showing that list edge coloring remains NP-hard for planar regular bipartite graphs
(Theorem 2.1.2). In further chapters, this will be the base for other complexity results. If the problem is
restricted to trees, then it becomes polynomial-time solvable. Furthermore, Marcotte and Seymour [MS90]
have shown that for trees the more general list edge multicoloring problem can be solved in polynomial
time. However, the complexity of the problem remained open even for such simple graphs as cycles. In
Section 2.3 we present a polynomial-time algorithm for a class of graphs that includes trees and odd cycles
(Corollary 2.3.6). This algorithm can be extended to a randomized algorithm (with guaranteed success
probability) solving the problem on graphs with few cycles (Theorem 2.3.10). On the other hand, we
show in Section 2.2 that the vertex coloring version of list multicoloring is NP-complete for binary trees
(Theorem 2.2.2). The results for list coloring are summarized on Table 1.1.

Chapter 3 focuses on the precoloring extension (PrExt) problem. Biró, Hujter, and Tuza [BHT92,
HT93, HT96] started a systematic survey of precoloring extensions. They identified several graph classes
where PrExt is polynomial time solvable and several graph classes where PrExt is NP-hard. In partic-
ular, it is shown in [BHT92] that for interval graphs PrExt is NP-hard, but the special case 1-PrExt,
where every color is used at most once in the precoloring, can be solved in polynomial time. An open ques-
tion in [HT96] asks whether PrExt remains NP-hard for unit interval graphs. We give a positive answer
to this question in Section 3.3 (Theorem 3.3.1). To prove this result, in Section 3.2 we first show the NP-
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Table 1.1: Results for the list (multi)coloring problems

Vertex coloring Edge coloring
Graph

list coloring list multicoloring list coloring list multicoloring

Trees
Polynomial NP-hard Polynomial Polynomial

[JS97] (Theorem 2.2.2) (Corollary 2.3.6)

Partial k-trees
Polynomial NP-hard NP-hard NP-hard

[JS97] (Theorem 2.2.2) (Theorem 2.1.4) (Theorem 2.1.4)

Cycles
Polynomial (Randomized) Poly. Polynomial (Randomized) Poly.

[JS97] (Corollary 2.3.11) [JS97] (Corollary 2.3.11)

Bipartite graphs
NP-hard NP-hard NP-hard NP-hard
[JS97] [JS97] [EIS76] [EIS76]

Planar regular NP-hard NP-hard NP-hard NP-hard
bipartite graphs [KT94] [KT94] (Theorem 2.1.2) (Theorem 2.1.2)

hardness of an Eulerian disjoin path problem (Theorem 3.2.7), which answers an open question of Vygen
[Vyg94]. In Section 3.1 we resolve another open question from [HT96] by showing that the polynomial-time
1-PrExt algorithm for interval graphs can be generalized to chordal graphs (Theorem 3.1.5).

Section 3.4 briefly discusses the edge coloring version of precoloring extension. The problem was shown
to be NP-hard for 3-regular bipartite graphs by Fiala [Fia03]. We answer an open question from [Fia03]
by showing that the problem remains NP-hard for planar 3-regular bipartite graphs (Theorem 3.4.1).
Moreover, in Theorem 3.4.2 and 3.4.3 we show that edge precoloring extension is NP-hard for outerplanar
graphs and for series-parallel graphs (hence for graphs with bounded treewidth), but polynomial-time
solvable for bounded degree outerplanar graphs.

Chapter 4 studies the complexity of minimum sum coloring. Giaro and Kubale [GK00] show that
the edge coloring version is NP-hard for bipartite graphs. In Section 4.2 we improve this result by
showing that it remains NP-hard for planar bipartite graphs (Theorem 4.2.1). Moreover, we give the first
inapproximability result for the edge coloring version by showing that the minimum sum edge coloring is
APX-hard for bipartite graphs (Theorem 4.2.3). This result implies that it is unlikely that minimum sum
coloring has a polynomial-time approximation scheme (PTAS) for bipartite graphs.

Minimum sum edge coloring is polynomial-time solvable for trees [GK00, Sal03, ZN04] by a method
based on dynamic programming. If dynamic programming can be used for trees, then it is expected that
the method generalizes for bounded treewidth graphs. In Section 4.3 we show that this is not the case for
minimum sum edge coloring, as the problem is NP-hard already for partial 2-trees (Theorem 4.3.6).

The complexity of chromatic strength (the minimum number of colors required in a minimum sum
coloring) was investigated in [Sal03]. It is shown in [Sal03] that for every k ≥ 3, it is NP-hard to decide
whether the chromatic strength is at most k. The complexity of case k = 2 remained an open question.
In Section 4.4 we completely characterization of the complexity of chromatic strength. First we show that
it is coNP-complete to decide whether the chromatic strength is at most 2 (Theorem 4.4.3). Furthermore,
we show that for k ≥ 3, the problem is not only NP-hard, but complete for the less-known complexity
class Θp

2. Similar results are obtained for the complexity of chromatic edge strength (Corollary 4.4.12).

Minimum sum multicoloring, the subject of Chapter 5, was first studied in [BNHK+99]. This problem
can be difficult even for very simple graphs. For example, Kovács [Kov04] presents a highly nontrivial
algorithm for paths. The algorithm in [Kov04] is pseudopolynomial, which means that the running time
is a polynomial of n (the size of the graphs) and p (the maximum demand). In Section 5.1 we show
that for paths there is always an optimum solution where every vertex receives a color set that is the
union of O(log p) intervals (Theorem 5.1.14). The importance of this result comes from the fact that most
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Table 1.2: Results for the minimum sum edge (multi)coloring problems

Minimum sum Minimum sum
Graph edge coloring edge multicoloring

Algorithm Hardness Algorithm Hardness

Paths
Polynomial Pseudopolynomial

[GK00, Sal03] [Kov04]

Trees
Polynomial PTAS NP-hard

[GK00, Sal03] (Theorem 5.4.15) (Theorem 5.2.5)

Bipartite graphs
1.796-approx. APX-hard 2-approx. APX-hard

[HKS03] (Theorem 4.2.4) [BNHK+00] (Theorem 4.2.4)

Planar graphs
PTAS NP-hard PTAS NP-hard

[Mar04f] (Theorem 4.2.1) [Mar04f] (Theorem 4.2.1)

Partial k-trees
PTAS NP-hard PTAS NP-hard

[Mar04f] (Theorem 4.3.6) [Mar04f] (Theorem 4.3.6)

approximation algorithms for minimum sum multicoloring try to find a solution where every color set is
the union of only a few intervals. Therefore it can be quite useful to know that in certain cases such simple
color sets are actually sufficient to find an optimum solution.

Halldórsson et al. [HKP+03] presented a polynomial time approximation scheme (PTAS) for minimum
sum multicoloring in trees, and they asked as an open question whether minimum sum multicoloring is
NP-hard for trees. In Section 5.2 we show that the problem is indeed NP-hard, even for binary trees with
polynomially bounded demand (Theorem 5.2.5). In Section 5.3 we investigate the complexity of minimum
sum edge coloring for trees, it turns out that the problem is NP-hard for trees even if every demand is 1 or 2
(Theorem 5.3.1). However, somewhat surprisingly, the problem becomes polynomial-time solvable if every
demand is 2, or more generally, if every demand is the same. This follows from a scaling property proved
in Section 5.4.2, which implies that if every demand is the same, then the problem can be reduced to the
case where every demand is 1 (Theorem 5.4.6). In Section 5.4, a polynomial-time approximation scheme
is given for minimum sum edge coloring of trees: we show that for every ǫ > 0 there is a polynomial-time
algorithm that finds a coloring with sum at most 1 + ǫ times the minimum (Theorem 5.4.15). In [Mar04f]
this result is generalized to planar graphs and partial k-trees. We omit here these stronger results, in
Chapter 5 we describe the approximation algorithm only for trees.

Table 1.2 summarizes the results for minimum sum edge coloring and multicoloring. We can see
that the positive and the negative results nicely complement each other. Minimum sum edge coloring is
polynomial-time solvable for trees, but this result cannot be generalized to planar graphs or to partial
k-trees. Moreover, the algorithm for trees cannot be generalized to the multicoloring version either.
However, minimum sum multicoloring for trees admits a PTAS, which can be generalized to partial k-
trees and planar graphs, but cannot be generalized to bipartite graphs.

In Chapter 6 we investigate the complexity of clique coloring. It is coNP-complete to check whether
a coloring is a proper 2-clique-coloring [BGG+04], and it is NP-hard to check whether a perfect graph is
2-clique-colorable [KT02]. However, in Theorem 6.2.1 we show that clique coloring is even harder than
that: it is not only NP-hard, but it is Σp2-complete to decide whether a graph is 2-clique-colorable (see
Section 6.1 and Appendix A.3 for the definition of Σp2-completeness). We also consider two concepts
related to clique coloring: clique choosability and hereditary clique coloring. These concepts give rise
to problems with complexity even higher in the polynomial hierarchy: we show that the corresponding
problems are Πp

3-complete (Theorem 6.3.1 and Theorem 6.4.3).
In Chapter 7 we discusses some open questions related to the above results. Appendix A gives some

background on treewidth, approximation, and oracles.



CHAPTER 2

List coloring

People can have the Model T in any color—so long as it’s black.
Henry Ford (1863–1947)

The concept of list coloring was introduced independently by Vizing [Viz76] and by Erdős, Rubin, and
Taylor [ERT80]. Given a graph G(V,E), a list assignment L is a function that assigns to each vertex v ∈ V
a set of admissible colors L(v). The list assignment is called a k-assignment if |L(v)| = k for every v ∈ V .
Graph G is L-colorable if there is a coloring ψ of the vertices such that ψ(v) ∈ L(v), and ψ(u) 6= ψ(v)
whenever u and v are neighbors.

Much of the research done on list coloring concerns the notion of choosability. A graph G is k-choosable
if it has an L-coloring for every k-assignment L. The list chromatic number of a graph is k if the graph
is k-choosable but not (k − 1)-choosable. It is obvious that the list chromatic number cannot be smaller
than the chromatic number. On the other hand, there can be an arbitrarily large gap between the two
parameters: for example, there are bipartite graphs with arbitrarily large list chromatic number [ERT80].
There are several deep results and conjectures in the literature on the combinatorial properties of the list
chromatic number. However, here we approach list coloring from the algorithmic and complexity theoretic
point of view. Choosability will be considered only in Section 6, in the context of clique colorings.

List coloring, being a generalization of vertex coloring, is NP-complete on every class of graphs where
vertex coloring is NP-complete. Furthermore, there are cases where vertex coloring is easy, but list
coloring is hard. For example, list coloring is NP-hard for bipartite graphs [HT93], complements of
bipartite graphs [Jan97], and interval graphs [BHT92], while there are efficient coloring algorithms for
these classes of perfect graphs. There are very few cases where list coloring is polynomial time solvable:
it can be solved in linear time for trees, and more generally, for partial k-trees [JS97]. Moreover, if every
list contains at most 2 colors, then the problem can be solved in linear time by a reduction to 2SAT.

In this chapter we consider the edge coloring version of list coloring. Ordinary edge coloring is NP-hard
[Hol81, LG83], but can be solved in polynomial time for bipartite graphs. In fact, Kőnig’s Line Coloring
Theorem states that the edges of a bipartite graph can be colored with k colors if and only if the maximum
degree is at most k. On the other hand, as observed in [Kub93], it follows from an old result of Even,
Itai, and Shamir [EIS76] on the timetable problem that list edge coloring is NP-hard for bipartite graphs
with maximum degree 3. In Section 2.1.1 we strengthen this result by showing that the problem remains
NP-hard for planar, 3-regular bipartite graphs.
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In [FZN03, FIZN03, JMT99, Wu00] the list edge coloring problem is considered for series-parallel
graphs, sufficient conditions are given for some special cases. In Section 2.1.2 we investigate the com-
putational complexity of the problem. An easy argument shows that list edge coloring can be solved in
polynomial time for bounded degree series-parallel graphs. However, we prove that the problem becomes
NP-hard for series-parallel graphs if the maximum degree can be arbitrary. The same results hold for
outerplanar graphs as well.

Using a method that combines dynamic programming and matching, list edge coloring can be solved
in polynomial time for trees [Tuz97]. However, unlike in the vertex coloring case, this approach cannot be
generalized to partial k-trees: outerplanar and series-parallel graphs have treewidth at most 2, thus the
results mentioned in the previous paragraph show that list edge coloring is NP-complete for partial 2-trees
(see Appendix A.1 for the definition of treewidth and partial k-trees). This is somewhat surprising, since
there are very few problems that are polynomial time solvable for trees but NP-hard for partial 2-trees.
Usually it is expected that if a dynamic programming approach works for trees, then it can be generalized
to partial k-trees. Another recent example where the problem is easy for trees but NP-hard for partial
2-trees is the edge disjoint paths problem [NVZ01].

In the list multicoloring problem each vertex v has a demand x(v), and we have to assign v a subset Ψ(v)
of L(v) that has size x(v). Of course, the color sets assigned to neighboring vertices have to be disjoint.
How does the complexity of the problem changes if we move from list coloring to list multicoloring? Is it
possible to generalize the polynomial-time solvable cases of list coloring to the multicoloring problem? In
Section 2.2 we show that list multicoloring is NP-hard for binary trees, thus the dynamic programming
method for trees and for partial k-trees cannot be generalized to the multicoloring case. On the other
hand, Marcotte and Seymour [MS90] proved a good characterization theorem for list edge multicoloring
of trees. The proof can be turned into a polynomial-time algorithm for the list edge multicoloring of
trees. In Section 2.3, we give a polynomial-time algorithm for a slightly more general class of graphs,
which includes odd cycles, for example. With some further work, the algorithm can be extended to a
randomized polynomial-time algorithm that works for graphs that have only a constant number of cycles.
Randomized algorithm here means that the algorithm uses random numbers, and depending on the random
numbers, there is a small constant probability that the result is wrong. However, this probability can be
made arbitrarily small by repeating the algorithm multiple times.

Section 2.1 will appear as part of [Mar04i]. The results in Section 2.2 are taken from [Mar02]. Sec-
tion 2.3 contains the results of [Mar03a] and in [Mar04e].

2.1 List edge coloring planar graphs

In this section we prove that list edge coloring is NP-complete restricted to various classes of planar graphs.
Formally, we study the following problem:

List edge coloring

Input: A graph G(V,E), a set of colors C and a color list L: E → 2C for each edge.

Question: Is there an edge coloring ψ: E → C such that

• ψ(e) ∈ L(e) for every e ∈ E, and

• ψ(e1) 6= ψ(e2) if e1 and e2 are incident to the same vertex in G?

Section 2.1.1 shows that the problem is NP-complete for planar 3-regular bipartite graphs. Section 2.1.2
shows that the problem is NP-complete for outerplanar and series-parallel graphs.
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Figure 2.1: The variable-setting gadget. The two numbers on each edge show the list of available colors.

2.1.1 Planar bipartite graphs

The NP-completeness of list edge coloring bipartite graphs (with degrees at most 3) follows from [EIS76,
Fia03, EP01]. We strengthen this result in two ways: here the bipartite graph is restricted to be planar
and 3-regular. The main difficulty in the proof is that we need gadgets fulfilling both requirements.

The proof is by reduction from the 1-in-3 Satisfiablity problem, which is the following: given a formula
in conjunctive normal form, every clause contains exactly 3 literals, decide if a variable assignment exists
such that exactly one literal is true in every clause. The 1-in-3 Satisfiability problem remains NP-complete
even with the following restrictions:

Theorem 2.1.1 ([MR01]). 1-in-3 Satisfiablity is NP-complete even if

• every variable appears in exactly 3 clauses,

• there is no negation in the formula, and

• the underlying bipartite graph of the formula (where the vertex representing a clause is connected to
the vertices representing the variables appearing in the clause) is planar.

Theorem 2.1.2. List edge coloring is NP-complete for planar 3-regular bipartite graphs.

Proof. We construct variable-setting gadgets and satisfaction-testing gadgets, and connect them in such a
way that the resulting graph can be colored if and only if the given formula is satisfiable (in 1-in-3 sense).
If the original formula satisfies the requirements of Theorem 2.1.1, then the resulting graph is planar and
3-regular.

Figure 2.1 shows the variable-setting gadget. It is easy to verify that it has only two colorings: the
coloring that assigns the first (resp. second) color of the list to each edge. Therefore in every coloring of
the gadget, the pendant edges receive the same color, either 1 or 2. The coloring that assigns color 1 to
the pendant edges corresponds to setting the variable to “true,” and the coloring that assigns 2 to these
edges corresponds to “false.”

The satisfaction-testing gadget is show on Figure 2.2. We claim that it has only three colorings, the
numbers in the frames are the colors assigned to the edge in the three colorings. Let ψ be a coloring of this
gadget. First, let us verify that ψ(AiCi) = ψ(BiDi) for i = 1, 2, 3 in every coloring ψ. For this purpose, it
is sufficient to follow the implications of say, ψ(A1C1) = 1 and ψ(B1D1) = 2, to arrive to a contradiction.
Furthermore, it can be shown that ψ(A1C1) = ψ(B1D1) = 1 implies that ψ is the first coloring defined
on Figure 2.2. Similarly, ψ(A2C2) = ψ(B2D2) = 1 (resp. ψ(A3C3) = ψ(B3D3) = 1) implies that ψ is
the second (resp. third) coloring. Thus in every coloring of the gadget, exactly one of the pairs AiCi and
BiDi is colored with color 1, the others with color 2. A coloring that assigns color 1 to AiCi and BiDi

corresponds to a variable assignment where the clause is satisfied by its ith literal.
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Figure 2.2: The satisfaction-testing gadget. The numbers on the edges show the list of available colors
on the edge. The three numbers in each frame show the three colors assigned to the edge in the three
possible colorings of the graph.

Figure 2.3 shows the overview of the construction. Take a copy of the variable-setting gadget Gx for
each variable x and a satisfaction-testing gadget GC for each clause C of the formula. If x appears in
clause C, then Gx and GC are connected by a pair of edges. Assume that x is the ith variable in clause
C, and C is the jth clause where x appears, then connect Gx and GC by identifying the edges AjCj and
BjDj of Gx with AiCi and BiDi of GC , respectively.

The resulting graph is bipartite since the gadgets are bipartite (Figure 2.1 and 2.2 show the two
color classes) and when we identified two edges, we only identified vertices that belong to the same color
class. Because every variable appears in exactly three clauses and every clause has exactly three literals,
the resulting graph is 3-regular. The gadgets are planar, and because of the planarity of the formula,
the graph can be embedded in the plane such that two pairs of edges do not cross each other. Note
that in the variable-setting gadget, edge BjDj is in clockwise direction from the edge AjCj , while in the
satisfaction-testing gadgetBiDi is in counterclockwise direction from AiCi. Thus the two edges connecting
a variable-setting gadget with a satisfaction-testing gadget do not cross each other, as shown on Figure
2.3. Therefore the resulting graph G is planar, bipartite and 3-regular.

It is clear from the construction that G has a proper list edge coloring if and only if the formula has
a satisfying variable assignment (in 1-in-3 sense). Obviously, the graph can be built in polynomial time,
thus we have proved that the problem is NP-complete. �

2.1.2 Outerplanar graphs

A graph is outerplanar if it has a planar embedding such that all the vertices lie on the exterior face. A
graph is series-parallel if it can be created from K2 by repeatedly duplicating and subdividing the edges.
If an outerplanar graph is 2-connected, then it is series-parallel.
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Figure 2.3: The reduction from 1-in-3 SAT to the list edge coloring problem. We connect the variable
setting components and the satisfaction-testing components with pairs of edges.

List edge coloring can be solved in linear time for bounded degree outerplanar and series-parallel
graphs as follows. It is well-known that these graphs have treewidth at most 2. We show that if both
the treewidth and the maximum degree of a graph are bounded by a constant, then list edge coloring can
be solved in linear time. If a graph has treewidth at most w and maximum degree d, then the treewidth
of its line graph is at most (w + 1)d − 1 (see [Bod98, Lemma 32]). List edge coloring is the same as list
coloring in the line graph. By [JS97], list coloring can be solved in O(|V |k+2) time if the treewidth of the
graph is at most k. Thus Theorem 2.1.2 cannot be strengthened to outerplanar graphs. However, if we
drop 3-regularity, then the problem remains NP-complete for bipartite outerplanar graphs. In the proof
we use the following version of the satisfiability problem:

Proposition 2.1.3. 3SAT remains NP-complete even if every variable occurs exactly twice positively and
exactly twice negated, and every clause contains exactly three literals.

Proof. It is well-known that 3SAT remains NP-complete if every variable occurs exactly twice positively,
exactly once negated, and every clause contains two or three literals (cf. [Pap94]). Let us assume that
the number of variables is even, if not, then duplicate every variable and every clause. Let x1, x2, . . . ,
xn be the variables of φ. We add n/2 new variables y1, y2, . . . , yn

2
and n new clauses (x̄1 ∨ y1 ∨ ȳ1),

(x̄2∨y1∨ ȳ1), (x̄3∨y2∨ ȳ2), (x̄4∨y2∨ ȳ2), . . . , (x̄n−1∨yn
2
∨ ȳn

2
), (x̄n∨yn

2
∨ ȳn

2
) to the formula. Now every

variable occurs exactly twice positively and twice negated. These new clauses are satisfied in every variable
assignment, hence the new formula is satisfiable if and only if the original is satisfiable. Furthermore, if
there is a clause (x ∨ y) containing only two literals, then add a new variable z, and replace this clause
with (x ∨ z ∨ z) ∧ (z̄ ∨ z̄ ∨ y). It is easy to see that this transformation does not change the satisfiability
of the formula. �

Theorem 2.1.4. List edge coloring is NP-complete for bipartite outerplanar graphs.

Proof. The proof is by reduction from 3SAT. Given a formula φ in conjunctive normal form with n
variables and m clauses, we construct an instance of the list edge coloring problem in such a way that
the graph can be colored if and only if φ is satisfiable. By Prop. 2.1.3, we can assume that every variable
occurs exactly twice positively and exactly twice negated in φ, and every clause contains exactly three
literals.

The set of colors C contains 4n colors: there is one color corresponding to each occurence of a variable.
For 1 ≤ i ≤ n, color 4i corresponds to the first positive occurence of xi, color 4i − 1 corresponds to the
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Figure 2.4: The edges corresponding to variable xi of the formula.

second positive occurence of xi, color 4i − 2 corresponds to the first negated occurence of xi, and color
4i− 3 corresponds to the second negated occurence of xi.

We construct the construc the list edge coloring instance as follows. Let v be a vertex. For every
1 ≤ i ≤ n, attach 5 new vertices ai, bi, ci, di, ei to v as show on Figure 2.4. These edges correspond to
variable xi. The lists are as shown on the figure. For every 1 ≤ j ≤ m, a new vertex uj is attached to v.
The list of vuj contains three colors: the colors that correspond to the three literals in the jth clause of φ.

Given a satisfying assignment of φ, we construct a coloring ψ of G. If variable xi is true, then the
6 edges corresponding to xi receive the first color from their list. If xi is false, then the edges receive
the second color from the lists. Notice that with this coloring the colors used on edges incident to v are
exactly those colors that correspond to the false literals in the assignment. By assumption, the assignment
satisfies every clause of the formula, every clause contains at least one true literal, hence the list of every
edge vuj contains at least one color not used on v. Therefore we can extend ψ to the edges vuj , and the
graph can be colored.

To prove the other direction assume that there is a coloring ψ of G. We show that for every 1 ≤ i ≤ n,
either

• ψ(vbi) = 4i− 3 and ψ(vdi) = 4i− 2, or

• ψ(vbi) = 4i− 1 and ψ(vdi) = 4i hold.

If ψ(vbi) = 4i − 3, then ψ(aibi) = 4i ⇒ ψ(bici) = 4i − 1 ⇒ ψ(cidi) = 4i ⇒ ψ(vdi) = 4i − 2. A similar
argument shows that if ψ(vbi) = 4i− 1, then ψ(vdi) = 4i follows. We set variable xi to true in the first
case, and to false in the second case. This yields a satisfying variable assignment of φ: if the jth clause is
not satisfied, then all of its literals are false, which implies that the colors corresponding to these literals
appear at v. However, this means that the three colors in the list of vuj are already used at v, therefore
edge vuj cannot receive any color, contradicting the assumption that ψ is a list coloring of G. �

Every outerplanar graph can be extended to a series-parallel graph by adding edges. For each new
edge, let its list contain a new color that does not appear elsewhere. This does not change the solvability
of the problem. Thus we obtain that list edge multicoloring is NP-complete for series-parallel graphs:1

Corollary 2.1.5. List edge coloring is NP-complete for series-parallel graphs. �

1The astute reader will notice that Corollary 2.1.5 is a consequence of the stronger result Theorem 3.4.3. The argument
to prove Corollary 2.1.5 was presented here only for the sake of completeness.
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2.2 List multicoloring of trees

In this section we study the list multicoloring problem, which is defined as follows:

List Multicoloring

Input: A graph G(V,E), a demand function x: V → N, a set of colors C and a color list L:
V → 2C for each vertex.

Question: Is there a multicoloring Ψ: V → 2C such that

• Ψ(v) ⊆ L(v) for every v ∈ V ,

• Ψ(u) ∩ Ψ(v) = ∅ if u and v are neighbors in G, and

• |Ψ(v)| = x(v) for every v ∈ V ?

We show that list multicoloring is NP-hard for trees, even if the degree of every node is at most three.
But before that we briefly discuss how list coloring can be solved for trees, and why the algorithm for list
coloring cannot be generalized to list multicoloring. We present two algorithms from [JS97, Tuz97], but
neither of them works in the case of multicoloring.

Algorithm 1. A list coloring of a tree can be found the following way. First, if there is a vertex v whose
list contains only one color c, then this vertex can be removed from the problem: assign color c to v, delete
c from the lists of the neighbors of v, and remove v from the graph. Therefore it can be assumed that
every list contains at least two colors. We claim that the tree can be colored with the lists. We prove this
by induction on the number of vertices. Let v be a leaf of the tree. Delete v from the tree, the remaining
tree can be colored by the induction hypothesis. This coloring assigns some color c to the neighbor of
v. Since the list of v contains at least two colors, thus we can assign to v a color different from v, which
extends the coloring to the whole tree, completing the induction.

Algorithm 2. Another, slightly more complicated possibility is to use dynamic programming for the
subtrees of the tree. This approach has the advantage that it readily generalizes to partial k-trees. Assume
that the tree is rooted. Let Tv be the subtree rooted at node v. The set L′(v) consists of those colors
c for which there is a list coloring of Tv such that node v receives color c. Clearly, the tree has a list
coloring if and only if L′(r) is not empty for the root r. We can determine the sets L′(v) in a bottom-up
fashion. If v is a leaf, then trivially L′(v) = L(v). Now assume that v1, v2, . . . , vt are the children of v,
and L′(v1), . . . , L′(vt) are already determined. A color c ∈ L(v) is in L′(v) if each of the sets L′(v1), . . . ,
L′(vt) contain a color different from c. In this case the subtrees Tv1 , . . . , Tvt

can be colored such that
their roots do not have color c, thus v can receive this color. This way we can determine the sets L′(v)
one by one, and when the root is reached, it can be checked whether L′(r) is empty or not.

This approach breaks down if the demands of the vertices can be greater than one. The problem is that
we would have to determine all the possible color sets that can appear on v in a coloring of Tv. However,
if the demand of v is large, then there could be exponentially many such color sets, thus it would be too
much work to enumerate all of them. The following theorem shows that list multicoloring is NP-complete
for binary trees, thus it seems that there is no way to get around this problem.

Theorem 2.2.1. The list multicoloring problem is NP-complete for trees.

Proof. The reduction is from the maximum independent set problem. For every graph G(V,E) and integer
k, we will construct a tree T (in fact, a star), a demand function, and a color list for each node, such
that the tree can be colored with the lists if and only if G has an independent set of size k. The colors
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correspond to the vertices of G, the leaves of the star correspond to the edges of G. The construction will
ensure that the colors given to the central node correspond to an independent set in G.

Let e1, e2, . . . , em be the edges of G and denote by ui,1 and ui,2 the two end vertices of edge ei. The
tree T is a star with a central node v and m leaves v1, . . . , vm. The demand of v is k and the demand of
every leaf is 1. The set of colors C corresponds to the vertex set V . The color list of the central node v is
the set C, the list of node vi is the set {ui,1, ui,2}.

Assume that there is a proper list coloring of T . It assigns k colors to v. The corresponding set of k
vertices will be independent in G: at least one end vertex of each edge ei is not contained in this set since
node vi must be colored with either ui,1 or ui,2. On the other hand, if there is an independent set of size
k in G, then we can assign this k colors to v and extend the coloring to the nodes vi: either ui,1 or ui,2 is
not contained in the independent set, thus it can be assigned to vi. �

In order to prove that the problem is NP-complete for binary trees, we use a “color copying” trick to
split a high-degree node into several nodes:

Theorem 2.2.2. The list multicoloring problem remains NP-complete restricted to binary trees.

Proof. The proof is essentially the same as in Theorem 2.2.1, but the degree m central node of the star
is replaced by a path v′1, v

′
2, . . . , v

′
2m−1 of 2m − 1 nodes. The m neighbors of v are connected to the m

nodes v′1, v
′
3, . . . , v

′
2m−1 one by one. The list of every node v′i is C, the demands are x(v′2i+1) = k and

x(v′2i) = |C|−k. It is easy to see that in every proper multicoloring of the tree, the nodes v′1, v
′
3, . . . , v

′
2m−1

receive the same set of k colors. Furthermore, as in the previous proof, this set corresponds to an
independent set in G. �

We remark here that list multicoloring is polynomial-time solvable for paths [KG02]. Therefore Theo-
rem 2.2.2 cannot be strengthened to trees with maximum degree 2.

2.3 Graphs with few cycles

In this section we consider the edge coloring version of list multicoloring:

List edge multicoloring

Input: A graph G(V,E), a demand function x: E → N and a color list L: E → 2N for each
edge.

Question: Is there a multicoloring Ψ: E → 2N such that

• Ψ(e) ⊆ L(e) for all e ∈ E,

• Ψ(e1) ∩ Ψ(e2) = ∅ if e1 and e2 are incident to the same vertex in G and

• |Ψ(e)| = x(e) for all e ∈ E?

In this section “coloring” will always mean list edge multicoloring. Marcotte and Seymour gave a good
characterization for this problem in the special case when G is a tree. Denote by Ec ⊆ E the set of those
edges whose lists contain the color c, and for all X ⊆ E, let νc(X) = ν(X ∩Ec) be the maximum number
of independent edges in X whose lists contain c.

Theorem 2.3.1 (Marcotte and Seymour, 1990, [MS90]). Let G be a tree. The list edge multicoloring
problem has a solution if and only if for every X ⊆ E we have

∑

c∈N

νc(X) ≥
∑

e∈X

x(e). (2.1)
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Figure 2.5: Theorem 2.3.1 does not hold for (a) even cycles and (b) odd cycles. Every edge has demand
1, the numbers on an edge are the colors contained in the list of the edge.

The necessity of the condition is obvious for any graph, since color c can be used at most νc(X) times
in X , thus at most

∑
c∈N

νc(X) colors can be assigned to the edges in X .
This theorem, in general, does not remain valid on cycles. Figure 2.5 shows two uncolorable instances

of the problem. The reader can easily verify that inequality (2.1) holds for every subset X of the edges,
but the graphs are not colorable.

The proof of Theorem 2.3.1 is based on the total unimodularity of a network matrix, thus, using
standard techniques, the proof can be turned into a polynomial time algorithm by reducing the task to a
maximum flow problem. Here we present another polynomial time algorithm, which solves the problem
for a slightly more general class of graphs, including trees and odd cycles. Moreover, with some further
modifications, it can be turned into a randomized polynomial time algorithm working on an even more
general class of graphs, which also includes even cycles.

In Section 2.3.1, a polynomial time solvable variant of the list edge multicoloring problem is introduced.
This gives us a polynomial time solution of the original list edge multicoloring problem in some special cases
(e.g., trees, odd cycles). Section 2.3.2 presents a modified randomized algorithm for list edge multicoloring
arbitrary connected graphs having at most |V | +O(1) edges.

2.3.1 A polynomial case

We introduce a new variant of list edge multicoloring. The requirement that edge e has to receive x(e)
colors is replaced by the requirement that the edges incident to v have to receive y(v) colors in total. It
turns out that in certain cases list edge multicoloring can be reduced to this new problem. Moreover, this
problem can be solved in polynomial time for any graph (Theorem 2.3.4).

List edge multicoloring with demand on the vertices

Input: A graph G(V,E), a demand function y: V → N and a color list L: E → 2N for each
edge

Question: Is there a multicoloring Ψ: E → 2N such that

• Ψ(e) ⊆ L(e) for all e ∈ E,

• Ψ(e1) ∩ Ψ(e2) = ∅ if e1 and e2 are incident to the same vertex in G, and

•
∑

e∋v |Ψ(e)| = y(v) for all v ∈ V ?

The incidence matrix B of an undirected simple graph G(V,E) has |V | rows and |E| columns, and
for every v ∈ V and e ∈ E, the element in row v and column e is 1 if e is incident to v and 0 otherwise.
It will be convenient to think of the demand function x: E → N in the list edge multicoloring problem
as a vector x with |E| (integer) components. Similarly, the demand function y: V → N corresponds
to a vector y with |V | components. From now on, the demand function and its vector will be used
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1, 2, 3
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Figure 2.6: The list edge multicoloring with x(e) ≡ 2 has no solution, but with y(v) ≡ 4 there is a coloring
valid for the vertices.

interchangeably. A coloring Ψ is valid for the edges if |Ψ(e)| = x(e) for every edge e. It is valid for the
vertices if

∑
e∋v |Ψ(e)| = y(v) for every vertex v. When using these terms, the demand functions x(e) and

y(v) will be clear from the context.

Let x be an arbitrary demand function on the edges of G, and define y = Bx. Let L be an arbitrary
list assignment. If the list edge multicoloring problem with demand x has a solution, then list edge
multicoloring with demand y on the vertices has a solution as well. To see this, observe that any coloring
Ψ valid for the edges is also valid for the vertices:

∑
e∋v |Ψ(e)| =

∑
e∋v x(e) equals the component of

Bx = y corresponding to v, as required. The converse is not necessarily true: a coloring Ψ valid for the
vertices is not always valid for the edges. In fact, as shown on Figure 2.6, it is possible that that there is
a coloring satisfying the demand y on the vertices, but there is no coloring valid for the edges.

However, there is an important special case where every coloring valid for the vertices is also valid for
the edges. We say that a graph G(V,E) has full edge rank if the rank of B is |E|, that is, the characteristic
vectors of the edges of G are linearly independent over Q.

Lemma 2.3.2. Let x be an arbitrary demand function on the edges of G, and let y = Bx, where B is
the incidence matrix of G. If G has full edge rank, then for every list assignment L, any coloring valid
for the vertices is also valid for the edges.

Proof. Let Ψ be a coloring valid for the vertices. Define x′(e) = |Ψ(e)|, and let x′ be the corresponding
vector with |E| components. Since

∑
e∋v |Ψ(e)| = y(v) holds, vector x′ satisfies Bx′ = y. However, the

columns of B are linearly independent, thus x is the unique vector satisfying Bx = y. Hence x = x′, and
|Ψ(e)| = x(e) follows. �

It is well-known that every tree and odd cycle has full edge rank. From the definition it is clear that
a graph has full edge rank if and only if all of its connected components have full edge rank. It is not
difficult to characterize those connected graphs that have full edge rank. For completeness we include a
proof here:

Lemma 2.3.3. A connected simple graph G(V,E) has full edge rank if and only if it does not contain
even cycles and it has at most one odd cycle.

Proof. We prove the lemma by induction on the number of vertices. Assume first that G has a degree
1 vertex v, let e be the edge incident to v. In the incidence matrix B of G, there is only one non-zero
element in row v, thus deleting row v and column e decreases the rank by exactly one. The resulting
matrix is the incidence matrix of G− v, thus G has full edge rank if and only if G− v has full edge rank.
Deleting a degree 1 vertex does not change any of the cycles.

Next assume that every vertex has degree at least 2. If G has full edge rank, then it has at most |V |
edges, thus the degree of every vertex is exactly 2 and G is a cycle. A cycle has full edge rank if and only
if it is odd, therefore the lemma follows from the induction hypothesis. �
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We show that list edge multicoloring with demand on the vertices can be solved in polynomial time.
Together with Lemma 2.3.2, this implies that the list edge multicoloring problem also can be solved in
polynomial time if the graph has full edge rank.

Theorem 2.3.4. For every simple graph G, list edge multicoloring with demand on the vertices can be
solved in polynomial time.

Proof. Let C = |
⋃
e∈E L(e)| be the total number of different colors appearing in the lists. It can be

assumed that L(e) ⊆ {1, 2, . . . , C} for every e ∈ E. We construct a graph G′(U,F ) as follows (see
Fig. 2.7). For every v ∈ V , there are 2C − y(v) vertices v1, v2, . . . , vC , v

′
1, v

′
2, . . . , v

′
C−y(v) corresponding to

v in G′. If uv ∈ E and c ∈ L(uv), then there is an edge ucvc in G′. Furthermore, for every v ∈ V , the
vertices v′1, v

′
2, . . . , v

′
C−y(v) are connected to every vertex v1, v2, . . . , vC . This completes the description of

the graph G′.

We show that G′ has a perfect matching if and only if there is a coloring of G valid for the edges. This
implies the theorem, since there are polynomial time algorithms for finding perfect matchings in arbitrary
graphs (cf. [LP86, MV80]).

First assume that Ψ is a coloring valid for the vertices. If c ∈ Ψ(uv) ⊆ L(uv), then include the edge
ucvc into the set M ′. Since Ψ(uv) is a proper coloring, every vertex is covered at most once by the edges
in M ′. Furthermore, from the C vertices v1, v2, . . . , vC , exactly y(v) is covered by M ′. The remaining
C − y(v) vertices can be matched with the C − y(v) vertices v′1, v

′
2, . . . , v

′
C−y(v). Thus we can extend M ′

to a perfect matching M of G′.

On the other hand, assume that M ⊆ F is a perfect matching of G′. Let c ∈ Ψ(uv) if and only if ucvc ∈
M . Clearly Ψ(uv) ⊆ L(uv), since ucvc ∈ M ⊆ F implies c ∈ L(uv). Furthermore, Ψ(uv) ∩ Ψ(uw) = ∅,
since c ∈ Ψ(uv) and c ∈ Ψ(uw) would imply ucvc ∈M and ucwc ∈M , which is impossible. What remains
to be shown is that

∑
e∋v |Ψ(e)| = y(v). From the C vertices v1, v2, . . . , vC there are exactly C − y(v)

that are matched with the vertices v′1, v
′
2, . . . , v

′
C−y(v). Thus the total size of the sets Ψ(e) on the edges

incident to v is exactly y(v). �

Corollary 2.3.5. If G has full edge rank, then the list edge multicoloring problem can be solved in poly-
nomial time. �

Corollary 2.3.6. The list edge multicoloring problem can be solved in polynomial time for trees and odd
cycles. �

The algorithm of Micali and Vazirani [MV80] can be used to find a perfect matching in O(p
1
2 q) time

if the graph has p vertices and q edges. The constructed graph G′ in Theorem 2.3.4 has O(C|V |) vertices
and O(C|E|+C2|V |) edges, therefore list edge multicoloring with demands on the vertices can be solved in

O(C
3
2 |V |

1
2 (|E|+C|V |)) time. This leads to an O(C5/2|V |3/2) time algorithm for the list edge multicoloring

of trees and odd cycles.

We note that if G is bipartite, then the constructed graph G′ is bipartite as well, and the bipartite
matching algorithm of [HK73] can be used in Theorem 2.3.4.

Let us try to estimate the practical performance of the algorithm. First observe that the algorithm has
simple structure and is easy to implement, there are no theoretically easy but practically difficult concepts
involved. We have to do the following steps:

1. Construct the graph G′.

2. Find a perfect matching of G′.

3. Construct the multicoloring Ψ: if edge ucvc is in the matching, then add color c to the set Ψ(uv).
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Figure 2.7: An instance of list edge multicoloring and the constructed matching problem. The number on
each edge is the demand, the framed numbers are the lists. The matching shown with strong edges give
a solution to list edge multicoloring.

The running time of the algorithm is dominated by the second step. Thus the running time depends
mainly on the practical performance of the matching algorithm. As discussed above, we have to find a
perfect matching in a graph with O(C|V |) vertices and O(C2|V |) edges. However, most of the edges of the
graph G′ are in the complete bipartite graphs connecting vertices v1, . . . , vC with vertices v′1, . . . , v′C−y(v)

(for some vertex v). The vertices v′1, . . . , v′C−y(v) have the same neighborhood, hence using some technical

tricks (turning the problem into b-matching) we can simplify these complete bipartite graphs. Therefore
the graph can be reduced to a sparse graph with O(C|V |) vertices and O(C|V |) edges. A computation
study in 1998 [KP98] reported that matching can be solved for 50000 vertex sparse graphs in well under
a minute. Thus we can expect that currently the algorithm is efficient if C|V | is in the range of 500000,
for example, if there are 500 colors and 1000 vertices.

2.3.2 Graphs with few cycles

In this section we try to extend the results of Section 2.3.1 to graphs that are “almost trees”: to graphs
that have only a small number of cycles. However, Lemma 2.3.2 is best possible:

Proposition 2.3.7. For any graph G that does not have full edge rank, then there is a list assignment L
and demand function x such that there is no coloring valid for the edges, but there is a coloring valid for
the vertices (with y = Bx).

Proof. If G does not have full edge rank, then there is a nonzero integer vector z with Bz = 0. Since the
columns of B are nonnegative vectors, at least one component of z is negative. Suppose that z(e∗) < 0.
Let d = mine∈E z(e) and let L(e) be a set of z(e) − d ≥ 0 colors such that every color in the union of the
L(e)’s appears in only one list. By setting x(e) ≡ −d, it is clear that there is no coloring valid for the
edges, since |L(e∗)| < −d = x(e∗). On the other hand, the coloring Ψ(e) = L(e) is valid for the vertices.
Coloring Ψ assigns z(e) − d colors to edge e. Therefore the number of colors appearing at the vertices is
given by the vector B(z − d · 1) = B(−d · 1) = Bx, as required. �



2.3. GRAPHS WITH FEW CYCLES 21

On the other hand, we show that if a coloring Ψ is valid for the vertices and it satisfies some additional
constraints, then it is also valid for the edges.

Lemma 2.3.8. Let G(V,E) be an arbitrary graph, and let E′ ⊆ E be a subset of edges such that the graph
G′(V,E \E′) has full edge rank. For an arbitrary demand function x and list assignment L, if coloring Ψ
is valid for the vertices and it satisfies |Ψ(e)| = x(e) for every e ∈ E′, then Ψ is also valid for the edges.

Proof. It can be assumed that the edges in E′ correspond to the first |E′| columns of B. Therefore B can
be written as B = (B1 B2), where B1 has |E′| columns. Similarly x =

(
x1

x2

)
and x1 has |E′| components.

Clearly, y = Bx = B1x1 + B2x2.

Let x′(e) = |Ψ(e)| and let x′ =
(
x
′

1

x
′

2

)
be the corresponding vector. Since Ψ is valid for the vertices, it

follows that Bx′ = Bx = y, that is

B1x
′
1 + B2x

′
2 = B1x1 + B2x2 = y.

Moreover, since |Ψ(e)| = x(e) for every e ∈ E′, we have that x′
1 = x1, B1x

′
1 = B1x1, and B2x

′
2 = B2x2

follows. Since G′(V,E \ E′) has full edge rank, the columns of the matrix B2 are linearly independent,
hence x′

2 = x2. Therefore x′ = x, and Ψ is valid for the edges. �

Since every coloring that is valid for the edges is also valid for the vertices, the list edge multicoloring
problem has a solution if and only if there is a coloring valid for the vertices that satisfies the requirements
in Lemma 2.3.8. We reduce the problem of finding such a coloring to a variant of the exact matching
problem, which can be solved in randomized polynomial time. Before presenting the reduction (which
is essentially the same as in the proof of Theorem 2.3.4), we briefly overview exact matching and some
related problems.

There are strongly polynomial time algorithms for finding a maximum weight perfect matching in
a graph (cf. [LP86]). That is, it can be decided in polynomial time whether a perfect matching with
weight at least K exists. In the exact matching problem we have to find a perfect matching whose weight
equals K. The exact matching problem can be solved in randomized polynomial time if every weight is
an integer smaller than some polynomial of the size of the graph [MVV87]. That is, there is a polynomial
time algorithm that answers “no” if there is no matching with weight exactly K, and answers “yes” with
probability at least 1

2 if there is such a matching. It is an open question whether there exists a deterministic
polynomial time algorithm for this problem.

A related problem is the following: given a graph G(V,E), a set of edges F ⊆ E, and an integer k,
find a perfect matching M of G with |M ∩ F | = k. This can be reduced to the exact matching problem:
let every edge in F have weight 1 and every other edge weight 0. Now a matching M has |M ∩ F | = k if
and only if its weight equals k. More generally, we can consider more than one subset of the edges:

Proposition 2.3.9. Assume that we are given a graph G(V,E), pairwise disjoint subsets F0, F1, . . . , Fℓ ⊆
E, and integers k0, k1, . . . , kℓ. If ℓ is fixed, then it can be decided in randomized polynomial time whether
there is a perfect matching M with |M ∩ Fi| = ki for every 0 ≤ i ≤ ℓ.

Proof. This problem can be reduced to exact matching: let e ∈ Fi have weight (|E| + 1)i, edges in

E \ (F0 ∪ · · · ∪Fℓ) have weight 0, and set K =
∑ℓ

i=0 ki(|E|+ 1)i. It is easy to see that a matching satisfies
the requirements if and only if it has weight K. If ℓ is a fixed constant, then the weight of every edge is
polynomially bounded in the size of the graph, thus the problem can be solved in randomized polynomial
time. �

Theorem 2.3.10. For every fixed ℓ, there is a randomized polynomial time algorithm for list edge multi-
coloring in connected graphs having at most |V | + ℓ edges.
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Proof. Let T be a spanning tree of G(V,E), and let E′ = {e0, e1, . . . , eℓ} be the |E| − (|V | − 1) = ℓ + 1
edges not in T . Notice that E \E′ has full edge rank (it is a tree). Construct the graph G′, as in the proof
of Theorem 2.3.4. For every 0 ≤ i ≤ ℓ, let Fi contain the |L(ei)| edges in G′ that corresponds to edge ei.
That is, if ei = uv and L(ei) = {c1, c2, . . . , cr}, then Fi = {uc1vc1 , uc2vc2 , . . . , ucr

vcr
}. Set ki to x(ei).

We show that the list edge multicoloring problem has a solution if and only if G′ has a perfect matching
M with |Fi ∩M | = ki for every 0 ≤ i ≤ ℓ. By Prop. 2.3.9, the latter problem can be solved in randomized
polynomial time, hence the theorem follows.

If there is a perfect matching M in G such that |Fi ∩M | = ki for every 0 ≤ i ≤ ℓ, then construct a
coloring Ψ valid for the vertices, as in the proof of Theorem 2.3.4. Clearly, |Ψ(ei)| = ki = x(ei). Thus by
Lemma 2.3.8, Ψ is valid for the edges.

The other direction also follows easily: since any coloring Ψ valid for the edges is also valid for the
vertices, one can find a perfect matching M of G′ based on Ψ. It is clear from the construction that M
has exactly ki edges from Fi, since |Ψ(ei)| = x(ei) = ki. �

Corollary 2.3.11. List edge multicoloring can be solved in randomized polynomial time for even cycles.
�

2.3.3 Applications and extensions

List edge multicoloring can be applied to model the scheduling of file transfers between processors. Let
the vertices be the processors, if there is an edge e with demand x(e) between two vertices, then this
means that there is a direct connection between the two processors and a file has to be transfered on this
connection. The file transfer represented by the edge e requires x(e) time slots. The colors correspond to
the time slots, thus by assigning color sets to the edges we can schedule the file transfers. The requirement
that every color appears at most once at a vertex ensures that a processor performs at most one transfer
at the same time. Furthermore, by setting the lists of the edges appropriately, we can express additional
constraints. For example, we can require that a transfer is not started before a certain time, or it is
finished before a certain deadline. Corollary 2.3.6 and Theorem 2.3.10 give efficient algorithms for this
problem if the topology of the network is almost a tree. The same method can be applied to model the
mutual diagnostic testing of processors: in this case an edge e with demand x(e) means that the two
processors have to test each other for x(e) units of time.

In the application examples of the previous paragraph we have assumed that a processor can do only
one thing at the same time. This requirement can be weakened: we can consider the variant of the problem
where a processor can participate in at most f file transfers simultaneously. More generally, this number
f can be different for the different processors. This leads to the f -coloring problem [ZN99, ZFN00]: given
a function f on the vertices, we have to find a coloring where every color appears at most f(v) times at
vertex v. This more general problem can be handled with a similar reduction to matching. However, now
we have to allow that at most f(v) edges incident to a vertex vc are selected into the matching. Thus
the problem can be formulated as a b-matching, we omit the straightforward details. (The b-matching
problem is a generalization of matching: we have a function b on the vertices, and the task is to find a set
of edges such that exactly b(v) edges are incident to vertex v.)

List edge multicoloring turns out to be useful in a different scheduling model as well. Let us assume
that there are n days and m workers. On the ith day x(i) workers are required. The jth worker is
available only on days W (i) ⊆ {1, . . . , n} and it is not allowed to use a worker on two consecutive days.
This problem can be formulated as list edge multicoloring on a path: the edges e1, e2, . . . , en of the path
correspond to the days, the colors correspond to the workers. The demand of edge ei is x(i) and its list is
{j : i ∈W (j)}, the set of workers available on the ith day. A list edge multicoloring of the path is clearly
equivalent to an allowed job assignment. List multicoloring of paths, which is the same problem as the
list edge multicoloring of paths, was investigated [KG02].
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Figure 2.8: (a) The edges of the path correspond to the two-day jobs. (b) The pendant edges represent
one-day jobs. (c) A worker can be assigned to the one-day jobs on day 3 and day 4, but not to both (and
similarly with the one-day jobs on day 5 and 6).

The requirement that a worker cannot work on two consecutive day appears naturally if we are con-
sidering two-day jobs. That is, x(i) denotes the number of workers required for the two-day job starting
on day i, and assigning a worker to day i means that he will work on this job on day i and i + 1 (see
Figure 2.8a). Clearly, this means that a worker cannot be assigned to both day i and day i+ 1.

We can extend the problem by allowing both one-day and two-day jobs. Let vertex v be the vertex
shared by edge ei and edge ei+1. Let us attach a new pendant edge fi+1 to vertex v (see Figure 2.8b).
The edge fi+1 represents a one-day job on day i + 1. If a color is assigned to edge fi+1, then this color
cannot be used on edges ei and ei+1. This corresponds to the requirement that a worker assigned to the
one-day job on day i+ 1 cannot work on the two-day jobs starting on day i and i+ 1.

By slightly modifying the graph, we can express more complex requirements (see Figure 2.8c). If edges
fi and fi+1 have a common end point, then this ensures that a worker cannot be assigned to the one-day
jobs on both day i and i + 1. However, now the graph is no longer a tree. But if there is only a small
number of such requirements, then the graph has only few cycles, and Theorem 2.3.10 gives an efficient
algorithm for the problem.





CHAPTER 3

Precoloring extension

To finish a work? To finish a picture? What nonsense! To finish it
means to be through with it, to kill it, to rid it of its soul,

to give it its final blow . . . the coup de grâce
for the painter as well as for the picture.

Pablo Picasso (1881–1973)

In the precoloring extension problem we are given a graph G(V,E) with a subset W of precolored
vertices, and it has to be decided whether this coloring can be extended to the whole graph. The problem
is formally defined as follows:

Precoloring Extension (PrExt)

Input: A graph G(V,E), a subset W ⊆ V , a coloring ψ′ of W and an integer k.

Question: Is there a proper k-coloring ψ of G extending the coloring ψ′ (that is, ψ(v) = ψ′(v)
for every v ∈ W )?

The special case of the problem where every color is used at most d times in the precoloring will be
denoted by d-PrExt. In particular, we will focus on the 1-PrExt problem.

Since vertex coloring is a special case of precoloring extension with W = ∅, thus PrExt is NP-
complete for every class of graphs where vertex coloring is NP-complete. Therefore we can hope to solve
PrExt efficiently only on graphs that are easy to color. In the 90s, Biró, Hujter and Tuza [BHT92,
HT93, HT96] started a systematic study of precoloring extension in perfect graphs, where coloring can
be done in polynomial time. It turns out that for some classes of perfect graphs, e.g., split graphs
[HT93], complements of bipartite graphs [HT93], and cographs [HT96, JS97], the precoloring extension
problem can be solved in polynomial time. On the other hand, for some other classes like bipartite
graphs [HT93, BJW94], line graphs of bipartite graphs [EP01, Col84, Fia03], and interval graphs [BHT92],
precoloring extension is NP-complete.

Precoloring extension can be also thought of as a special case of list coloring. The list of a precolored
vertex contains only a single color, while if a vertex is not precolored, then its list contains all the available
colors. Therefore any hardness result obtained for precoloring extension applies also for list coloring.
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Motivated by the aircraft scheduling application presented in Chapter 1, Biró, Hujter, and Tuza studied
the precoloring extension problem for interval graphs [BHT92, BHT93]. They have shown that PrExt

(in fact, even 2-PrExt) is NP-complete for interval graphs, but 1-PrExt is polynomial-time solvable. In
[HT96] they formulate two open questions concerning the possible strengthening of these results:

• Is it possible to solve 1-PrExt in polynomial time for chordal graphs? (A graph is chordal if it does
not contain induced cycles of length greater than 3. Every interval graph is chordal.)

• Does PrExt remain NP-complete restricted to unit interval graphs? (A unit interval graph is an
interval graph that can be represented by unit length intervals.)

We give positive answers to both questions. In Section 3.1 a polynomial-time algorithm is presented for
1-PrExt on chordal graphs, a class generalizing interval graphs. In Section 3.3 we show that PrExt

is NP-complete not only for interval graphs, but even for the smaller class of unit interval graphs. The
proof is by reduction from a disjoint paths problem. The NP-completeness of this disjoint paths problem
is proved in Section 3.2. The result on the disjoint paths problem is of independent interest: it answers
an open question of Vygen [Vyg94].

Finally, Section 3.4 gives complexity results on the edge coloring version of precoloring extension.
Easton and Parker [EP01], and independently Fiala [Fia03] have shown that the problem is NP-complete
for bipartite graphs of maximum degree 3. In Section 3.4 we strengthen this result by showing that the
problem remains NP-complete for planar 3-regular bipartite graphs. This result will be used in Section 5.2
to prove that minimum sum edge coloring is NP-hard for planar bipartite graphs. Section 3.4 also shows
that precoloring edge extension is NP-complete for outerplanar and series-parallel graphs. The reductions
are from the corresponding list edge coloring problems investigated in Section 2.1.1.

The results in Section 3.1 were presented in [Mar04j]. The results of Section 3.2 appeared in [Mar04d].
The results of Section 3.3 and Section 3.4 will appear in [Mar04k] and [Mar04i], respectively.

3.1 Chordal graphs

The aim of this section is to prove that 1-PrExt is polynomial-time solvable for chordal graphs, which
answers an open question of Hujter and Tuza [HT96]. It is easy to reduce PrExt to 1-PrExt: collapse
the vertices precolored with the same color to a single vertex. Therefore 1-PrExt is not easier than
PrExt on classes of graphs that are closed for this operation. One can also show that 1-PrExt is
NP-complete on bipartite graphs [HT93, BJW94].

However, there are cases where 1-PrExt is strictly easier than PrExt. For planar bipartite graphs,
if the set of colors C contains only 3 colors, then PrExt is NP-complete [Kra93], while 1-PrExt can be
solved in polynomial time [MTW98]. For interval graphs already 2-PrExt is NP-complete [BHT92], but
1-PrExt can be solved in polynomial time [BHT92].

Every chordal graph is perfect and interval graphs form a subset of chordal graphs (cf. [Gol80]).
Therefore from the NP-completeness of 2-PrExt for interval graphs [BHT92] it follows that the problem
is NP-complete for chordal graphs as well. The complexity of 1-PrExt on chordal graphs is posed by
Hujter and Tuza as an open question [HT96]. Here we show that 1-PrExt can be solved in polynomial
time also for chordal graphs. The algorithm is a generalization of the method of [BHT92] for interval
graphs. As in [BHT92], 1-PrExt is reduced to a network flow problem, but for chordal graphs a more
elaborate construction is required than for interval graphs.

In Section 3.1.1 we review some known properties of chordal graphs. In Section 3.1.2 we define a set
system that will be crucial in the analysis of the algorithm. The algorithm is presented in Section 3.1.3.
In Section 3.1.4 we discuss some connections of the problem with matroid theory.
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Figure 3.1: Nice tree decomposition of a chordal graph.

3.1.1 Tree decomposition

A graph is chordal if every cycle of length greater than 3 contains at least one chord, i.e., an edge connecting
two vertices not adjacent in the cycle. Equivalently, a graph is chordal if and only if it does not contain
a cycle of length greater than 3 as an induced subgraph. This section summarizes some well-known
properties of chordal graphs. First, chordal graphs can be also characterized as the intersection graphs of
subtrees of a tree (see e.g., [Gol80]):

Theorem 3.1.1. The following two statements are equivalent:

1. G(V,E) is chordal.

2. There exists a tree T (U,F ) and a subtree Tv ⊆ T for each v ∈ V such that u, v ∈ V are neighbors in
G(V,E) if and only if Tu ∩ Tv 6= ∅.

The tree T together with the subtrees Tv is called the tree decomposition of G. Given a chordal graph
G, a tree decomposition can be found in polynomial time (see [Gol80, RTL76]).

For clarity, we will use the word “vertex” when we refer to the graph G(V,E), and “node” when
referring to T (U,F ). We assume that T is a rooted tree with some root r ∈ U . For a node x ∈ U , let
T x be the subtree of T rooted at x. Consider those subtrees Tv that contain at least one node of T x,
denote by Vx the set of corresponding vertices v. The subgraph of G induced by Vx will be denoted by
Gx = G[Vx]. For a node x ∈ U of T , denote by Kx the union of v’s where x ∈ Tv. Clearly, the vertices of
Kx are in Vx, and they form a clique in Gx, since the corresponding trees intersect in T at node x. The
tree decomposition has the following property: for every node x ∈ U , the clique Kx separates Vx \Kx and
V \ Vx. That is, among the vertices of Vx, only the vertices in Kx can be adjacent to V \ Vx.

Every inclusionwise maximal clique of a chordal graph is a clique Kx of the tree decomposition. This
is a consequence of the fact that subtrees of a tree satisfy the Helly property (a family of sets is said to
satisfy the Helly property if for each pairwise intersecting collection of sets from the family it follows that
the sets in the collection have a common element). If K is a clique, then its vertices correspond to pairwise
intersecting subtrees, hence by the Helly property, these trees have a common node x, implying K ⊆ Kx.

Since every chordal graph is perfect, the chromatic number of G equals its clique number, and it follows
that G is k-colorable if and only if |Kx| ≤ k for every node x ∈ T . Clearly, the precoloring can exist only
if G is |C|-colorable, hence we assume in the following that |Kx| ≤ |C| holds for every x ∈ T .

A tree decomposition will be called nice [Klo94], if it satisfies the following additional requirements:

• Every node x ∈ U has at most two children.

• If x ∈ U has two children y, z ∈ U , then Kx = Ky = Kz (x is a join node).

• If x ∈ U has only one child y ∈ U , then either Kx = Ky∪{v} (x is the add node of v) or Kx = Ky\{v}
(x is the forget node of v) for some v ∈ V .

• If x ∈ U has no children, then Kx contains exactly one vertex (x is a leaf node).
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Figure 3.2: Nice tree decomposition of the graph shown on Figure 3.1, after adding the vertices v′, v1, v2
to the graph. Dashed lines show the new parts of the tree decomposition.

Figure 3.1 shows a nice tree decomposition. It is easy to see that by splitting the nodes of the tree
in an appropriate way, a tree decomposition of G can be transformed into a nice tree decomposition in
polynomial time. A vertex v can have multiple add nodes, but at most one forget node (the vertices in
clique Kr of the root r have no forget nodes, but every other vertex has exactly one). For a vertex v,
its subtree Tv is the subtree rooted at the forget node of v (if it exists, otherwise at the root) and whose
leaves are exactly the add nodes and leaf nodes of v.

Given a graph G and a precolored set of vertices, we modify the graph to obtain an even nicer tree
decomposition. For each precolored vertex v, we add a clique K of |C| − 1 new vertices, each vertex of
K is connected to v; and we also add a new vertex v′ that is connected to each vertex of K (but not to
v). The precoloring of vertex v is removed and v′ becomes a precolored vertex, the color of v is assigned
to v′. It is easy to see that this transformation does not change the solvability of the instance: vertices
v and v′ receive the same color in every |C|-coloring of the new graph G′ (since they are both connected
to the same clique of |C| − 1 vertices), thus a precoloring extension of G′ induces a precoloring extension
for G. Although the transformation increases the size of the graph, it will be useful, since now we can
assume that the nice tree decomposition has the following additional properties:

• If x ∈ U is the add node of v, then v is not a precolored vertex.

• If x ∈ U is a join node, then Kx does not contain precolored vertices.

We show how a nice tree decomposition T of G can be modified to obtain a nice tree decomposition T ′ of
G′ satisfying these two additional properties. Let v1, v2, . . . , v|C|−1 be the neighbors of v′ in G′. Let x be
an arbitrary node containing vertex v, let Kx = {v, w1, w2, . . . , wt}. Insert a new join node y between x
and its parent, we attach a new branch to y of x. This branch will contain the subtrees representing the
vertices v′, v1, . . . , v|C|−1. The new branch is a path, containing the following nodes (see Figure 3.2):

• Leaf node containing v′.

• Add node of v1, add node of v2, . . . , add node of v|C|−1.

• Forget node of v′.

• Add node of v.

• Forget node of v1, forget node of v2, . . . , forget node of v|C|−1.

• Add node of w1, add node of w2, . . . , add node of wt.

It is clear that this modification results in a nice tree decomposition, and if we perform it for each
precolored vertex v, then we obtain a decomposition of G′.
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3.1.2 System of extensions

Let H be an induced subgraph of G, and let K be a clique of H . We define a set system S (H,K) over
K that will play an important role in the analysis of the algorithm. Denote by CH ⊆ C those colors that
the precoloring assigns to vertices in H . The set system S (H,K) is defined as follows:

Definition 3.1.2. For S ⊆ K, the set S is in S (H,K) if and only if there is a precoloring extension ψ:
V (H) → C of subgraph H such that

• ψ(v) ∈ CH for every v ∈ S, and

• ψ(v) 6∈ CH for every v ∈ K \ S.

Thus the set system S (H,K) describes all the possible colorings that can appear on K in a precoloring
extension of H , but this description only distinguishes between colors in CH and colors not in CH . In
particular, the precoloring can be extended to H if and only if S (H,K) is not empty. If H contains no
precolored vertices, but it can be colored with |C| colors, then S (H,K) contains only the empty set.

The following observation bounds the possible size of a set in S (H,K):

Observation 3.1.3. If S ∈ S (H,K), then

|K| − |C \ CH | ≤ |S| ≤ |CH |

Proof. If S ∈ S (H,K), then there is a coloring ψ that assigns exactly |S| colors from CH to the vertices
of K. Clearly, in ψ at most |CH | vertices of the clique K can receive colors from CH , proving the upper
bound. Coloring ψ assigns colors from C \ CH to the vertices in K \ S, hence |C \ CH | ≥ |K| − |S|, and
the lower bound follows. �

The definition of this set system is somewhat technical, but it precisely captures the information
necessary for solving the precoloring extension problem. Let K be a clique separator of G, that is, K is
a clique such that its removal separates the graph into two or more components. Let V \ K = V1 ∪ V2

be a partition of the remaining vertices such that there is no edge between V1 and V2 (that is, each of V1

and V2 contains one or more connected components of V \K). Let G1 = G[V1 ∪K] and G2 = G[V2 ∪K].
Assume that we have already extended the precoloring to G1 (coloring ψ1) and to G2 (coloring ψ2). If
ψ1(v) = ψ2(v) for every vertex v of the clique K, then they can be merged to obtain a coloring of G.
Therefore G has a precoloring extension if and only if there is a precoloring extension ψ1 of G1, and a
precoloring extension ψ2 of G2 such that they agree on K. This means that if we have the list of all
possible colorings that a precoloring extension of G1 can assign to K, then to decide if G has a precoloring
extension this list is all the information required from the graph G1. More formally, if we replace G1 with
a graph that has the same list of possible colorings on K, then this does not change the existence of a
precoloring extension on G.

However, the following lemma shows that even less information is sufficient: we do not need the list
of all possible colorings that can appear on clique K in a coloring of G1, the set system S (G1,K) is
sufficient. More precisely, the set system S (G,K) can be constructed from S (G1,K) and S (G2,K),
hence these two systems are sufficient to decide whether G has a precoloring extension.

Lemma 3.1.4. Let K be a clique separator of G(V1 ∪ K ∪ V2, E) containing no precolored vertices, let
G1 = G[V1 ∪K] and G2 = G[V2 ∪K]. A set S ⊆ K is in S (G,K) if and only if |S| ≥ |K| − |C \CG| and
S can be partitioned into disjoint sets S1 ∈ S (G1,K) and S2 ∈ S (G2,K).

Proof. Assume first that S ∈ S (G,K) and let ψ be a coloring corresponding to the set S. Observa-
tion 3.1.3 implies that |S| ≥ |K| − |C \ CG|, as required. Coloring ψ induces a coloring ψi of Gi, let
Si ∈ S (Gi,K) be the set corresponding to ψi (i = 1, 2). Coloring ψ can assign three different types of
colors to the vertices in K:
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• If ψ(v) 6∈ CG (i.e., ψ(v) is not used in the precoloring), then v 6∈ S, S1, S2.

• If the precoloring uses ψ(v) in V1, then v ∈ (S ∩ S1) \ S2. (Since each color is used at most once in
the precoloring, ψ(v) cannot appear in V2 on a precolored vertex.)

• If the precoloring uses ψ(v) in V2, then v ∈ (S ∩ S2) \ S1.

Note that v cannot be a precolored vertex, hence the precoloring cannot use ψ(v) in K. Therefore S is
the disjoint union of S1 and S2, as required.

Now assume that S can be partitioned into disjoint sets S1 ∈ S (G1,K) and S2 ∈ S (G2,K), let ψ1

and ψ2 be the two corresponding colorings. In general, ψ1 and ψ2 might be different on K, thus they
cannot be combined to obtain a coloring of G. However, with some permutations of colors we modify
the two colorings in such a way that they assign the same color to every vertex of K. Let C1 (resp. C2)
be the colors of the precolored vertices in V1 (resp. V2). Notice that both ψ1 and ψ2 assign colors from
C \ C1 to S2, (since S1 and S2 are disjoint). Modify coloring ψ1: permute the colors of C \ C1 such that
ψ1(v) = ψ2(v) holds for every v ∈ S2 (this can be done since K is a clique, hence both ψ1 and ψ2 assign
distinct colors to the vertices in S2). Since the precolored vertices in V1 have colors only from C1, coloring
ψ1 remains a valid precoloring extension for G1. Similarly, in coloring ψ2, permute the colors of C \ C2

such that ψ1(v) = ψ2(v) for every v ∈ S1. Now we have that ψ1 and ψ2 agree on S, there might be
differences only on K \ S. Moreover, ψ1 uses only colors from C \ C1 on K \ S, and ψ2 uses colors only
from C \C2 on this set. Now select a set C′ ⊆ C \CG such that |C′| = |K \S| (here we use the assumption
|S| ≥ |K| − |C \ CG|, which implies that there are enough colors in C \ CG). Permute again the colors
of C \ C1 in coloring ψ1 such that ψ1 assigns to K \ S exactly the colors in C′. Similarly, permute the
colors of C \C2 in coloring ψ2 such that ψ2 also uses C′ on K \ S. Now the colorings ψ1 and ψ2 agree on
K, hence we can combine them to obtain a coloring ψ of G. This coloring proves that S = S1 ∪ S2 is in
S (G,K), what we had to show. �

Lemma 3.1.4 implies that if we know the set systems S (G1,K) and S (G2,K), then the set system
S (G,K) can be also determined. This suggests the following algorithm: for each node x of the tree
decomposition, determine S (Gx,Kx). In principle, this can be done in a bottom-up fashion: the set
system for node x can be determined from the systems of its children. Unfortunately, the size of S (Gx,Kx)
can be exponential, thus it cannot be constructed explicitly during the algorithm. However, ifG is a chordal
graph, then these set systems have nice combinatorial structure that allows a compact representation. The
main idea of the algorithm in Section 3.1.3 is to use network flows to represent the set systems S (Gx,Kx).
In Section 3.1.4 we discuss formally what is this nice structure that makes possible the representation with
flows: it turns out that if G is chordal and K is a clique of G, then S (G,K) is the projection of a matroid.

3.1.3 The algorithm

Here we prove the main result of this section:

Theorem 3.1.5. 1-PrExt can be solved in polynomial time for chordal graphs.

Given an instance of the 1-PrExt problem, we construct a network flow problem that has a feasible
flow if and only if there is a solution to 1-PrExt. We use the following variant of the flow problem. The
network is a directed graph D(U,A), each arc e ∈ A has an integer capacity c(e). The set of arcs entering
(resp. leaving) node v will be denoted by δ−(v) (resp. δ+(v)). The set of sources is S ⊆ U , and T ⊆ U
is the set of terminals in the network (we require S ∩ T = ∅). Every source v ∈ S produces exactly one
unit amount of flow, and every terminal v ∈ T has a capacity w(v), it can consume up to w(v) units.
Formally, a feasible flow is a function f : A → Z+ that satisfies 0 ≤ f(e) ≤ c(e) for every arc e ∈ A, and
the following holds for every node v ∈ U :
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• If v ∈ S, then
∑

e∈δ−(v) f(e) −
∑
e∈δ+(v) f(e) = −1.

• If v ∈ T , then 0 ≤
∑

e∈δ−(v) f(e) −
∑

e∈δ+(v) f(e) ≤ w(v).

• If v ∈ U \ (T ∪ S), then
∑

e∈δ−(v) f(e) =
∑

e∈δ+(v) f(e).

Using standard techniques, the existence of a feasible flow can be tested by a maximum flow algorithm.
It is sufficient to add two new vertices s and t, an arc with capacity 1 from s to every vertex v ∈ S, and
an arc with capacity w(v) to t from every vertex v ∈ T . Clearly, there is a feasible flow in the original

network if and only if there is an
−→
st flow with value |S| in the modified network. The maximum flow can

be determined using at most |S| iterations of the Edmonds-Karp augmenting path algorithm, hence the
existence of a feasible flow in a network D(U,A) can be tested in O(|S||A|) time.

Given a chordal graph G(V,E), its nice tree decomposition T (U,F ), {Tv | v ∈ V }, and the set of
precolored vertices W ⊆ V , we construct a network as follows. Direct every edge of T towards the root
r. For every v ∈ V and for every x ∈ Tv add a node xv to the network. Denote by Ux the |Kx| nodes
corresponding to x. If the edge xy is in Tv, then connect xv ∈ Ux and yv ∈ Uy by an arc. If y is the child
of x, then direct this arc from yv to xv. These new arcs −−→yvxv have capacity 1, while the arcs −→yx of the
tree T have capacity |C| − |Ky| (recall that if the graph is |C|-colorable, then |Ky| ≤ |C|).

For each node x ∈ T , depending on the type of x, we do one of the following:

• If x is an add node of some vertex v 6∈ W , and y is the child of x, then add an arc −−→yxv to the
network.

• If leaf node x contains some vertex v ∈W , then add a new node x′v to the network, add an arc
−−→
x′vxv

with capacity 1, and set x′v to be a source.

• If x is a forget node of some vertex v (either in W or not), and y is the child of x, then add an arc
−→yvx to the network.

For join nodes and for leaf nodes containing vertices outside W we do nothing. Figure 3.3 sketches the
construction for the different types of nodes.

So far there are no terminals in the network. The definition of the network is completed by adding
terminals as follows. Here we define not only a single network, but several subnetworks that will be useful
in the analysis of the algorithm. For every node x ∈ U of the tree T , the network Nx contains only
those nodes of the network that correspond to nodes in T x (recall that T x is the subtree of T rooted
at x). Formally, the network Nx has the node set T x ∪

⋃
y∈Tx Uy, and the sources nodes (if available)

corresponding to the leaves of T x. Moreover, in network Nx the nodes in Ux are set to be terminals with
capacity 1, and node x is a terminal with capacity |C| − |Kx|. This completes the description of the
network Nx.

Notice that there are sources only at the leaf nodes of precolored vertices. Therefore the number of
sources in network Nx is the same as the number of precolored vertices in Vx (recall that Vx is the set of
those vertices v whose tree Tv has at least one node in T x, and Gx = G[Vx]). We will denote by Cx the
set of colors that appear on the precolored vertices of Vx. In network Nx, there are terminals only at x
and Ux, these terminals must consume all the flow.

Observation 3.1.6. The number of sources in Nx equals the number of precolored vertices in Vx, which
is |Cx|. Consequently, in every feasible flow of Nx, the amount of flow consumed by the terminals at x
and Ux is exactly |Cx|. �

To prove Theorem 3.1.5, we show that the precoloring of G can be extended to the whole graph if and
only if there is a feasible flow in Nr, where r is the root of T . This gives a polynomial-time algorithm for
1-PrExt in chordal graphs, since constructing network Nr and finding a feasible flow in Nr can be done
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Figure 3.3: Construction of the network when node x is of the following types: (a) add node for v 6∈ W ,
(b) forget node for v (either in W or not), (c) leaf node for v ∈W , (d) join node.

in polynomial time. The proof of this claim uses induction on the tree decomposition of the graph. For
every node x ∈ U of T , we prove the following more general statement: the network Nx has a feasible
flow if and only if the precoloring of G can be extended to Gx.

More precisely, we show that the network Nx represents (in some well-defined sense) the set system
S (Gx,Kx): every feasible flow corresponds to a set in the system. Therefore Nx has no feasible flows if
and only if S (Gx,Kx) is empty, or, equivalently, the precoloring cannot be extended to Gx.

We say that a feasible integer flow of Nx represents the set S ⊆ Kx if for every v ∈ S, the terminal at
xv consumes one unit of flow, while for every v 6∈ S, there is no flow entering xv. The following lemma
establishes the connection between the constructed networks and the set systems S (Gx,Kx). The proof
of this lemma completes the proof of Theorem 3.1.5, as it reduces the 1-PrExt problem to finding a
feasible flow in Nr.

Lemma 3.1.7. For an arbitrary node x ∈ U of T , the network Nx has a feasible flow representing a set
S ⊆ Kx if and only if S ∈ S (Gx,Kx).

Proof. The lemma is proved for every node x of T by a bottom-up induction on the tree T . After checking
the lemma for the leaf nodes, we show that it is true for a node x assuming that it is true for the children
of x. The proof is done separately for the different types of nodes. If the node is an add or forget node of
some vertex v, then we have to consider two further cases depending on whether v is in W or not (recall
that W is the set of precolored vertices). Verifying the lemma in each case is tedious, but it does not
require any new ideas. The way the networks are constructed ensures that the set systems represented by
the networks have the required properties.

Leaf node. For a leaf node x, the lemma is trivial: if the vertex v in Kx is precolored, then every flow
of Nx represents {v}, otherwise Nx contains no sources, and every flow represents ∅.

Add node for v 6∈ W . Let x be an add node of v 6∈ W , and let y be the child of x. For every
S ∈ S (Gx,Kx), it has to be shown that there is a feasible flow of Nx representing the set S. Assume
first that v 6∈ S. Since Gy = Gx \ v and Ky = Kx \ {v}, it follows that S ∈ S (Gy ,Ky). Therefore by
the induction hypothesis, there is a flow fy in Ny representing S. We modify this flow to obtain a flow
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fx of Nx also representing S. For every u ∈ S, in flow fy there is one unit of flow consumed by the
terminal at yu. To obtain flow fx, direct this unit flow towards xu, and consume it by the terminal at
that node. Similarly, in the flow fy, there is some amount of flow consumed by the terminal at y, direct
this flow to x, and consume it by that terminal. By Observation 3.1.6, the amount of flow consumed
at x is exactly |Cx| − |S|. Moreover, the lower bound of Observation 3.1.3 implies that this is at most
|Cx| − |Kx| + |C \ Cx| = |C| − |Kx| < |C| − |Ky|, hence the capacity of the arc −→yx and the terminal at x
is sufficient for the flow. Thus we obtained a feasible flow of Nx, and obviously it represents S.

We proceed similarly if v ∈ S. In this case S \ {v} ∈ S (Gy ,Ky), thus Ny has a flow fy representing
S \ {v}. To obtain a flow fx of Nx representing S, the flow consumed at yu is directed to xu, as in the
previous paragraph. However, now we do not direct all the flow consumed at y to x, but we direct one
unit amount through the arc −−→yxv, and only the rest goes through arc −→yx. Therefore the amount of flow
consumed by the terminal at x is one unit less than the flow consumed at y in flow fy, hence the capacity
of the terminal at x is sufficient. Clearly, this results in a flow fx of Nx representing S, as required.
The only thing to verify is that there is at least one unit of flow consumed at y in flow fy. The flow fy
represents S \ {v}, and by Observation 3.1.6, the amount of flow consumed in Uy ∪ {y} is exactly |Cy|,
hence the flow consumed at y is |Cy| − |S| + 1. Since v is not a precolored vertex, we have that Cy = Cx.
We know that S ∈ S (Gx,Kx), therefore by the upper bound of Observation 3.1.3, |Cy| − |S| + 1 ≥ 1,
hence there is nonzero flow consumed at y in flow fy.

Now assume that there is a flow fx in Nx representing S ⊆ Kx, it has to be shown that S ∈ S (Gx,Kx).
Let y be the child of x. Assume first that v 6∈ S, we show that Ny has a flow fy in Ny representing S.
To obtain this fy, the flow fx is modified the following way. For every vertex xw ∈ Ux, where w 6= v, if
there is flow on the arc −−−→ywxw, then consume it by the terminal at yw. Similarly, the flow on the arc −→yx
can be consumed by the terminal at y (the capacity of the terminal at y equals the capacity of arc −→yx).
It is clear that these modifications result in a feasible flow for Ny that represents S. By the induction
hypothesis, this means that S ∈ S (Gy,Ky), and there is a corresponding coloring ψ. Since v is the
only vertex in Vx \ Vy , to prove S ∈ S (Gx,Kx) it is sufficient to show that coloring ψ can be extended
to v in such a way that v receives a color not in Cx. If there is no such extension, then this means
that ψ uses every color of C \ Cx on the neighbors of v, that is, on the clique Ky. By construction, ψ
assigns exactly |S| colors from Cx to the clique Ky, hence if every color of C \ Cx is used on Ky, then
|Ky| = |C \Cx|+ |S|. Therefore |Kx| = |Ky|+ 1 = |C \Cx|+ |S|+ 1 and the capacity of the terminal at x
is |C| − |Kx| = |Cx| − |S| − 1. However, in flow fx of Nx that represents S, exactly |Cx| − |S| unit of flow
is consumed at x (Observation 3.1.6), a contradiction. Thus ψ can be extended to v, and S ∈ S (Gx,Kx)
follows.

The case v ∈ S can be handled similarly. If there is a flow fx in Nx that represents S, then this is
only possible if there is flow on the arc −−→yxv. Therefore by restricting the flow to Ny as in the previous
paragraph, we can obtain a flow representing S \{v}. (Notice that the capacity of the terminal at y equals
the combined capacity of the terminals at x and xv, hence it can consume the flow on the arcs −−→yxv and
−→yx.)

By the induction hypothesis, it follows that S\{v} ∈ S (Gy ,Ky), and there is a corresponding coloring
ψ. Now it has to be shown that ψ can be extended to vertex v such that v receives a color from Cx.
Coloring ψ assigns exactly |S| − 1 colors from Cx to Ky. The extension is not possible only in the case
if every color of Cx is already used on Ky, that is, if |Cx| = |S| − 1. This would imply that in flow fx of
Nx, the amount of flow consumed at Ux is |S| = |Cx| + 1. However, by Observation 3.1.6, this is strictly
larger than the number of sources in Nx, a contradiction.

Forget node for v (vertex v is either in W or not). Let x be the forget node of v, and let y be the child
of x. Let S ∈ S (Gx,Kx). Since Gx = Gy, either S or S ∪ {v} is in S (Gy ,Ky). In the first case, the flow
fy in Ny that represents S can be extended to a flow in Nx that also represents S. As before, the flow
consumed at yw is directed to xw , and the flow consumed at y is directed to x. Recall that the capacity
of the arc −→yx equals the capacity of the terminal at y, while the capacity of the terminal at x is strictly
greater. Therefore the resulting flow is feasible in Nx, and clearly it represents S. If S∪{v} ∈ S (Gy ,Ky),
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then we do the same, but the flow consumed at yv is directed to x through the arc −→yvx. The resulting
flow is feasible in Nx and represents S.

To prove the other direction, assume that Nx has a flow fx representing S ⊆ Kx. Restrict this flow to
Ny, that is, modify the flow such that the terminals at y and Uy consume all the flow. This results in a
feasible flow fy of Ny that represents S or S ∪ {v}. Notice that the terminal at y has the same capacity
as the arc −→yx, hence this terminal can consume all the flow going through the arc. Therefore, by the
induction hypothesis, either S or S ∪ {v} is in S (Gy ,Ky), depending on whether there is flow consumed
at yv or not. In either case, S ∈ S (Gx,Ky) follows since Gx = Gy and Kx = Ky \ {v}.

Join node. Let y and z be the two children of the join node x. Let S ∈ S (Gx,Kx). By Lemma 3.1.4
this means that

|S| ≥ |Kx| − |C \ Cx| (3.1)

and S can be partitioned into disjoint sets S1 ∈ S (Gy,Ky) and S2 ∈ S (Gz ,Kz). By the induction
hypothesis, this implies that there are flows fy, fz in Ny and Nz that represent the sets S1 and S2,
respectively. We combine these two flows to obtain a flow fx of Nx that represents the set S. If there
is flow consumed at a node yv ∈ Uy (resp. zv ∈ Uz) in fy (resp. fz), then direct this flow on the arc
−−→yvxv (resp. −−→zvxv) to node xv, and consume it there. The capacity of the terminal at xv is 1, but the
disjointness of S1 and S2 implies that at most one unit of flow is directed to xv. The flow consumed at
node y and z is directed to x on the arc −→yx, −→zx, respectively. Since there are exactly |S| units of flow
consumed in Ux, therefore |Cx| − |S| units of flow has to be consumed at x. By (3.1), this is at most
|Cx| − |Kx|+ |C \Cx| = |C| − |Kx|, thus the capacity of the terminal at x is sufficient for consuming this
flow. Therefore we have obtained a flow fx in network Nx that represents S.

Now assume that Nx has a flow fx that represents S. Since the terminal at x has capacity at most
|C| − |Kx|, and by Observation 3.1.6, the amount of flow consumed in x ∪ Ux is |Cx|, it follows that

|S| ≥ |Cx| − (|C| − |Kx|) = |Kx| − |C \Cx|. (3.2)

If flow is consumed at a node xv ∈ Ux, then the flow arrives to this node either from yv or from zv. Define
the sets S1, S2 ⊆ Kx such that v ∈ S1 (resp. v ∈ S2) if there is flow on arc −−→yvxv (resp. −−→zvxv).

Based on the flow fx of Nx representing S, we create a flow fy of Ny that represents S1 and a flow fz of
Nz that represents S2. The flows fy and fz are constructed as follows. For every yv ∈ Uy, if there is flow
going through the arc −−→yvxv, then consume this flow at yv, and similarly for the nodes zv ∈ Uz. The flow
on arcs −→yx and −→zx are consumed at y and z, respectively (the capacity of nodes x, y, and z are the same
|C| − |Kx| = |C| − |Ky| = |C| − |Kz|). Clearly, flows fy and fz represent S1 and S2, respectively. By the
induction hypothesis, the flows fx and fy imply that S1 ∈ S (Gy,Ky) and S2 ∈ S (Gz ,Kz). Furthermore,
it is clear that S1 and S2 are disjoint, and S = S1 ∪ S2. Therefore by Lemma 3.1.4 and Inequality (3.2),
this proves that S ∈ S (Gx,Kx), as required.

�

To determine the running time of the algorithm, we have to consider two main steps: the construction
of the network and the solution of the flow problem. First of all, the transformation introduced at the
end of Section 3.1.1 can increase the size of the graph by at most a factor of n. Given a chordal graph
G(V,E), its tree decomposition can be constructed by first finding a perfect vertex elimination scheme
[Gol80, RTL76]. Based on this ordering of the vertices, one can build a tree T (U,F ) of size |V |, and one
subtree for each vertex of the graph. This tree decomposition can be found in time linear in the size of
the output, that is, in O(|V |2) time. Converting T (U,F ) to a nice tree decomposition can introduce an
increase of factor at most |V |, thus it can be done in O(|V |3) time. The network defined by the algorithm
has size linear in the total size of the tree decomposition (size of T (U,F ) and the sum of the size of the
subtrees), and clearly it can be constructed in linear time. Therefore the constructed network has O(|V |3)
nodes and O(|V |3) arcs, and the construction takes O(|V |3) time.
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In a network with n nodes and m arcs, the maximum flow can be determined in O(n2m) or even
in O(n3) time [AMO93]. Moreover, it can be determined in O(km) time if a flow with value k exists:
the Edmonds-Karp algorithm produces such a flow after finding the first at most k augmenting paths
(assuming that the capacities are integer). As discussed in the beginning of the section, the existence of
a feasible flow can be tested by finding an s-t flow with value |S|, hence it can be done in O(|S| · |V |3)
time. By Observation 3.1.6, this is at most O(|C| · |V |3) = O(|V |4). This implies that solving the problem
for graphs with up to 100 vertices should be easy. We believe that the running time can be significantly
improved by streamlining the construction, hence the algorithm can be made to work efficiently on larger
graphs as well. However, our aim was only to prove that the problem can be solved in polynomial time,
thus we preferred ease of presentation over efficiently.

The algorithm described above determines whether a precoloring extension exists, but does not find
a coloring. However, based on the feasible flow of network Nr, one can construct a precoloring extension
of the graph. We have seen that the feasible flow of network Nx represents a set Sx ∈ S (Gx,Kx).
Recursively for each x ∈ U , we compute a coloring ψx corresponding to Sx. For the leaf nodes this is
trivial. Let x be an add node of vertex v, and let y be the child of x. To obtain ψx, coloring ψy has to
be extended to v: if there is flow on −−→yxv, then v has to receive a color from Cx, otherwise from C \ Cx.
The construction ensures that there is always such a color not already used on the neighbors of v. If
x is a forget node with child y, then ψx can be selected to be the same as ψy. Finally, assume that x
is a join node with children y and z. By the way the network was constructed, Sy and Sz are disjoint,
Sx = Sy ∪ Sz, and S ≥ |Kx| − |C \Cx|. Therefore the method described in the proof of Lemma 3.1.4 can
be used to construct a coloring ψx of Gx that corresponds to Sx ∈ S (Gx,Kx).

3.1.4 Matroidal systems

The main idea of the algorithm in Section 3.1.3 is to represent the set system S (G,K) by a network flow.
We have shown that for chordal graphs the set systems S (Gx,Kx) can be represented by network flows
for every subgraph Gx and clique Kx given by the tree decomposition. The reason why these systems can
be represented by flows is that they have nice combinatorial structure (the proof is given at the end of
the section):

Theorem 3.1.8. Let G(V,E) be a chordal graph, and let W ⊆ V be a arbitrary set of precolored vertices
such that every color of C is used at most once in the precoloring. If H is an induced subgraph of G, and
K is a clique of H, then the set system S (H,K) is the projection of the basis set of a matroid.

Recall that a set system B is the basis set of a matroid, if it satisfies the following two conditions:

• Every set in B has the same size.

• For every B1, B2 ∈ B and v ∈ B1 \B2, there is an element u ∈ B2 \B1 such that B1∪{u}\{v} ∈ B.

If B is a set system over X , then its projection to Y ⊆ X is a set system over Y that contains B′ ⊆ Y
if and only if there is a set B ∈ B with B ∩ Y = B′. The projection of a matroid is always a so-called
∆-matroid [Mur00], hence Theorem 3.1.8 also says that S (G,K) is a ∆-matroid. For further notions of
matroid theory, the reader is referred to e.g., [Rec89].

In general, if G is not chordal, then S (G,K) is not necessarily the projection of a matroid. Figure 3.4
shows a graph G with two precolored vertices v1 and v2. The graph is not chordal, since vertices v1, v4,
v2, v8 induce a cycle of length 4. If we have only four colors, then G has four precoloring extensions:
vertex v3 can have only color 3 or 4, vertex v9 can have only color 1 or 2, and setting the color of these
two vertices forces a unique coloring for the rest of the graph. For example, if coloring ψ assigns color 3
to v3, and color 1 to v9, then ψ(v3) = 3, ψ(v9) = 1, ψ(v2) = 2 imply ψ(v4) = 4; ψ(v9) = 1, ψ(v2) = 2,
ψ(v4) = 4 imply ψ(v6) = 3; ψ(v1) = 1, ψ(v2) = 2, ψ(v6) = 3 imply ψ(v8) = 4; and finally ψ(v5) = 1
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Figure 3.4: A non-chordal graph G and a clique K = {v5, v6, v7} such that S (G,K) is not the projection
of a matroid (|C| = 4).

and ψ(v7) = 2 follow in a similar fashion. Therefore the clique K = {v5, v6, v7} receives one of the four
colorings (3, 1, 4), (1, 3, 2), (4, 1, 3), (1, 4, 2) in every precoloring extension. Since CG = {1, 2}, it follows
that S (G,K) = {{v6}, {v5, v7}}, which cannot be the projection of a matroid (for example, it is not even
a ∆-matroid).

The proof of Theorem 3.1.8 uses the following result of matroid theory. In a directed graph D(U,A),
we say that Y ⊆ U can be linked onto X ⊆ U , if |X | = |Y | and there are |X | pairwise node disjoint paths
from the nodes in X to the nodes in Y . The sets X and Y do not have to be disjoint, and the zero-length
path consisting of a single node is also allowed. Hence X can be linked onto X in particular. The following
theorem states that the graph G together with a set X ⊆ U induces a matroid on the vertices of the graph
(see e.g., [Rec89]):

Theorem 3.1.9. If D(U,A) is a directed graph and X ⊆ U is a fixed subset of nodes, then those subsets
Y ⊆ U that can be linked onto X form the bases of a matroid M over U .

Considering the line graph of the directed graph, one can state an arc disjoint version of Theorem 3.1.9:

Theorem 3.1.10. If D(U,A) is a directed graph, s ∈ U is a fixed vertex and r is a positive integer, then
those r-element subsets A′ ⊆ A whose arcs can be reached from s by r pairwise arc disjoint paths form the
bases of a matroid M over A. �

To prove Theorem 3.1.8, we use the fact that S (Gx,Kx) can be represented by the network Nx
(Lemma 3.1.7). Then Theorem 3.1.10 is used to show that the set system represented by a network is the
projection of a matroid.

Proof (of Theorem 3.1.8). Clearly, it is sufficient to consider only the case when H = G, since every
induced subgraph of a chordal graph is also chordal. Moreover, it can be assumed that K is a maximal
(non-extendable) clique: if K1 ⊆ K2 are two cliques, then S (G,K1) is the projection of S (G,K2).
Therefore if S (G,K2) is the projection of the basis set of a matroid, then this also follows for S (G,K1).
We have seen in Section 3.1.1 that given a tree decomposition T (U,F ), {Tv}v∈V (G) of the chordal graph G,
every maximal clique of G is a clique Kx for some x ∈ U . Furthermore, since the choice of the root node
of T is arbitrary, it can be assumed that x is the root, thus we have G = Gx and S (G,K) = S (Gx,Kx).
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By Lemma 3.1.7, the sets in S (Gx,Kx) are exactly the sets represented by the feasible flows of the
network Nx. Now, as described at the beginning of Section 3.1.3, add two new nodes s, t to the network,
add an arc with unit capacity from s to every source, and for every terminal x, add an arc from x to t that
has capacity equal to the capacity of x. Furthermore, replace every arc e having capacity c(e) with c(e)
parallel arcs of unit capacity, clearly this does not change the problem. Call the resulting network N ′

x. By
Observation 3.1.6, the number of sources in Nx is r = |Cx|, hence every feasible flow of Nx corresponds

to an
−→
st flow with value r in N ′

x. Since every arc has unit capacity in N ′
x, an integral

−→
st flow with value

r corresponds to r arc disjoint paths from s to t. Now consider the matroid M given by Lemma 3.1.10.
Denote by At the arcs incident to t, and let matroid Mt be the restriction of matroid M to At. Let
A′
t ⊆ At be those arcs of At that originate from some node xv ∈ Ux (and not from x). We claim that

S (G,Kx) is isomorphic to the projection of Mt to A′
t (vertex v ∈ Kx maps to arc

−→
xvt). By Lemma 3.1.7,

if S ∈ S (G,Kx), then there is a feasible flow in Nx where flow is consumed only by those terminals of

Ux that correspond to the elements in S. Based on this flow, one can find r arc disjoint
−→
st paths in N ′

x,
and it follows that the matroid Mt has a base whose intersection with A′

t is exactly S, hence S is in the
projection of Mt to A′

t. It is easy to show the other direction as well: if S is in the projection of Mt, then
there is a feasible flow of Nx where only the terminals corresponding to S consume flow in Ux. Thus by
Lemma 3.1.7, S ∈ S (G,Kx), as required. �

3.1.5 Applications

A possible application area for Theorem 3.1.5 is the design and configuration of Wavelength Division
Multiplexing (WDM) optical networks. WDM technology allows us to establish several data channels in
a single optical fiber using the different wavelengths. All-optical switches can route the different channels
of an incoming fiber to different outgoing fibers. Therefore by configuring the switches appropriately,
we can create direct optical connections between distant nodes of the network. However, in order to
configure the network, we have to assign a wavelength to each connection such that connections that use
the same fiber receive different wavelengths. This wavelength assignment problem is a coloring problem.
The conflict graph of the network has one vertex for each connection, and two vertices are neighbors if
the corresponding two connections share a fiber. If the number of wavelengths in a fiber is k, then the
wavelength assignment problem can be solved if and only if the conflict graph is k-colorable.

The WDM network configuration problem was studied by several papers in the literature, with a
particular emphasis on tree and tree-like networks [EJ01, Erl99, EJK+99, EJ98, ART01]. However, the
model becomes slightly different if we consider another type of optical switches. The simplest optical
switch is the passive star that selects one incoming fiber for each wavelength, and transmits the data on
this wavelength to every outgoing fiber. If we have this type of switches, then connections having the same
wavelength cannot go through the same switch. That is, the connections with the same wavelength have
to be vertex disjoint, not only edge disjoint. We can take into account this restriction by modifying the
definition of the conflict graph: connect those vertices where the corresponding connections go through the
same switch. As discussed in Section 3.1.1, the intersection graph of paths in a tree is always chordal, hence
the conflict graph in this problem will be a chordal graph. Vertex coloring is polynomial-time solvable for
chordal graphs, hence we can determine in polynomial time whether the wavelength assignment problem
can be solved. The algorithm in Theorem 3.1.5 gives a method for solving the slightly more general
problem where some of the connections already have a wavelength, but every wavelength is assigned to at
most one connection. For example, this is the case if all the connections going through a particular switch
are already assigned a wavelength, but we are free to assign any wavelength to the remaining connections.

We remark that with chordal graphs we can model a more general problem as well. The intersection
graph of the subtrees in tree gives a chordal graph, thus if the connections are not paths but trees, then
the same method works. This observation might be useful if we have to establish broadcast connections
between multiple parties.
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3.2 The Eulerian disjoint paths problem

Disjoint paths problems arise naturally in practical applications such as network routing and VLSI-design.
The problem is also interesting from the theoretical point of view: there are several beautiful good
characterization theorems for some restricted cases. The restriction to planar graphs, and in particular
to planar grid graphs is both of practical and theoretical interest. Here we prove the NP-completeness of
a planar case of the problem, settling an open question of Vygen [Vyg94]. This complements the good
characterization theorem of Okamura and Seymour. Moreover, this result will be used in Section 3.3 to
prove the NP-completeness of precoloring extension on unit interval graphs.

In the disjoint paths problem we are given a graph G and a set of source–destination pairs (s1, t1),
(s2, t2), . . . , (sk, tk) called the terminals, and we have to find k disjoint paths P1, . . . , Pk such that path
Pi connects vertex si to vertex ti. There are four basic variants of the problem: the graph can be directed
or undirected, and we can require edge disjoint or vertex disjoint paths. The problem is often described
in terms of a supply graph and a demand graph, as follows:

Disjoint Paths

Input: The supply graph G and the demand graph H on the same set of vertices.

Task: Find a path Pe in G for each e ∈ E(H) such that these paths are pairwise disjoint and
path Pe together with edge e forms a circuit.

The graphs G and H can have parallel edges but no loops. For vertex disjoint paths we allow their
endpoints to be the same. In the directed version of the problem both G and H are directed. With a
slight abuse of terminology, we say in the directed case that a demand −→uv ∈ H starts in v and ends in
u (since the directed path satisfying this demand starts in v and ends in u). Moreover, given a solution
of the disjoint paths problem, we identify a demand with the path satisfying it. That is, we say that
“demand α uses supply edge e” instead of “the path satisfying demand α uses edge e”. An undirected
graph is called Eulerian if every vertex has even degree, and a directed graph is Eulerian if the indegree
equals the outdegree at every vertex.

The disjoint paths problem and its variants were intensively studied, for an overview see [Fra90, Vyg94].
In particular, all four variants of the problem (directed/undirected, edge disjoint/vertex disjoint) are NP-
complete, even when G is planar. In this paper we consider only the (directed and undirected) edge
disjoint paths problem in the grid, thus henceforth disjoint means edge disjoint.

If there exist disjoint paths in G(V,E) with the given endpoints, then every cut (V ′, V \ V ′) has to
contain at least as many edges from G as from H , otherwise there would be more demands crossing this
cut than edges connecting V ′ and V \ V ′. We say that the cut criterion holds for G and H if this is true
for every cut (V ′, V \ V ′). In general, the cut criterion is only a necessary condition, but in an important
special case it is also sufficient:

Theorem 3.2.1 (Okamura and Seymour, 1981, [OS81]). Assume that G is planar, undirected,
G+H is Eulerian, and every edge of H lies on the outer face of G. The edge disjoint paths problem has
a solution if and only if the cut criterion is satisfied.

A graph is a grid graph if it is a finite subgraph of the rectangular grid. A directed grid graph is a
grid graph with the horizontal edges directed to the right and the vertical edges directed to the bottom.
Clearly, every directed grid graph is acyclic. A rectangle is a grid graph with n × m nodes such that
vi,j (1 ≤ i ≤ n, 1 ≤ j ≤ m) is connected to vi′,j′ if and only if |i − i′| = 1 and j = j′, or i = i′ and
|j − j′| = 1. The study of grid and rectangle graphs is motivated by applications in VLSI-layout.

The special case of Theorem 3.2.1 when G is a rectangle is investigated in [Fra82]. The requirement
that the edges of H lie on the outer face of G cannot be dropped even in this restricted case: Figure 3.5
shows an example where G+H is Eulerian, the cut criterion holds, but the terminals cannot be connected
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Figure 3.5: Theorem 3.2.1 does not hold when the terminals do not have to lie on the outer face.

by edge disjoint paths (it is left to the reader to verify these claims). In Section 3.2.1, we prove that the
edge disjoint paths problem is NP-complete on rectangles even if G + H is Eulerian. This answers an
open question of Vygen [Vyg94]. Moreover, this also implies that (unless coNP = NP) a generalization
of Theorem 3.2.1 cannot give a good characterization to the case when we drop the requirement that the
terminals have to lie on the outer face.

There are several good characterization theorems in the literature [Fra90, Vyg94] for the case when G
is planar, G + H is Eulerian, and some additional constraint holds (as in Theorem 3.2.1). Previously no
NP-completeness result was known for G planar and G+H Eulerian. To the best of our knowledge, the
only negative result for G + H Eulerian is the theorem of Vygen [Vyg95] stating that the disjoint paths
problem is NP-complete if G+H is Eulerian, and G is an undirected (nonplanar) graph or a DAG.

In the directed case, Vygen proved that the edge disjoint paths problem is NP-complete even if the
supply graphG is planar and acyclic [Vyg95] or even if G is a directed rectangle [Vyg94], and asked whether
the problem remains NP-complete with the additional constraint that the graph G + H is Eulerian. We
settle this question by proving that the problem, similarly to the undirected version, is indeed NP-complete.
This result will be used in Section 3.3 to show that precoloring extension is NP-complete for unit interval
graphs.

3.2.1 The reduction

In this section we prove that the edge disjoint paths problem on directed and undirected rectangle graphs
remains NP-complete even in the restricted case when G+H is Eulerian. First we prove that the problem
is NP-complete on directed grid graphs with G + H Eulerian. Using standard techniques, this result is
extended to rectangle graphs and undirected graphs.

The following observation will be useful:

Lemma 3.2.2 ([Vyg95]). In the directed disjoint paths problem, if G+H is Eulerian and G is acyclic,
then every solution uses all the edges of G.

Proof. Assume that a solution is given. Take a demand edge of H and delete from G + H the directed
circuit formed by the demand edge and its path in the solution. Continue this until the remaining graph
contains no demand edges, then it is a subgraph of G. Since we deleted only directed circuits, it remains
Eulerian, but the only Eulerian subgraph of the acyclic graph G is the empty graph with no edges, thus
the solution used all the edges. �

Proving the NP-completeness of a planar problem is usually done in one of two ways: either the
reduction is from a planar problem (such as planar SAT, planar independent set etc.) or the reduction
constructs a planar instance by locally replacing crossings with copies of some crossover gadget (as in
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[GJS76] for planar graph coloring). Our reduction is none of these two types: there are crossings, but the
global structure of the construction ensures that the crossings “behave nicely.” This resembles the way
[Vyg95] proves the NP-completeness of the disjoint paths problem on planar DAGs.

Theorem 3.2.3. The edge disjoint paths problem is NP-complete on directed grid graphs, even if G+H
is Eulerian.

Proof. The proof is by polynomial reduction from a restricted case of 1-in-3 SAT, where a formula is given
in conjunctive normal form, and our task is to find a variable assignment such that in every clause of the
formula, exactly one of the three literals is true. In monotone 1-in-3 SAT every literal is positive (not
negated), and in the cubic version of the problem every variable occurs exactly three times. In [MR01] it
is shown that monotone, cubic 1-in-3 SAT is NP-complete.

Let n be the number of variables in the given monotone, cubic 1-in-3 SAT formula, this obviously
equals the number of clauses. It can be assumed that every clause contains three different literals. The
reduction is of the component design type: we construct variable setting gadgets and satisfaction testing
gadgets, and connect them in such a way that the disjoint paths problem has a solution if and only if the
given formula is satisfiable (in 1-in-3 sense). The constructed graph G is a grid graph, and the construction
ensures that G+H is Eulerian in the resulting instance.

First we present how the gadgets are connected, the structure of the gadgets itself will be described
later. Going diagonally from top left to bottom right, place a sequence of n copies of the variable setting
gadget. The component corresponding to xn is in the top left corner. Continue this sequence by n copies
of the satisfaction testing gadget (see Figure 3.6). Denote by pt the lower right vertex of the component
corresponding to the tth clause, and let p0 be the top left vertex of the component of the first clause.
Three paths leave each variable gadget to the right and three to the bottom, they will be called the right
exits and the lower exits of the gadget. The exits are numbered, the topmost right exit is the first right
exit, and the leftmost lower exit is the first lower exit. Similarly, the satisfaction testing gadgets have
three upper entries (the first is the leftmost) and three left entries (the first is the topmost). Assume that
the literals in a clause are sorted, the variable of the first literal has the smallest index, i.e., as in the
clause (x1 ∨ x2 ∨ x7). The occurrences of a variable are numbered in such a way that the first occurrence
of the variable is in the clause with the largest index.

The components are connected as follows. If the ith occurrence (i = 1, 2, 3) of variable xs is the jth
literal (j = 1, 2, 3) in clause Ct, then connect the ith right exit of the component of xs to the jth upper
entry of the component of Ct, and similarly with lower exits and left entries. Each connection is a path in
the grid consisting of several directed edges. The connections are done by first going to the right (below)
and then to below (right), there is only one turn in each connection. There will be exactly 6n demands:
if variable xs appears in clause Ct, then there are two demands that start from the component of xs and
end in the component of Ct. (The exact location of the start and end vertices of the demands will be
defined later.)

The connections described above can cross each other at a vertex, there may be several such crossings
in the resulting grid graph. Given a solution of the disjoint paths problem, we call a vertex a bad crossing,
if the demand entering this vertex from the left leaves to the bottom, and the demand entering from above
leaves to the right. (Note that by Lemma 3.2.2, exactly two demands go through a crossing). We show
by induction that a solution in this graph cannot contain a bad crossing. Clearly, there are no crossings
to the left and above of the vertex p0. Assume that there are no bad crossings to the left and above of
the vertex pt−1. Figure 3.7 shows the paths entering the component of clause Ct, the dashed lines show
other possible paths that may cross these six paths. By the way the literals are ordered in the clause, the
six paths entering a clause component do not cross each other (recall that the component of xn is in the
upper left corner). Furthermore, because of the way the occurrences of a variable are ordered, the paths
leaving a variable component do not cross each other either.

By the induction hypotheses, the same demand goes through vertices c1 and c2, through vertices b1
and b2, through vertices a1 and a2, through vertices c′1 and c′2, and so on. For example, the demand going
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Figure 3.6: Overview of the reduction. The variable setting gadgets are on the left, three paths leave each
of them to the right and to the bottom. These paths lead to the satisfaction testing gadgets below.
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Figure 3.8: The variable setting gadget.

through c1 can leave the path c1c2 only if there is a bad crossing on c1c2, but there are no bad crossings
to the left and above of pt−1. There are two demands that start in the component of xc and have Ct as
destination. They cannot leave xc both to the right: only one of them can reach Ct through the path from
c2 to c3, and there is no other way of reaching Ct without a bad crossing to the left of pt−1. Similarly,
the two demands cannot leave both to the bottom. Thus exactly one of the demands going to Ct leaves
to the right and the other to the bottom, furthermore, these demands leave xc through c1 and c′1. By a
similar argument, this also holds for the components of xb and xa. Clearly, the demand going through
c1 and c2 can reach Ct only through c3, thus there are no bad crossings on the path from c2 to c3. The
demand going through b2 can reach Ct only through b3 or c3, but since c3 is already used, only b3 remains.
Finally, the demand going through a2 has to enter Ct in a3. Therefore there are no bad crossings above
Ct, and a similar argument shows that there are no bad crossings to the left of Ct. Thus there are no bad
crossings to the left and above of pt, which completes the induction.

Now we describe the gadgets used in the reduction. The variable setting gadget (Figure 3.8) has three
output edges to the right, and three output edges to the bottom. On the right of the figure a simplified
version of the gadget is shown, which is not a grid graph, just a planar DAG. The structure of the real
gadget is the same, but in order to make it a grid graph some of the edges have to be twisted and the
high-degree vertices A and B have to be split. We will show how the simplified version works, it is easy
to show that the same holds for the real gadget.

Demands α1, β2 start in X , demands α2, β3 start in Y , and demands α3, β1 start in Z. The destination
of demands αi and βi are in the clause component corresponding to the clause of the ith occurrence of the
variable. We have seen that in every solution either αi leaves the gadget to the right and βi leaves to the
bottom, or the opposite. However, more is true: either all of α1, α2, α3 leave to the right (through B) and

β1, β2, β3 leave to the bottom (through A), or the other way. To see this, first assume that α1 uses
−−→
XA,

then β2 uses
−−→
XB. This implies that α2 cannot go through B, thus α2 uses

−→
Y A and β3 uses

−−→
Y B. Demand

α3 cannot go through B, hence it uses
−→
ZA and β1 uses

−−→
ZB. Thus α1, α2, α3 go through A, and β1, β2, β3

go through B, what we had to show. By a similar argument, if α1 uses
−−→
XB, we get that all three demands

αi go through B. Therefore in every solution of the disjoint paths problem, the component of xs has two
possible states: either the demands αi leave to the bottom (we call this state “true”) or they leave to the
right (“false”). Recall that if the demands αi leave to the bottom, then they reach their respective clause
components from the left, while if they leave to the right, then they reach the clause components from
the top.

The satisfaction testing gadget and its simplified equivalent is shown on Figure 3.9. The three paths
that enter K correspond to the three paths that enter the gadget from the left, while the paths entering L
correspond to those entering from the top. The gadget contains the endpoints of six demands corresponding
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Figure 3.9: The satisfaction testing gadget.

to the three variables. Demands γj and δj start in the variable component corresponding to the jth literal
of the clause. More precisely, if the jth literal of clause Ct is the ith occurrence of variable xs, then
demand αi starting in gadget xs is the same as demand γj terminating in gadget Ct, and βi is the same
as δj .

Vertex P is the endpoint of the three demands δ1, δ2, δ3, and vertex Q is the endpoint of the demands
γ1, γ2, γ3. We have seen that in every solution, exactly one of γj and δj leaves the variable component
to the right, the other one leaves to the bottom, hence exactly one of them enters the clause component
from the top, the other one enters from the left. Furthermore, there is exactly one j such that γj enters
from the left and δj enters from the top, for the remaining two j′ 6= j, demand γj′ enters from the top
and demand δj′ enters from the left. To see this, notice that from K only one demand can reach Q and
only two demands can reach P . Thus the satisfaction testing gadget effectively forces that exactly one of
the three variable gadgets is in the state “true.”

It can be easily verified that G + H is Eulerian in the constructed instance. Given a solution to the
disjoint paths problem, we can find a satisfying assignment of the formula: assign to the variable xs “true”
or “false” depending on the state of the gadget corresponding to xs. By the construction, every clause
will be satisfied (in 1-in-3 sense). On the other hand, given a satisfying variable assignment, we can find
a solution to the disjoint paths problem: the values of the variables determine how the demands leave the
variable setting gadgets and this can be extended to the whole graph. �

It is noted in [Vyg94] that the disjoint paths problem is not easier in rectangle graphs than in general
grid graphs: if we add a new edge −→uv to G and a new demand from u to v, then the new demand can
reach v in the grid only using the new edge. Thus we can add new edges and demands until we get a full
rectangle graph without changing the solvability of the instance. Clearly, G + H remains Eulerian after
adding the supply edge −→uv to G, and the demand edge −→vu to H .

Corollary 3.2.4. The edge disjoint paths problem is NP-complete on directed rectangle graphs, even if
G+H is Eulerian. �

A reduction from the directed case to the undirected one was described by Vygen:
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Lemma 3.2.5 ([Vyg95]). If (G,H) is an instance of the directed edge disjoint paths problem, where G
is acyclic, G + H is Eulerian, and the undirected graphs G′, H ′ result from neglecting the orientation of
G,H, then every solution of (G,H) is also the solution of (G′, H ′) and vice versa.

Combining Corollary 3.2.4 and Lemma 3.2.5, we obtain the following corollary, settling another open
question from [Vyg94]:

Corollary 3.2.6. The undirected edge disjoint paths problem is NP-complete on rectangle graphs, even if
G+H is Eulerian. �

For technical reasons, we introduce the following variant of the disjoint paths problem. For every
demand, not only the terminals are given, but here also the first and last edge of the path is also prescribed:

Directed Edge Disjoint Paths with Terminal Edges

Input: The supply graph G and the demand graph H on the same set of vertices (both of them
directed), and for every edge e ∈ H , a pair of edges (se, te) of G.

Question: Find a path Pe in G for each e ∈ E(H) such that these paths are edge disjoint, Pe
and e form a directed circuit and the first/last edge of Pe is se, te, respectively.

As shown in the following theorem, this variant of the problem is NP-complete as well. This problem
will be used in Section 3.3: it will be the basis of the reduction when proving the NP-completeness of
precoloring extension for unit interval graphs.

Theorem 3.2.7. The Directed Edge Disjoint Paths with Terminal Edges problem is NP-complete on
rectangle graphs, even when G+H is Eulerian.

Proof. The reduction in Theorem 3.2.3 constructs grid graphs with the following additional properties:

• at most one demand ends in each vertex v,

• if a demand ends in v, then exactly one edge of G enters v,

• at most two demands start in each vertex u,

• if a demand stars in u, then no edge of G enters u.

If two demands α and β start at a vertex u, then we slightly modify G and H . Two new supply edges
−→xu and −→yu are attached to u, there is place for these edges since no edge enters u in G. Demand graph H
is modified such that the start vertex of demand α is set to x, the start vertex of β is set to y. Clearly,
these modifications do not change the solvability of the instance, and G remains a grid graph. Moreover,
G +H remains Eulerian. Therefore we can assume that the instance has the following two properties as
well:

• At most one demand starts from each vertex u,

• If a demand starts in u, then exactly one edge of G leaves u.

If these properties hold, then in every solution of the disjoint paths problem a demand going from u to
v has to leave u on the unique edge leaving u, and has to enter v on the unique edge entering v. Therefore
prescribing the first and the last edge of every demand does not change the problem. Thus we can conclude
that the disjoint paths with terminal edges problem is NP-complete in grid graphs. Furthermore, when
we add new edges to G and H to make G a rectangle (as described in the remark before Theorem 3.2.4),
then obviously it can be prescribed that the first and the last edge of the new demand is the new edge,
hence it follows that the problem is NP-complete on directed rectangles as well. �
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3.3 Unit interval graphs

A graph is an interval graph if it can be represented as the intersection graph of a set of intervals: a vertex
corresponds to each interval, and two vertices are connected if the corresponding intervals have nonempty
intersection. Furthermore, the graph is a unit interval graph if it can be represented by intervals of unit
length, and it is a proper interval graph if it can be represented in such a way that no interval is properly
contained in another. It can be shown that these two latter classes of graphs are the same [BW99], in fact
they are exactly the interval graphs that are claw-free [Rob69] (contain no induced K1,3). These interval
graphs are also called indifference graphs.

Interval graph coloring arises in various applications including scheduling [BHT93] and single row VLSI
routing [Rec92]. There is a simple greedy algorithm that colors an interval graph with minimum number
of colors. However, Biró, Hujter and Tuza [BHT92] proved that the precoloring extension problem is
NP-complete on interval graphs, even if every color is used at most twice in the precoloring (they also
gave a polynomial time algorithm for the case where every color is used only once). In [HT96] they asked
what is the complexity of the precoloring extension problem in the more restricted case of unit interval
graphs. In Section 3.3.1, we prove that this problem is also NP-complete. The proof is by reduction from
a disjoint paths problem whose NP-completeness was proved in Section 3.2.

3.3.1 The reduction

In [BHT92] the NP-completeness of precoloring extension on interval graphs is proved by a reduction
from circular arc graph coloring. A similar reduction is possible from proper circular arc coloring to the
precoloring extension of proper interval graphs, but the analogy doesn’t help here, because proper circular
arc coloring can be done in polynomial time [OBB81, TT85]. In this section, we follow a different path:
the NP-completeness of precoloring extension on proper interval graphs is proved by reduction from a
planar disjoint paths problem investigated in Section 3.2.

An important idea of the proof is demonstrated on Figure 3.10. Every interval graph in this section
is assumed to be open. In any k-coloring of the intervals in (a), for all i, interval I1,i has the same color
as I0,i: interval I1,0 must receive the only color not used by I0,1, I0,2, . . . , I0,k−1; interval I1,1 must receive
the color not used by I1,0, I0,2, I0,3, . . . , I0,k−1, and so on. In case (b), the intervals are slightly modified.
If all the I0,i intervals are colored, then there are two possibilities: either the color of I1,i is the same as
the color of I0,i for i = 0, . . . , k − 1, or we swap the colors of I1,1 and I1,2. Blocks of type (a) and (b) will
be the building blocks of our reduction.

Theorem 3.3.1. The precoloring extension problem is NP-complete on proper interval graphs.

Proof. The reduction is from the Eulerian directed edge disjoint paths with terminal edges problem on
rectangle graphs, whose NP-completeness was shown in Theorem 3.2.7. First we modify the given rectangle
graph G. As in the remark before Theorem 3.2.4, new edges are added to the rectangle KLMN to obtain
the shape shown on Figure 3.11, without changing the solvability of the instance. Hereinafter it is assumed
that G has such a form. The entire G is contained between the two diagonal lines X and Y , the vertices
on X have outdegree 1, the vertices on Y have indegree 1 and the vertices of G between X and Y are
Eulerian. If the rectangle KLMN contains r×s vertices, then there are m = r+s vertices on both X and
Y , and every directed path from a vertex of X to a vertex of Y has length m. Now consider the parallel
diagonal lines A0, A1, . . . , Am−1 as shown on the figure, and denote by Ei the set of edges intersected by
Ai. Clearly this forms a partition of the edges, and every set Ei has size m. Let Ei = {ei,0, . . . , ei,m−1},
ordered in such a way that ei,0 is the lower left edge.

We can assume that H is a DAG, otherwise there would be no solution, since G is acyclic. Exactly
one demand starts from each vertex on line X , exactly one demand terminates at each vertex on Y , and
the indegree equals the outdegree in every other vertex of H , this follows from G + H Eulerian. From
these facts, it is easy to see that H can be decomposed into m disjoint paths D1, . . . , Dm such that every
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Figure 3.10: (a) In every k-coloring c of the (open) intervals, I0,i and I1,i receive the same color for 0 ≤
i ≤ k− 1 (b) In every k-coloring c of the intervals, c(I0,i) = c(I1,i) for i 6= 1, 2 and either c(I0,1) = c(I1,1),
c(I0,2) = c(I1,2) or c(I0,1) = c(I1,2), c(I0,2) = c(I1,1) holds.
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Figure 3.11: Partitioning the edges of the extended grid (r = 4, s = 5).
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Figure 3.12: An example of the reduction with r = s = 2: (a) the grid graph, (b) the corresponding
proper interval graph.

path connects a vertex on X with a vertex on Y . We assign a color to each demand: if demand α is in
Di, then give the color i to α.

Based on the disjoint paths problem, we define a set of intervals and a precoloring. Every interval Ii,j
corresponds to an edge ei,j ∈ Ei of the supply graph G. Let vi,j be the tail vertex of ei,j, and denote by
δG(vi,j) the outdegree of vi,j in G. The intervals Ii,j (0 ≤ i ≤ m− 1, 0 ≤ j ≤ m− 1) are defined as follows
(see Figure 3.12):

Ii,j =






(
2(im+ j), 2(im+ j) + 2m

)
if δG(vi,j) = 1,(

2(im+ j) + 2, 2(im+ j) + 2m
)

if δG(vi,j) = 2 and ei,j is vertical,(
2(im+ j) + 1, 2(im+ j) + 2m

)
if δG(vi,j) = 2 and ei,j is horizontal.

Notice that the intervals are open, hence two intervals that share only an endpoint do not intersect.
If the prescribed start edge and end edge of a demand with color c is e′ and e′′, then precolor the

intervals corresponding to e′ and e′′ with color c. This assignment is well defined, since it can be assumed
that the start and end edges of the demands are different, otherwise it is trivial that the problem has no
solution. This completes the description of the reduction, we claim that the precoloring of the constructed
interval graph can be extended to a coloring with m colors if and only if the disjoint paths problem has a
solution.

First we observe certain properties of the intervals. Let Ii = {Ii,0, . . . , Ii,m−1}, that is, the set of
intervals corresponding to Ei. The set Ii forms a clique in the graph, and the elements of Ii and Ii′ are
not intersecting if i′ ≥ i + 2. The interval Ii,j does not intersect Ii−1,j′ for j′ ≤ j, and it does intersect
Ii−1,j′ for j′ > j + 1. It may or may not intersect Ii−1,j+1.

Assume that P1, . . . , Pn is a solution of the disjoint paths problem. If an edge ei,j is used by a demand
with color c, then color the edge ei,j and the corresponding interval Ii,j with color c. Since by Lemma 3.2.2
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Figure 3.13: The edges incident to the tail of ei,j . (a) ei,j is vertical (b) ei,j is horizontal

every edge of the graph is used by a demand, every interval receives a color. Furthermore, the demands
use the prescribed start and end edges, and so this coloring is compatible with the precoloring given above.
Notice that the set of edges in the grid graph that receive the color c forms a directed path from a vertex
on X to a vertex on Y . Thus all m colors appear on the intervals in Ii, every interval has different color
in this set.

It has to be shown that this coloring is proper. By the observations made above, it is sufficient to
verify that two intersecting intervals Ii,j and Ii−1,j′ do not have the same color. Since the edges having
color c form a path, if ei−1,j′ and ei,j have the same color, then the head of ei−1,j′ and the tail of ei,j must
be the same vertex vi,j . Assume first that δG(vi,j) = 1, then j = j′, which implies that Ii,j and Ii−1,j′

are not intersecting. For the case δG(vi,j) = 2, it will be useful to refer to Figure 3.13. If δG(vi,j) = 2 and
ei,j is vertical, then ei,j+1 is horizontal and its tail is also vi,j (see Figure 3.13a). Moreover, in this case
ei−1,j is horizontal, ei−1,j+1 is vertical, and vi,j is the head of both edges. Therefore if δG(vi,j) = 2 and
ei,j is vertical, then j′ = j or j′ = j + 1, which implies that the right endpoint of Ii−1,j′ is not greater
than 2((i− 1)m+ j + 1) + 2m = 2(im+ j) + 2, the left endpoint of Ii,j . If ei,j is horizontal, then j′ = j
or j′ = j − 1 (see Figure 3.13b), hence intervals Ii−1,j′ and Ii,j are clearly not intersecting.

On the other hand, assume that there is a proper extension of the precoloring with m colors. Color
every edge ei,j of the grid graph with the color assigned to the corresponding interval Ii,j . First we prove
that the set of edges having color c forms a directed path Rc in the graph. Since the intervals in Ii have
different colors, every one of the m colors appears exactly once on the edges in Ei. Thus it is sufficient to
prove that the tail vi,j of the unique edge ei,j ∈ Ei having color c is the same as the head of the unique
edge ei−1,j′ ∈ Ei−1 having color c.

Assume first that δG(vi,j) = 1, then we have to show that j = j′. Denote by x = 2(im + j), the
left endpoint of Ii,j , which is also the right endpoint of Ii−1,j (as an example, consider interval I1,3 on
Figure 3.12b). If j′ > j, then Ii−1,j′ and Ii,j intersect (both of them contain x + ǫ), which contradicts
the assumption that Ii,j and Ii−1,j′ have the the same color. Assume therefore that j′ < j. It is
clear from the construction that the left endpoint of every interval Ii,1, . . . , Ii,j−1 is strictly smaller than
x (it is not possible that δG(vi,j−1) = 2 and ei,j−1 is vertical, since that would imply vi,j−1 = vi,j
and δG(vi,j) = 2). The right endpoint of every interval Ii−1,j , . . . , Ii−1,m−1 is not smaller than x, thus
{Ii,0, . . . , Ii,j−1, Ii−1,j , Ii−1,j+1, . . . , Ii−1,m−1} is a clique of size m in the interval graph, since they all
contain x− ǫ. Now Ii,0, . . . , Ii,j−1 intersect Ii,j , and Ii−1,j , . . . Ii−1,m−1 intersect Ii,j′ , thus color c cannot
appear in this clique, a contradiction.

Now assume that δG(ei,j) = 2 and ei,j is vertical, we have to show that j′ = j or j′ = j + 1 holds
(see for example I1,1 on Figure 3.12b). If j′ > j + 1, then Ii−1,j′ intersects Ii,j , a contradiction. As-
sume therefore that j′ < j and let y = 2(im + j), the right endpoint of Ii−1,j . It can be verified that
{Ii,0, . . . , Ii,j−1, Ii−1,j , . . . , Ii−1,m−1} is a clique of size m, since all of them contain y − ǫ. Color c cannot
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Figure 3.14: The gadget used to replace those edges that have 2 element lists.

appear on Ii,0, . . . , Ii,j−1 because of Ii,j , and it cannot appear on Ii−1,j , . . . , Ii−1,m−1 because of Ii−1,j′ .
Thus there is a clique of size m without color c, a contradiction.

If δG(ei,j) = 2 and ei,j is horizontal, then we have to show that j′ is either j or j − 1 (see for example
I3,2 on Figure 3.12b). If j′ ≥ j+ 1, then Ii,j intersects Ii−1,j′ , therefore it can be assumed that j′ < j− 1.
Let z = 2((i− 1)m+ j − 1) + 2m, the right endpoint of Ii−1,j−1. Point z − ǫ is contained in each of Ii,0,
. . . , Ii,j−2, Ii−1,j−1, . . . , Ii−1,m−1, hence they form a clique of size m. However, intervals Ii−1,j′ and Ii,j
forbid the use of color c on this clique, a contradiction.

We have shown that the set of edges with color c are contained in a path Rc. Because of the precoloring,
the path Rc goes through the prescribed start and end edges of every demand with color c. Furthermore,
since the demands with color c correspond to a directed path Dc in H , all these demands can be satisfied
using only the edges of Rc, without two demands using the same edge. Thus there is solution to the
disjoint path problem, proving the correctness of the reduction.

Since the precoloring extension problem is obviously in NP and the reduction above can be done in
polynomial time, we have proved that it is NP-complete on unit interval graphs. �

3.4 Complexity of edge precoloring extension

In this section we consider the edge coloring version of precoloring extension. Colbourn [Col84] has shown
that it is NP-complete to decide whether a partially filled matrix can be completed to a full Latin square.
This result is equivalent to saying that edge precoloring extension is NP-complete for complete bipartite
graphs. Easton and Parker [EP01], and independently Fiala [Fia03] have shown that edge precoloring
extension is NP-complete for bipartite graphs of maximum degree 3. Here we strengthen this result by
showing that the problem remains NP-complete for planar 3-regular bipartite graphs. The proof is by
reduction from the list edge coloring problem (Theorem 2.1.2). We will use this result in Section 5.2 to
prove that minimum sum edge coloring is NP-hard for planar bipartite graphs.

Theorem 3.4.1. Precoloring extension is NP-complete on the edges of planar 3-regular bipartite graphs.

Proof. We reduce list edge coloring to precoloring extension as follows. By the proof of Theorem 2.1.2,
it can be assumed that only the three colors 1, 2, 3 appear in the lists. If edge uv has a 2 element list,
say color i is not allowed (1 ≤ i ≤ 3), then we replace uv by the gadget shown on Figure 3.14. The edges
x1x3 and x2x4 are precolored with color i.

We claim that the list edge coloring problem has a solution in the original graph G if and only if the
precoloring in the constructed graph G′ can be extended to a proper 3-coloring. First, a coloring of G can
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be used to obtain a precoloring extension of G′: if edge uv has color c, then the gadget corresponding to
uv can be colored such that both ux1 and x2v receive color c. On the other hand, in every 3-coloring of
G′ edges ux1 and x2v receive the same color, a color different from the forbidden color i of edge uv: since
both x1x3 and x2x4 are precolored to i, only two colors are available for edges ux1, x1x2, x2v. Therefore
a precoloring extension of G′ determines a list coloring of G. �

In a similar manner, we strengthen Theorem 2.1.4 by showing that for outerplanar graphs not only
list edge coloring, but even its special case edge precoloring extension is NP-complete.

Theorem 3.4.2. Precoloring extension is NP-complete on the edges of bipartite outerplanar graphs.

Proof. The proof is by reduction from the list edge coloring problem. Consider a bipartite outerplanar
graph constructed by the reduction of Theorem 2.1.4. Notice that every edge lies on the outer face. Let
the color set C be the union of the lists. If the list of an edge xy contains 2 colors, then this edge is
replaced as follows. We add two new vertices x′, y′, and 3 new edges xx′, x′y′, y′y. Furthermore, we
attach |C|−2 new edges x′x′1, . . . , x′x′|C|−2 to vertex x′, and another |C|−2 new edges y′y′1, . . . , y′y′|C|−2

to y′. Denote by c1, . . . , c|C|−2 the |C|−2 colors in C that do not appear in the list of xy. The edges x′x′i
and y′y′i are precolored with color ci. These precolored edges ensure that in every edge coloring xx′, x′y′,
y′y receive a color from the list of xy, which implies that the color of xx′ and y′y is the same. Therefore
edges xx′ and yy′ effectively act as a single edge with the same list as xy. Moreover, since xy is on the
outer face, the graphs remains outerplanar and bipartite.

Consider an edge vuj having list size 3 (see the proof of Theorem 2.1.4). Here we use the fact that uj
has degree 1. We attach |C| − 3 new edges ujuj,1, . . . , ujuj,|C|−3 to uj, and precolor them with the colors
not in the list of vuj . It is clear that now edge vuj has to receive a color from the list of vuj . Therefore
we have constructed an instance of the precoloring extension problem that has a solution if and only if
the list edge coloring problem has a solution. �

With some further work, we can prove that edge precoloring extension is NP-complete also for series-
parallel graphs:

Corollary 3.4.3. Precoloring extension is NP-complete on the edges of bipartite series-parallel graphs.

Proof. We show how to make a bipartite outerplanar graph 2-connected without changing the solvability of
the precoloring extension instance. Together with Theorem 3.4.2 and the fact that 2-connected outerplanar
graphs are series-parallel, this proves that precoloring edge extension is NP-complete for series-parallel
graphs.

The graph is outerplanar, hence by traversing the boundary of the outer face we visit every vertex
at least once. Since there can be cutvertices in the graph, there might be vertices that are visited more
than once. Let v0, v1, . . . , vn−1 the order of vertices as they are first encountered while traversing the
boundary of the outer face. We add new vertices and edges to the graph to make it Hamiltonian, and
therefore 2-connected. If vi and vi+1 (indices are taken modulo n) belong to the same bipartition class,
then add a new vertex wi and two new edges viwi and wivi+1. Edge viwi is precolored with a new color
α, and wivi+1 is precolored with a new color β. If vi and vi+1 are in different classes, then add two new
vertices w′

i, w
′′
i , and three edges viw

′
i (precolored to α), w′

iw
′′
i (not precolored), w′′

i vi+1 (precolored to β).
It can be shown that the graph remains outerplanar after these modifications. The two new colors α and
β appear at every vertex of the original graph, hence they cannot be used for the original edges. Thus the
solvability of the instance did not change. �
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Minimum sum coloring

For a long time I limited myself to one color—as a form of discipline.
Pablo Picasso (1881–1973)

Given a coloring of the vertices of a graph G, the sum of the coloring is the sum of the colors assigned
to the vertices (here we assume that the colors are the positive integers). The chromatic sum Σ(G) of
G is the smallest sum that can be achieved by any proper coloring of G. In the minimum sum coloring
problem we have to find a coloring of G with sum Σ(G).

An application of minimum sum coloring is scheduling of dependent jobs with the goal of minimizing
the sum of completion times. Assume that we have a set of jobs, each requires a unit amount of time.
There are pairs of jobs that cannot be performed at the same time because they require a shared resource,
or they interfere in some other way. The problem can be interpreted as finding a coloring of the conflict
graph, where the vertices are the jobs and two vertices are connected by an edge if the corresponding two
jobs cannot be performed simultaneously. Each color corresponds to a unit-length time slot. A coloring of
the conflict graph gives a possible scheduling of the jobs: if a vertex receives color i, then the corresponding
job can be done in the ith time slot. The coloring ensures that interfering jobs are not scheduled to the
same time slot.

By minimizing the number of colors used on the conflict graph, we can minimize the length of the
schedule, that is, we minimize the maximum of the completion times. This objective favors the system: we
want that the collection of jobs is finished as quickly as possible, but we do not care when the individual jobs
are finished. This approach is justified for example if the jobs are only substeps of a larger job. However,
if the jobs are independent projects, possibly belonging to different users, then it can be advantageous
to find a schedule that is longer, but most of the jobs are completed earlier. Minimizing the average
completion times of the jobs (or equivalently, the sum of the completion times) is a well-studied goal in
scheduling theory. By minimizing the sum of the coloring of the conflict graph, we find a schedule that
minimizes the sum of the completion times.

Minimum sum coloring has a completely different application in VLSI design. In the single row routing
problem (see Figure 4.1) there are terminals on a straight line, and some of these terminals have to be
connected by wires. A net is a subset of the terminals that have to be connected: all the terminals in
a net have to be connected, and terminals from different nets should not be connected. To simplify the
presentation, here we assume that every net contains exactly two terminals. In the 2-layer Manhattan
model the wires can be routed in two layers, but in one of the layers the wires can go only horizontally,
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Figure 4.1: Single row routing problem.

in the other layer only vertically. Since they are on different layers, a horizontal and a vertical wire
segment can cross each other without actually being connected. Moreover, in dogleg-free routing we also
require that the wires connecting a net can contain only one horizontal wire segment. This means that
the wires connecting a net consist of a horizontal segment going from the first terminal in the net to the
last terminal, and vertical wire segments connecting the horizontal segment to the terminals themselves.
Thus the only freedom we have in the routing is the selection of the vertical position for each horizontal
segment. The horizontal segments cannot be placed at arbitrary positions, but only at the predefined
tracks. The tracks are parallel horizontal lines at unit distance from each other.

The single row routing problem can be turned into a graph coloring problem the following way. The
conflict graph contains one vertex for each net, and two nets are connected if their horizontal wire segments
cannot be put on the same track (because they would overlap). A coloring of the conflict graph gives a
possible way of routing: if a net receives the ith color, then use the ith track for the horizontal segment
when connecting the two terminals in the net. It is easy to see that the conflict graph is always an
interval graph. Therefore minimizing the number of tracks used is equivalent to finding the chromatic
number of an interval graph, which is linear time solvable. In certain applications, however, it is more
important to minimize the total wire length than to minimize the number of tracks. The total length of
the horizontal wire segments is the same in every routing, and the total length of the vertical segments is
proportional to the sum of track numbers assigned to the nets (assuming that track 1 is the track closest
to the terminals). Therefore minimizing the total wire length is equivalent to minimizing the sum of the
coloring in an interval graph. Szkaliczki [Szk99] has shown that minimum sum coloring interval graphs
is NP-hard (a simpler proof can be found in [Mar03b]). A 2-approximation algorithm was presented in
[NSS99], which was recently improved to a 1.796-approximation [HKS03].

Minimum sum coloring was introduced independently by Kubicka [Kub89] and by Supowit [Sup87].
In [KS89] it is shown that the problem is NP-hard in general, but polynomial time solvable for trees.
The dynamic programming algorithm for trees can be extended to partial k-trees [Jan97]. Approximation
algorithms were given for several graph classes: the minimum sum can be 4-approximated in perfect
graphs [BNBH+98], 1.796-approximated in interval graphs [HKS03], and 27/26-approximated in bipartite
graphs [GJKM02]. Very recently, [GHKS04] gave a 3.591-approximation for perfect graphs. For further
complexity results and approximation algorithms, see [BNBH+98, BNK98, GJKM02, Sal03].

One can analogously define the edge coloring version of minimum sum coloring:

Minimum Sum Edge Coloring

Input: A graph G(V,E) and an integer C.

Output: An edge coloring ψ: E → N such that if e1 and e2 have a common vertex, then
ψ(e1) 6= ψ(e2).

Goal: Minimize Σ′
ψ(E) =

∑
e∈E ψ(e), the sum of the coloring.
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Minimum sum edge coloring can be solved in polynomial time for trees [GK00, Sal03, ZN04], but Giaro
and Kubale [GK00] proved that it is NP-hard for bipartite graphs with maximum degree 3. Section 4.2.1
improves on this result by showing that the problem remains NP-hard for planar bipartite graphs.

The algorithm of [HKS03] can be used to find a 1.796-approximation of minimum sum coloring in every
class of graphs where the maximum induced k-colorable subgraph problem is polynomial-time solvable.
The line graphs of bipartite graphs form such a class, thus there is a 1.796-approximation algorithm for
minimum sum edge coloring on bipartite graphs. For general graphs, [BNBH+98] gives a 2-approximation.
Section 4.2.2 proves that the problem is APX-hard for bipartite graphs, hence these constant factor
approximations cannot be improved to a polynomial time approximation scheme (PTAS) for bipartite
graphs.

The minimum sum edge coloring problem can be solved in polynomial time for trees [GK00, Sal03,
ZN04] by a dynamic programming algorithm that uses weighted bipartite matching as a subroutine. In
most cases, when a problem can be solved for trees by dynamic programming, then this easily generalizes
to partial k-trees (see Appendix A.1). Here the situation is different. As shown in [Sal00], minimum sum
edge coloring can be solved for partial k-trees in polynomial time if every vertex of the graph has bounded
degree, but the complexity of the problem for arbitrary degrees remained open. In Section 4.3 we show
that minimum sum edge coloring is NP-complete for partial 2-trees if there is no bound on the maximum
degree.

The chromatic strength s(G) of a graph G is the smallest number of colors that is required by a
minimum sum coloring of the vertices. In Section 4.4 we determine the complexity of the question “Is
s(G) ≤ k?” for every k: it is coNP-complete for k = 2 (Theorem 4.4.3) and Θp

2-complete for k ≥ 3
(Corollary 4.4.13). This improves on previous results of [Sal03], where it is shown that the question is
NP-hard for k ≥ 3, and the complexity of the case k = 2 was left as an open question.

We also study the complexity of the edge coloring version of the problem, with analogous definitions
for the edge sum and the chromatic edge strength s′(G). We show that for every k ≥ 3, it is Θp

2-complete
to decide whether s′(G) ≤ k holds (Corollary 4.4.12). As a first step of the proof, we present graphs for
every r ≥ 3 with chromatic index r and edge strength r+ 1. Such graph were known before only for r = 4
and for odd r greater than 3. Hajiabolhassan et al. [HMT00] asks as an open question to characterize
those graphs where s′(G) 6= χ′(G). It follows from our results that we cannot hope for a nontrivial (NP
or coNP) characterization of such graphs.

The results of Section 4.2.1 and Section 4.3 will appear in [Mar04c]. Section 4.4 will appear in [Mar04a].

4.1 Minimum sum edge coloring

In this section we introduce notations and new parameters, which will be used throughout this chapter.
Let ψ be an edge coloring of G(V,E), and let Ev be the set of edges incident to vertex v. For every v ∈ V ,
let Σ′

ψ(v) =
∑

e∈Ev
ψ(e) be the sum of v, and for a subset V ′ ⊆ V , let Σ′

ψ(V ′) =
∑
v∈V ′ Σ′

ψ(v). Clearly,
Σ′
ψ(V ) = 2Σ′

ψ(G), therefore minimizing Σ′
ψ(V ) is equivalent to minimizing Σ′

ψ(G).
The degree of vertex v is denoted by d(v) = |Ev|. For every vertex v, let the lower bound of v be

ℓ(v) =
∑d(v)
i=1 i = d(v)(d(v) + 1)/2, and for a set of vertices V ′ ⊆ V , let ℓ(V ′) =

∑
v∈V ′ ℓ(v). Since

Σ′
ψ(v) is the sum of d(v) distinct positive integers, thus Σ′

ψ(v) ≥ ℓ(v) in every proper coloring ψ. Let
ǫψ(v) = Σ′

ψ(v) − ℓ(v) ≥ 0 be the error of vertex v in coloring ψ. For V ′ ⊆ V we define ǫψ(V ′) =∑
v∈V ′ ǫψ(v), and call ǫψ(V ) the error of coloring ψ. The error is always non-negative: Σ′

ψ(V ) ≥ ℓ(V ),
hence ǫψ(V ) = Σ′

ψ(V )−ℓ(V ) ≥ 0. Notice that ǫψ(V ) has the same parity for every coloring ψ. Minimizing
the error of the coloring is clearly equivalent to minimizing the sum of the coloring. In particular, if ψ is
a zero error coloring, that is, ǫψ(V ) = 0, then ψ is a minimum sum coloring of G. In a zero error coloring,
the edges incident to vertex v are colored with the colors 1, 2, . . . , d(v).

However, in general, G does not necessarily have a zero error coloring. For every V ′ ⊆ V , the error
of V ′ is ǫ(V ′) = minψ ǫψ(V ′), the smallest error V ′ can have in a proper coloring of G. (Notice that
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ǫ(V ′) =
∑

v∈V ′ ǫ({v}) does not always hold, in fact, ǫ({v}) = 0 for every v ∈ V ). Deciding whether G
has a zero error coloring is a special case of the minimum sum edge coloring problem. It might be worth
pointing out that finding a zero error coloring is very different from finding a minimum sum coloring: zero
error is a local constraint on the coloring (every vertex has to have zero error), while minimizing the sum
is a global constraint. In Section 4.2, when we prove the NP-completeness of minimum sum edge coloring
for planar bipartite graphs, we will utilize this connection to reduce a local problem, edge precoloring
extension, to the global problem of minimizing the sum.

Quasigraphs. Parallel edges are not allowed for the graphs considered here. However, for convenience
we extend the problem by introducing half-loops. Following [Lov97], a half-loop is a loop that contributes
only 1 to the degree of its end vertex. Every vertex has at most one half-loop. If a graph is allowed to
have at most one half-loop at every vertex, then it will be called a quasigraph. In a quasigraph, the sum
of an edge coloring is defined to be the sum of the color of the edges plus half the sum of the color of the
half-loops, therefore the sum of a quasigraph is not necessarily integer. However, the error of a coloring is
always integer, and with these definitions it remains true that the sum of the vertices is twice the sum of
the edges. A quasigraph will be called bipartite if removing the half-loops gives a bipartite graph.

The following observation shows that allowing half-loops does not make determining the minimum
edge sum or the chromatic edge strength more difficult:

Proposition 4.1.1. Given a quasigraph G, one can create in polynomial time a graph G′ such that
Σ′(G′) = 2Σ′(G) and s′(G′) = s′(G).

Proof. To obtain G′, take two disjoint copies G1, G2 of G and remove every half-loop. If there was a
half-loop at v in G, then add an edge v1v2 to G′, where v1 and v2 are the vertices corresponding to v in
G1 and G2, respectively. In graph G′, to every edge give the color of the corresponding edge in G. If the
sum of the coloring in G was S, then we obtain a coloring in G′ with sum 2S: two edges of G′ correspond
to every edge of G, but only one edge corresponds to every half-loop of G.

On the other hand, one can show that if G′ has a k-coloring with sum S, than G has a k-coloring with
sum at most S/2. The edges of G′ can be partitioned into three sets E1, E2, E

′: set Ei contains the edges
induced by Gi (i = 1, 2), and E′ contains the edges corresponding to the half-loops. It can be assumed
that every edge in E1 has the same color as its counterpart in E2: otherwise if the sum of the edges in,
say, E1 is not greater than the sum of the edges in E2, then recoloring every edge in E2 with the color of
its pair in E1 results in a proper coloring without increasing the sum. Now color every edge of G with the
color of its two corresponding edges in G′, and color every half-loop with the color of its corresponding
edge in G′. The sum of this coloring is exactly half the sum of the coloring of G′. �

Therefore finding a minimum sum edge coloring on the quasigraph G is the same problem as finding
a minimum sum edge coloring on the corresponding graph G′. In particular, the edge strength of G and
G′ are the same. In Section 4.4.4, we show that it is Θp

2-complete to determine the edge strength of a
quasigraph. By the above construction, Θp

2-completeness follows for ordinary simple graphs as well.
Notice that if G is bipartite, then G′ is bipartite as well. On the other hand, the transformation does

not preserve planarity in general.

Gadgets. The reductions in this chapter are of the component design type: we build “gadgets” cor-
responding to vertices and edges, and in the reduction a larger graph is constructed from these smaller
graphs. In some cases, these gadgets themselves are also built from smaller gadgets. Here we introduce
the terminology and the notational conventions that will be used while working with gadgets.

A gadget is a graph whose vertices are divided into external and internal vertices. On the figures,
the external vertices of the gadgets are framed (see for example Figure 4.5 or Figure 4.6). If an external
vertex has degree one, then the edge incident to it will be called a pendant edge (for example, the gadget
on Figure 4.5 has 3 pendant edges).
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Figure 4.2: The two different ways of combining gadgets. (a) Two gadgets G and H . (b) Joining the
vertices u and v. (c) Identifying the two edges e and f .

We will use two operations to create larger graphs from smaller components. If u and v are vertices of G
and H , respectively, then the two gadgets can be joined by identifying these two vertices (see Figure 4.2b).
In particular, if v is the end vertex of a pendant edge h, then this operation will be called attaching the
pendant edge h of H to vertex u of G. If e is a pendant edge of G, and f is a pendant edge of H , then
we can form a larger gadget by identifying these two edges (see Figure 4.2c).

4.2 Bipartite graphs

In this section we prove complexity results for the minimum sum edge coloring problem on bipartite
graphs. Giaro and Kubale [GK00] have shown that minimum sum edge coloring of bipartite graphs is
NP-hard. We strengthen this result in two ways. First, in Section 4.2.1 we show that the problem remains
NP-hard for planar bipartite graphs. (As a side note, it is also proved that the problem is NP-hard also
for planar 3-regular nonbipartite graphs.) Moreover, in Section 4.2.2 we show that minimum sum edge
coloring is not only NP-hard for bipartite graphs, but APX-hard as well. That is, we cannot hope to have
a polynomial-time approximation scheme (PTAS) for the problem on bipartite graphs.

4.2.1 Planar graphs

Recall that in the precoloring extension problem a graph G is given with some of the vertices having a
preassigned color, and it has to be decided whether this precoloring can be extended to a proper k-coloring
of the whole graph. One can analogously define the edge precoloring extension problem. We have shown in
Theorem 3.4.1 that precoloring extension is NP-complete on the edges of 3-regular planar bipartite graphs.
In the following theorem, we reduce the NP-complete edge precoloring extension problem (a problem with
local constraints) to deciding whether a graph has a zero error coloring. This proves that the minimum
sum edge coloring problem is NP-hard.

Theorem 4.2.1. The minimum sum edge coloring problem is NP-hard for planar bipartite graphs having
degrees at most three.

Proof. Using simple local replacements, we reduce the edge precoloring extension problem to the problem
of finding a zero error coloring. Given a 3-regular graph G with some of the edges having a preassigned
color, construct a graph G′ by replacing the precolored edges with the subgraphs shown on Figure 4.3.
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Figure 4.3: Each precolored edge is replaced by the corresponding subgraph on the right.

If we replace the edge e = uv with such a subgraph, then the two new edges incident to v and u will be
called e1 and e2. If G is planar and bipartite, then clearly G′ is planar and bipartite as well.

We show that G′ has a zero error coloring if and only if G has a precoloring extension with 3 colors.
Assume that ψ is a zero error coloring. We show that for every precolored edge e, the edges e1 and e2
receive the color of e. If e is precolored to 1 (case a) of Figure 4.3), then d(a) = d(b) = 1, thus e1, e2 and
receives color 1 in every zero error coloring. If e has color 2, the edges ac and bd must have color 1, thus
edges e1, e2 have color 2 in every zero error coloring. Finally, if e has color 3, then ac and bd have color
1, edges ax and by have color 2, hence e1 and e2 have color 3. Therefore ψ extends the precoloring of G.

The converse is also easy to see: given a precoloring extension of G, for each edge e in G we assign the
color of e to edges e1 and e2 in G′, and extend this coloring the straightforward way. It can be verified
that this is a zero error coloring of G′, there is no vertex v that is incident to an edge with color greater
than d(v) (here we use that G is 3-regular). �

It is tempting to try to strengthen Theorem 4.2.1 by replacing “degree at most 3” with “3-regular.”
However, the problem becomes polynomial time solvable for bipartite, regular graphs. In fact, every such
graph has a zero error coloring: by the line coloring theorem of Kőnig, every bipartite graph G has a ∆(G)-
edge-coloring, which has zero error if G is regular. However, if we add the requirement of 3-regularity, but
drop the requirement that the graph is bipartite, then the problem remains NP-hard.

Theorem 4.2.2. Minimum sum edge coloring is NP-hard for planar 3-regular graphs.

Proof. The reduction is from zero error coloring of planar graphs with degree at most 3 (Theorem 4.2.1).
We attach certain gadgets to the graph G to make it a 3-regular graph G′. The gadgets are attached in
such a way that G has a zero error coloring if and only if G′ has a coloring with error K, where K is an
integer determined during the reduction.

Figure 4.4 shows three gadgets R1, R2, R3, each gadget has a pendant edge e. We show that gadget
Ri has the following property: if its edges are colored in such a way that the error on the internal vertices
is as small as possible, then the pendant edge receives color i. The figure shows such a coloring for each
gadget, the circled vertices are the vertices where there are errors in the coloring.

Gadget R1 (see Figure 4.4) has a pendant edge e, 5 internal vertices (denoted by S), and 7 edges
connecting the internal vertices. Since every color can be used at most twice on these 7 edges, thus they
have sum at least 2 · 1 + 2 · 2 + 2 · 3 + 1 · 4 = 16 in every coloring. Therefore if a coloring assigns color i to
edge e, then the vertices in S have sum at least 32 + i and error at least 32 + i− ℓ(S) = 2 + i. Thus the
error of S is at least 3 and it can be 3 only if the pendant edge e is colored with color 1.

In the gadget R3 (second graph on Figure 4.4) two copies of the R1 gadget are attached to vertex v.
The error on the internal vertices is at least 6 in every coloring: there are at least 3 errors in each of S1

and S2. However, the error is strictly greater than this: at least one of e1 and e2 is colored with a color
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Figure 4.4: The gadgets R1, R2, R3. The coloring given on the figure has as few errors on the internal
vertices as possible. The circles show the errors on the internal vertices in this coloring.

greater than 1, hence either S1 or S2 has error at least 4. Moreover, if the error of the internal vertices
in R3 is 7, then one of e1 and e2 is colored with color 1, the other edge is colored with color 2, therefore
edge e has to be colored with color 3.

The gadget R2 contains a gadget R1 and R3 attached to a vertex v, thus it has error at least 3+7 = 10,
since the internal vertices of these gadgets have at least that much error in every coloring. Furthermore,
if the error on the internal vertices of R2 is 10, then this is only possible if the error in S1 is 3 and the
error in S2 is 7. This implies that the edge e1 has color 1 and edge e2 has color 3, therefore edge e has
color 2.

Given a planar graph G with degree at most 3, attach to every degree 1 vertex a gadget R2 and a
gadget R3. Attach to every degree 2 vertex a gadget R3. Clearly, the resulting graph G′ is planar and
3-regular. Let n be the number of R3 gadgets attached, and let m be the number of R2 gadgets. We claim
that G has a zero error coloring if and only if G′ has a coloring with error at most K = 7n+ 10m.

Assume first that G has zero error. This coloring can be extended in such a way that the error on
every attached R3 (resp. R2) gadget is 7 (resp. 10), and the edge that connects an R2 (resp. R3) gadget
to G has color 2 (resp. 3). If v is a vertex of G (not an internal vertex of a gadget), then the three colors
1, 2, and 3 appear at v. Therefore the error of the coloring is the total error of the gadgets, that is,
K = 7n+ 10m.

Assume now that G′ has a coloring with error at most K. As we have seen, every gadget R3 has error
at least 7 in every coloring, and every gadget R2 has error at least 10, therefore if the coloring has error
7n+10m, then every R3 gadget has error exactly 7, and every R2 gadget has error exactly 10. This means
that every edge connecting an R2 (resp. R3) gadget to G has color 2 (resp. 3). Since G is a subgraph of
G′, the coloring of G′ induces a coloring of G. We show that this coloring is a zero error coloring of G. If
v is a degree 1 vertex of G, then in G′ two additional edges connect v to an R2 and an R3 gadget, these
two edges have color 2 and 3. Since the error of v is zero in the coloring, therefore the edge incident to v
in G receives color 1. Similarly, if v has degree 2 in G, then an additional edge with color 3 is connected
to v in G, and the two edges incident to v in G have the colors 1 and 2, as required. �

4.2.2 Approximability

In this section we prove that minimum sum edge coloring is APX-hard for bipartite graphs (see Ap-
pendix A.2 for background on approximability). In the proof we show hardness for the slightly more
general problem of coloring quasigraphs. However, by Proposition 4.1.1 the problem of coloring a quasi-
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Figure 4.5: The vertex gadget.

graph can be reduced to the coloring of a graph without half-loops, hence the hardness result follows for
ordinary simple graphs as well. We remark that the construction of Proposition 4.1.1 can destroy pla-
narity. This is the reason why quasigraphs were not used in Section 4.2.1 to prove the NP-completeness
of the planar problem.

First we prove the APX-hardness of minimum sum edge coloring for arbitrary graphs. Later we show
how to modify the proof to show that the problem remains APX-hard for bipartite graphs.

Theorem 4.2.3. Minimum sum edge coloring is APX-hard for graphs with maximum degree 3.

Proof. The theorem is proved by an L-reduction from the minimum vertex cover problem in 3-regular
graphs, which is shown to be APX-hard in [AK00]. For every graph G(V,E) with minimum vertex cover
of size τ(G), a graph G′′ is constructed, which has edge chromatic sum C = c1|V | + c2|E| + τ(G), where
c1 and c2 are constants to be determined later. To see that this is an L-reduction, notice that |E| = 3

2 |V |
and τ(G) ≥ |V |/4 hold, since G is 3-regular. Therefore C ≤ 4c1τ(G) + 6c2τ(G) + τ(G) = c3τ(G), as
required. Furthermore, we show that given an edge coloring of G′′ with sum c1|V | + c2|E| + t, one can
find a vertex cover of size t. This proves the correctness of the L-reduction.

The graph G′′ is constructed in two steps: first we create a quasigraph G′, then apply the transforma-
tion of Proposition 4.1.1 to obtain the graph G′′. The graph G′ contains vertex gadgets and edge gadgets.
The vertex gadget shown on Figure 4.5 has 3 pendant edges e1, e2, e3, and satisfies the following two
properties:

• If a coloring has zero error on the internal vertices of the variable gadget, then it colors all three
pendant edges with color 1.

• There is a coloring that colors all three pendant edges with color 2 and has only 1 error on the
internal vertices.

Figure 4.5 shows two possible coloring of the gadget, the two numbers on each edge show the color
of the edge in the two colorings. The first coloring is the unique coloring with zero error on the internal
vertices. To see this, notice first that an edge incident to a degree 1 internal vertex has to be colored with
color 1. Furthermore, if an edge of a degree 2 vertex is colored with color 1, then the other edge has to
be colored with color 2. Applying these and similar implications repeatedly, we get the first coloring of
Figure 4.5. In particular, edges e1, e2, e3 have color 1, proving the first property. The second coloring has
one error (at v), and colors e1, e2, e3 with color 2, proving the second property.
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The edge gadget shown on Figure 4.6 has two pendant edges f and g. If a coloring has zero error on
the internal vertices of the gadget, then clearly f and g have color 1 or 2. There are 4 different ways of
coloring f and g with color 1 or 2. In 3 out of 4 of these combinations, when at least one of f and g is
colored with color 2, the coloring can be extended to the whole gadget with zero error (Figure 4.6 shows
these 3 colorings). On the other hand, if both f and g have color 1, there is at least one error on the
internal vertices of the gadget. The reader can verify this by following the implications of coloring f and
g with color 1, and requiring that every internal vertex has zero error.

The quasigraph G′(V ′, E′) is constructed as follows. A vertex gadget Sv corresponds to every vertex
v of G, and an edge gadget Se corresponds to every edge e of G. Direct the edges of G arbitrarily. If the
ith edge incident to v ∈ V (i = 1, 2, 3) is the head of some edge e ∈ E, then identify edge ei of Sv with
edge f of Se. If the ith edge incident to v ∈ V is the tail of some edge e ∈ E, then identify edge ei of Sv
with edge g of Se. Thus every vertex of G′ is an internal vertex of a vertex gadget Sv or an edge gadget
Se. Denote by Vv the internal vertices of gadget Sv and by Ve the internal vertices of Se, clearly these
sets form a partition of V ′.

We claim that G′ has a coloring with error t if and only if G has a vertex cover with size t. Assume
first that D ⊆ V is a vertex cover of G. If v ∈ D, then color gadget Sv such that every pendant edge
has color 2 (and there is one error), otherwise color Sv in such a way that every pendant edge has color
1, and there is no error on the internal vertices. Now consider a gadget Se for some e ∈ E. The two
pendant edges f and g are already colored with color 1 or 2. However, at least one of them is colored
with 2, since at least one end vertex of e is in D. Therefore, using one of the three colorings shown on
Figure 4.6, we can extend the coloring to every edge of Se with zero error on the internal vertices of the
gadget. Therefore errors appear only on the internal vertices of Sv for v ∈ D, and the total error is |D|.

On the other hand, consider a coloring of G′ with error t. Let V̂ ⊆ V be the set of those v ∈ V for
which Vv is colored with error. Similarly, let Ê ⊆ E be the set of those e ∈ E for which Ve is colored
with error. Clearly, the coloring has error at least |V̂ | + |Ê| ≤ t. Let V be a set of |Ê| vertices in G that

cover every edge in Ê. The set of vertices V̂ ∪ V has size at most |V̂ | + |Ê| ≤ t. We show that this set is

a vertex cover of G. It is clear that every edge e ∈ Ê is covered, since there is a v ∈ V covering e. Now
consider an edge e 6∈ Ê, this means that Ve is colored with zero error, thus, as we have observed, at least
one pendant edge of Se is colored with color 2. If this edge is the pendant edge of the vertex gadget Sv,
then there is at least one error in Vv and v is in V̂ . However, if the pendant edge of Se and Sv is identified
in the construction, this means that e is incident to v, thus v ∈ V̂ covers e.

We have proved that the minimum sum edge coloring of G′ has τ(G) errors. Furthermore, Σ′(G′) =
(c1/2)|V | + (c2/2)|E| + τ(G)/2 for some constants c1 and c2. To see this, notice that the lower bound
ℓ(Vv) is the same for every v ∈ V (denote it by c1), and ℓ(Ve) is the same for every e ∈ E (denote it by
c2). Therefore the sum of the vertices in the optimum coloring is ℓ(V ′) + τ(G) = c1|V | + c2|E| + τ(G).
The edge chromatic sum is the half of this value, (c1/2)|V |+(c2/2)|E|+ τ(G)/2. Now construct graph G′′

from G′ as in Proposition 4.1.1. We have that Σ′(G′′) = 2Σ′(G′) = c1|V | + c2|E| + τ(G). Furthermore,
a coloring of G′′ with sum c1|V | + c2|E| + t gives a coloring of G′ with sum (c1/2)|V | + (c2/2)|E| + t/2,
that is a coloring with error t. It was shown above that given a coloring of G′ with error t, one can find a
vertex cover of G with size at most t. This completes the proof of the L-reduction. �
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Figure 4.7: The bipartite quasigraph version of the vertex gadget.

Theorem 4.2.3 can be strengthened: the problem remains APX-hard for bipartite graphs. The graph
contructed in the proof of Theorem 4.2.3 is not bipartite, since the vertex gadget on Figure 4.5 is not
bipartite. However, the vertex gadget can be replaced by the slightly more complex quasigraph shown
on Figure 4.7, which is bipartite and has the same properties. That is, if a coloring has zero error on
the internal vertices, then the pendant edges have color 1, and there is a coloring that has error 1 on the
internal vertices, and assigns color 2 to the pendant edges. The vertex and edge gadgets are bipartite,
and they are connected in a way that ensures that the resulting graph G′ is bipartite as well.

Theorem 4.2.4. Minimum sum edge coloring remains APX-hard for bipartite graphs with maximum
degree 3. �

4.3 Partial 2-trees

In this section we show that minimum sum edge coloring is NP-hard for partial 2-trees (see Appendix A.1
for definitions). This result is somewhat surprising: the problem is polynomial time solvable for trees
[GK00, Sal03, ZN04], and one would expect that its dynamic programming approach generalizes to partial
k-trees. However, it turns out that the minimum sum edge coloring is more difficult for partial 2-trees
than for trees. This is similar to the case of the edge disjoint paths problem, which is trivial for trees and
NP-complete for partial 2-trees and for series-parallel graphs [NVZ01].

Before presenting the proof of NP-completeness, we introduce some gadgets used in the reduction.
These gadgets are trees with a single pendant edge, and have the following general property: if a coloring
is “cheap,” meaning that it has as small error on the internal vertices as possible, then the color of the
pendant edge has to be one of the special allowed colors of the gadget. For the gadget Fn, this means that
in every such cheap coloring, the pendant edge has color n. In the gadget Ln, the color of the pendant



4.3. PARTIAL 2-TREES 61

edge has to be either n− 1 or n+ 1 in such a coloring. In the gadget An, the color of the pendant edge
has to be an odd number not greater than n.

The reduction is from 3SAT, therefore we need satisfaction-testing gadgets and variable-setting gadgets.
The satisfaction-testing gadget has the property that in every cheap coloring the pendant edge has one of
the three preassigned colors. The variable-setting gadget Wn is different from the other gadgets. First, it
is not a tree, but a partial 2-tree. Moreover, there are two edges incident to its external vertex, instead
of one. The crucial property of this gadget is that in every cheap coloring, these two edges either use the
colors n+ 1, n+ 3, or they use the colors n+ 5, n+ 7.

In the following lemmas, we formally define the properties of the gadgets, describe how they are
constructed, and prove the required properties.

Lemma 4.3.1. For every n ≥ 2, there is a tree Fn and an integer fn, such that

1. Fn has one pendant edge e,

2. the internal vertices of Fn have error at least fn in every coloring,

3. if a coloring has error fn on the internal vertices of Fn, then this coloring assigns color n to the
pendant edge e, and

4. Fn can be constructed in time polynomial in n.

Proof. The tree Fn is a star with a central vertex v, and n leaves v1, v2, . . . , vn. The pendant edge
e is the edge vnv, thus the internal vertices are v, v1, v2, . . . , vn−1. Let fn = (n − 1)(n − 2)/2. The
n − 1 edges v1v, . . . , vn−1v have different colors, hence the sum of the vertices v1, . . . , vn−1 is at least∑n−1

i=1 i = n(n− 1)/2. Therefore the error on these vertices is at least n(n − 1)/2 − (n− 1) = fn. There
is equality if and only if the sum of these vertices is exactly n(n − 1)/2 and there is no error on v. This
implies that edge vnv has color n, as required. �

Lemma 4.3.2. For every even n ≥ 1, there is a tree Ln and an integer kn, such that

1. Ln has one pendant edge e,

2. the internal vertices of Ln have error at least kn in every coloring,

3. if a coloring has error kn on the internal vertices of Ln, then this coloring assigns either color n− 1
or n+ 1 to the pendant edge e,

4. there are colorings ψn−1 and ψn+1 of Ln with ψn−1(e) = n − 1, ψn+1(e) = n + 1, such that they
have error kn on the internal vertices, and

5. Ln can be constructed in time polynomial in n.

Proof. The tree Ln is constructed as follows (see Figure 4.8). The pendant edge e connects external vertex
u and internal vertex v. The n − 2 vertices v1, v2, . . . , vn−2 are connected to v, these vertices form the
set V . There are two additional neighbors of v: vertices a and b. Besides v, vertex a has n− 1 neighbors
a1, a2, . . . , an−1, let A be the set containing these n− 1 vertices. Similarly, vertex b has n− 1 additional
neighbors B = {b1, b2, . . . , bn−1}.

Since the edges v1v, v2v, . . . , vn−2v have different colors in every coloring of Ln, hence the sum of V is at
least

∑n−2
i=1 i = (n−2)(n−1)/2 in every coloring. Therefore there is error at least (n−2)(n−1)/2−ℓ(V ) =

(n − 2)(n − 1)/2 − (n − 2) = (n − 2)(n − 3)/2 on V in every coloring, this minimum is reached if and
only if the edges v1v, . . . , vn−2 have the colors 1, . . . , n − 2 (in some order). Similarly, there is error
at least (n − 1)n/2 − (n − 1) = (n − 1)(n − 2)/2 on both A and B. Therefore there is error at least
(n − 2)(n − 3)/2 + 2 · (n − 1)(n − 2)/2 on the internal vertices in every coloring. However, the error is
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Figure 4.8: The gadget Ln.

always strictly greater than this. If the error is exactly (n − 1)(n− 2)/2 on both A and B, and there is
zero error on a and b, then edges va and vb both have to receive color n. Thus we can conclude that there
is error at least kn = (n− 2)(n− 3)/2 + 2 · (n− 1)(n− 2)/2 + 1 in every coloring.

The coloring ψn−1 is defined as

• ψn−1(e) = n− 1,

• ψn−1(va) = n,

• ψn−1(vb) = n+ 1,

• ψn−1(viv) = i for 1 ≤ i ≤ n− 2,

• ψn−1(aia) = i for 1 ≤ i ≤ n− 1, and

• ψn−1(bib) = i for 1 ≤ i ≤ n− 1.

It can be verified that ǫψn−1(V ) = (n− 2)(n− 3)/2, ǫψn−1(A) = ǫψn−1(B) = (n− 1)(n− 2)/2, ǫψn−1(a) =
ǫψn−1(v) = 0, and ǫψn−1(b) = 1, therefore the error of ψn−1 on the internal vertices of Ln is kn. Coloring
ψn+1 is the same as coloring ψn−1, except that

• ψn+1(e) = n+ 1,

• ψn+1(vb) = n− 1, and

• ψn+1(bn−1b) = n.

This change decreases the error on b to zero, and increases the error on bn−1 to 1. Therefore ψn+1 also
has error kn on the internal vertices, and this proves Property 4.

To show that Property 3 holds, assume that coloring ψ has error kn on the internal vertices of Ln.
As we have observed, eψ(A ∪ {a}) = (n − 1)(n − 2)/2 implies ψ(va) = n. Similarly, eψ(B ∪ {b}) =
(n−1)(n−2)/2 implies ψ(vb) = n, therefore at least one of A∪{a} and B∪{b} have error strictly greater
than (n− 1)(n− 2)/2. Assume, without loss of generality, that eψ(A ∪ {a}) > (n− 1)(n− 2)/2, then the
error of ψ can be kn only if eψ(B ∪ {b}) = (n − 1)(n − 2)/2, eψ(V ) = (n − 2)(n − 3)/2, and there is no
error on v. Therefore color n is used by edge vb, and the colors 1, 2, . . . , n− 2 are used by the edges v1,
v2, . . . , vn−2 (not necessarily in this order). Since there is zero error at v, and v has degree n + 1, thus
edge e has a color not greater than n + 1. This can be only n − 1 or n + 1, since the other colors are
already used by edges incident to v. �
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Lemma 4.3.3. For every odd n ≥ 1, there is a tree An and an integer an such that

1. An has one pendant edge e,

2. the internal vertices of An have error at least an in every coloring,

3. if a coloring ψ has error an on the internal vertices of An, then ψ(e) is odd and ψ(e) ≤ n,

4. for every odd c not greater than n, there is a coloring ψc of An such that ψc(e) = c and it has error
an on the internal vertices,

5. An can be constructed in time polynomial in n.

Proof. The pendant edge e of Ln connects external vertex u and internal vertex v. Attach the pendant
edges of the (n − 1)/2 trees F2, F4, . . . , Fn−1 (Lemma 4.3.1) to vertex v, let the pendant edges of these
trees be v2v, v4v, . . . , vn−1v, respectively (see Figure 4.9). Similarly, attach the pendant edges of the
(n − 1)/2 trees L2, L4, . . . , Ln−1 (Lemma 4.3.2) to v, let the pendant edges of these trees be w2v, w4v,
. . . , wn−1v, respectively. Therefore the degree of v in An is n.

Let an = (f2 + f4 + · · ·+ fn−1) + (k2 + k4 + · · ·+ kn−1). Since An contains a copy of the trees F2, F4,
. . . , Fn−1, and a copy of the trees L2, L4, . . . , Ln−1, thus it is clear that every coloring of An has at least
an errors on the internal vertices. Moreover, if a coloring ψ has error an on the internal vertices, then
ψ(viv) = i for i = 2, 4, . . . , n− 1, and the error of v is zero. This implies that ψ(e) ≤ n and not even, as
required.

The coloring ψc required by Property 4 is the following. For every i = 2, 4, . . . , n−1, coloring ψc colors
the edges of the tree Fi in such a way that the pendant edge viv receives color i, and there is error fi on
the internal vertices of Fi, by Lemma 4.3.1, there is such a coloring. For every i = 2, 4, . . . , c− 1, the tree
Li is colored such that the pendant edge wiv has color i− 1, and there is error ki on the internal vertices
of Li. Similarly, for i = c+ 1, . . . , n− 1, the tree Li is colored such that the pendant edge wiv has color
i+ 1, and there is error ki on the internal vertices of Li. Coloring ψc assigns color c to edge e, thus every
color 1, 2, . . . , n appears on exactly one edge incident to v. Therefore the error of v is zero, and there is
error an on the internal vertices of An. �
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Lemma 4.3.4 (Satisfaction-testing gadget). For odd integers x1 < x2 < x3, there is a tree Sx1,x2,x3

and an integer sx1,x2,x3 such that

1. Sx1,x2,x3 has one pendant edge e,

2. the internal vertices of Sx1,x2,x3 have error at least sx1,x2,x3 in every coloring,

3. if a coloring ψ has error sx1,x2,x3 on the internal vertices of Sx1,x2,x3 , then ψ(e) ∈ {x1, x2, x3}

4. for i = 1, 2, 3, there is a coloring ψi of Sx1,x2,x3 such that ψi(e) = xi and it has error sx1,x2,x3 on
the internal vertices,

5. Sx1,x2,x3 can be constructed in time polynomial in x3.

Proof. The pendant edge e of Sx1,x2,x3 connects external vertex u and internal vertex v. Attach to vertex
v the pendant edges of

• x1 − 1 trees F1, F2, . . . , Fx1−1 (Lemma 4.3.1),

• x2 − x1 − 1 trees Fx1+1, . . . , Fx2−1,

• x3 − x2 − 1 trees Fx2+1, . . . , Fx3−1, and

• 2 copies of the tree Ax3 (Lemma 4.3.3).

Vertex v has degree x3 in Sx1,x2,x3 . Set sx1,x2,x3 = f1 + f2 + · · · + fx1−1 + fx1+1 + · · · + fx2−1 + fx2+1 +
· · · + fx3−1 + 2ax3 , because of the way Sx1,x2,x3 is constructed, it is clear that every coloring of Sx1,x2,x3

has error at least sx1,x2,x3 on the internal vertices. If ψ has error exactly sx1,x2,x3 on the internal vertices,
then v has zero error and ψ(e) ≤ d(v) = x3. Furthermore, it also follows that the colors 1, . . . , x1 − 1,
x1 + 1, . . . , x2 − 1, x2 + 1, . . . , x3 − 1 are used at v by the pendant edges of the attached trees F1, . . . ,
Fx1−1, Fx1+1, . . . , Fx2−1, Fx2+1, . . . , Fx3−1, respectively. Therefore edge e has one of the remaining colors
x1, x2, x3, proving Property 3.

The colorings ψ1, ψ2, ψ3 required by Property 4 color the (x1 − 1) + (x2 − x1 − 1) + (x3 − x2 − 1)
trees of type Fi in the same way: all three colorings color these trees such that there is error f1 + f2 +
· · · + fx1−1 + fx1+1 + · · · + fx2−1 + fx2+1 + · · · + fx3−1 on the internal vertices of the trees, and their
pendant edges use the colors 1, . . . , x1 − 1, x1 + 1, . . . , x2 − 1, x2 + 1, . . . , x3 − 1 at v. Coloring ψi
assigns color xi to the pendant edge e, hence two colors not greater than x3 remains unused at v: only
the colors {x1, x2, x3} \ xi are not yet assigned. These two colors are odd and not greater than x3, thus
by Property 4 of Lemma 4.3.3, we can color the two copies of Ax3 attached to v such that their pendant
edges have these two colors, introducing additional error 2ax3 . Since there is zero error on v, the error of
this coloring is sx1,x2,x3 on the internal vertices of Sx1,x2,x3 , as required by Property 4. �

Lemma 4.3.5 (Variable-setting gadget). For every n ≥ 0, there is a partial 2-tree Wn and an integer
wn such that

1. Wn has an external vertex v, and two edges e1 and e2 incident to v,

2. every coloring of Wn has error at least wn on the internal vertices of Wn,

3. if a coloring ψ of Wn has error wn on the internal vertices, then either

• ψ(e1) = n+ 1, ψ(e2) = n+ 3 or

• ψ(e1) = n+ 5, ψ(e2) = n+ 7 holds,
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Figure 4.10: The variable-setting gadget W0.

4. there are colorings ψ1 and ψ2 of Wn with error wn on the internal vertices such that

• ψ1(e1) = n+ 1, ψ1(e2) = n+ 3,

• ψ2(e1) = n+ 5, ψ2(e2) = n+ 7, and

5. Wn can be constructed in time polynomial in n.

Proof. The graph Wn is constructed as follows (see Figure 4.10 for the case n = 0). The external vertex
v is connected to vertex v1 by edge e1, and to v2 by e2. Vertices v1 and v2 are connected by an edge e.
We attach several trees to vertices v1 and v2:

• Attach n trees F1, F2, . . . , Fn to v1, let the pendant edges of these trees be z1
1v1, z1

2v1, . . . , z1
nv1,

respectively.

• Similarly, attach a copy of these n trees to v2, let the pendant edges be z2
1v2, z2

2v2, . . . , z2
nv2.

• Attach to v1 the trees Fn+2, Fn+3, Fn+4, Fn+6 with pendant edges z1
n+2v1, z1

n+3v1, z1
n+4v1, z1

n+6v1,
respectively.

• Attach to v1 a tree Ln+6 with pendant edge u1v1.

• Attach to v2 the trees Fn+2, Fn+4, Fn+5, Fn+6 with pendant edges z2
n+2v2, z2

n+4v2, z2
n+5v2, z2

n+6v2,
respectively.

• Attach to v2 a tree Ln+2 with pendant edge u2v2.

Notice that both v1 and v2 have degree n+ 7. The graph Wn is a partial 2-tree: it is chordal, and it
has clique number 3.

Set wn = 2(f1+f2 + · · ·+fn)+(fn+2 +fn+3+fn+4+fn+6+kn+6)+(fn+2 +fn+4+fn+5+fn+6 +kn+2).
It is clear that every coloring of Wn has error at least wn on the internal vertices: the combined error in
the attached trees is always at least wn. Moreover, if the error of coloring ψ is wn on the internal vertices,
then there has to be zero error on v1 and v2. Furthermore, from Lemma 4.3.1 and Lemma 4.3.2, in this
case we also have that
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• ψ(z1
i v1) = ψ(z2

i v2) = i for i = 1, 2, . . . , n,

• ψ(z1
i v1) = ψ(z2

i v2) = i for i = n+ 2, n+ 4, n+ 6,

• ψ(z1
n+3v1) = n+ 3,

• ψ(z2
n+5v2) = n+ 5,

• ψ(u1v1) is either n+ 5 or n+ 7, and

• ψ(u2v2) is either n+ 1 or n+ 3.

Since the degree of v1 is n + 7, and there is zero error on v1, it follows that ψ(e) ≤ n + 7. Moreover,
ψ(e) is either n + 1 or n + 7: as shown above, every other color not greater than n + 7 is already used
on at least one of v1 and v2. Assume first that ψ(e) = n+ 1. In this case u2v2 cannot have color n + 1,
therefore ψ(u2v2) = n+ 3 follows. Now the only unused color not greater than n+ 7 at v2 is n+ 7, hence
ψ(e2) = n+7. There remains two unused colors at v1: color n+5 and color n+7. However, edge e1 cannot
have color n+ 7, since edge e2 already has this color. Thus we have ψ(e1) = n+ 5 and ψ(e2) = n+ 7, as
required by Property 4. Similarly, assume that ψ(e) = n + 7, it follows that ψ(u1v1) = n + 5. The only
unused color not greater than n + 7 at v1 is n + 1, hence edge e1 has to receive this color. Colors n+ 3
and n+ 1 are the only remaining colors at v2, therefore e2 has color n+ 3, since n+ 1 is already used by
e1. Thus we have ψ(e1) = n+ 1 and ψ(e2) = n+ 3, as required.

The two colorings ψ1 and ψ2 required by Property 4 are given as follows (see Figure 4.10 for the case
n = 0). Consider the (partial) coloring ψ with

• ψ(z1
i v1) = ψ(z2

i v2) = i for i = 1, 2, . . . , n,

• ψ(z1
i v1) = ψ(z2

i v2) = i for i = n+ 2, n+ 4, n+ 6,

• ψ(z1
n+3v1) = n+ 3 and

• ψ(z2
n+5v2) = n+ 5.

Both ψ1 and ψ2 assign the same colors as ψ, but we also have

• ψ1(e1) = n+ 1, ψ1(e2) = n+ 3, ψ1(e) = n+ 7,

• ψ1(u1v1) = n+ 5,

• ψ1(u2v2) = n+ 1.

• ψ2(e1) = n+ 5, ψ2(e2) = n+ 7, ψ2(e) = n+ 1,

• ψ2(u1v1) = n+ 7,

• ψ2(u2v2) = n+ 3.

In these colorings there are zero error on vertices v1 and v2. Furthermore, these colorings can be extended
to the attached trees with error wn: the colors assigned to the pendant edges of the attached trees are
compatible with the “best” coloring of the attached trees (see Property 4 of Lemma 4.3.2 and Property 3
of Lemma 4.3.1). This proves Property 4 of the lemma. �
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Theorem 4.3.6. Minimum sum edge coloring is NP-hard for partial 2-trees.

Proof. The proof is by reduction from 3SAT: given a 3CNF formula ϕ, we construct a partial 2-tree G
and determine an integer K such that Σ′(G) ≤ K if and only if ϕ is satisfiable. By Prop. 2.1.3, we can
assume that every variable occurs exactly twice positively and exactly twice negated in φ, and every clause
contains exactly three literals.

Let n be the number of variables in ϕ, the variables will be called x0, x1, . . . , xn−1. The number of
clauses is therefore m = 4n/3. For every literal of ϕ, there is a corresponding color, as follows:

• color 8i+ 1 corresponds to the first positive occurence of xi,

• color 8i+ 3 corresponds to the second positive occurence of xi,

• color 8i+ 5 corresponds to the first negated occurence of xi, and

• color 8i+ 7 corresponds to the second negated occurence of xi.

Notice that these numbers are odd, and every odd number not greater than 8n corresponds to a literal.
Take a vertex v, we will attach several gadgets to v to obtain the graph G. Attach 4n trees F2, F4,

. . . , F8n to v, let the pendant edges of the attached trees be u2v, u4v, . . . , u8nv, respectively. Attach n
variable-setting gadgets W0, W8, W16, . . . , W8(n−1) to v, let the two edges of W8i incident to v be called
wi,1v and wi,2v. For every clause Cj of ϕ, we attach a satisfaction-testing gadget to v in the following
way: if colors cj,1 < cj,2 < cj,3 correspond to the three literals in clause Cj , then attach a tree Sc1,c2,c3
to v, and let sjv be its pendant edge. Finally, attach m/2 copies of the tree A8n−1 to v, let the pendant
edges of these trees be t1v, t2v, . . . , tm

2
v. This completes the description of the graph G. Since every

gadget is a partial 2-tree (or even a tree), the graph G is a partial 2-tree as well: joining graphs at a single
vertex does not increase the treewidth of the graphs.

Let K(1) = f2 +f4+ · · ·+f8n. In every coloring of G the error is at least K(1) on the internal vertices of
the 4n attached Fi trees. Let K(2) = w0 +w8 + · · ·+w8(n−1). In every coloring the error is at least K(2) on

the internal vertices of the n variable-setting gadgets. Let K(3) = m/2 · a8n−1. In every coloring the error
is at least K(3) on the internal vertices of the m/2 copies of A8n−1. Let K(4) =

∑m
j=1 scj,1,cj,2,cj,3 where cj,k

is the color corresponding to the kth literal in clause Cj . In every coloring of G, the error on the internal
vertices of the m satisfaction-testing gadget is at least K(4). Finally, set K = K(1) +K(2) +K(3) +K(4).
It is clear that every coloring of G has error at least K. We claim that G has a coloring with error exactly
K if and only if ϕ is satisfiable.

Assume first that coloring ψ has error K. This is possible only if ψ has zero error on v, and there
is exactly K error on the internal vertices of the attached gadgets. By Lemma 4.3.1, Lemma 4.3.3,
Lemma 4.3.4, and Lemma 4.3.5 this implies that

• ψ(uiv) = i for i = 2, 4, . . . , 8n,

• for every i = 0, 1, . . . , n− 1, either

– ψ(wi,1v) = 8i+ 1 and ψ(wi,2v) = 8i+ 3, or

– ψ(wi,1v) = 8i+ 5 and ψ(wi,2v) = 8i+ 7,

• ψ(sjv) ∈ {cj,1, cj,2, cj,3} for every j = 1, . . . , m, and

• ψ(tiv) ≤ 8n− 1 and odd for every i = 1, 2, . . . , m/2.

Consider the following variable assignment: set variable xi to true if ψ(wi,1v) = 8i+ 5, ψ(wi,2v) = 8i+ 7,
and set xi to false if ψ(wi,1v) = 8i+ 1 and ψ(wi,2v) = 8i+ 3. We show that this is a satisfying assignment
of ϕ, every clause Cj is satisfied. Assume that ψ(sjv) = cj,k for some k = 1, 2, 3, and let the kth literal
in clause Cj be an occurence of the variable xi. In this case, the kth literal of clause Cj is true in the
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Figure 4.11: A tree with strength 3. The figure shows a minimum sum coloring with sum 11, while every
2-coloring has sum 12.

constructed variable assignment: otherwise color cj,w would appear also on edge wi,1v or wi,2v. Therefore
every clause contains at least one true literal, and the formula is satisfied by the variable assignment.

Now assume that ϕ has a satisfying variable assignment. Consider the following (partial) coloring ψ:

• ψ(uiv) = i for i = 2, 4, . . . , 8n,

• for every i = 0, 1, . . . , n− 1,

– if variable xi is true, then ψ(wi,1v) = 8i+ 5 and ψ(wi,2v) = 8i+ 7,

– if variable xi false, then ψ(wi,1v) = 8i+ 1 and ψ(wi,2v) = 8i+ 3,

It is clear from the construction that for every j = 1, 2, . . . , m, one of the colors cj,1, cj,2, cj,3 is not
already assigned: otherwise this would imply that clause Cj contains only false literals in the satisfying
variable assignment, a contradiction. Therefore we can set ψ(sjv) to one of these three colors. So far
coloring ψ assigns 4n even and 2n + m odd colors to the edges incident to v, therefore there remains
exactly m/2 odd colors not greater than 8n. Assign these colors to the edges t1v, t2v, . . . , tm

2
v in some

order. Now every color not greater than 8n is used exactly once at v, hence there is zero error on vertex
v in ψ. It is straightforward to verify that this coloring can be extended to the whole graph G such that
the resulting coloring has error exactly K: in every gadget, the edges incident to v are colored in such a
way that makes this extension possible. �

4.4 Chromatic strength

In [KS89] it is noted that the number of colors required by a minimum sum coloring can be much greater
than the chromatic number of the graph. In particular, for every k ≥ 2, they show a tree where every
minimum sum coloring uses at least k different colors (see Figure 4.11 for an example of the case k = 3).
Let s(G) be the chromatic strength of G, which is the smallest number of colors required in a minimum
sum coloring of G. The chromatic edge strength s′(G) is defined analogously. Clearly, s(G) ≥ χ(G), but
as the trees in [KS89] show, s(G) − χ(G) can be arbitrarily large. On the other hand, [MMS97] and
independently [HMT00] prove an analog of Vizing’s Theorem showing that s′(G) ≤ ∆(G) + 1 in every
simple graph G. Hence we have

∆(G) ≤ χ′(G) ≤ s′(G) ≤ ∆(G) + 1

if G is a simple graph. Harary and Plantholt conjectured (see [Wes95]) that the second inequality is in
fact an equality, hence if a simple graph is k-edge-colorable, then it has a minimum sum edge coloring
with k colors. However, this conjecture turned out to be false: for every odd integer k ≥ 5, a graph with
chromatic index k and edge strength k+ 1 was given in [MMS97]. Moreover, [HMT00] gives such a graph
for k = 4. Thus we can conclude that the chromatic index and the chromatic edge strength are not always
the same.
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Here we study the computational complexity of determining the chromatic strength and chromatic
edge strength of a simple graph. The complexity of the vertex strength is investigated in [Sal03]:

Theorem 4.4.1 ([Sal03]). For every k ≥ 3, it is NP-hard to decide whether s(G) ≤ k holds for a given
graph G.

Notice that it is not clear whether this problem belongs to NP. A minimum sum k-coloring is not a
good certificate for s(G) ≤ k, since we cannot verify that it is indeed a minimum sum coloring. On the
other hand, the problem does not seem to belong to coNP either: a minimum sum coloring with more than
k colors does not certify that s(G) > k, since it does not prove that this sum cannot be achieved using
only k colors. The main result of this chapter is that we determine the exact complexity of the chromatic
strength problem by showing that for every k ≥ 3, it is Θp

2-complete to decide whether s(G) ≤ k holds.
The class Θp

2 contains those problems that can be solved in polynomial time with a logarithmic number
of NP oracle calls (see Appendix A.3 and Section 4.4.3 for definitions). It is interesting to see a natural
coloring problem that is complete for this less-known complexity class. In [Sal03] the complexity of the
case k = 2 was left as an open question. We answer this question by showing that deciding s(G) ≤ 2 is
coNP-complete.

We obtain our Θp
2-completeness result for the chromatic strength by proving the stronger statement

that even the more restricted chromatic edge strength problem is Θp
2-complete. The complexity of edge

strength is also treated in [Sal03]. By observing that s′(G) = χ′(G) for every regular simple graph, they
conclude that for regular graphs “Is s′(G) ≤ k?” has the same complexity as “Is χ′(G) ≤ k?”, and the
latter problem is known to be NP-complete for every k ≥ 3 [Hol81, LG83]. However, if we want to prove
that edge strength is Θp

2-complete (that is, harder than the chromatic index problem), then necessarily
we have to consider graphs where the edge strength and the chromatic index are not the same. Therefore
we need substantially different (and more complicated) arguments than in [Sal03].

We prove the Θp
2-completeness of chromatic edge strength the following way. First we show that

for every k ≥ 3, there is a simple graph Gk with ∆(Gk) = χ′(Gk) = k and s′(Gk) = k + 1. That is,
we give counterexamples to the conjecture of Harary and Plantholt in all the remaining cases. Next,
in Section 4.4.3 we introduce some new Θp

2-complete problems, which might be of independent interest
as well. In particular, we show that it is Θp

2-complete to decide whether every minimum vertex cover
of a given graph includes the distinguished vertex v̂. Finally, we show that if the chromatic index and
the chromatic edge strength are not always the same in graphs with maximum degree k, then it is Θp

2-
complete to decide whether the edge strength is k in such a graph. Together with the existence of the
counterexample graphs, this gives the required result.

In Section 4.4.1, we show that it is coNP-complete to decide whether s(G) ≤ 2. In the rest of
the chapter, we consider only the edge coloring version of the problem. The counterexamples to the
conjecture of Harary and Plantholt are given in Section 4.4.2. In Section 4.4.3 we summarize the results
on the complexity class Θp

2, and introduce the new Θp
2-complete problems. The reduction for the main

hardness result is presented in Section 4.4.4. The construction of the key gadget of the reduction is given
in Section 4.4.5.

4.4.1 Vertex strength of bipartite graphs

In this section we prove that for k = 2, it is coNP-complete to decide whether s(G) ≤ k holds. Notice
that, unlike in the case k ≥ 3, now it is easy to see that the problem is in coNP. First, the question makes
sense only if the graph is bipartite, otherwise trivially s(G) ≥ 3. In a bipartite graph the sum of the best
2-coloring is easy to determine: each connected component of the graph has exactly two 2-colorings, and
taking the better coloring of each component gives the best 2-coloring of the graph. Therefore a minimum
sum coloring with more than 2 colors certifies that s(G) ≤ 2 does not hold: one can determine the sum
of the best 2-coloring, and check that it is indeed larger than the sum of the given coloring. Thus the
problem is in coNP.
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Figure 4.12: The new vertices attached to vertex v of H , and three minimum sum colorings that assign
to vertex v (a) color 1, (b) color 2, (c) color 3.

The proof of coNP-hardness is by reduction from the precoloring extension problem. Precoloring
extension (PrExt) is a generalization of vertex coloring (see Chapter 3): we are given a graph G(V,E)
with a subset W ⊆ V of vertices having a preassigned color, the question is whether this precoloring can
be extended to a proper k-coloring of the graph. We denote by 1-PrExt the special case where every
color is used at most once in the precoloring. 1-PrExt is NP-complete in bipartite graphs [HT93], but
polynomial-time solvable in interval graphs [BHT92] and more generally, in chordal graphs (Section 3.1).
In our proof, we need the following result:

Theorem 4.4.2 ([BJW94]). 1-PrExt is NP-complete for bipartite graphs, even if the number of colors
is 3.

Moreover, it can be assumed that the 3 precolored vertices are in the same bipartition class (see the
proof in [BJW94]).

Theorem 4.4.3. Given a graph G, it is coNP-complete to decide if s(G) ≤ 2 holds.

Proof. As we have noted above, the problem is in coNP. Hardness is proved by reduction from 1-PrExt

for bipartite graphs. Given a bipartite graph H(A,B;E) with three precolored vertices v1, v2, v3 ∈ A, we
construct a (bipartite) graph G such that s(G) ≤ 2 if and only if the precoloring of H cannot be extended
to the whole graph.

To construct the graph G, we attach 5 new vertices to every non-precolored vertex v of H (see Fig-
ure 4.12). Let the set Vv contain vertex v and the 5 vertices attached to it. In every coloring, the sum
of the 6 vertices of Vv is at least 9. Moreover, as shown on Figure 4.12a-c, this minimum sum 9 can be
achieved even if vertex v has color 1, 2, or 3.

The three precolored vertices v1, v2, v3 are connected by the graph shown on Figure 4.13. Denote
by V ∗ the set of these 15 vertices. The vertices in the set V ∗ have sum at least 20 in every coloring.
Furthermore, it can be verified that the coloring shown on the figure is the unique minimum sum coloring
of V ∗. This completes the description of the graph G. It can be easily verified that if H is bipartite, then
G is bipartite as well.

If the graph H has n + 3 vertices, then G has 6n + 15 vertices, and the sum of every coloring is at
least 9n+ 20. Moreover, G has a 2-coloring with sum 9n+ 21: color v1, v2, v3, and their bipartition class
with color 2, the other class receives color 1. Every set Vv has sum 9 in this coloring, while V ∗ has sum
21. This means that s(G) > 2 if and only if there is a coloring of G with sum 9n+ 20: otherwise the sum
of G is 9n + 21, which can be also achieved by a 2-coloring. If there is a coloring ψ with sum 9n + 20,
then it induces a coloring of H . For a such a coloring ψ, the sum of ψ has to be exactly 20 on the vertices
of V ∗. Therefore V ∗ is colored as shown on Figure 4.13, thus the coloring induced by ψ is a precoloring
extension of H .

To see the other direction, assume that H has a precoloring extension with 3 colors. This coloring can
be extended to a coloring of G having sum 9n+ 20. In V ∗, the coloring can be extended to the coloring
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Figure 4.13: The graph that connects the precolored vertices v1, v2, v3, and its unique minimum sum
coloring with sum 20.
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Figure 4.14: Izbicki’s graphs for k = 3, 4, 5. In I4, the sum of the coloring decreases if we use the colors
shown in frames.

shown on Figure 4.13. In every Vv, depending on the color of v, the coloring can be extended to one of
the three colorings shown on Figure 4.12. The set V ∗ has sum 20 in the resulting coloring, while every Vv
has sum 9. Thus the sum of the coloring is 9n+ 20, and s(G) = 3 follows. �

4.4.2 Graphs with s′(G) > χ′(G)

The aim of this section is to show that for every k ≥ 3, there is a simple graph G with ∆(G) = χ′(G) = k
and s′(G) = k + 1. This gives a counterexample to the conjecture of Harary and Plantholt [Wes95] for
every possible value of k. Notice that for k = 2 there are no such graphs: if χ′(G) = 2, then every
connected component of G is a path or an even cycle, which can be edge colored optimally with 2 colors.

It turns out that for k > 3, the graphs constructed by Izbicki in [Izb64] (long before the conjecture)
have the required properties. For every k ≥ 3, the Izbicki graph Ik(Vk, Ek) is defined as follows (see
Figure 4.14):

Vk = {Rs, Qt, Pt | 1 ≤ s ≤ k − 3, 1 ≤ t ≤ k},

Ek = {(Rs, Qt), (Qt, Qt+1), (Qt, Pt) | 1 ≤ s ≤ k − 3, 1 ≤ t ≤ k},

where Qk+1 = Q1. We note that these graphs were used in [LG83] to reduce the edge coloring problem
of multigraphs to the edge coloring of simple graphs. Vertices Rs and Qt have degree k, while vertices
Pt have degree 1, therefore by the following lemma, the k edges (Qt, Pt) have different color in every
k-edge-coloring of Ik.
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Lemma 4.4.4 (Izbicki [Izb64]). Let G be a graph that contains only degree 1 and degree k vertices,
denote by n the number of vertices in G having degree k. In every k-edge-coloring of G, if fi (1 ≤ i ≤ k)
denotes the number of pendant edges with color i, then fi has the same parity as n.

Proof. If vertex v has degree k, then every color appears at v in every k-edge-coloring. Therefore with the
above notations, color i appears at exactly n+ fi vertices. This number must be even, thus the parities
of n and fi are the same. �

Since Ik has n = 2k − 3 vertices with degree k, thus the Lemma implies that fi is odd for every
1 ≤ i ≤ k. There are k pendant edges in Ik, hence every fi is 1, and the pendant edges have different
colors. Therefore if Ik has a k-edge-coloring, then this coloring has error

∑k
i (i − 1) = i(i − 1)/2, since

the degree k vertices Rs, Qt have zero error. Moreover, Ik is k-edge-colorable, as shown by the following
coloring ψ:

ψ(Rs, Qt) = [t+ s+ 2]k (1 ≤ s ≤ k − 3, 1 ≤ t ≤ k),

ψ(Qt, Pt) = t (1 ≤ t ≤ k),

ψ(Qt, Qt+1) = [t+ 2]k (1 ≤ t ≤ k),

where [x]k = x− k for x > k, and [x]k = x for x ≤ k.
Now consider the coloring ψ′ that is the same as ψ except that

ψ′(Qk−1, Pk−1) = 1 instead of k − 1,

ψ′(Qk−1, Qk) = k + 1 instead of 1,

ψ′(Qk, Pk) = 1 instead of k.

This modification increases the sum by (1 + (k + 1) + 1) − ((k − 1) + 1 + k) = 3 − k, which is negative if
k > 3. Therefore Ik (for k > 3) has a (k + 1)-edge-coloring with sum strictly smaller than the minimum
sum that can be achieved by any k-edge-coloring, hence s′(Ik) > k = χ′(Ik) = ∆(Ik).

Proposition 4.4.5. For every k > 3, χ′(Ik) = k and s′(Ik) = k + 1. �

For k = 3, the graph I3 does not provide a counterexample to the conjecture of Harary and Plantholt,
as the minimum sum 12 can be achieved using only 3 colors (see Figure 4.14). However, the 3-edge-
colorable graph shown on Figure 4.15 gives a counterexample for the case k = 3. This graph is the
smallest counterexample for k = 3, and was found by an exhaustive computerized search. The search was
performed using the program nauty of Brendan McKay [McK90], which is capable of enumerating every
non-isomorphic graph with given number of vertices and given maximum degree. For each graph it was
first checked whether it is 3-edge-colorable, and if so, then the sum of the best 3-edge-coloring and the best
4-edge-coloring was determined by a simple backtracking method. Checking all the 19430 non-isomorphic
connected graphs on 12 vertices with maximum degree 3 took under a minute on a 800MHz computer.

Figure 4.15 shows a 4-edge-coloring of the graph with sum 29. Unfortunately, we cannot give a hand-
verifiable proof that this sum cannot be achieved by a 3-edge-coloring. However, a very simple program
can check all the 315 ≈ 14.3 · 106 possible 3-edge-colorings of the 15 edges, and can verify that the best
3-edge-coloring has sum 30.

Proposition 4.4.6. For every k ≥ 3, there is a simple graph Gk with ∆(Gk) = χ′(Gk) = k and s′(Gk) =
k + 1.

4.4.3 The complexity class Θp
2

In the introduction of Section 4.4, we have argued that the problem of deciding whether s′(G) ≤ k holds
does not seem to belong to either NP or coNP. Thus determining the chromatic edge strength of a graph
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Figure 4.15: A graph with ∆(G) = χ′(G) = 3 but s′(G) = 4. The figure shows a minimum sum edge
coloring with sum 29 using 4 colors, every 3-edge-coloring has sum at least 30.

seems to be a problem more difficult than those contained in NP. However, not much more difficult: using
an NP-oracle, the value of Σ′(G) can be determined with a polynomial number of oracle queries, and with
an additional query it can be decided whether there is a k-edge-coloring with sum Σ′(G) (for background
on oracles, see Appendix A.3). In fact, a logarithmic number of oracle queries is sufficient: the value of
Σ′(G) can be determined using binary search. Therefore, as an upper bound, it can be said that this
problem is in PNP = ∆p

2. But exactly where does this problem lie between NP and ∆p
2?

The class Θp
2 = PNP[O(logn)] contains those languages that can be decided by a polynomial-time

oracle Turing-machine that makes O(log n) sequential queries to an NP-oracle. There are several other
natural characterizations of Θp

2 in the literature: as shown in [Wag90, Hem89, PZ82], it is equivalent
to PNP

|| (polynomial-time computation with parallel access to an NP-oracle), LNP
|| (log-space bounded

computation with parallel access to an NP-oracle), and LNP (log-space computation with an NP-oracle).
The notation Θp

2 comes from Wagner [Wag90], who defines this class as part of the polynomial hierarchy:
Θp
i+1 is the class of problems that can be decided in polynomial time by at most O(log n) queries to a

Σpi -oracle. Since Σp1 = NP, thus Θp
2 is equivalent to PNP[O(logn)]. Clearly, Σpi ,Π

p
i ⊆ Θp

i+1 ⊆ ∆p
i+1. It is

conjectured that these inclusions are proper. However, our present knowledge does not even rule out the
possibility of P = PSPACE.

There are some more exotic characterizations of Θp
2. For example, Lange and Reinhardt [LR94] intro-

duced the concept of empty alternation, and proved the surprising result that log-space and polynomial-
time bounded computation with auxiliary Turing tape and empty alternation equals Θp

2. Holzer and
McKenzie [HM00] gave similar characterizations of Θp

2 using auxiliary stacks (see also [HM02]).

The class Θp
2 turns out to be relevant in other ways as well. Mahaney [Mah82] has shown that if NP

has a sparse Turing-complete set, then the polynomial hierarchy (PH) collapses to ∆p
2. Kadin [Kad89] has

strengthened this result by showing that if NP has sparse Turing-complete sets, then PH ⊆ Θp
2. Moreover,

this theorem is optimal in the sense that the collapse to Θp
2 relativizes, but there are relativized worlds

with sparse NP-complete sets where PH does not collapse bellow Θp
2 [Kad89].

If a complexity class has several natural complete problems, then this makes the class natural and
worth studying. The abundance of complete problems is usually taken as a sign that the class captures
some important aspect of computation. Wagner [Wag87] has shown that NP-hard optimization problems
often give rise to Θp

2-complete decision problems. For example, it is Θp
2-complete to decide whether the

size of the maximum independent set in G is odd, or to decide whether the maximum independent sets of
graphs G1 and G2 have the same size.

Besides these somewhat technical problems, Θp
2 has more natural complete problems. The following

greedy algorithm is a well-known heuristic for the maximum independent set problem: take a vertex with
minimum degree, put it into the independent set, delete it and its neighbors from the graph, and continue
this while there are vertices in the graph. In general, this will not result in a maximum independent set, but
in certain graphs, with a lucky sequence of choices, it is possible that the result is optimal. Hemaspaandra
and Rothe [HR98] showed that it is Θp

2-complete to decide whether the greedy algorithm can find a
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maximum independent set in the given graph G. More generally, for every rational number r ≥ 1, they
show that it is Θp

2-complete to decide whether the greedy algorithm can find an r-approximation of the
optimum, that is, an independent set of size at least 1/r times the maximum.

Another example can be found in the study of electoral systems. The Condorcet Paradox states
that even if every voter has a clear preference order of the candidates, it is not necessary that there
is a “best” candidate who can beat every other candidate in pairwise comparisons (such a candidate is
called a Condorcet winner). In 1876 Lewis Caroll proposed an electoral system that can be used to find
a winner even if there is no such best candidate: let that candidate be the winner who can become a
Condorcet winner with a minimal number of changes in the preferences of the voters. Hemaspaandra
et al. [HHR97, HH00] showed that it is Θp

2-complete to decide whether candidate X is the winner in this
system. It is quite fascinating to see that there is a Θp

2-complete problem that was posed more than 100
years before the definition of the class Θp

2.
In Section 4.4.4, we show that for every k ≥ 3, deciding whether s′(G) ≤ k holds is Θp

2-complete. In
order to prove this result, we introduce four new Θp

2-complete variants of the maximum independent set
problem:

Maximum Independent Set with v̂

Input: A graph G(V,E) and a distinguished vertex v̂ ∈ V

Question: [Does at least one/Does every] maximum independent set in G [contains/avoids] v̂?

The four problems are abbreviated MIS-∃∈, MIS-∃6∈, MIS-∀∈, MIS-∀6∈ (the symbol ∃ stands for “Does
at least one,” ∀ stands for “Does every,” ∈ stands for “contains,” and 6∈ stands for “avoids”). The rest of
this section is devoted to the proof that these four problems are Θp

2-complete for 3-regular graphs. This
result might be of independent interest as well. Wagner [Wag87] presents a general method of turning
NP-complete problems into Θp

2-complete problems, our proof follows this path.

Theorem 4.4.7 (Wagner [Wag87]). Let A be an NP-complete set and let χA be its characteristic
function. For an arbitrary set B, if there is a polynomial-time computable function f such that for all
k ≥ 1 and for strings w1, w2, . . . , w2k ∈ Σ∗ with χA(w1) ≥ χA(w2) ≥ · · · ≥ χA(w2k) it holds that

|{wi : wi ∈ A}| is odd ⇐⇒ f(w1, . . . , w2k) ∈ B,

then B is Θp
2-hard.

That is, given a sequence of words, it is Θp
2-hard to decide whether an odd number of the words belong

to the NP-complete set A, and if this problem is many-one reducible to B, then B is Θp
2-hard as well.

Moreover, the problem remains Θp
2-hard when restricted to sequences satisfying the technical condition

χA(w1) ≥ χA(w2) ≥ · · · ≥ χA(w2k). This condition means that we have to consider only sequences where
w1, . . . , wℓ ∈ A and wℓ+1, . . . , w2k 6∈ A hold for some ℓ.

Theorem 4.4.8. All four problems MIS-∃∈, MIS-∃6∈, MIS-∀∈, MIS-∀6∈ are Θp
2-complete for 3-regular

graphs.

Proof. To see that these problems belong to the class Θp
2, observe that by using binary search, a logarithmic

number of adaptive NP-oracle calls are sufficient to determine α(G), the size of the maximum independent
set in the graph. Having done that, a single NP or coNP question can answer whether there is an
independent set, whether every independent set of size α(G) has the required property.

First we show the Θp
2-completeness of the MIS-∀∈ problem using the method given by Theorem 4.4.7.

By Cook’s Theorem, one can compute in polynomial time a 3CNF formula ϕi for every string wi such that
wi ∈ A if and only if ϕi is satisfiable. It can be assumed that every variable in ϕi occurs at most twice
positively and at most once negated, it is known that the satisfiability problem remains NP-complete with
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these restrictions (cf. [Pap94]). Moreover, we show that ϕi can be modified in such a way that there is a
clause Ci,1 in the modified formula ϕ′

i that contains only a single literal, and there is a variable assignment
of ϕ′

i satisfying every clause except Ci,1. In order to obtain ϕ′
i, replace every variable xj with two variables

x1
j and x2

j , replace in the formula every literal xj with x1
j , and every literal xj with x2

j . Add n + 1 new
variables y0, y1, . . . , yn, where n is the number of variables in the formula ϕi. For every 1 ≤ j ≤ n, add a
clause (x1

j ∨ x
2
j ∨ yj). Create a cycle of implications by adding the n+ 1 clauses (y0 ∨ y1), (y1 ∨ y2), . . . ,

(yn∨y0), these clauses ensure that every variable yj has the same value in a satisfying assignment. Finally,
add a clause Ci,1 = (y0). Notice that every variable occurs at most 3 times in ϕ′

i. If ϕi is satisfiable, then
ϕ′
i is satisfiable as well: given a satisfying variable assignment of ϕi, setting x1

j = x2
j = xj and setting

every yj to true satisfies formula ϕ′
i. On the other hand, in every satisfying assignment of ϕ′

i, the clause
(y0) implies that y0 is true, and the cycle of implications ensures that every yj is true. Therefore (x1

j ∨x
2
j )

holds for every j, it is not possible that x1
j is true and x2

j is false at the same time. Thus setting xj = x1
j

gives a satisfying assignment of ϕi. Furthermore, even if ϕ′
i is not satisfiable, setting every x1

j to true and

every x2
j , yj to false satisfies every clause except Ci,1. Therefore ϕ′

i has indeed the required properties.
Denote by ni and mi the number of variables and the number of clauses in ϕ′

i. For every formula
ϕ′
i, we apply the standard reduction from 3SAT to maximum independent set (cf. [GJ79]), denote by
Gi(Vi, Ei) the graph obtained. That is, Gi contains an edge xℓxℓ for every variable xℓ, and a clique of size
|Ci,p| for every clause Ci,p. Furthermore, the qth vertex in the clique corresponding to the clause Ci,p is
connected to the negation of the qth literal in clause Ci,p. Let vi be the vertex corresponding to the clause
Ci,1 (it contains only one literal). If ϕ′

i is satisfiable, then Gi has a maximum independent set of size
ni + mi: select the ni vertices corresponding to the true literals in the satisfying assignment, and select
one vertex from each of the mi cliques Ci,p. This can be done for every clique: since at least one literal
is true in each clause of the formula, at least one vertex of each clique is not adjacent to the ni selected
vertices. Furthermore, even if ϕ′

i is not satisfiable, Gi has a maximum independent set of size ni +mi− 1
that does not contain the vertex vi (the assignment satisfying every clause other that Ci,1 yields such an
independent set). Notice that the constructed graph Gi has maximum degree 3: this follows from the fact
that each literal occurs at most twice in ϕ′

i.
Let us construct the graph G as follows (see Fig. 4.16). Graph G contains k triangles ciu2i−1u2i

(1 ≤ i ≤ k), a cycle of 2k vertices a1, b1, a2, b2, . . . , ak, bk, and k additional vertices q2, q4, . . . , q2k. Add the
2k graphs G1, G2, . . . , G2k to G in the following way: for every odd i, connect the vertex vi of Gi to ui,
for every even i, connect vertex vi with qi, and connect qi with ui. Moreover, for every 1 ≤ i ≤ k, connect
ai with ci. The resulting graph is shown on Figure 4.16 for k = 4. It is clear that constructing the graph
G from the strings w1, . . . , w2k is a polynomial-time transformation. Notice that every vertex has degree
at most 3 in the resulting graph. However, G is not 3-regular, we will handle this problem later.

Partition the vertices of the graph the following way:

• C = {a1, b1, . . . , ak, bk},

• Tj = {cju2j−1u2j} for 1 ≤ j ≤ k,

• Xi = Vi for every odd 1 ≤ i ≤ 2k,

• Xi = Vi ∪ {qi} for every even 1 ≤ i ≤ 2k,

where Vi is the vertex set of Gi. Clearly α(G) ≤ α(C) +
∑k

j=1 α(Tj) +
∑2k
i=1 α(Xi) =

∑2k
i=1 α(Xi) + 2k.

Moreover, equality holds, since if we take a maximum independent set in every Xi, then the 2k vertices
bi, ci (1 ≤ i ≤ k) can be added to this set to obtain an independent set of the required size. This implies
that every maximum independent set of G induces a maximum independent set for every class of the
partition. In particular, every maximum independent set contains exactly one vertex from every triangle
Tj , and contains the k vertices a1, . . . , ak or the k vertices b1, . . . , bk from C. Notice that α(Xi) = ni+mi

for every even i, regardless of the satisfiability of ϕ′
i: if ϕ′

i is satisfiable, then there is an independent set
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Figure 4.16: The graph G for k = 4 in the proof of Theorem 4.4.8.

of size ni + mi in Gi, but every such set contains vi, thus these sets cannot be extended with the vertex
qi. If ϕ′

i is not satisfiable, then there is an independent set of size ni + mi − 1 in Gi not containing the
vertex vi, therefore it can be extended with vertex qi to an independent set of size ni +mi.

We claim that every maximum independent set of G contains v̂ := b1 if and only if |{wi : wi ∈ A}| is
odd. Assume first that |{wi : wi ∈ A}| = 2d − 1 is odd. By the assumption χA(w1) ≥ χA(w2) ≥ · · · ≥
χA(w2k) this means that w2d−1 ∈ A but w2d 6∈ A. Therefore ϕ′

2d−1 is satisfiable, and graph G2d−1 has
an independent set of size n2d−1 +m2d−1, but every such set contains vertex v2d−1. Moreover, ϕ2d is not
satisfiable, and as it is noted in the previous paragraph, this implies that every maximum independent
set of X2d contains the vertex q2d. Since every maximum independent set S of G induces a maximum
independent set for X2d−1 and X2d, hence v2d−1, q2d ∈ S and u2d−1, u2d 6∈ S. As noted above, set S
contains exactly one vertex from the triangle Td, this must be cd, implying that ad 6∈ S. Therefore
b1, b2, . . . , bk ∈ S follows, that is, every maximum independent set of G contains b1.

Now suppose that |{xi : xi ∈ A}| = 2d is even. We show that there is a maximum independent set S
of G not containing b1. Let the set S contain the vertices a1, a2, . . . , ak, and a maximum independent set
of every subset Xi. If one can choose from every triangle Tj a vertex that does not conflict with S, then
S can be extended to a maximum independent set not containing b1. The assumptions |{wi : wi ∈ A}|
even and χA(w1) ≥ χA(w2) ≥ · · · ≥ χA(w2k) imply that for every 1 ≤ j ≤ k, either w2j−1, w2j 6∈ A or
w2j−1, w2j ∈ A. In the first case, ϕ′

2j−1 is not satisfiable, G2j−1 has a maximum independent set not
containing v2j−1, therefore it can be assumed that v2j−1 6∈ S, and S can be extended with u2j−1. On the
other hand, if w2j ∈ A, then there is a maximum independent set of X2j that contains vertex v2j , hence
v2j ∈ S, q2j 6∈ S, and S can be extended with u2j.

Notice that this reduction can be used to prove the Θp
2-completeness of MIS-∀6∈ as well: every maximum

independent set contains b1 if and only if every maximum independent set excludes a1. Moreover, since
MIS-∃6∈ is the complement of MIS-∀∈, and MIS-∃∈ is the complement of MIS-∀6∈, it follows that these
problems are Θp

2-complete as well, because Θp
2 is closed under taking complements.

The theorem requires that we prove the Θp
2-completeness of the problems for 3-regular graphs, but G

has vertices with degree less than 3. If a vertex v of G(V,E) has degree less than 3, then attach to v one or
two gadgets to make the degree of v exactly 3, Figure 4.17 shows the attached gadget. Assume that g such
gadgets are attached, denote by G′(V ′, E′) the 3-regular graph obtained. A gadget can contain at most 2
independent vertices, thus α(G′) ≤ α(G) + 2g. On the other hand, given an independent set of G, adding
to this set the vertices a, b of every gadget yields an independent set of G′, therefore α(G′) = α(G) + 2g.
Moreover, every maximum independent set of G can be extended to a maximum independent set of G′,
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and if S is a maximum independent set of G′, then S ∩ V induces a maximum independent set for G.
Therefore every maximum independent set of G contains b1 if and only if every maximum independent
set of G′ contains b1, hence the theorem is proved for 3-regular graphs as well. �

a

b

Figure 4.17: Attaching gadgets to the graph to make it three regular.

Replacing maximum independent set with minimum vertex cover in the problem definition results
in four new problems MVC-∃∈, MVC-∃6∈, MVC-∀∈, MVC-∀6∈. From the well-known fact that every
maximum independent set is the complement of a minimum vertex cover, it follows that these four problems
are equivalent to the four problems MIS-∃6∈, MIS-∃∈, MIS-∀6∈, MIS-∀∈, respectively. For example, there
is a minimum vertex cover containing vertex v̂ if and only if there is a maximum independent set not
containing v̂.

Corollary 4.4.9. All four problems MVC-∃∈, MVC-∃6∈, MVC-∀∈, MVC-∀6∈ are Θp
2-complete for 3-

regular graphs. �

4.4.4 The reduction

For every k ≥ 3, we prove that it is Θp
2-complete to decide whether s′(G) ≤ k holds for a given graph G.

The proof is very similar to the proof of Theorem 4.2.3, where we have shown that minimum sum edge
coloring is APX-hard. However, now the reduction is from the MVC-∃∈ problem defined in Section 4.4.3,
and we have to use a special gadget for the distinguished vertex v̂. Given a 3-regular graph G, we construct
a quasigraph G′ such that ǫ(G′) = τ(G) + ck, where τ(G) is the size of the minimum vertex cover in G,
and ck is a constant depending only on k. Moreover, the minimum error τ(G) + ck can be achieved by a
k-edge-coloring of G′ if and only if there is a minimum vertex cover of G containing distinguished vertex
v̂. This means that s′(G) ≤ k if and only if the answer to the MVC-∃∈ problem is yes. The constructed
graph G′ is a quasigraph, but we want to prove that determining the edge strength is Θp

2-hard for simple
graphs. However, this is not a problem, as the transformation of Proposition 4.1.1 gives us a simple graph
G′′ with the same edge strength as G′.

Quasigraph G′ is constructed by associating vertex gadgets and edge gadgets to the vertices and edges
of G. The vertex gadget shown on Figure 4.5 has 3 pendant edges that correspond to the 3 edges incident
to the vertex in G. The coloring of the pendant edges will determine whether we select the vertex into the
vertex cover or not. If the vertex is in the vertex cover, then all 3 pendant edges are colored with color 2,
otherwise the pendant edges have color 1. The gadget has the following properties:

• There is a coloring ψ with zero error on the internal vertices of the vertex gadget that colors all
three pendant edges with color 1. Moreover, every coloring with zero error on the internal vertices
colors the pendant edges with color 1.

• There is a coloring ψ∗ that colors all three pendant edges with color 2 and has only 1 error on the
internal vertices.
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Figure 4.5 shows two edge colorings of the vertex gadget. The first coloring has zero error on the
internal vertices and assigns color 1 to the pendant edges. The error of the second coloring is 1 (there
is error only at vertex v), and assigns color 2 to the pendant edges. Moreover, the first coloring is the
unique coloring with zero error on the internal vertices: the reader can easily verify this by observing
that the edges incident to degree 1 vertices have to be colored with color 1, and the implications of this
uniquely determines the coloring of the rest of the graph. These observations prove that the gadget has
the required properties.

The edge gadget shown on Figure 4.6 has two pendant edges f and g. If a coloring has zero error on
the internal vertices of the gadget, then clearly edges f and g have color 1 or 2. There are 4 different ways
of coloring f and g with these two colors. In 3 out of 4 of these combinations, when at least one of f and
g is colored with color 2, the coloring can be extended to the whole gadget with zero error (Figure 4.6
shows these 3 different colorings). On the other hand, if both f and g have color 1, then there is at least
one error on the internal vertices of the gadget. The reader can verify this by following the implications
of coloring f and g with color 1, and requiring that every internal vertex has zero error.

For the distinguished vertex v̂, a more complicated gadget is required than the vertex gadget shown
on Figure 4.5. Like the vertex gadget, the special vertex gadget has a low-error coloring that assigns color
1 to the three pendant edges, and there is a coloring with error greater by 1 that assigns color 2 to the
pendant edges. Furthermore, the low-error coloring can be achieved only with ∆ + 1 colors, while the
other coloring uses only ∆ colors. The following lemma states formally the properties of this gadget:

Lemma 4.4.10. (Special vertex gadget) For every k ≥ 3, if there is a simple graph Hk with χ′(Hk) =
∆(Hk) = k and s′(Hk) = k + 1, then there is a quasigraph Dk satisfying the following requirements:

1. Dk has three pendant edges. Denote by V0 the internal vertices of D.

2. Every edge coloring ψ with ǫψ(V0) = ǫ(V0) uses at least k + 1 colors and assigns color 1 to the three
pendant edges.

3. There is a (k + 1)-edge-coloring ψ with ǫψ(V0) = ǫ(V0) that assigns color 1 to the three pendant
edges.

4. There is a k-edge-coloring ψ∗ with ǫψ∗(V0) = ǫ(V0) + 1 that assigns color 2 to the three pendant
edges.

The proof of Lemma 4.4.10 is deferred to Section 4.4.5. We note here that the vertex gadget of
Figure 4.5 satisfies these properties with ǫ(V0) = 0, except for Property 2.

Theorem 4.4.11. For every k ≥ 3, if there is a graph Hk with χ′(Hk) = ∆(Hk) = k and s′(Hk) = k+ 1,
then it is Θp

2-complete to decide whether s′(G) ≤ k.

Proof. The proof is by reduction from the MVC-∃∈ problem, which was proved Θp
2-complete in Sec-

tion 4.4.3 (Corollary 4.4.9). Given a 3-regular graph G with a distinguished vertex v̂, we construct a
quasigraph G′ with maximum degree k such that s′(G) = k if and only if there is a minimum vertex cover
of G containing v̂.

The quasigraph G′(V ′, E′) is constructed as follows. At first, let us forget about the distinguished
vertex v̂, consider it as an ordinary vertex like all the others. Later we will show what modifications
have to be done for v̂. A vertex gadget Sv corresponds to every vertex v of G, and an edge gadget Se
corresponds to every edge e of G. Direct the edges of G arbitrarily. If the ith edge incident to v ∈ V
(i = 1, 2, 3) is the head of e ∈ E, then identify edge ei of Sv with edge f of Se. If the ith edge incident to
v ∈ V is the tail of e ∈ E, then identify edge ei of Sv with edge g of Se. Thus every vertex of G′ is an
internal vertex of a vertex gadget Sv or an edge gadget Se. Denote by Vv the internal vertices of gadget
Sv and by Ve the internal vertices of Se, clearly these sets form a partition of V ′.
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We claim that G′ has an edge coloring with error t if and only if G has a vertex cover with size t.
Assume first that D ⊆ V is a vertex cover of G. If v ∈ D, then color gadget Sv using coloring ψ∗: every
pendant edge has color 2 and there is 1 error on the internal vertices. If v 6∈ D, then we use coloring ψ of
the vertex gadget: every pendant edge of Sv has color 1 and there is no error on the internal vertices. Now
consider a gadget Se for some e ∈ E. The two pendant edges f and g are already colored with color 1 or
2. However, at least one of them is colored with 2, since at least one end vertex of e is in D. Therefore,
using one of the three colorings shown on Figure 4.6, we can extend the coloring to every edge of Se with
zero error on the internal vertices of the gadget. Therefore errors appear only on the internal vertices of
Sv for v ∈ D, and the total error of the coloring is |D|.

On the other hand, consider an edge coloring of G′ with error t. Let V̂ ⊆ V be the set of those v ∈ V
for which there is error in Vv. Similarly, let Ê ⊆ E be the set of those e ∈ E for which there is error in Ve.
Clearly, the coloring has error at least |V̂ | + |Ê| ≤ t. Let V be a set of |Ê| vertices in G that cover every

edge in Ê. The set of vertices V̂ ∪ V has size at most |V̂ | + |Ê| ≤ t. We show that this set is a vertex

cover of G. It is clear that every edge e ∈ Ê is covered, since there is a v ∈ V covering e. Now consider an
edge e 6∈ Ê, this means that Ve is colored with zero error, thus, as we have observed, at least one pendant
edge of Se is colored with color 2. If this edge is the pendant edge of the vertex gadget Sv, then there
is at least one error in Vv and v is in V̂ . However, if the pendant edge of Se and Sv is identified in the
construction, this means that e is incident to v, thus v ∈ V̂ covers e.

We have shown that ǫ(G′) = τ(G). Now we modify slightly G′ to take into account the distinguished
vertex v̂. The gadget corresponding to vertex v̂ is not the vertex gadget of Figure 4.5, but the special
vertex gadget defined in Lemma 4.4.10. By modifying appropriately the argument presented above, one
can show that ǫ(G′) = τ(G) + ǫ(V0), where ǫ(V0) is the minimum error on the internal vertices of the
special gadget. Moreover, if G has a minimum vertex cover D containing v̂, then G′ has a minimum sum
edge coloring using only k colors, since in this case we can use coloring ψ∗ on the special gadget. On the
other hand, if there is a minimum sum edge coloring using k colors, then by Property 2 of Lemma 4.4.10,
the error is more than ǫ(V0) on the internal vertices of the special gadget. This means that vertex v̂ is

contained in the set V̂ defined above, hence the constructed minimum vertex cover contains v̂. Therefore
s′(G′) = k if and only if G has a minimum vertex cover containing v̂, what we had to prove. �

In Section 4.4.2 we have seen that for every k ≥ 3, there is a simple graph with maximum degree and
chromatic index k that has edge strength k + 1. Combining this with Theorem 4.4.11 gives

Corollary 4.4.12. For every k ≥ 3, it is Θp
2-complete to decide whether s′(G) ≤ k. �

Determining the chromatic edge strength is the special case of determining the chromatic strength:
edge strength is simply the strength of the line graph. Therefore Corollary 4.4.12 implies hardness for the
chromatic strength as well:

Corollary 4.4.13. For every k ≥ 3, it is Θp
2-complete to decide whether s(G) ≤ k. �

In the introduction, we have noted that if G is a simple graph, then s′(G) is either ∆(G) or ∆(G) + 1
[MMS97, HMT00], and consequently, s′(G) is either χ′(G) or χ′(G) + 1. In Theorem 4.4.11, we construct
a graph with maximum degree and chromatic index k. Therefore comparing s′(G) to ∆(G) or to χ′(G) is
also hard:

Corollary 4.4.14. For every k ≥ 3, it is Θp
2-complete to decide for graphs with maximum degree k whether

s′(G) = ∆(G) holds. �

Corollary 4.4.15. For every k ≥ 3, it is Θp
2-complete to decide for graphs with maximum degree k whether

s′(G) = χ′(G) holds. �

Hajiabolhassan et al. [HMT00] asks an open question to characterize those graphs where s′(G) 6= χ′(G).
Corollary 4.4.15 implies that we cannot hope for a nontrivial (NP or coNP) characterization of such graphs.
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Figure 4.18: The trees Ti and Ni.

4.4.5 Special vertex gadget

The aim of this section is to construct the special vertex gadget defined in Lemma 4.4.10. However,
some preparations are required before the proof. We recursively construct two families of trees Ti and Ni
(i ≥ 1). Every Ti has a pendant edge e, and every Ni has a root r. The trees T1 and N1 consist of a single
edge. The tree Ni is constructed by attaching the pendant edges of a T1, T2, . . . , Ti tree to a common root
r. The tree Ti+1 is the same as Ni, with a pendant edge connected to the root r. The construction is
demonstrated on Figure 4.18.

The properties of these trees are summarized in the following lemma:

Lemma 4.4.16. (a) There is an edge coloring of the tree Ti that has no error on the internal vertices of
Ti, and assigns color i to the pendant edge e. Furthermore, every coloring that assigns color j to e has
error at least |j − i| on the internal vertices.
(b) There is a zero error edge coloring of the tree Ni that assigns the colors 1, 2, . . . , i to the edges incident
to r. Furthermore, if color j ≤ i is missing at r in a coloring, then this coloring has error at least i− j+ 1
on the internal vertices of Ni.

Proof. The proof is by induction on i. Both statements are trivial for i = 1. Now assume that i > 1 and
both (a) and (b) hold for every 1 ≤ j < i. First we prove statement (a). Since Ti − e is an Ni−1 tree,
thus it has a zero error coloring by the induction hypotheses. Extending this coloring by assigning color
i to edge e does not create errors on the internal vertices of Ti, proving the first part of statement (a).
Consider now an edge coloring that assigns color j to e. This coloring colors Ti − e = Ni−1 in such a way
that color j is missing from vertex r. If j < i, then by the induction hypothesis, there is error at least
(i − 1) − j + 1 = |j − i| on the internal vertices of Ni−1, and we are ready. On the other hand, if j > i,
then in the coloring of Ti the degree i internal vertex r has error at least j − i.

Next we prove statement (b). Let e1, e2, . . . , ei be the edges incident to r in Ni, edge ej is the pendant
edge of the Tj tree attached to r. A zero error edge coloring of Ni can be obtained by coloring every
attached tree Tj in such a way that the internal vertices have zero error and edge ej has color j. Clearly,
there is no error on r on any other vertex of Ni in this coloring.

Suppose that a color j ≤ i is missing from r in a coloring ψ of Ni. Define the following sequence of
edges: es1 = ej and esk+1

= eψ(esk
) until an edge with ψ(esk′

) > i is found (it can be verified that this

sequence is finite). Since esk
is the pendant edge of a tree Tsk

, by statement (a), there is error at least
|sk − ψ(esk

)| on the internal vertices of Tsk
. Therefore the internal vertices of Ni has error at least

|ψ(es1) − s1| + |ψ(es2) − s2| + · · · + |ψ(esk′
−1

) − sk′−1| + |ψ(esk′
) − sk′ |

≥ (ψ(es1) − s1) + (ψ(es2) − s2) + · · · + (ψ(esk′
−1

) − sk′−1) + (ψ(esk′
) − sk′)

= ψ(esk′
) − s1 ≥ i+ 1 − j

since by definition, ψ(esk
) = sk+1 for 1 ≤ k < k′, and ψ(esk′

) > i. �
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The colorings defined by Lemma 4.4.16 will be called the standard colorings of these gadgets.
Denote by Σ′

∆(G) the minimum sum that a ∆(G)-edge-coloring of G can have, clearly Σ′
∆(G) ≥ Σ′(G).

Denote by ǫ∆(G) the error of the best ∆(G)-edge-coloring, that is, ǫ∆(G) = 2Σ′
∆(G) − ℓ(G).

In the following lemma, we determine how the error on the vertices changes if we attach to vertex v
of G1 an edge of G2.

Lemma 4.4.17. Let G1(V1, E1) and G2(V2, E2) be two graphs such that V1 ∩ V2 = {v} and edge e is the
only edge in G2 incident to v. Let d be the degree of v in G1. Let G(V1∪V2, E1∪E2) be the graph obtained
by joining G1 and G2 at vertex v. If ψ1 is an edge coloring of G1, ψ2 is an edge coloring of G2, and these
colorings assign distinct colors to the edges incident to v, then they can be combined to obtain an edge
coloring ψ of G such that

ǫψ(u) =






ǫψ1(u) if u ∈ V1 \ {v}

ǫψ2(u) if u ∈ V2 \ {v}

ǫψ1(u) + ψ2(e) − (d+ 1) if u = v.

Conversely, if ψ is an edge coloring of G, then it induces an edge coloring ψ1 of G1 such that

ǫψ1(u) =

{
ǫψ(u) if u ∈ V1 \ {v}

ǫψ(v) − ψ(e) + d+ 1 if u = v.

Proof. The first statement clearly holds for every vertex u 6= v, since combining the two colorings can
change the error only on v, the only common vertex of the two graphs. Let Ev ⊆ E1 be the edges incident
to v in G1. The error of v in coloring ψ is

ǫψ(v) = Σ′
ψ(v) −

d+1∑

i=1

i =
∑

f∈Ev

ψ(f) + ψ(e) −
d∑

i=1

i− (d+ 1)

=




∑

f∈Ev

ψ1(f) −
d∑

i=1

i



+ ψ2(e) − (d+ 1) = ǫψ1(v) + ψ2(e) − (d+ 1).

The second statement can be proved by a similar calculation. �

In particular, if we attach a tree Td(v) to a vertex v, then the error changes as follows:

Lemma 4.4.18. Let v be an arbitrary vertex of simple graph G(V,E), attach to v the pendant edge e of
the tree Td(v). Denote by G′ the graph obtained.

(a) The error ǫ(G′) is either ǫ(G)− 1 or ǫ(G) + 1, and it is ǫ(G)− 1 if and only if there is a minimum
sum edge coloring ψ of G such that some color c ≤ d(v) is missing from v.

(b) If d(v) < ∆(G), then ǫ∆(G′) is either ǫ∆(G) − 1 or ǫ∆(G) + 1, and it is ǫ∆(G) − 1 if and only if
there is a ∆(G)-edge-coloring with error ǫ∆(G) where some color c′ ≤ d(v) is missing from v.

Proof. Let ψ be a minimum sum edge coloring of G, and let c ≤ d(v) + 1 be the smallest color not present
at v in ψ. Take the standard coloring of Td(v) that has zero error on the internal vertices and assigns color
d(v) to edge e (Lemma 4.4.16a). Exchange in Td(v) the colors d(v) and c on the alternating path starting
at edge e, this results in a coloring of Td(v) that has |d(v)− c| error the internal vertices and assigns color
c to edge e. This coloring can be combined with ψ to obtain a coloring ψ′ of G′. We use Lemma 4.4.17
to calculate the error of ψ′. The total error on the internal vertices of Td(v) is |d(v) − c|, and the error on
the vertices of G is the same as in ψ, except on v, where the error is increased by c− (d(v) + 1). Therefore
the error of ψ′ is ǫψ′(G′) = ǫψ(G) + c− (d(v) + 1) + |d(v)− c|. If c ≤ d(v), then this equals ǫψ(G)− 1, thus
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ǫ(G′) ≤ ǫ(G) − 1. If c = d(v) + 1, then ǫψ′(G) = ǫψ(G) + 1, and ǫ(G′) ≤ ǫ(G) + 1 follows. Therefore we
have obtained that ǫ(G′) ≤ ǫ(G) + 1, and if G has a minimum sum edge coloring where a color c ≤ d(v)
is missing from v, then ǫ(G′) ≤ ǫ(G) − 1.

To finish the proof of statement (a), we have to show that ǫ(G′) ≥ ǫ(G) − 1, and if every minimum
sum edge coloring of G uses at v every color not greater than d(v), then ǫ(G′) ≥ ǫ(G) + 1. Assume that a
minimum sum coloring ψ′ of G′ is given with ψ′(e) = c. By Lemma 4.4.16 there is error at least |d(v)− c|
on the internal vertices of the tree Td(v), so there is error at most ǫ(G′) − |d(v) − c| on the vertices V .
Coloring ψ′ induces a coloring ψ of G, and by the second part of Lemma 4.4.17,

ǫψ(G) = ǫψ′(V ) − c+ d(v) + 1 ≤ ǫ(G′) − |d(v) − c| − c+ d(v) + 1 ≤ ǫ(G′) + 1,

hence ǫ(G′) ≥ ǫψ(G) − 1 ≥ ǫ(G) − 1. Moreover, equality is only possible if c ≤ d(v) and ψ is a minimum
sum edge coloring of G, or in other words, if there is a minimum sum edge coloring of G such that color
c ≤ d(v) is missing from v. Finally, if every minimum sum coloring of G uses every color not greater than
d(v) on v, then either c > d(v) or ψ is not a minimum sum coloring of G. In either case, ǫψ′(G′) ≥ ǫ(G)+1
follows, completing the proof of statement (a) (recall that if ψ is not a minimum sum coloring of G, then
ǫψ(G) ≥ ǫ(G) + 2, since the error of every coloring has the same parity). The proof of statement (b) is
exactly the same. Notice that if d(v) < ∆(G), then ∆(G′) = ∆(G). �

The following gadget will be used in the construction of the special vertex gadget.

Lemma 4.4.19. For every k ≥ 1, there is a quasigraph Hk satisfying the following properties (V0 denotes
the internal vertices of Hk):

1. H has two pendant edges f, g.

2. There is a (k + 1)-edge-coloring ψk+1 with ψk+1(f) = k + 1, ψk+1(g) = 1 and ǫψk+1
(V0) = 0.

3. For every i ≤ k, there is a (k + 1)-edge-coloring ψi with ψi(f) = i, ψi(g) = 2, and ǫψi
(V0) = k − i.

4. For every coloring ψ, if ψ(f) = i ≤ k, then ǫψ(V0) ≥ k − i.

5. For every coloring ψ, if ψ(f) = k + 1 and ǫψ(V0) = 0, then ψ(g) = 1.

Proof. For k = 1, 2, 3, the graph Hk is shown on Figure 4.19. It can be verified directly that they satisfy
the requirements of the lemma. Henceforth it is assumed that k ≥ 4.

The graph Hk is constructed as follows. Take a path of 6 vertices v1, v2, v3, v4, v5, v6, let f = v1v2 and
g = v5v6. Identify the root of a tree Nk−1 with vertex v2. Attach a half-loop to v3, and attach to v3
the pendant edges of k − 2 trees T2, T3, . . . , Tk−1. Attach a half-loop to v4 as well, and attach to v4 the
pendant edges of k − 3 trees T3, T4, . . . , Tk−1. The resulting graph Hk is demonstrated on Figure 4.19.

The coloring ψk+1 is defined as ψk+1(v1v2) = k+ 1, ψk+1(v2v3) = k, ψk+1(v3v4) = 1, ψk+1(v4v5) = 2,
ψk+1(v5v6) = 1, ψk+1(v3v3) = k + 1, ψk+1(v4v4) = k, and it gives the standard coloring to the attached
trees. It can be verified that ψk+1 is a proper edge coloring and there is zero error on the internal
vertices, which gives Property 2. Similarly, the coloring ψk required by Property 3 for i = k is defined as
ψk(v1v2) = k, ψk(v2v3) = k + 1, ψk(v3v4) = k, ψk(v4v5) = 1, ψk(v5v6) = 2, ψk(v3v3) = 1, ψk(v4v4) = 2.

To obtain the coloring ψi for some i < k (Property 3), take the coloring ψk defined above, and exchange
the colors k and i on the alternating path starting from edge f . This introduces error k − i to only one
vertex, namely to the vertex at the other end of the alternating path. Notice that this color exchange
cannot affect edge g, since edge v2v3 has color k+ 1. Therefore we obtain a coloring satisfying Property 3.

To see that Property 4 holds, observe that a coloring ψ of Hk induces a coloring of the tree Nk−1, and
color ψ(f) is missing from the root of Nk−1. Therefore in this coloring of Nk−1, there is error at least
k − 1 − ψ(f) + 1 = k − i on the internal vertices (Lemma 4.4.16b), and this means that ψ has error at
least k − i on the internal vertices of Hk, as required.
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Figure 4.19: The graph H1, H2, H3, and H5.

To verify Property 5, assume that ψ(f) = k + 1 and eψ(V0) = 0, that is, there is zero error on each
internal vertex of the gadget. The color of edge v2v3 cannot be less than k, since in that case the tree
Nk−1 could not be colored with zero error on its internal vertices. Vertex v2 has degree k + 1, hence the
assumption that there is no error on v2 implies that ψ(v2v3) ≤ k+ 1. Since color k+ 1 is used by f on v2,
therefore we can conclude that ψ(v2v3) = k. For 2 ≤ i ≤ k − 1, edge v3v4 cannot have color i, since that
would imply that the tree Ti attached to vertex v3 cannot be colored with zero error. Since vertex v4 has
degree k, and color k is already used at v3 by edge v2v3, it follows that ψ(v3v4) = 1. This implies in turn
that ψ(v4v5) 6= 1. However, there is zero error on vertex v5, therefore there must be an edge with color 1
at v5. Thus edge g has color 1, as required. �

Now we are ready to construct the special vertex gadget:

Proof of Lemma 4.4.10. By assumption, there exists a graph G with ∆(G) = k and s′(G) = k + 1 (or
equivalently, ǫ(G) < ǫ∆(G)). If more than one graph satisfies this condition, then select a graph G such
that

ǫ∆(G) − ǫ(G) > 0 is minimal, (*)

and among these graphs,

ǫ(G) is minimal. (**)

For every every vertex v of G, we define two sets Λ(v),Λ∆(v) ⊆ {1, 2, . . . , d(v)}. Set Λ(v) contains j
(1 ≤ j ≤ d(v)) if there is an edge coloring of G with error ǫ(G) such that j is missing from v. If Λ(v) = ∅,
then this means that every minimum sum edge coloring has zero error on v. Similarly, Λ∆(v) contains j
(1 ≤ j ≤ d(v)), if there is a ∆(G)-edge-coloring with error ǫ∆(G) such that j is missing from v.

First we show that at least one of Λ(v) and Λ∆(v) is empty for every vertex v. Otherwise attach the
pendant edge of a tree Td(v) to v, let G′ be the obtained graph. Since there are colors j ∈ Λ(v), j′ ∈ Λ∆(v)
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Figure 4.20: The structure of the special vertex gadget.

not greater than d(v), by (a) and (b) of Lemma 4.4.18, we have ǫ(G′) = ǫ(G) − 1 and ǫ∆(G′) = ǫ(G) − 1,
which contradicts the minimality of G with respect to (**).

Since ǫ∆(G) > 0, there is at least one vertex v with Λ∆(v) 6= ∅, Λ(v) = ∅. Call such a vertex a join
vertex (later we will join another gadget to G at such a vertex, hence the name). Notice that d(v) < ∆(G),
since Λ∆(v) 6= ∅ means that there is a ∆(G)-edge-coloring that uses a color greater than d(v) at v.

The error has the same parity in every edge coloring, and ǫ∆(G) > ǫ(G) by assumption, thus it follows
that ǫ∆(G) ≥ ǫ(G) + 2. We claim that ǫ∆(G) = ǫ(G) + 2 holds for a minimal graph G. Assume that
on the contrary, ǫ∆(G) > ǫ(G) + 2, and let v be a join vertex in G. Attach to v a tree Td(v) and let
G′ be the graph obtained. Since Λ∆(v) 6= ∅, there is a ∆(G)-edge-coloring of G with error ǫ∆(G) such
that some color c ≤ d(v) is missing from v, thus by Lemma 4.4.18b, ǫ∆(G′) = ǫ∆(G) − 1. Moreover,
since Λ(v) = ∅, every color not greater than d(v) is used at v in every minimum sum edge coloring of
G, hence ǫ(G′) = ǫ(G) + 1, by Lemma 4.4.18a. From the assumption ǫ∆(G) > ǫ(G) + 2, it follows that
ǫ(G′) > ǫ∆(G′) holds, thus G is not minimal with respect to (*), a contradiction.

Now we are ready to construct the graph Dk. As shown on Figure 4.20, the graph Dk consists of three
parts: the minimal graph G defined above, a graph Hi from Lemma 4.4.19, and the variable gadget shown
on Figure 4.5. Let vertex v be a join vertex of G. Set d = d(v), and connect to v the pendant edge f of
graph Hd. Finally, as shown on the figure, a graph with 34 new vertices is connected to the pendant edge
g of Hd. The edges e1, e2, e3 are the pendant edges of Dk.

Denote by V0 the internal vertices of Dk and let VG be the vertices of G (including v).

Claim 4.4.20. If V0 is the set of internal vertices of Dk, then ǫ(V0) = ǫ(G). Moreover, if ǫψ(V0) = ǫ(G),
then coloring ψ uses ∆(G) + 1 colors, ψ(f) = d+ 1 and ψ(ei) = 1 for i = 1, 2, 3.

Proof. Color G with error ǫ(G) such that colors 1, 2, . . . , i appear at vertex v (such a coloring exists,
since v is a join vertex and Λ(v) = ∅). Color the edges in Hd using coloring ψd+1 of Lemma 4.4.19, it
assigns color d+ 1 to f , and it does not introduce additional error on v or on the internal vertices of Hi.
Since this coloring assigns color 1 to edge g, it can be extended (in a unique way) to the rest of graph
Dk without increasing the error on V0 (similarly as in the case of the vertex gadget of Section 4.4.4).
Therefore ǫ(V0) ≤ ǫ(G). Notice that this coloring assigns color 1 to the edges e1, e2, e3.

To show that ǫ(V0) ≥ ǫ(G), let ψ be an edge coloring with ǫψ(V0) ≤ ǫ(G). First we show that
ψ(f) > d. If not, then by Property 4 of Lemma 4.4.19, ψ has error at least d − ψ(f) on the internal
vertices of Hd, hence there can be error at most ǫψ(V0) − (d − ψ(f)) ≤ ǫ(G) − (d − ψ(f)) on VG. By
the second part of Lemma 4.4.17, this implies that ψ induces a coloring ψ′ of G with error at most
ǫψ′(G) ≤ ǫψ(VG) − ψ(f) + d + 1 ≤ ǫ(G) − (d − ψ(f)) − ψ(f) + d + 1 = ǫ(G) + 1. Furthermore, ψ′ is not
a minimum sum edge coloring of G, since color ψ(f) ≤ d is missing from v, and Λ(v) = ∅. Therefore
ǫψ′(G) > ǫ(G), but this also means that ǫψ′(G) ≥ ǫ(G) + 2, since the parity of the error is the same in
every edge coloring. However, this contradicts ǫψ′(G) ≤ ǫ(G) + 1.
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Therefore it can be assumed that ψ(f) > d for any coloring with ǫψ(V0) ≤ ǫ(G). Now, again by
Lemma 4.4.17, ψ induces a coloring ψ′ of G with error ǫψ′(G) = ǫψ(VG) − ψ(f) + (d + 1) ≤ ǫψ(VG) ≤
ǫψ(V0) ≤ ǫ(G). Since ǫψ′(G) ≥ ǫ(G), there have to be inequalities throughout. In particular, ψ(f) = d+ 1
and ǫψ(V0) = ǫ(G), thus ǫ(V0) cannot be strictly smaller than ǫ(G). Furthermore, every coloring ψ with
ǫψ(V0) = ǫ(G) induces a coloring ψ′ of G with error ǫ(G). We know that error ǫ(G) can be achieved only
by using ∆(G) + 1 colors. Therefore ∆(G) + 1 colors are required to achieve error ǫ(V0) = ǫ(G) on V0.
Moreover, we have seen that in such a coloring ψ, there is color d + 1 on f and the error on V0 \ V is
zero. By Property 5 of Lemma 4.4.19, this implies that ψ(g) = 1 and it follows that the pendant edges
e1, e2, e3 also have color 1, as required. �

Property 2 of the Lemma follows immediately from Claim 4.4.20. Moreover, in the proof we have
constructed a coloring ψ with ǫψ(V0) = ǫ(V0) and ψ(ei) = 1 for i = 1, 2, 3, which implies Property 3.

To show that Property 4 holds, color G using ∆(G) colors with error ǫ∆(G) = ǫ(G) + 2 such that color
c ∈ Λ∆(v) is missing from vertex v, denote by ψ∆ this coloring. Color Hd such that edge f has color d,
edge g has color 2, and there is error d−c on the internal vertices of Hd (the coloring ψc from Property 3 of
Lemma 4.4.19). This coloring can be extended to a coloring of Dk without introducing further errors on V0

(see the second coloring on Figure 4.5), which gives a coloring ψ∗ that assigns color 2 to the three pendant
edges e1, e2, e3. We use the first part of Lemma 4.4.17 to determine ǫψ∗(V0). There is error d−c on V0\V ,
and ǫψ∗(u) = ǫψ∆(u) for every u ∈ V \ {v}. By Lemma 4.4.17, ǫψ∗(v) = ǫψ∆(v) + ψ∗(f) − (d(v) + 1) =
ǫψ∆(G) + c−d−1. Therefore ǫψ∗(V0) = ǫψ∆(G) + (c−d−1) + (d− c) = ǫ∆(G)−1 = ǫ(G) + 1 = ǫ(V0) + 1,
as required. �





CHAPTER 5

Minimum sum multicoloring

There are not more than five primary colors (blue, yellow, red, white, and black),
yet in combination they produce more hues than can ever been seen.

Sun Tzu (circa 500 B.C.), The Art Of War

In Chapter 4 we have seen that minimum sum coloring can be used to model the scheduling of dependent
jobs if the goal is to minimize the sum of completion times. However, we have assumed that every job
requires a unit amount of time, exactly one time slot has to be assigned to each job. In this chapter we
generalize minimum sum coloring in such a way that it can model different time requirements.

In the minimum sum multicoloring problem a graph G(V,E) is given with a demand x(v) for each
vertex. In the scheduling application, this demand will correspond to the number of time slots the job
requires. The colors are the positive integers, they correspond to the time slots. We have to assign a set
of x(v) colors to each vertex v such that neighbors receive disjoint sets of colors. Given a coloring, the
completion time of a job will be the largest color assigned to the vertex of the job. Thus it is not important
what is the color set assigned to a vertex, only the largest color of this color set counts. Therefore to
minimize the sum of completion times, we have to minimize the sum of these largest colors. Formally, the
problem is defined as follows:

Minimum Sum Multicoloring

Input: A graph G(V,E) and a demand function x: V → N.

Output: A multicoloring Ψ: V → 2N such that

• |Ψ(v)| = x(v) for every v ∈ V , and

• Ψ(u) ∩ Ψ(v) = ∅ if u and v are neighbors in G.

Goal: Let the finish time of vertex v in coloring Ψ be the highest color assigned to it, fΨ(v) =
max{i : i ∈ Ψ(v)}. The goal is to minimize

∑
v∈V fΨ(v), the sum of the coloring Ψ.

There are two variants of the problem. In the preemptive version the color set Ψ(v) can be arbitrary. In
the non-preemptive version we require that Ψ(v) contains a consecutive set of colors. This latter variant
can be used to model non-preemptive scheduling problems, where it is not allowed to interrupt a job
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once it is started. Such non-preemptive problems can arise when we schedule jobs on machines and it
is physically impossible (or very expensive) to stop a job and continue it later. On the other hand, in
a computer or network setting it is quite common to preempt a task and continue it later, usually this
can be done with only a small overhead. The preemptive and non-preemptive versions of a scheduling
problem can be very different. In a preemptive problem we have to assign a set of time slots to each
job, while in the non-preemptive problem a single number (the starting time or the completion time)
is sufficient. Therefore in the non-preemptive problems the search space is usually smaller, which can
make exact solution easier. On the other hand, in a preemptive problem we have more tools to modify a
solution, which can be useful when designing approximation algorithms. In this chapter we consider only
the preemptive version of minimum sum multicoloring. If a set Ψ(v) is assigned to v, then the number of
preemptions in Ψ(v) is the number of different i’s such that i ≤ fΨ(v), i 6∈ Ψ(v), but i− 1 ∈ Ψ(v). If Ψ(v)
is a continuous interval, then it has zero preemptions; if it is the union of two intervals, then it has one
preemption, etc.

Minimum sum multicoloring was introduced in [BNHK+99, BNHK+00]. The problem is hard, and
it is hard even to approximate: the best known polynomial-time algorithm has approximation ratio
O(n/ log2 n) [BNHK+00]. The same paper gives a 16-approximation algorithm for perfect graphs and a
7.184-approximation for interval graphs. However, very recently a 5.436-approximation was found for per-
fect graphs, which improves both results. For bipartite graphs [BNHK+00] gives a 1.5-approximation algo-
rithm. For trees a polynomial time approximation scheme (PTAS) is given by Halldórsson et al. [HKP+03],
which was later generalized for partial k-trees and planar graphs [HK02].

In [HKP+03] a PTAS is given for the minimum sum multicoloring of trees, but no hardness result
was proved for the problem. It was asked as an open question what is the complexity of minimum sum
multicoloring on trees, and if it is NP-hard, then whether it is possible to solve the problem in polynomial
time for paths. We answer the first question in Section 5.2 by showing that the problem is NP-hard for
binary trees. Kovács [Kov04] gave a partial answer to the second question by showing that minimum sum
multicoloring can be solved in O(n3p) time for a path of length n if the maximum demand is p. This
algorithm is only pseudopolynomial, since the maximum demand can be exponentially large. As of this
writing, it is still an open question whether there is a polynomial time algorithm for the problem on paths.
In Section 5.1 we prove a structural result that might help resolving this question. We show that for paths
there is always an optimum solution where every color set is the union of O(log p) continuous intervals.
For bipartite graphs and perfect graphs, we prove the weaker bounds O(n) and O(n2), respectively, on
the number of preemptions required per vertex in an optimum solution.

In Section 5.3 and Section 5.4 we investigate the edge coloring version of minimum sum multicoloring,
which can be formulated as follows:

Minimum Sum Edge Multicoloring

Input: A graph G(V,E) and a demand function x: E → N.

Output: A multicoloring Ψ: E → 2N such that

• |Ψ(e)| = x(e) for every edge e, and

• Ψ(e1) ∩ Ψ(e2) = ∅ if e1 and e2 are adjacent in G.

Goal: The finish time of edge e in coloring Ψ is the highest color assigned to it, fΨ(e) =
max{c : c ∈ Ψ(e)}. The goal is to minimize fΨ(G) =

∑
e∈E fΨ(e), the sum of the coloring Ψ.

An application of edge coloring is to model dedicated scheduling of biprocessor tasks. The vertices
correspond to the processors and each edge e = uv corresponds to a job that requires x(e) time units of
simultaneous work on the two preassigned processors u and v. The colors correspond to the available time
slots: by assigning x(e) colors to edge e, we select the x(e) time units when the job corresponding to e is
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executed. A processor cannot work on two jobs at the same time, this corresponds to the requirement that
a color can appear at most once on the edges incident to a vertex. The finish time of edge e corresponds
to the time slot when job e is completed, therefore minimizing the sum of the finish times is the same as
minimizing the sum of completion times of the jobs. Such biprocessor tasks arise when we want to schedule
file transfers between processors [CGJL85] or the mutual diagnostic testing of processors [HvdVV94]. Note
that it is allowed that a job is interrupted and continued later: the set of colors assigned to an edge does
not have to be consecutive, hence our problem models preemptive scheduling.

Of particular interest is the case where the graph to be colored is bipartite. A possible application of
the bipartite problem is the following. One bipartition class corresponds to a set of clients, the other class
corresponds to a set of servers. An edge e between two vertices means that the given client has to access
the given server for x(e) units of time. A client can access only one server at the same time, and a server
cannot accept connections from more than one client simultaneously. Clearly, bipartite edge multicoloring
models this situation.

Minimum sum edge multicoloring is a generalization of minimum sum edge coloring, hence any com-
plexity result for the latter problem also applies to the multicoloring version as well. Furthermore, in
Section 5.3 we show that although minimum sum edge coloring is polynomial-time solvable for trees
[GK00, Sal03], the multicoloring version is NP-hard, even if every demand is 1 or 2. On the other hand,
we also show that the problem is polynomial time solvable for trees if every demand is the same. This
is a consequence of the following scaling property of minimum sum edge multicoloring in trees (proved
in Section 5.4.2): if the demand of every edge is multiplied by the same integer q, then the sum of the
optimum solution increases by a factor of q.

In Section 5.4 we give a polynomial time approximation scheme (PTAS) for minimum sum edge
multicoloring of trees. Before that, the 2-approximation algorithm of [BNHK+00] for arbitrary graphs
was the only known approximation result for minimum sum edge multicoloring.

The material of Section 5.2 is taken from [Mar02]; Section 5.3 and Section 5.4 appeared as [Mar04g,
Mar04h].

5.1 Number of preemptions

The main result of this section is the following. Consider an instance of minimum sum multicoloring on a
path. Let p be the maximum demand in the graph, p = maxv∈V x(v). We show that there is a minimum
sum multicoloring with at most O(log p) preemptions at every vertex. Such a structural result might be
useful when designing algorithms for the problem.

Besides possible algorithmic applications, there is another reason for trying to bound the number of
preemptions required by the optimum solutions. If x(v) appears in binary form in the input, then p can be
exponentially large. Now it is not at all trivial that the decision version of the problem (is there a coloring
with sum at most C?) is in NP, since it is not obvious how an optimum solution could be described in
polynomial length. Our result shows that for paths the problem is indeed in NP: the optimum solution
can be compactly represented by describing O(log p) intervals for each vertex. Moreover, we also show
that if the graph is perfect and has n vertices, then there is always an optimum solution with at most
n2 preemptions at every vertex, regardless of the size of p. Thus the optimum solution can be given as
n · n2 intervals, hence the problem is in NP for perfect graphs. The proof uses polyhedral arguments. If
the graph is bipartite, then simple observations show that there is an optimum solution with at most n
preemptions.

Notation and basic observations are given in Section 5.1.1. Section 5.1.2 defines several operations,
which will be used to transform colorings. Section 5.1.3 proves a key structural property of optimum
colorings. In Section 5.1.4, this observation is used to bound the number of preemptions required in an
optimum coloring. Section 5.1.5 investigates more general classes of graphs and bounds the number of
preemptions required in bipartite and perfect graphs.
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5.1.1 Preliminaries

We slightly extend the problem by allowing x(v) = 0. It is clear that this does not change the problem,
but it will be useful for technical reasons. If x(v) = 0 then let fΨ(v) = 0 in every coloring Ψ. Note that
by using this definition the trivial inequality fΨ(v) ≥ x(v) holds even if x(v) = 0.

We introduce some notational conventions. Let fΨ(V ′) =
∑

v∈V ′ fΨ(v) for any V ′ ⊆ V and coloring
Ψ. Similarly, x(V ′) =

∑
v∈V ′ x(v). If x(v) = 1, then we will write Ψ(v) = a instead of Ψ(v) = {a}. We

denote the sum of the optimal coloring of G with demand function x by OPT(G, x), or by OPT(G) if the
function x(v) is clear from the context. The set [a, b] is the set of integers {a, a+ 1, . . . , b}. A node v is
compact in coloring Ψ if fΨ(v) = x(v).

We define a secondary objective function, which is to maximize
∑
v∈V f

2
Ψ(v). Call a coloring Ψ square-

optimal if its sum is minimum, and among such colorings,
∑

v∈V f
2
Ψ(v) is maximum. Note that in an

optimum solution the secondary objective function can be bounded by n ·OPT 2(G).
In this section we will always assume that G is a path. Let 1, 2 , . . . , n be the nodes of G along

the path in left to right order. For convenience, we set x(0) = x(n + 1) = fΨ(0) = fΨ(n + 1) = 0 in
every coloring Ψ. Node v is a local maximum in Ψ if fΨ(v) > fΨ(v − 1) and fΨ(v) > fΨ(v + 1), and
it is a local minimum if fΨ(v) < fΨ(v − 1) and fΨ(v) < fΨ(v + 1). Node v is an upward step in Ψ if
fΨ(v − 1) < fΨ(v) < fΨ(v + 1) and it is a downward step if fΨ(v − 1) > fΨ(v) > fΨ(v + 1).

In [HK02] it is proved that every optimum coloring uses at most O(p · χ(G) · logn) (where p is the
maximum demand) colors, for bipartite graphs, this is O(p · logn). It is easy to see that in an optimum
coloring of a path fΨ(i) ≤ 3p holds for every i: the neighbors Ψ(i− 1) and Ψ(i + 1) forbid the use of at
most 2p colors and x(i) ≤ p.

Proposition 5.1.1. If Ψ is an optimum coloring of a path, then fΨ(i) ≤ 3p. �

A coloring Ψ is a conflicting coloring if |Ψ(v)| = x(v) is satisfied for every node v, but Ψ(u)∩Ψ(v) = ∅
does not hold for some neighbors u and v. A conflicting coloring contains one or more conflicts, where a
conflict is a triple (u, v, c) such that u and v are neighboring nodes and c ∈ Ψ(u), c ∈ Ψ(v). In a path, a
conflict is of the form (v, v + 1, c).

5.1.2 Operations

In this section we define several operations that transform a coloring to another one. These transformations
will be used in Section 5.1.3 and 5.1.4 to show certain properties of optimum colorings. Before presenting
the transformations, let us have a note about the figures. In the figures to follow, the horizontal axis
corresponds to the path, and the vertical axis corresponds to the set of colors. The black parts of the
columns show which colors are assigned to the given node. For example, on Figure 5.1, node v has two
intervals of consecutive colors between color a and b.

The parity shift operation from u to v in the range a to b transforms a coloring Ψ to a coloring Φ as
follows. Let Φ(w) = Ψ(w) for all w < u and w > v (see Figure 5.1). Otherwise let x′(w) = |Ψ(w) ∩ [a, b]|
and

Φ(w) =

{
(Ψ(w) ∩ [1, a− 1]) ∪ (Ψ(w) ∩ [b+ 1,∞]) ∪ [a, a+ x′(w) − 1] if w ≡ u (mod 2)
(Ψ(w) ∩ [1, a− 1]) ∪ (Ψ(w) ∩ [b+ 1,∞]) ∪ [b− x′(w) + 1, b] if w 6≡ u (mod 2)

Clearly, |Φ(w)| = x(w), but Φ is not, in general, a proper coloring, there might be conflicts between
u and u − 1, and between v and v + 1. However, if fΨ(u − 1) < a < b and fΨ(v + 1) < a < b, then Φ
is a proper coloring. The operation can increase the finish time for only those vertices w that has parity
different from u. But if the finish time is greater than b for all such w between u and v, then their finish
time is not increased, hence the sum of Φ is not greater than the sum of Ψ.

The second operation is the change of colors a and b from u to v, resulting in a new coloring Φ. It
does not change the colors assigned to nodes w < u and w > v, and for every node u ≤ w ≤ v and
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Figure 5.1: Parity shift from u to v in the range a to b. a) Before the operation. b) After the operation;
there are conflicts between u− 1 and u, and between v and v+ 1. The finish time of q increased while the
finish time of z decreased.

every color c 6= a, b, we have c ∈ Φ(w) if and only if c ∈ Ψ(w). Furthermore, for such a node w, color
a (resp. b) ∈ Φ(w) if and only if b (resp. a) ∈ Ψ(w) (see Figure 5.2). There are four possible conflicts
that might arise in Φ: (u− 1, u, a), (u− 1, u, b), (v, v+ 1, a), (v, v+ 1, b). At most two of them can appear
simultaneously in Φ: if the conflicts (u−1, u, a) and (u−1, u, b) both appear in Φ, then they were already
present in Ψ, and similarly for (v, v + 1, a), (v, v + 1, b). Thus we will distinguish between color changes
with conflict on the left/on the right/on both sides. Note that if any of the following conditions hold, then
there is no conflict on the left (assume a < b):

• fΨ(u − 1) < a

• a ∈ Ψ(u) and b ∈ Ψ(u)

• a 6∈ Ψ(u) and b 6∈ Ψ(u)

• a ∈ Ψ(u− 1) and b ∈ Ψ(u− 1)

• a 6∈ Ψ(u− 1) and b 6∈ Ψ(u− 1)

• a 6∈ Ψ(u− 1) and a 6∈ Ψ(u)

• b 6∈ Ψ(u− 1) and b 6∈ Ψ(u)

If u is a local maximum and there is a conflict (u − 1, u, a) in Φ after the color change, then we can
resolve this conflict by setting Φ′(u) = Φ(u) − {a} ∪ {fΦ(u) + 1}. We call this operation a “fix,” and use
the term color change with a fix on the left/on the right/on both sides. A fix increases the sum of the
coloring by one. The left (resp. right) fix can be applied only if u (resp. v) is a local maximum.

Assume a < b. If fΨ(w) ≥ b for all u ≤ w ≤ v, then the color change does not increase the finish time
of any of the nodes. Furthermore, if it also holds that fΨ(w) = b for some u ≤ w ≤ v and a 6∈ Ψ(w), then
fΦ(w) is strictly smaller than fΨ(w). In this case, if only one fix required (i.e., either on the left or in the
right, but not on both sides), then the finish time is increased only for one node. For example, if only a
left fix is needed, then the operation increases the finish time of only u. Therefore if the finish time of w
was decreased by more than 1, then the total finish time is decreased. On the other hand, if the finish
time of w was decreased only by 1, then the total sum is not decreased, but, as an easy calculation shows,
the secondary objective function is strictly greater in Φ′ (this follows from fΨ(u) ≥ fΨ(w)).

A shift down of i from u to v is a series of color changes from u to v that makes the node i compact,
but possibly creates some conflicts between u − 1 and u or between v and v + 1. The color changes are
done as follows. Let c < fΨ(i) be the smallest color not in Ψ(i) and do a color change of c and fΨ(i) from
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Figure 5.2: Change of colors a and b from u to v. a) The original coloring. b) After the change, the finish
time node w decreased but there is a conflict on the left: color b appears at u − 1 and u. There is no
conflict on the right, since the finish time of v+ 1 is less than a. c) The fix at node u resolves the conflict,
but increases the finish time of u by 1.

a to b. Repeat this m times, until Ψ(i) is compact. Since every color change decreases the finish time of
i, hence m ≤ fΨ(i) − x(i). Moreover, the color c chosen for the color change is strictly increasing, but
always less than x(i), thus we also have the bound m ≤ x(i).

The operation decreases the finish time of i by fΨ(i) − x(i), but the coloring might contain conflicts.
However, if u and v are local maximums, and after each color change we perform zero, one or two fixes,
as required, then the resulting coloring will be proper. Therefore the total number of fixes is at most 2m.

Let Ψ(i)∩ [t+ 1,∞] = c′1 < c′2 < · · · < c′k be the colors above t assigned to i. The partial shift down of
i above t from u to v is a series of color changes where we chose (while it is possible) a color c such that
t < c < fΨ(i) and c 6∈ Ψ(i), and do a color change of c and fΨ(i) from a to b. After this operation, the
set assigned to i is (Ψ(i) ∩ [1, t])∪ [t+ 1, t+ k], which decreases the finish time of i by fΨ(i) − t− k. It is
easy to see that this requires no more than min{k, fΨ(i) − t− k} color changes.

The multicoloring instance can be restricted from u to v, that is, we can consider only the subgraph
from node u to node v. A coloring Ψ can be similarly restricted, the restricted coloring is a proper coloring
of the restricted instance, though the restriction of an optimum coloring is not necessarily an optimum
coloring of the restricted instance. If Ψ1 is a coloring of the restriction of the instance from u to v, and
Ψ2 is a coloring of the restriction from v+ 1 to w, then we can concatenate the two colorings to a coloring
Ψ of the restriction from u to w. Coloring Ψ is not necessarily a proper coloring, there might be conflicts
between v and v + 1. However, if we have a coloring from u to v and another coloring from v to w, and
they assign the same set to v, then their concatenation is a proper coloring from u to w.

Given a coloring Ψ, we define the instance truncated at t by the new demand function x′(i) = |Ψ(i) ∩
[t+ 1,∞]|. Let c ∈ Ψ′(i) if and only if c+ t ∈ Ψ(i). Then Ψ′ is clearly a proper coloring of the truncated
instance. Furthermore, if Ψ is an optimum coloring, then Ψ′ is an optimum coloring of the restricted
instance: it is easy to see that a better solution to the restricted instance would imply a better solution
to the original problem.

Using the operations defined above, we introduce two more complex transformations. In the following,
what will be important is how these operations change the set of colors assigned to node n and how they
change the sum of the coloring, not their exact definitions. Therefore we state the existence of these two
transformations in two lemmas, and present the actual operations only in the proofs. If x is an arbitrary
expression, then we denote max{x, 0} by (x)+.

The operation described in the following lemma makes the coloring of node n compact:
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Lemma 5.1.2. For every coloring Ψ there is a coloring Φ such that Φ(n) = [1, x(n)] and fΦ(V ) ≤
fΨ(V ) + (fΨ(n) − fΨ(n− 1))+.

Proof. We consider three cases: (1) fΨ(n) < fΨ(n− 1), (2) fΨ(n− 2) < fΨ(n− 1) < fΨ(n), (3) fΨ(n) >
fΨ(n− 1) and fΨ(n− 1) < fΨ(n− 2).

In the first case, let u be the first local maximum to the left of n. It exists because fΨ(0) = x(0) = 0.
We do a shift down of n from u to n. This consists of a series of at most fΨ(n)−x(n) color changes, each
of them requires at most one fix, since there is no conflict on the right. The finish time of n is decreased
by fΨ(n) − x(n), thus the total sum is not increased.

In the second case, let s = |Ψ(n − 1) ∩ [1, x(n)]| ≤ fΨ(n) − x(n). The new coloring Φ is the same as
Ψ except Φ(n) = [1, x(n)] and Φ(n− 1) = (Ψ(n− 1) ∩ [x(n) + 1,∞]) ∪ [fΨ(n) + 1, fΨ(n) + s]. It is easily
verified that this is a proper coloring. The finish time of n is decreased by fΨ(n) − x(n) and the finish
time of n− 1 is increased to fΨ(n) + s, that is, by at most fΨ(n) + fΨ(n) − x(n) − fΨ(n− 1). Thus the
total increase is at most fΨ(n) − fΨ(n− 1).

In the third case, we let u be the first local maximum to the left of n − 1 and do a shift down of n
from u to n. This requires at most fΨ(n)− x(n) left fixes, and increases the finish time of n− 1 to fΨ(n),
that is, by at most fΨ(n) − fΨ(n− 1). Since the finish time of n is decreased by fΨ(n) − x(n), the total
increase of the sum is at most fΨ(n) − fΨ(n− 1), what we had to prove. �

The second operation also makes node n compact. However, here we assume that the color set [1, α]
is already assigned to n.

Lemma 5.1.3. Assume that Ψ is a coloring and for some α, we have [1, α] ⊆ Ψ(n) and |Ψ(n)∩[α+1,∞]| =
β. Then there is a coloring Φ such that Φ(n) = [1, x(n)] and fΦ(V ) ≤ fΨ(V )+β+(fΨ(n)−fΨ(n−1))+ +
x(n) − fΨ(n).

Proof. We consider again the previous three cases: (1) fΨ(n) < fΨ(n− 1), (2) fΨ(n − 2) < fΨ(n − 1) <
fΨ(n), (3) fΨ(n) > fΨ(n− 1) and fΨ(n− 1) < fΨ(n− 2).

In the first case, let u be the first local maximum to the left of n. We do a partial shift down of n from
u to n above α. This consists of a series of at most β color changes, each of them requires at most one
fix, since there cannot be conflict on the right. The finish time of n is decreased by fΨ(n) − x(n), thus
the total increase of the sum is at most β + x(n) − fΨ(n).

In the second case, let s = |Ψ(n − 1) ∩ [α + 1, α + β]| ≤ β. The new coloring Φ is the same as Ψ
except that Φ(n) = [1, x(n)] and Φ(n− 1) = (Ψ(n− 1)∩ [x(n) + 1,∞])∪ [fΨ(n) + 1, fΨ(n) + s]. It is easily
verified that this is a proper coloring (note that α+ β = x(n) holds). The finish time of n is decreased by
fΨ(n)−x(n) and the finish time of n−1 is increased to fΨ(n)+s, that is, by at most β+fΨ(n)−fΨ(n−1),
thus we are ready with this case.

In the third case, we let u be the first local maximum to the left of n− 1 and do a partial shift down
of n from u to n above α. This requires at most β left fixes, and increases the finish time of n− 1 by at
most fΨ(n) − fΨ(n− 1). Since the finish time of n is decreased by fΨ(n) − x(n), the total increase of the
sum is at most β + (fΨ(n) − fΨ(n− 1)) + x(n) − fΨ(n), what we had to prove. �

We have seen in Prop. 5.1.1 that the finish time of a node can be bounded by a constant multiple of
the maximum demand. The following lemma shows that if i is not a local maximum then its finish time
can be bounded in terms of its own demand.

Lemma 5.1.4. If Ψ is an optimum solution and i is not a local maximum, then fΨ(i) ≤ 4x(i).

Proof. Assume first that i is a local minimum, let u (resp. v) be the first local maximum to the left
(resp. right) of i. If Ψ(i) is not compact, then we perform a shift down of i from u to v. This requires at
most x(i) color changes. Therefore the fixes increase the sum by at most 2x(i). However, the finish time
of i is decreased by fΨ(i) − x(i). Assuming that Ψ is an optimum coloring, it follows that fΨ(i) ≤ 3x(i).
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Now assume without loss of generality that i is an upward step. Denote by v the first local maximum
to the right of i.

First we first modify the coloring Ψ to achieve that fΨ(i) − fΨ(i − 1) ≤ x(i). We do a partial shift
down of i above fΨ(i − 1) from i to v. This series of color changes does not require any left fixes. Since
every color change decreases the finish time of i by at least one, this shift operation does not increase the
total sum. After this operation, [fΨ′(i−1)+1, fΨ′(i)] ⊆ Ψ′(i) in the resulting coloring Ψ′, which obviously
implies f ′

Ψ(i) − f ′
Ψ(i− 1) ≤ x(i). Thus in the following we can assume that fΨ(i) − fΨ(i− 1) ≤ x(i).

Now consider the restriction of the instance from 1 to i. We can apply Lemma 5.1.3 to node i
with α = 0 and β = x(i). Therefore there exists a coloring Φ1 with Φ1(i) = [1, x(i)] and fΦ1([1, i]) ≤
fΨ([1, i]) + β + (fΨ(i) − fΨ(i− 1))+ + x(i) − fΨ(i) ≤ fΨ([1, i− 1]) + 3x(i).

Next we restrict the instance and the coloring Ψ from i to n, and do a shift down of i from i to v.
This requires at most x(i) fixes on the right and no fixes on the left. The finish time of i is decreased by
fΨ(i) − x(i), thus for the resulting coloring Φ2, we have fΦ2([i, n]) ≤ fΨ([i, n]) + x(i) + x(i) − fΨ(i). We
can concatenate Φ1 and Φ2 to a coloring Φ of the original instance since they assign the same set to i.
We can bound the sum of Φ by

fΦ([1, n]) = fΦ1([1, i]) + fΦ2([i, n]) − fΦ2(i) ≤

≤ (fΨ([1, i− 1]) + 3x(i)) + (fΨ([i, n]) + 2x(i) − fΨ(i)) − x(i) =

= fΨ([1, n]) + 4x(i) − fΨ(i)

By assumption, Ψ is an optimum coloring, thus the sum of Φ is not smaller than the sum of Ψ. By the
inequalities shown above, this implies 4x(i) − fΨ(i) ≥ 0. �

5.1.3 Bounding the reduced sequence

Let ℓ
(i)
0 = i be the first element of the left sequence of the node i in a coloring Ψ, and for k ≥ 0 let ℓ

(i)
k+1

be the largest j < ℓ
(i)
k such that fΨ(j) ≤ fΨ(ℓ

(i)
k ) (see Figure 5.3). The last element of the sequence is

ℓ
(i)
L(i) = 0. The right sequence is similarly defined with r

(i)
0 = i and r

(i)
k+1 is the smallest j > r

(i)
k such that

fΨ(j) ≤ fΨ(r
(i)
k ), the last element of the sequence is r

(i)
R(i) = n+ 1. The reduced left (right) sequence is the

sequence truncated at the first compact node, its length is R′(i) (resp. L′(i)). The first compact node in
the sequence is included in the reduced sequence only if its finish time is greater than zero. In particular,
if fΨ(i) = x(i) = 0, then L′(i) = R′(i) = 0.

In this section, our aim is to bound the length of the reduced left and right sequence of every node: in
Section 5.1.4, Lemma 5.1.13 shows the connection between the length of these sequences and the number
of preemptions required in an optimum coloring. The following series of lemmas will prove that L′(i) is
at most logarithmic in p. The bound for R′(i) follows by symmetry.

Lemma 5.1.5. If Ψ is a square-optimal solution, and nodes u and v are local minimums such that at
least one of them is not compact and for all u < w < v, we have fΨ(w) ≥ max{fΨ(u), fΨ(v)}, then u and
v have opposite parity.

Proof. Let q be the first local maximum to the left of u and z the first local maximum to the right of v
(see Figure 5.4). We do a shift down of u from q to u, with doing the required fixes on the left (but not
on the right). This requires at most fΨ(u)− x(u) fixes and decreases the finish time of u by that amount,
thus it does not increase the total sum. Similarly, we do a shift down of v from v to z (with doing fixes
on the right), this does not increase the total sum either. There might be conflicts between u and u + 1
or between v and v − 1, we resolve this by applying a parity shift from u to v in the range from 1 to
max{fΨ(u), fΨ(v)}. This does not change u and v, since they were already compact after the shift down,
thus this results in a proper coloring. The parity shift does not increase the finish time of any of the nodes
u < w < v, since, by assumption, they have finish time not smaller than max{fΨ(u), fΨ(v)}.
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Figure 5.3: The left and right sequence of the node i.

We have shown that the operations described above do not increase the total sum. They cannot
decrease it, that would contradict the optimality of Ψ. Assume without loss of generality that u was
not compact, then the finish time of u was decreased by fΨ(u) − x(u) > 0, and the finish time of q was
increased by exactly the same amount. However, this would increase the secondary objective function,
which is a contradiction, since Ψ is square-optimal. �

Corollary 5.1.6. If Ψ is a square-optimal solution, and for some i and 1 ≤ j < L′(i) − 1, the nodes ℓ
(i)
j

and ℓ
(i)
j+1 are both local minimums, then they have opposite parity.

Proof. By the definition of the left sequence, for every node ℓ
(i)
j+1 < v < ℓ

(i)
j , we have fΨ(v) > fΨ(ℓ

(i)
j ) ≥

fΨ(ℓ
(i)
j+1). From the definition of the reduced left sequence, the nodes ℓ

(i)
j and ℓ

(i)
j+1 are not compact, thus

the corollary follows from Lemma 5.1.5. �

Lemma 5.1.7. If Ψ is a square-optimal coloring, then for every i and 3 ≤ j < L′(i) − 3, at least one of

ℓ
(i)
j+1, ℓ

(i)
j+2, ℓ

(i)
j+3 and at least one of ℓ

(i)
j−1, ℓ

(i)
j−2, ℓ

(i)
j−3 has the same parity as ℓ

(i)
j .

Proof. Assume that, on the contrary, they all have parity different from ℓ
(i)
j . Then ℓ

(i)
j+1 is a local minimum,

otherwise ℓ
(i)
j+2 would have parity different from ℓ

(i)
j+1, and one of them would have the same parity as ℓ

(i)
j .

Similarly, ℓ
(i)
j+2, ℓ

(i)
j−2, ℓ

(i)
j−3 are also local minimums. By Corollary 5.1.6, ℓ

(i)
j+1 and ℓ

(i)
j+2 have different parity,

therefore one of them has the same parity as ℓ
(i)
j . By a similar argument, ℓ

(i)
j−2 and ℓ

(i)
j−3 are both local

minimums, thus we are ready. �

Lemma 5.1.8. If Ψ is an optimum coloring and for some i and 3 ≤ j < L′(i)− 3, ℓ
(i)
j is an upward step,

then fΨ(ℓ
(i)
j−3) ≥ 9

8fΨ(ℓ
(i)
j+4).

Proof. By Lemma 5.1.7, one of ℓ
(i)
j+1, ℓ

(i)
j+2, ℓ

(i)
j+3 has the same parity as ℓ

(i)
j , call it v1. Similarly, call v3 the

node ℓ
(i)
j−1, ℓ

(i)
j−2 or ℓ

(i)
j−3 which also has this parity. Let v2 = ℓ

(i)
j , and denote by v0 the next element in the

left sequence after v1. Call q the first local maximum to the right of v3. Let di = fΨ(vi) − fΨ(vi−1) for
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Figure 5.4: Transformation of the coloring in the proof of Lemma 5.1.5. a) Nodes u and v are local
minimums, q and z are local maximums. b) After the shift down, u and v are compact, the fixes increased
the finish time of q and z, and there might be conflicts between u and u + 1 or between v and v − 1. c)
The parity shift resolves the conflicts without increasing the finish times.

1 ≤ i ≤ 3, Note that d1 + d2 + d3 = fΨ(v3) − fΨ(v0) ≤ fΨ(ℓ
(i)
j−3) − fΨ(ℓ

(i)
j+4). We will construct a coloring

Φ and show that if it has sum not smaller than Ψ, then fΨ(ℓ
(i)
j−3) ≥ 9

8fΨ(ℓ
(i)
j+4), which proves the lemma,

since Ψ is an optimum solution.

Before going into the details, we will give some intuition for the proof. We will make the three nodes
v1, v2, v3 compact. This decreases the finish time on these vertices, but it possibly increases the sum
somewhere else. However, it turns out that the decrease at v1 pays for any possible increase to the left of
v1, and the decrease at v3 pays for the increase to the right of v3. The total increase between v1 and v3
is roughly d1 + d2 + d3, thus the optimality of Ψ implies that the decrease of fΨ(v2) − x(v2) at v2 cannot
pay for this. If d1 + d2 + d3 is “large,” then this means that the finish times in the left sequence decrease
rapidly, what we have to show. Therefore d1 + d2 + d3 is small, and fΨ(v2) − x(v2) is even smaller. Since
fΨ(v2−1) < fΨ(v2), thus x(v2−1) ≤ fΨ(v2)−x(v2) is small. By Lemma 5.1.4, this implies that fΨ(v2−1)
is small, hence the left sequence decreases rapidly.

First consider the restriction of Ψ from 1 to v1. By Lemma 5.1.2, there is a coloring Ψ1 with Ψ1(v1) =
[1, x(v1)] and fΨ1([1, v1]) ≤ fΨ([1, v1]) + (fΨ(v1) − fΨ(v1 − 1))+ ≤ fΨ([1, v1]) + d1. Concatenate Ψ1 with
the restriction of Ψ from v1 + 1 to v2. The resulting coloring might have conflicts between v1 and v1 + 1,
but we can solve this, without increasing the finish time of any of the nodes, by performing a parity
shift from v1 to v2 in the range of 1 to fΨ(v1). Call Ψ2 the resulting proper coloring of [1, v2]. Clearly
fΨ2([1, v2]) ≤ fΨ([1, v2]) + d1.

Because of the parity shift (v1 and v2 have the same parity), [1, α2] ⊆ Ψ2(v2) for some α2 and Ψ2(v2)
does not contain any other colors up to fΨ(v1). Thus Ψ2(v2) contains β2 ≤ fΨ(v2) − fΨ(v1) = d2

colors above α2. Applying Lemma 5.1.3 on v2 with α2, we get a coloring Ψ′
2 with Ψ′

2(v2) = [1, x(v2)] and
fΨ′

2
([1, v2]) ≤ fΨ2([1, v2])+β2+(fΨ(v2)−fΨ(v2−1))++x(v2)−fΨ(v2) ≤ fΨ2([1, v2])+2d2+x(v2)−fΨ(v2).

Concatenate Ψ′
2 with the restriction of Ψ from v2 + 1 to v3. To resolve possible conflicts between v2

and v2 + 1, we do a parity shift from v2 to v3 in the range 1 to fΨ(v2) to obtain a proper coloring Ψ3.
Since v2 and v3 have the same parity, after the parity shift we have that [1, α3] ⊆ Ψ3(v3) for some α3 and
Ψ3(v3) does not contain any other colors up to fΨ(v2). Thus Ψ3(v3) contains β3 ≤ fΨ(v3) − fΨ(v2) = d3

colors above α3. We use Lemma 5.1.3 once more to obtain a coloring Ψ′
3 with Ψ′

3(v3) = [1, x(v3)] and
fΨ′

3
([1, n]) ≤ fΨ3([1, v3])+β3+(fΨ(v3)−fΨ(v3−1))++x(v3)−fΨ(v3) ≤ fΨ3([1, v3])+2d3+x(v3)−fΨ(v3).

Finally, consider the restriction of Ψ from v3 to n, and do a shift down of v3 from v3 to q which results
in a coloring Ψ4 with Ψ4(v3) = [1, x(v3)]. This operation requires at most fΨ(v3) − x(v3) fixes on the
right (at q), thus fΨ4([v3 + 1, n]) ≤ fΨ([v3 + 1, n]) + fΨ(v3) − x(v3). Concatenate Ψ′

3 and Ψ4 to obtain a
coloring Φ (note that Ψ′

3(v3) = Ψ4(v3) = [1, x(v3)], thus Φ is a proper coloring).
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Now we bound the sum of Φ using the inequalities obtained above:

fΦ([1, n]) = fΨ′

3
([1, v3]) + fΨ4([v3 + 1, n]) ≤

≤ (fΨ3([1, v3]) + 2d3 + x(v3) − fΨ(v3)) + (fΨ([v3 + 1, n]) + fΨ(v3) − x(v3)) =

= fΨ′

2
([1, v2]) + fΨ([v2 + 1, v3]) + 2d3 + fΨ([v3 + 1, n]) ≤

≤ fΨ2([1, v2]) + 2d2 + x(v2) − fΨ(v2) + 2d3 + fΨ([v2 + 1, n]) ≤

≤ fΨ([1, v2]) + d1 + 2d2 + x(v2) − fΨ(v2) + 2d3 + fΨ([v2 + 1, n]) ≤

≤ fΨ([1, n] + 2(d1 + d2 + d3) + x(v2) − fΨ(v2)

By assumption, Ψ is an optimum coloring, thus 2(d1 +d2 +d3) ≥ fΨ(v2)−x(v2). Since v2 is an upward
step, fΨ(v2) − x(v2) ≥ x(v2 − 1), and by Lemma 5.1.4, fΨ(v2 − 1) ≤ 4x(v2 − 1), hence fΨ(v2) − x(v2) ≥
1
4fΨ(v2−1) ≥ 1

4fΨ(v1). Therefore we have fΨ(v3)−fΨ(v1) ≥ d1 +d2 +d3 ≥ 1
2 (fΨ(v2)−x(v2)) ≥ 1

8fΨ(v1),
which proves the lemma. �

Corollary 5.1.9. If Ψ is a square-optimal coloring, then for every i, the reduced left sequence of i,

ℓ
(i)
1 , . . . , ℓ

(i)
L′(i) contains at most O(log p) upward steps.

Proof. Let m be the number of left steps in the reduced left sequence of i and denote by ℓ
(i)
s1 , ℓ

(i)
s2 , . . . , ℓ

(i)
sm

the subsequence that contains all the upward steps of the reduced left sequence. We show that fΨ(ℓ
(i)
sj ) ≥

9
8fΨ(ℓ

(i)
sj+7) holds for every j. By applying Lemma 5.1.8 for ℓ

(i)
sj+3 , we get that fΨ(ℓ

(i)
sj+3−3) ≥ 9

8fΨ(ℓ
(i)
sj+3+4).

Clearly, sj+3 − 3 ≥ sj and sj+3 + 4 ≤ sj + 7, thus the proposed inequality indeed holds. Now, by

Proposition 5.1.1, we have 3p ≥ fΨ(i) ≥ fΨ(ℓ
(i)
s1 ) ≥ (9

8 )⌊m/7⌋, and the corollary follows. �

Corollary 5.1.9 bounds the number of steps in the reduced left sequence, and by symmetry, a similar
bound follows for the reduced right sequence. It remains to give a bound on the number of local minimums.
Using the following lemma, we can bound the number of local minimums in the reduced left sequence
using the bound on the number of steps in the reduced right sequence.

Lemma 5.1.10. If Ψ is a square-optimal coloring, and for some i and 1 ≤ j < L′(i) − 1, v = ℓ
(i)
j and

u = ℓ
(i)
j+1 are both local minimums, fΨ(ℓ

(i)
j ) > fΨ(ℓ

(i)
j+1) and they have different parity, then there is a

1 ≤ k ≤ R′(i) such that fΨ(ℓ
(i)
j ) > fΨ(r

(i)
k ) ≥ fΨ(ℓ

(i)
j+1) and r

(i)
k is a downward step.

Proof. Let c < fΨ(v) be such that c 6∈ Ψ(v) (note that v is not compact), and let z (resp. w) be the first

local maximum to the left of v (resp. u), respectively, clearly w < u < z < v (see Figure 5.5). Let q = r
(i)
k

be the first node in the right sequence of i having finish time strictly smaller than fΨ(v), we will show
that this k satisfies the requirements of the Lemma. If there is a v < m < q that is compact (Figure 5.5a),
then, by the minimality of k, fΨ(m) ≥ fΨ(v). Now we can do a color change of c and fΨ(v) from z to
m, this requires no right fix, since both c and fΨ(y) are contained in Ψ(m), thus it does not increase the
sum. Therefore the color change either decreases the sum or increases the secondary objective function,
which is a contradiction. This proves that k ≤ R′(i), we have to show that q is a downward step and
fΨ(q) ≥ fΨ(u).

If q is a local minimum, then it has the same parity as u or as v. In either case, Lemma 5.1.5 gives a
contradiction, by the way we chose q, the conditions hold. Therefore q is a downward step.

Now assume that fΨ(q) < fΨ(u). If fΨ(u) 6∈ Ψ(v), then the color change of fΨ(u) and fΨ(v) from z
to q − 1 does not require a right fix and decreases the finish time of v, a contradiction (Figure 5.5b). If
fΨ(u) is contained in both of Ψ(u) and Ψ(v), then by the fact that u and v have different parity, it follows
that there is a u < s < v− 1 such that fΨ(u) is contained neither in Ψ(s) nor Ψ(s+ 1) (Figure 5.5c). Let
c′ < fΨ(u) be such that c′ 6∈ Ψ(u) and do a color change of c′ and fΨ(u) from w to s, this decreases the
finish time of u but does not require a fix on the right, a contradiction. Thus we proved that fΨ(q) ≥ fΨ(u)
and we have seen that q is a downward step, the Lemma follows. �
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Figure 5.5: Lemma 5.1.10. a) If there is a compact v < m < q, then change the colors fΨ(v) and c. b) If
fΨ(u) 6∈ Ψ(v), then change the colors fΨ(u) and fΨ(v). c) If fΨ(u) ∈ Ψ(v), then change the colors fΨ(u)
and c′.

Corollary 5.1.11. If Ψ is a square-optimal coloring, then for every i, the reduced left sequence of i,

ℓ
(i)
j , . . . , ℓ

(i)
L′(i) contains at most O(log p) local minimums.

Proof. A local minimum ℓ
(i)
j can be one of three types: (1) ℓ

(i)
j−1 is a upward step, (2) ℓ

(i)
j−1 is a local

minimum and fΨ(ℓ
(i)
j−1) > fΨ(ℓ

(i)
j ), (3) fΨ(ℓ

(i)
j−1) = fΨ(ℓ

(i)
j ). By Corollary 5.1.9, there are O(log p) upward

steps in the reduced sequence, thus there are at most O(log p) local minimums of type 1. By Corollary

5.1.6, if ℓ
(i)
j and ℓ

(i)
j−1 are both local minimums, then they have different parity. Therefore by Lemma

5.1.10, for every node ℓ
(i)
j of type 2, there is a node v in the reduced right sequence of i which is a right

step and fΨ(ℓ
(i)
j ) ≤ fΨ(v) < fΨ(ℓ

(i)
j−1) holds. Since there are O(log p) right steps in the reduced right

sequence and clearly the inequality above cannot hold for two different nodes of type 2 with the same
node v, this bounds the number of type 2 nodes by O(log p). Finally, note that there cannot be three
local minimums in the reduced left sequence with the same finish time, two of them would have the same
parity, and by Lemma 5.1.5, this gives a contradiction. Therefore there cannot be two nodes of type 3
after each other in the left sequence, thus the number of type 3 nodes can be bounded by the number of
type 1 and type 2 nodes, which proves the corollary. �

By combining Corollary 5.1.9 and Corollary 5.1.11, we have

Corollary 5.1.12. If Ψ is a square-optimal coloring, then L′(i) is at most O(log p). �

5.1.4 Optimum coloring

To obtain the main result of this section, it has to be shown that if a node has short left and right
sequences, then the coloring can be rearranged in such a way that the color set assigned to the node has
a small number of preemptions:

Lemma 5.1.13. Given a coloring Ψ, there is a coloring Φ with fΨ(i) = fΦ(i) for every i and Φ(i) has at
most L′(i) +R′(i) preemptions.

Proof. We prove the lemma by induction on k = max(L′(i) + R′(i)). If L′(i) = R′(i) = 0, then node i is
compact (x(i) = 0), thus the statement is true. Now assume that it is true for k, we prove that it is also
true for k + 1.
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Let b0 = 0 < b1 < b2 < · · · < bl−1 < bl = n + 1 be the compact nodes. For each 0 ≤ j < l, we
construct a coloring Φj of the restriction of the instance from bj to bj+1, such that for every bj ≤ i ≤ bj+1,
fΦj

(i) = fΨ(i) and Φj(i) contains at most L′(i) +R′(i) preemptions. Concatenating these colorings Φj to
a coloring Φ clearly satisfies the properties required by the lemma. (The colorings can be concatenated
without conflict since the bj nodes are compact in all of them.)

Let m be the smallest non-zero finish time fΨ(i) in bj ≤ i ≤ bj+1 and consider the restriction of the
instance from bj to bj+1, truncated at m. The truncation of Ψ is a solution of the truncated instance.
If we can prove that in the truncation of Ψ, the sum L′(i) + R′(i) is strictly smaller than in Ψ, then, by
the induction hypotheses, there is an optimum coloring Φ′

j of the truncated instance where Φ′
j(i) has less

than L′(i) + R′(i) preemptions. We do a parity shift of Ψ from bj to bj+1 in the range 1 to m, and add
the first m colors to Φ′

j to obtain a coloring Φj. This coloring Φj has the required properties, since Φj(i)
has at most one more preemption than Φ′

j(i).
It is easy to see that the reduced left (resp. right) sequence of node i in the truncated instance is the

prefix of the reduced left (resp. right) sequence in Ψ. Let bj ≤ i′ ≤ bj+1 such that its finish time is m,
and assume without loss generality that it is to the left of i, that is, i′ < i. Clearly i′ belongs to the left
sequence of i, since there are no nodes with finish time smaller than m between i′ and i. Furthermore, i′

belongs to the reduced left sequence: there are no compact nodes between i and i′, and because m > 0,
i′ belongs to the reduced sequence even if it is the first compact node in the left sequence. But in the
truncated instance, i′ has zero finish time, thus it cannot be in the reduced left sequence of i, which implies
that L′(i) is strictly smaller in the truncated instance, what we had to prove. �

Combining Corollary 5.1.9 and Lemma 5.1.13, we get

Theorem 5.1.14. For every instance of the preemptive sum multicoloring problem on paths, there is a
solution Ψ such that for every node i, Ψ(i) is the union of at most O(log p) intervals. �

Theorem 5.1.14 is best possible in the sense that there are instances where in every optimum solution
there is a node with Θ(log p) preemptions. Let x(i) = 4i. We show that the only optimum solution
is Ψ(1) = [1, 4] and Ψ(i + 1) = [1, x(i) + x(i + 1)] \ Ψ(i), that is, the first x(i + 1) colors not used
by Ψ(i). Clearly, fΨ(i + 1) = x(i + 1) + x(i). If there is a solution Φ with sum smaller that Ψ, then
fΦ(i) < fΨ(i) for some i. In this case it follows that fΦ(i−1) ≥ x(i−1)+x(i), therefore fΦ(i−1)+fΦ(i) ≥
x(i− 1) +x(i) +x(i) > fΨ(i) + fΨ(i− 1). Summing this for all i where fΦ(i) < fΨ(i), we get that the sum
of Ψ is strictly smaller than the sum of Φ. It can be shown by induction that Ψ(2i) has i preemptions,
thus node n has n

2 = Θ(log p) preemptions.
Theorem 5.1.14 states that for every instance, there is a square-optimal coloring Ψ with the required

property. There is a natural question that can be asked: is it true perhaps that every solution (or at least
every square-optimal solution) has this property? However, the theorem cannot be strengthened this way:
we present an example where a node in a square-optimal solution has Θ(p) preemptions.

Let x(1) = 2C, x(2) = 10C, x(3) = 100C, x(4) = 11C, x(5) = 100C, x(6) = 10C, x(7) = 2C, where
C is a large constant. Consider the coloring Ψ(1) = Ψ(7) = [1, 2C],Ψ(2) = Ψ(6) = [2C + 1, 12C],Ψ(3) =
Ψ(5) = [1, C]∪ [12C+ 1, 111C],Ψ(4) = [C+ 1, 2C]∪ [2C+ 1, 12C] (see Figure 5.6). We will show that Ψ is
a square-optimal solution of the instance. In order to do this, we introduce a new definition, which will be
helpful in proving the optimality of a coloring. Given a demand function x, the set X ⊆ N is left critical
for the node i, if for every coloring Ψ, |Ψ(i)∩X | = |X |−α implies fΨ([1, i]) ≥ OPT([1, i], x) +α. That is,
in the restriction of the instance from 1 to i, if i does not use α colors from X , then its sum is greater that
the optimum by at least α. Similarly, X is right critical for i, if for every coloring Ψ, |Ψ(i)∩X | = |X | −α
implies fΨ([i, n]) ≥ OPT([i, n], x) + α.

In the instance described above, clearly [1, 2C] is a left critical set for node 1, since if α colors are
missing from this set in a coloring Φ, then fΦ(1) ≥ 2C + α. Next we show that the set [2C + 1, 12C]
is left critical for node 2. Assume that α colors are missing from this set: let a = |Φ(2) ∩ [1, 2C]| and
b = |Φ(2) ∩ [12C + 1,∞]|, clearly α = a+ b = 10C − |Φ(2) ∩ [2C + 1, 12C]|. Since [1, 2C] is a left critical
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Figure 5.6: Two different square-optimal solutions of the instance x(1) = 2C, x(2) = 10C, x(3) = 100C,
x(4) = 11C, x(5) = 100C, x(6) = 10C, x(7) = 2C. In the second solution, nodes 3, 4 and 5 have C
preemptions. The vertical axis is distorted to save space.

set for node 1, if node 2 uses a colors from this set, then fΦ(1) ≥ OPT({1}, x) + a = 2C + a. If node
2 uses b colors above 12C, then its finish time is at least 12C + b, thus fΦ([1, 2]) ≥ 2C + a+ 12C + b =
OPT([1, 2], x) + a + b = OPT([1, 2], x) + α, what we had to show. It is easy to see that Φ∗(1) = [1, 2C],
Φ∗(2) = [2C + 1, 12C], Φ∗(3) = [1, 2C] ∪ [12C + 1, 110C] is an optimum coloring of the nodes 1 to 3. We
show that [1, 2C]∪ [12C + 1, 110C] is a left critical set of node 3. If α colors are missing in Φ(3) from this
set, then |Φ(3)∩[2C+1, 12C]| = a and |Φ(3)∩[110C+1,∞]| = b with a+b = α. Now, because [2C+1, 12C]
is a left critical set for node 2, we have fΦ([1, 3]) ≥ OPT([1, 2], x) + a+ 110C+ b = OPT([1, 3], x) +α. By
a symmetric argument, it is also true that [1, 2C] ∪ [12C + 1, 110C] is right critical for node 5.

The coloring Ψ described above has sum 262C. We show that it is an optimum solution. Assume
there is a coloring Φ with smaller sum, we can assume that Φ(4) does not contain colors above 100C,
since otherwise the sum is at least 300C. Let |Φ(4) ∩ [1, 2C]| = a, |Φ(4) ∩ [2C + 1, 12C]| = b and |Φ(4) ∩
[12C + 1, 100C]| = c. Clearly fΦ(4) ≥ 12C + c, fΦ(4) ≥ 13C − a and a + c ≥ C. As it was show above,
[1, 2C] ∪ [12C + 1, 110C] is a left critical set of node 3, and in Φ(3) at least a+ c colors are missing from
this set, thus fΦ([1, 3]) ≥ OPT([1, 3], x) + a+ c = 124C + a+ c, and similarly, fΦ([5, 7]) ≥ 124C + a+ c.
Now we have fΦ([1, 7]) = fΦ([1, 3]) + fΦ(4) + fΦ([5, 7]) ≥ 2(124C + a + c) + 13C − a ≥ 263C − a, thus
a > C. However, we also have fΦ([1, 7]) ≥ 2(124C + a+ c) + 12C + c ≥ 260C + 2a which is higher than
262C if a > C, therefore Φ cannot have sum strictly smaller than Ψ, which proves the optimality of Ψ.
To see that Ψ is square-optimal, we show that in every other optimum solution Φ the finish times are
the same as in Ψ. It was shown that Φ can have sum 262 only if a = C which implies fΦ(4) = 12C.
Clearly fΦ([1, 2]) ≥ fΨ([1, 2]) = 12C and fΦ(3) ≥ fΨ(3) = x(3)+x(4) = 111C, thus Φ and Ψ can have the
same sum if these inequalities are equalities, implying that the finish times are the same in the optimum
colorings.

Now consider the coloring Ψ′(1) = Ψ′(7) = [1, 2C],Ψ′(2) = Ψ′(6) = [2C + 1, 12C],Ψ′(3) = Ψ′(5) =
{1, 3, . . . , 2C−1}∪[12C+1, 111C],Ψ′(4) = {2, 4, . . . , 2C}∪[2C+1, 12C]. This is a square-optimal coloring
(it has the same finish times as Ψ), but node 3 has C = Θ(p) preemptions.

5.1.5 Perfect graphs

What can be said about graphs more general than paths? It can be shown that the logarithmic bound of
Theorem 5.1.14 does not hold even in the case of binary trees (use the gadgets defined in Section 5.2.1).
However, we show that in bipartite graphs with n vertices, there is always an optimum coloring where
every vertex has at most n preemptions, and the same holds for perfect graphs with the weaker bound
n2. Unlike in Theorem 5.1.14, these bounds are independent of p, the size of the maximum demand.
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First we introduce a well-studied coloring problem, where the number of different colors used has to
be minimized instead of the total sum. In Lemma 5.1.17, we will show why this problem is relevant to
the study of preemptions in minimum sum coloring.

Minimum Makespan Multicoloring

Input: A graph G(V,E) and a color requirement (or length, demand) function x: V → N.

Output: A multicoloring Ψ : V → 2N such that

• Ψ(u) ∩ Ψ(v) = ∅ if u and v are neighbors in G, and

• |Ψ(v)| = x(v).

Goal: The finish time of vertex v in coloring Ψ is the highest color assigned to it, fΨ(v) =
max{i : i ∈ Ψ(v)}. The goal is to minimize maxv∈V fΨ(v), the makespan of the coloring Ψ.

In the case of bipartite graphs, an easy argument shows that there is always a minimum makespan
coloring without preemptions.

Lemma 5.1.15. If G is bipartite, then for every demand function x, there is a minimum makespan
coloring Ψ where every vertex is colored non-preemptively.

Proof. Let S = maxuv∈E(x(u) + x(v)) be the maximum demand appearing on the endpoints of an edge,
clearly at least S colors are required for a proper coloring. We show that there is a non-preemptive coloring
using S colors. Let V1 and V2 be the two bipartition classes of the graph. Let Ψ(v) = [1, x(v)] if x ∈ V1

and let Ψ(v) = [S − x(v) + 1, S(v)] if x ∈ V2. This is a proper coloring: if e = uv, then Ψ(u) ∩ Ψ(v) = ∅
follows from x(u) + x(v) ≤ S. �

In order to bound the number of preemptions required in perfect graphs, the polyhedral properties
of perfect graphs will be used. We only sketch the main idea, the reader is referred to [GLS88] for the
background.

Lemma 5.1.16. If G is a perfect graph with n vertices, then there is a minimum makespan coloring Ψ
where every vertex has at most n− 1 preemptions.

Proof. Denote by S(G) the set of all independent sets in G. Let A be a |S(G)| times n matrix whose rows
are the characteristic vectors of the sets in S(G). Let the components of the n dimensional vector c be
the values of x(v), and consider the following linear program:

max c′x

Ax ≤ 1 (5.1)

x ≥ 0

It can be easily verified that the integer solutions of the dual program corresponds to the solutions of the
makespan problem: we select some independent sets, with possibly selecting a set multiple times, such
that every vertex v is in at least x(v) selected independent sets. If G is a perfect graph, then it is well
known that this (5.1) is a Totally Dual Integral system. For every integer vector c, the dual program has
an optimum integral basic solution y. Since A has n columns, the basic solution y has at most n nonzero
components, thus there are n independent sets S1, . . . , Sn, and n nonnegative integers y1, . . . , yn such that
taking every independent set Si with multiplicity yi covers every vertex v at least x(v) times, and

∑n
i=1 yi

is as small as possible. Now we construct a minimum makespan coloring where every vertex has at most
n− 1 preemptions. The first y1 colors are used only on the vertices in S1, the colors from y1 + 1 to y1 + y2
are used only in S2 and so on. Obviously, this is a proper coloring using

∑n
i=1 yi colors. �
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If no vertex has finish time between a and b, then we can reorder the colors between a and b with-
out increasing the finish time of any of the vertices. In the following lemma, we perform several such
reorderings, to obtain a minimum sum coloring with few preemptions.

Lemma 5.1.17. Assume that G is a graph such that for every demand function x(v), G has a minimum
makespan coloring with at most m preemptions at every vertex. Then for every demand function x(v),
there is a minimum sum coloring with at most (m+ 1)n preemptions at every vertex.

Proof. Let Ψ be a minimum sum coloring of G, we transform it into a coloring with (m+1)n preemptions
at every vertex, without increasing the sum. More precisely, if the vertices are ordered such that fΨ(v1) ≤
fΨ(v2) ≤ · · · ≤ fΨ(vn), then we construct an optimum coloring where every vertex has at most m + 1
preemptions between fΨ(vi) and fΨ(vi+1).

Let fi = fΨ(vi) and let f0 = 0. For every 1 ≤ i ≤ n, we perform the following transformation. Let
x′i(v) = |Ψ(v)∩ [fi−1 + 1, fi]|, and let Ψ′

i be a minimum makespan coloring of G with demand function x′i.
Obviously, Ψ′

i uses most fi − fi−1 colors, and it can be assumed that every vertex in Ψ′
i has at most m

preemptions. Now we replace the range of colors [fi−1 + 1, fi] in Ψ with those appearing in Ψ′
i. Formally,

if c ∈ [fi−1 + 1, fi], then let c ∈ Ψ∗(v) if and only if c− fi−1 ∈ Ψ′
i(v). It is obvious that in Ψ∗(v), there are

at most m+1 preemptions in the range [fi−1 +1, fi] (it is m+1, not only m, since fi can be a preemption
in Ψ∗(v) even if fi− fi−1, the last color of Ψ′(v) is not a preemption). Repeating this procedure for every
1 ≤ i ≤ m results in a coloring with at most (m+ 1)n preemptions at every vertex. �

Combining Lemma 5.1.17 with Lemma 5.1.15 and 5.1.16 gives:

Corollary 5.1.18. If G is a perfect graph with n vertices, then there is an optimum minimum sum
coloring where there are at most n2 preemptions at every vertex. Moreover, if G is bipartite, then the
same holds with at most n preemptions. �

Lemma 5.1.16 shows that in the case of perfect graphs, there is always an optimum solution that can
be represented in size polynomial in the length of the input, even if p is not polynomial in the number
of vertices: it is enough to give at most n2 intervals for each of the n vertices. This can serve as a
polynomial-size certificate proving that OPT(G) ≤ k, thus

Corollary 5.1.19. The preemptive sum multicoloring for perfect graphs is in NP, even if p is not poly-
nomial in n. �

5.2 Complexity of minimum sum multicoloring for trees

In this section we show that minimum sum multicoloring is NP-hard for binary trees. The proof is inspired
by the proof of Theorem 2.2.1 where it is shown that list multicoloring is NP-hard for trees. We will give
a similar reduction from the maximum independent set problem. However, when we were reducing to
the list multicoloring problem, we could use the lists to exclude certain colors from the solution. In the
minimum sum multicoloring problem there are no such lists, every color can be used at every vertex.
Therefore we will construct “penalty gadgets” that can exclude colors by ensuring that if a forbidden
color is used, then the gadget can be colored only with large penalty. We will also use the color copying
trick used in Theorem 2.2.2 to make the reduction work for binary trees.

Let us introduce some notations. If V ′ ⊆ V and Ψ is a coloring then let fΨ(V ′) =
∑

v∈V ′ fΨ(v).
Similarly, x(V ′) =

∑
v∈V ′ x(v). The sum of the optimum coloring of (G, x) is denoted by OPT(G, x),

or by OPT(G) if the function x(v) is clear from the context. The notation [a, b] stands for the set
{a, a+ 1, . . . , b} if a ≤ b, otherwise it is the empty set.
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5.2.1 The penalty gadgets

The goal of the penalty gadgets is that by connecting such a gadget to a node v, we can force v not to use
certain colors: if node v uses a forbidden color, then the gadget can be colored only with a “very large”
penalty.

For offset t, demand size d and penalty C we define a tree Tt,d,C . The root r of this tree will be
connected to some node v. When the root r of this tree uses the set [t + 1, t + d], then the tree can
be colored optimally. On the other hand, if v uses even one color from [t + 1, t + d], then r cannot
have the set [t + 1, t + d] and this constrains the gadget in such a way that it can be colored only with
fΨ(Tt,d,C) ≥ OPT (Tt,d,C, x) + C. When C is sufficiently large, then this will force v to use colors not in
[t+ 1, t+ d].

Proposition 5.2.1. For integers d, C > t ≥ 0 there is a binary tree Tt,d,C and a demand function x(v)
such that

1. The root r has demand x(r) = d.

2. Ψ(r) = [t+ 1, t+ d] in every optimum coloring Ψ.

3. If Ψ(r) 6= [t+ 1, t+ d] for a coloring Ψ, then fΨ(Tt,d,C) ≥ OPT(Tt,d,C , x) + C.

4. The demand x of every vertex is polynomially bounded by d and C.

Furthermore, there is an algorithm which, given t, d and C, outputs the tree Tt,d,C, the demand function
x and the value OPT(Tt,d,C, x) in time polynomial in d and C.

Proof. Let k = ⌈log2(C + t)⌉ and Ĉ = 2k. Obviously, C + t ≤ Ĉ < 2(C + t). The tree Tt,d,C consists of a
complete binary tree and some attached paths. The complete binary tree T0 has k+ 1 levels, the root r is
on level 1 and the leaves, ℓ1, ℓ2, . . . , ℓĈ , are on level k+ 1. Attach a path of k+ 3 nodes to every leaf: node

ℓi (1 ≤ i ≤ Ĉ) is connected to path Pi: ai,k+2, ai,k+1, . . . , ai,2, ai,1, ai,0 (nodes ℓi and ai,k+2 are neighbors).

Figure 5.7 shows the construction for t = 2, d = 4, C = 6. Clearly, Tt,d,C has 2Ĉ − 1 + (k + 3)Ĉ nodes,
which is polynomially bounded in C.

We say that a node is of type j if it is either on the jth level of T0 or it is an ai,j for some 1 ≤ i ≤ Ĉ.
The demand x(v) will depend only on the type of node v. Let

g(0) = t,

g(1) = d,

g(n) = (3d+ t+ C) · 4n−2 for n ≥ 2.

Obviously, g(n) is monotone and it is easy to see that

g(i+ 1) ≥ 3g(i) + t+ C ≥ g(i− 1) + t+ C

for all i ≥ 1 (these inequalities will be used later).
For a node v of type i let x(v) = g(i). This implies that x(r) = g(1) = d for the root r. The maximum

value of x(v) is g(k + 2) = (3d+ t+ C) · 4k, which is bounded by a polynomial of d and C.
We describe a proper multicoloring Ψ, which will turn out to be the unique optimum solution. The

same color set is assigned to the nodes of the same type. Start with Ψ(v) = [1, t] for every node v of type
0. Then color the different types in increasing order: assign to the nodes of type i the first g(i) colors not
used by the type i − 1 nodes. This gives a proper coloring since the already colored neighbors of type i
nodes are type i− 1 nodes. Notice that the root r receives the set [t+ 1, t+ d], as required. It is easy to
prove that the finish time of a node v of type i is fΨ(v) = g(i) + g(i− 1) = x(i) + x(i− 1) since there will
be exactly g(i− 1) “skipped” colors and the finish time of nodes of type i is greater then the finish time
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ℓ1 ℓ2 ℓ3 ℓ4 ℓ5 ℓ6 ℓ7 ℓ8

a1,5

a1,0

a1,1

a1,2

a1,3

a1,4

a2,5

a2,4

a2,3

a2,2

a2,1

a2,0

rT0

[7, 24]

[7, 24]

[7, 24]

[7, 24]

[25, 100]

[25, 100]

[25, 100]

[101, 400]

[101, 400]

Set of colors assigned by ΨDemand

1280

320

320

80

80

20

20

1

1

5

4

4

4

4

3

3

2

2

20

Type

[1, 2]

[1, 2]

[1, 2]

[1, 2]

[1, 2]

[3, 6]

[3, 6]

[3, 6]

[3, 6]

[3, 6]

[401, 1600]

Figure 5.7: The tree Tt,d,C for t = 2, d = 4 and C = 6. The nodes on the same level have the same type.
On the right are the demands and also the colors assigned by the optimum coloring.

of the nodes of type i− 1 because g(i) > g(i− 2). The following simple observation will be used later: if
u is a type i node and v is its type i + 1 neighbor, then in every coloring Φ, the equalities Φ(u) = Ψ(u)
and fΦ(v) = fΨ(v) = g(i + 1) + g(i) imply Φ(v) = Ψ(v). This follows directly from the definition of Ψ:
there is just one way of choosing the first x(v) = g(i+ 1) colors not used by u.

The following three lemmas show that Ψ is an optimum coloring, and if a coloring Φ assigns to r a set
different from Ψ(r) = [t+ 1, t+ d], then fΦ(Tt,d,C) ≥ fΨ(Tt,d,C) + C.

Lemma 5.2.2. (a) fΦ(T0) ≥ fΨ(T0) − t holds for every coloring Φ of (Tt,d,C , x).
(b) If Φ(r) = Ψ(r), then fΦ(T0) ≥ fΨ(T0).
(c) If there is a v ∈ T0 \ {r} such that fΦ(v) < fΨ(v), then fΦ(T0) ≥ fΨ(T0) + C.

Proof. Let L = {v ∈ T0 : fΦ(v) < fΨ(v)} and let H = T0 \ L be its complement in T0. We note that L is
an independent set. To see this, let v and u be neighbors of type i and i+1, respectively. The sum of their
demand is g(i) + g(i+ 1), thus at least one of them must have finish time not smaller than g(i) + g(i+ 1).
Clearly this makes it impossible to have fΦ(v) < fΨ(v) = g(i)+g(i−1) and fΦ(u) < fΨ(u) = g(i)+g(i+1)
simultaneously.

Partition the vertices of T0 as follows. Define a subset Sv for every node v ∈ H . Let v ∈ Sv for every
v ∈ H , and u ∈ L is in Sv iff v is the parent of u. When the root r is in L then r forms a set itself,
S∗ = {r}. It is clear that this defines a partition, every vertex is in exactly one subset. Apart from S∗,
every subset contains a node from H and zero, one or two nodes from L.

Assume that the set Sv contains no node from L. Then fΦ(Sv) ≥ fΨ(Sv) follows from the definition
of H and L. Now consider a set Sv which has at least one node from L. It contains a type i node v
from H and one or two type i+ 1 nodes (u1, u2) from L. Since v and uz (z = 1, 2) are neighbors and the
sum of their demand is g(i) + g(i+ 1), at least one of them must have finish time at least g(i) + g(i+ 1).
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Since uz is in L, we have fΦ(uz) < fΨ(uz) = g(i) + g(i + 1), thus fΦ(v) ≥ g(i) + g(i + 1). Therefore,
fΦ(v) − fΨ(v) ≥ (g(i) + g(i+ 1)) − (g(i− 1) + g(i)) = g(i+ 1) − g(i− 1). Since fΨ(uz) = g(i+ 1) + g(i)
and x(uz) = g(i+ 1), clearly fΦ(uz) − fΨ(uz) ≥ −g(i). Now

fΦ(Sv) − fΨ(Sv) ≥ (g(i+ 1) − g(i− 1)) − 2g(i) ≥ g(i+ 1) − 3g(i) ≥ C + t,

where the last inequality follows from g(i+ 1) ≥ 3g(i) + C + t.
If r is in S∗, then fΦ(S∗) = fΨ(S∗) + (fΦ(r) − fΨ(r)) holds. Therefore fΦ(T0) ≥ fΨ(T0) + (fΦ(r) −

fΨ(r)) ≥ fΨ(T0)− t, since fΦ(r) ≥ d. This proves statement (a), and (b) also follows because Φ(r) = Ψ(r)
implies fΦ(r) − fΨ(r) = 0. Furthermore, if fΦ(u) < fΨ(u) for some u ∈ T0 \ {r}, then fΦ(Sv) ≥
fΨ(Sv) + C + t for the set Sv of the partition that contains u. This proves statement (c).

�

Lemma 5.2.3. fΦ(Pi) > fΨ(Pi) holds for every coloring Φ 6= Ψ of Tt,d,C and for every 1 ≤ i ≤ Ĉ.

Proof. Assume that fΦ(Pi) ≤ fΨ(Pi), define L = {v ∈ Pi : fΦ(v) < fΨ(v)} and H = Pi \ L. If
fΦ(Pi) ≤ fΨ(Pi) and Φ is different from Ψ, then there is a v ∈ Pi such that fΦ(v) < fΨ(v), thus L is not
empty. As in Lemma 5.2.2, it is easy to see that L is an independent set. The nodes of Pi are partitioned
into |H | classes: if v ∈ H then v is in Sv, if u ∈ L then u is in Sv, where v is the child of u. Notice that
ai,0 ∈ H since fΨ(ai,0) = x(ai,0) = g(0) ≤ fΦ(ai,0).

We prove that fΦ(Sv) ≥ fΨ(Sv) for every Sv. If Sv = {v}, then it is clear that fΦ(Sv) ≥ fΨ(Sv) holds.
Assume that Sv = {u, v}, node u ∈ L is type j + 1, and v ∈ H (its child) is type j ≥ 0. The finish time
of node v is at least x(u) + x(v) = g(j + 1) + g(j), therefore

fΦ(Sv) ≥ x(u) + (x(u) + x(v)) = g(j + 1) + (g(j + 1) + g(j))

holds. On the other hand, if j ≥ 1, then fΨ(Sv) = (g(j+1)+g(j))+(g(j)+g(j−1)), thus fΦ(Sv) > fΨ(Sv)
follows from g(j + 1) > g(j) + g(j − 1). In the case j = 0, we have fΨ(Sv) = t+ (t+ d) = g(j) + (g(j) +
g(j + 1)) < fΦ(Sv), since fΦ(Sv) ≥ g(j + 1) + (g(j) + g(j + 1)) = d + (t + d) (recall that t < d). Since
H is not empty, there is at least one subset Sv in the partition with fΦ(Sv) > fΨ(Sv), contradicting
fΦ(Pi) ≤ fΨ(Pi). �

Lemma 5.2.4. If Φ(r) 6= Ψ(r) = [t+ 1, t+ d], then fΦ(Tt,d,C) ≥ fΨ(Tt,d,C) + C.

Proof. Denote by P ∗ =
⋃Ĉ
i=1 Pi = Tt,d,C \ T0 the union of the paths. If there is a node v ∈ T0 \ {r} with

fΦ(v) < fΨ(v), then by part (c) of Lemma 5.2.2 fΦ(T0) ≥ fΨ(T0) + C, and by Lemma 5.2.3 fΦ(P ∗) ≥
fΨ(P ∗) follows, which implies fΦ(Tt,d,C) ≥ fΨ(Tt,d,C) +C, and we are done. Therefore it can be assumed
that fΦ(v) ≥ fΨ(v) for every node v ∈ T0\{r}. Furthermore, if there is a v ∈ T0 with fΦ(v) ≥ fΨ(v)+C+t,
then fΦ(T0) ≥ fΨ(T0) + C, thus fΦ(P ∗) ≥ fΨ(P ∗) implies fΦ(Tt,d,C) ≥ fΨ(Tt,d,C) + C. In the following,
it will be assumed that fΨ(v) ≤ fΦ(v) ≤ fΨ(v) + C + t holds for every v ∈ T0 \ {r}.

Call a vertex v changed in Φ if Φ(v) 6= Ψ(v). The goal is to show that if the root r is changed, then all
the nodes a1,k+2, a2,k+2, . . . , aĈ,k+2 are changed. Let v be a node of type i in T0 and let u be one of its

children, a node of type i+1. If v is changed, then there is a color j ∈ Φ(v) and j 6∈ Ψ(v). We consider two
cases. If j ≤ fΨ(u), then by the fact that j 6∈ Ψ(v) and the way Ψ was defined j ∈ Ψ(u) follows. Therefore
u is also changed since j ∈ Φ(v) implies j 6∈ Φ(u). In the second case, where j > fΨ(u) = g(i+ 1) + g(i)
we have

fΦ(v) ≥ j > g(i+ 1) + g(i) = (g(i + 1) − g(i− 1)) + (g(i) + g(i− 1))

= g(i+ 1) − g(i− 1) + fΨ(v) ≥ fΨ(v) + C + t,

contradicting the assumption fΦ(v) ≤ fΨ(v) + C + t.
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Assume that fΦ(Tt,d,C) < fΨ(Tt,d,C) + C. By applying the previous result inductively, one finds that

all the leaves ℓi and their children ai,k+2 (1 ≤ i ≤ Ĉ) are changed. Lemma 5.2.3 ensures that Φ is not

an optimum coloring of Pi, thus fΦ(Pi) ≥ fΨ(Pi) + 1 and fΦ(P ∗) ≥ fΨ(P ∗) + Ĉ ≥ fΨ(P ∗) + C + t. By
Lemma 5.2.2, fΦ(T0) ≥ fΨ(T0) − t, hence fΦ(Tt,d,C) ≥ fΨ(Tt,d,C) + C. �

To finish the proof of Prop. 5.2.1, we have to show that requirements 2 and 3 hold. If Φ(r) = Ψ(r),
then by part (b) of Lemma 5.2.2 and by Lemma 5.2.3, fΦ(Tt,d,C) ≥ fΨ(Tt,d,C). If Φ(r) 6= Ψ(r), then by
Lemma 5.2.4, fΦ(Tt,d,C) ≥ fΨ(Tt,d,C) + C. Therefore the coloring Ψ is an optimum coloring and the tree
satisfies the requirements of the proposition.

Clearly, the tree Tt,d,C and the demand function x can be constructed in polynomial time. The sum
of the optimum solution can be also calculated, by adding the appropriate finish time of every node. �

5.2.2 The reduction

We will reduce the maximum independent set problem to the minimum sum coloring problem in binary
trees. In the decision version of the minimum sum coloring problem, the input is a graph G, a demand
function x(v), and an integer K. The question is whether there exists a multicoloring Ψ with sum less
than K. The reduction is based on the proof of Theorem 2.2.2. The penalty gadgets Tt,d,C of Section 5.2.1
are used to imitate the effect of the color lists.

More precisely, the penalty gadget is used in two different ways: as a lower penalty gadget and as
an upper penalty gadget. The lower penalty gadget TLd,C is a tree T0,d,C. By connecting the root of such
a tree to a node v, the node v is forced to use only colors greater than d: otherwise the gadget can be
colored only with a penalty C. A tree is a tree of type TL if it is the tree TLd,C for some d and C.

The upper penalty gadget TUd,C is a tree Td,C,C . If this gadget is connected to a node v, then this forces
v to use only colors not greater than d. If v uses only colors at most d, then its finish time is at most d,
and the gadget can be colored optimally. If v uses a color greater than d but not greater than d+C, then
the gadget can be colored only with penalty C. If v uses colors greater than d+C, then it has finish time
at least d+ C, which is a penalty of at least C compared to the case when v uses only colors at most d.

Theorem 5.2.5. The minimum sum preemptive multicoloring problem is NP-complete on binary trees
when the value of the demand function is polynomially bounded.

Proof. Let a graph G(V,E) and an integer k be given. Denote n = |V |, m = |E|, and let C = 8mn. Let
integers ui,1 < ui,2 denote the two end vertices of the ith edge in G.

We define a binary tree T , which consists of a core T̂ and some attached subtrees of type TL and TU .
We start with a path of 2m−1 nodes, a1, b1, a2, b2, . . . , am−1, bm−1, am. Define x(ai) = k (1 ≤ i ≤ m) and
x(bi) = C + n− k (1 ≤ i ≤ m− 1). For every 1 ≤ i ≤ m attach a path of 6 nodes to ai. Let these nodes
be ci,1, di,1, ci,2, di,2, ci,3, di,3. Let x(ci,j) = 1, x(di,j) = C + n − 1 (j = 1, 2) and x(ci,3) = 1, x(di,3) =

ui,2 − ui,1 − 1. Clearly, x(v) ≥ 0 for every node v. This completes the definition of T̂ . Now attach trees

of type TL and TU to T̂ as follows (see Figure 5.8):

• a TUC+n,2C to every node bi (1 ≤ i ≤ m− 1),

• a TUn,C to the node a1,

• a TUC+n,2C to every node di,j (1 ≤ i ≤ m, j = 1, 2),

• a TUui,2+1,C to every node ci,1 (1 ≤ i ≤ m),

• a TLui,1−1,C to every node ci,2 (1 ≤ i ≤ m),

• a TLui,1,C
and a TUui,2−1,C to every node di,3 (1 ≤ i ≤ m).
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TUn,c

TUu1,2−1,C

TLu1,1,C

TUn+C,2C

TUn+C,2C
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(C + n− k)
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TUn+C,2CTUn+C,2C
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TLu1,1−1,CTUu1,2+1,C

Figure 5.8: The tree T for m = 3. For the sake of clarity, the nodes ci,j , di,j for i ≥ 2 and the subtrees
connected to these nodes are omitted. The numbers in parentheses are the demand of the vertices.

It is clear that the size of the resulting tree T is polynomial in n, the number of vertices of G, because T̂
has 8m− 1 nodes and we attach 7m trees to it, each of size bounded by a polynomial in C + n.

As required by Prop. 5.2.1, the algorithm that constructs the trees of type TU and TL also outputs
the minimum sum of these 7m trees, that is, the value of OPT(T \ T̂ ). Let K = OPT(T \ T̂ ) + x(T̂ ) +C.

The intuition behind the construction is that in a “well-behaved” solution, when the coloring of the
TL and TU trees are optimal, for every i, the three nodes ci,1, ci,2, ci,3 have the same color. The trees
attached to these nodes ensure that this color must be either ui,1 or ui,2, one of the end nodes of the ith
edge in G. This color cannot appear in ai, this is the reason why the k colors assigned to the nodes ai
form an independent set, at least one end node of each edge is not in the set.

First we prove that if there is an independent set S of size k, then T can be colored with sum smaller
than K. Let ûi ∈ {ui,1, ui,2}, ûi 6∈ S be an end node of the ith edge. Assume that Ψ colors all the trees

of type TU and TL optimally, i.e., fΨ(T \ T̂ ) = OPT(T \ T̂ ) and let

• Ψ(ai) = S (1 ≤ i ≤ m),

• Ψ(bi) = [1, C + n] \ S (1 ≤ i ≤ m− 1),

• Ψ(ci,j) = {ûi} (1 ≤ i ≤ m, j = 1, 2, 3),

• Ψ(di,j) = [1, C + n] \ {ûi} (1 ≤ i ≤ m, j = 1, 2),

• Ψ(di,3) = [ui,1 + 1, ui,2 − 1] (1 ≤ i ≤ m).

It is straightforward to verify that Ψ is a proper coloring of T . Notice that fΨ(v) ≤ x(v) + n holds for

every node v of T̂ , thus fΨ(T̂ ) can be bounded by x(T̂ ) + |T̂ |n. Therefore fΨ(T ) = fΨ(T \ T̂ ) + fΨ(T̂ ) ≤

OPT(T \ T̂ ) + x(T̂ ) + |T̂ |n = OPT(T \ T̂ ) + x(T̂ ) + (8m− 1)n < OPT(T \ T̂ ) + x(T̂ ) + C = K, what we
had to show.
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To prove the other direction, we will show that when there is a coloring Ψ with sum fΨ(T ) < K, then

there is a set of k independent vertices in G. Obviously fΨ(T ) = fΨ(T̂ )+fΨ(T − T̂ ) ≥ x(T̂ )+OPT(T \ T̂ ).

If there is even one node v ∈ T̂ such that fΨ(v) ≥ x(v) + C, then fΨ(T̂ ) ≥ x(T̂ ) + C and fΨ(T ) ≥

OPT(T \ T̂ ) + x(T̂ ) + C = K. Thus it can be assumed that fΨ(v) < x(v) + C for every v ∈ T̂ .

Now consider a tree Tv of type TL or TU attached to some node v ∈ T̂ . If fΨ(Tv) ≥ OPT(Tv) + C,

then fΨ(T ) ≥ x(T̂ ) + OPT(T \ T̂ ) + C = K. Thus it can be assumed that fΨ(Tv) < OPT(Tv) + C.
Therefore, by the definition of Tv, if it is a TLd,C (resp. TUd,C) tree, then Ψ assigns to its root the set [1, d]
(resp. [d+ 1, d+ C]). Obviously, it follows that the node v cannot use the colors in this set.

By the argument in the previous paragraph, fΨ(a1) < x(a1)+C ≤ n+C and Ψ(a1)∩ [n+1, n+C] = ∅,
which implies that Ψ(a1) contains only colors not greater than n. Similarly, fΨ(b1) < x(b1) +C ≤ n+ 2C
and Ψ(b1)∩[n+C+1, n+3C] = ∅, which implies that the n−k+C colors in Ψ(b1) are not greater than n+C.
This set of colors must be disjoint from the k colors in Ψ(a1), therefore we have Ψ(b1) = [1, n+C]\Ψ(a1).
Furthermore, fΨ(a2) < x(a2) + C ≤ n + C, hence it must use the k colors not used by b1, therefore
Ψ(a2) = Ψ(a1). Continuing on this way, we get Ψ(ai) = Ψ(a1) = S for all 2 ≤ i ≤ m and S contains k
colors not greater than n.

Assume that the set S is not independent, that is, both end vertices of some edge of G is in this set,
ui,1, ui,2 ∈ S. From the assumption fΨ(T ) < K follows that ci,1 cannot use either of these colors.

We have seen that fΨ(ci,1) < 1 + C and Ψ(ci,1) ∩ [ui,2 + 1, ui,2 + C] = ∅ follow from the assumption
fΨ(T ) < K, which implies that the color of ci,1 is at most ui,2 ≤ n. Moreover, since fΨ(di,1) < 2C+n− 1
and Ψ(di,1) ∩ [n + C + 1, n + 3C] = ∅, thus node di,1 must use the first C + n − 1 colors missing from
ci,1, therefore we have Ψ(di,1) = [1, C + n] \ Ψ(ci,1). Similarly as in the case of the nodes aj and bj , it
follows that Ψ(ci,1) = Ψ(ci,2) = Ψ(ci,3) = {u}. Furthermore, notice that u ≥ ui,1, since ci,2 cannot use
the colors below ui,1: these colors are assigned to the root of the attached tree TLui,1−1,C . Similarly, u

cannot be in [ui,2 + 1, ui,2 +C] since ci,1 cannot use these colors. Finally, observe that di,3 must have the
colors [ui,1 + 1, ui,2 − 1] which forbids ci,3 from using a color between ui,1 and ui,2. Since u is a color not
greater than C, thus it must be either ui,1 or ui,2.

If the demands are polynomially bounded, then the problem is obviously in NP: a proper coloring
with the given sum is a polynomial size certificate, which finishes the proof of NP-completeness. �

5.3 Complexity of minimum sum edge multicoloring for trees

In this section we prove that minimum sum edge multicoloring is NP-hard for trees, even if every demand is
1 or 2. First we give some definitions that will be useful tools for proving the optimality of certain colorings.
Then three families of special trees are introduced, they will be used as gadgets in the NP-hardness proof.

Denote by Ev the set of edges incident to v. Let ℓ(v) = minΨ fΨ(Ev) be the minimum sum taken on
the edges incident to v in any proper coloring. If all the edges incident to v have demand 1, then clearly
ℓ(v) = d(v)(d(v) + 1)/2. Furthermore, it is easy to see that if one edge incident to v has demand 2 and
all the the other edges have demand 1, then ℓ(v) = d(v)(d(v) + 1)/2 + 1.

Let G(A,B;E) be a bipartite graph. An obvious lower bound for OPT(G) is ℓ(A) =
∑

v∈A ℓ(v). We
call a coloring Ψ A-good if fΨ(E) = ℓ(A), which is equivalent to saying that fΨ(Ev) = ℓ(v) for every
v ∈ A. Every A-good coloring is clearly an optimum coloring, and if there is an A-good coloring, then
every optimum coloring is A-good.

The tree Ti is defined as follows (see Figure 5.9 for T6). The root r has a single child v, and node v has
i− 1 children v1, v2, . . . , vi−1. The node vj has a single child v′j , and node v′j has i− 1 children v′j,1, . . . ,
v′j,i−1. The edges vjv

′
j have demand 2, the demand of all the other edges are 1. Let the nodes v, v′1, . . . ,

v′i−1 be in A (white nodes on the figure), the remaining nodes are in B. Consider the coloring Ψ(rv) = i,
Ψ(vvj) = j, Ψ(vjv

′
j) = {i, i+1}, Ψ(v′jv

′
j,k) = k. This is an A-good coloring, thus it is an optimum coloring

and every optimum coloring is A-good. Therefore if Φ is an optimum coloring, then Φ(rv) = i because
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Figure 5.9: The tree T6. The strong edges have demand 2.
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Figure 5.10: The tree Ta,b,c with c = 6

fΦ(Ev′
j
) = ℓ(Ev′

j
) implies Φ(vjv

′
j) = {i, i+ 1}, and fΦ(Ev) = ℓ(v) implies that one edge in Ev is colored

with color i, which can be only rv. Thus the color of rv is i in every optimum coloring.

In the tree Ta,b,c (for a < b < c) the root r has a single child v, and node v has c− 1 children x, y, v1,
. . . , vc−3 (see Figure 5.10). Every node vj is the root of a Ta, Tb and Tc tree, as defined in the previous
paragraph. We show that in every A-good (optimum) coloring of Ta,b,c the edge rv is colored with color
a, b or c, and there are three A-good colorings assigning a, b, and c to edge rv, respectively. Color the
trees Ta, Tb, Tc at the vj nodes with an A-good coloring, assign the colors a, b, c to the edges rv, vx, vy in
some order, and assign the colors {1, . . . , c} \ {a, b, c} to the edges vv1, . . . , vvc−3 in some order. It can
be easily verified that this is an A-good (therefore optimum) coloring and the edge rv can have any of
the colors a, b, c. To see that in every A-good coloring edge rv can receive only these colors, observe that
if the colorings of the Ta, Tb, Tc subtrees rooted at vj are all A-good, then vvj cannot be colored with
colors a, b, c. In an A-good coloring, the edges incident to v can receive only colors not greater than c,
thus rv, vx, vy receive the colors a, b, c. Therefore rv is colored with either a, b or c.

Finally, let the tree T̂i be a star: the root r has a child v, and node v has i+ 1 children x, v1, . . . , vi.
The edges rv, vx have demand 2, the other edges have demand 1. The node v is in A. It is easy to see
that if Ψ is a A-good coloring, then Ψ(rv) is either {i+ 1, i+ 2} or {i+ 3, i+ 4}.
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Theorem 5.3.1. The minimum sum edge multicoloring problem is NP-hard for trees, even if every demand
is 1 or 2.

Proof. The reduction is from 3-occurrence 3SAT, it can be assumed that every variable occurs at most
twice positively and at most twice negatively. Given a formula with n variables and m clauses, we construct
a tree T and a demand function such that the tree has an A-good coloring (i.e., a coloring with sum at
most ℓ(A)) if and only if the formula is satisfiable.

Consider the variable xk (0 ≤ k < n), which is the hth literal of the ith clause. Let di,h be 4k + 1 if
this is the first positive occurrence of xk, 4k + 2 if this is the second positive occurrence, 4k + 3 if this
is the first negated occurrence, and 4k + 4 if this is the second negated occurrence. Tree T has a node r
which is the root of n + m trees. To each variable xj corresponds a tree T̂4j , and to each clause i a tree
Tdi,1,di,2,di,3 . This defines T and its demand function.

Assume that a coloring is A-good, then it is an A-good coloring of all the n+m subtrees (since r 6∈ A).

Therefore the root edge of T̂4j corresponding to variable xj uses either the set {4j + 1, 4j + 2} or the set
{4j+ 3, 4j+ 4}. Assign to the variable xj the value “false” in the first case and “true” in the second case.
This will be a satisfying assignment: if the root edge of the tree corresponding to clause i uses a color from
{4j+ 1, 4j+ 2, 4j+ 3, 4j+ 4}, then variable xj satisfies clause i. More precisely, if it uses 4j+ 1 or 4j+ 2
(resp. 4j + 3 or 4j + 4), then xj has the value “true” (resp. ”false”), and because of the construction, xj
appears in clause i positively (resp. negatively).

To prove the other direction, given a satisfying assignment, we construct an A-good coloring of the
tree. Take an A-good coloring of the subtree T̂4j corresponding to variable xj such that its root edge uses
the colors {4j + 1, 4j + 2} (resp. {4j + 3, 4j + 4}) if xj is “false” (resp. ”true”). Since every clause is
satisfied by some variable, we can choose an A-good coloring for each subtree corresponding to a clause
such that it does not conflict with any of the trees corresponding to the variables. Clearly, this will be an
A-good coloring of the tree.

We have reduced the known NP-complete problem to the minimum sum edge multicoloring problem.
The reduction can be done in polynomial time, thus minimum sum edge multicoloring is NP-hard. �

We note that in the proof, the proposed optimum coloring colors non-preemptively every edge with
demand 2. Thus the reduction works even if we impose the additional constraint of non-preemptive
coloring.

Corollary 5.3.2. The non-preemptive version of minimum sum edge multicoloring is NP-hard for trees,
even if every demand is 1 or 2. �

5.4 Approximating minimum sum multicoloring on the edges of

trees

In this section we consider the minimum sum edge multicoloring problem restricted to trees. We have seen
in Section 5.3 that, unlike the unit demand case, minimum sum edge multicoloring is NP-hard for trees
if the demands are allowed to be at most 2. On the other hand, in this section we show that the problem
is polynomial time solvable in trees if every demand is the same. This is a consequence of the following
scaling property of minimum sum edge multicoloring in trees: if the demand of every edge is multiplied
by the same integer q, then the sum of the optimum solution increases by a factor of q. It is easy to see
that the sum changes by at most a factor of q, the interesting thing is that this factor is exactly q. The
main result in this section is a polynomial time approximation scheme (PTAS) for minimum sum edge
multicoloring in trees.

Recently, the vertex coloring version of minimum sum multicoloring was investigated by several pa-
pers [HKP+03, Mar02, HK02, BNHK+00, Kov04], but the edge coloring problem is only mentioned in
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[BNHK+00] and [Kub96]. In [HK02, HKP+03] PTAS is given for the vertex coloring version of the prob-
lem in the case when the graph is a tree, partial k-tree, or a planar graph. One of their main tools is
the decomposition of colors into layers of geometrically increasing size. This method will be used here as
well. However, most of the other tools in [HK02, HKP+03] cannot be applied in our case, since those tools
assume that the graph can be colored with a constant number of colors. In our case this is not necessarily
true: if the maximum degree of the tree can be arbitrary, then the line graph of the tree can contain
arbitrarily large cliques. On one hand, these large cliques make the tools developed for partial k-trees
impossible or very difficult to apply. On the other hand, a large clique helps us in finding an approximate
solution: since the sum of a large clique has to be very large in every coloring (it grows quadratically in
the size of the clique), more errors can be tolerated in an approximate solution, and this gives us more
elbow space in constructing a good approximation.

In Section 5.4.1 we introduce notations and give some preliminary results. The scaling property for
trees is proved in Section 5.4.2. Section 5.4.3 gives a simple PTAS for the problem if the demand of every
edge in the tree is bounded by a constant, while Section 5.4.4 deals with the case where the maximum
degree of the tree is bounded by a constant. Finally, Section 5.4.5 combines the ideas presented in the
preceding two sections to give a PTAS for the general case, where the demands and the degrees can be
arbitrary.

In [Mar04f] the results of this section are generalized: the PTAS for trees is extended to partial k-trees
and planar graphs. The approximation scheme for partial k-trees is very similar to the one presented
here for trees, although some new ideas and techniques are also required. Using the layering technique of
Baker [Bak94], the PTAS for partial k-trees can be used to obtain a PTAS for planar graphs. We state
here these results without proof:

Theorem 5.4.1 ([Mar04f]). For every ǫ > 0 and every integer k, there is a linear time (1 + ǫ)-
approximation algorithm for solving minimum sum edge multicoloring on partial k-trees.

Theorem 5.4.2 ([Mar04f]). For every ǫ > 0, there is a linear time (1 + ǫ)-approximation algorithm for
solving minimum sum edge multicoloring on planar graphs.

5.4.1 Preliminaries

We extend the notion of finish time to a set E′ of edges by defining fΨ(E′) =
∑
e∈E′ fΨ(e). Given a graph

G and a demand function x(e) on the edges of G, the minimum sum that can be achieved is denoted by
OPT(G, x), or by simply OPT(G), if the demand function is clear from the context.

For a minimization problem, algorithm A is an α-approximation algorithm if it always produces a
solution with cost at most α times the optimum. A polynomial time approximation scheme (PTAS) is an
algorithm that has a parameter ǫ such that for every ǫ > 0 it produces an (1 + ǫ)-approximate solution,
and the running time is polynomial in n for every fixed ǫ, e.g., O(n1/ǫ). A linear time PTAS runs in time
O(f(ǫ)n) where f is an arbitrary function. When designing a PTAS, it can be assumed that ǫ is smaller
than some fixed constant ǫ0. In the following it is assumed that ǫ is sufficiently small and 1/ǫ is an integer.
Appendix A.2 contains some more background on approximation algorithms.

Henceforth the graph G is a rooted tree with root r. The root is assumed to be a node of degree
one, the root edge is the edge incident to r. Every edge has an upper node (closer to r) and a lower node
(farther from r). Edge f is a child edge of edge e if the upper node of f is the same as the lower node of
e. In this case, edge e is the parent edge of edge f . A node is a leaf node if it has no children, and an edge
is a leaf edge if its lower node is a leaf node. The subtree Te consists of the edge e and the subtree rooted
at the lower node of e.

A top-down traversal of the edges is an ordering of the edges in such a way that every edge appears
later than its parent edge. Similarly, in a bottom-up traversal of the edges every edge appears before its
parent. It is clear that such orderings exist and can be found in linear time.
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Since the tree is a bipartite graph, every node has a parity, which is either 1 or 2, and neighboring
nodes have different parity. Let the parity of an edge be the parity of its upper node. Thus if two edges
have the same parity and they have a common node v, then v is the upper node of both edges.

If the tree has maximum degree ∆, then the edges can be colored with ∆ colors such that adjacent
edges have different colors. Fix such a coloring and let the type of an edge be its color in this coloring.
In some of the algorithms, the leaf edges will be special, they are handled differently. Therefore in these
cases we assign a type only to the non-leaf edges. Clearly, if every edge has at most D non-leaf child
edges, then the non-leaf edges can be given a type from 1, 2, . . . , D+ 1 in such a way that adjacent edges
have different type.

The following lemma bounds the number of colors required in a minimum sum multicoloring. In the
following, the maximum demand in the instance is always denoted by p.

Lemma 5.4.3. If G is a graph with maximum degree ∆ and maximum demand p, then every optimum
coloring of the minimum sum edge multicoloring problem uses at most p(2∆ − 1) colors.

Proof. Assume that an optimum coloring Ψ uses a color greater than p(2∆ − 1) on the edge e = uv.
Remove the colors from e. Since at most ∆ − 1 edges (other than e) are incident to u, with a demand of
at most p each, at most p(∆ − 1) colors are used on u. Similarly, there are at most p(∆ − 1) colors used
at v. Therefore there are at least p colors not greater than p(2∆ − 1) that is used neither on u nor v.
These p colors can be used to color the edge e. This will decrease the finish time of e, contradicting the
optimality of Ψ. �

If both the maximum degree of the tree and the maximum demand are bounded by a constant, then the
problem can be solved in linear time. The idea is that there are only a constant number of possible color
sets that can appear at each edge, hence using standard dynamic programming techniques, the optimum
coloring can be found during a bottom-up traversal of the edges.

Theorem 5.4.4. The minimum sum edge multicoloring problem for trees can be solved in 2O(p∆) ·n time.

Proof. We apply dynamic programming to solve the problem. Denote by Unk the set of all k element
subsets of {1, 2, . . . , n}. Let Te be the subtree of the tree T whose root edge is e. Set m := p(2∆ − 1).
For every e ∈ E(T ) and X ∈ Umx(e), let S(e,X) denote the value of the optimum sum in the subtree Te
with the further restriction that e receives the set X . Clearly, OPT(T, x) = minX∈Um

x(r)
S(r,X), since by

Lemma 5.4.3, the root edge r is colored by a set from Umx(r) in every optimum coloring.

We determine the values S(e,X) following a bottom-up traversal of the edges. If Te consists of only
the edge e, then S(e,X) is the highest color in X . Now assume that the child edges of e are e1, e2, . . . , ek,
and for each 1 ≤ i ≤ k, we have already computed a table containing the value of S(ei, Y ) for every
Y ∈ Umx(ei)

. We would like to determine the value S(e,X) for some set X . One way to do this is to choose

k sets Xi ∈ Umx(ei)
(1 ≤ i ≤ k) in every possible way. If the sets X,X1, X2, . . . , Xk are pairwise disjoint,

then there is a coloring Ψ with Ψ(e) = X , Ψ(ei) = Xi and fΨ(Te) =
∑k

i=1 S(ei, Xi) + maxc∈X c. Set
S(e,X) to the minimum of this sum for the best choice of the sets X1, . . . , Xk. It is easy to see that this
is indeed the value given by the definition of S(e,X) (by Lemma 5.4.3, every optimum coloring uses only
the colors 1, . . . ,m).

The method described above solves at most |Ump | subproblems S(e,X) at each edge e. In each sub-
problem, k ≤ ∆ − 1 subsets Xi are chosen in every possible way, the number of combinations considered
is at most |Ump |∆−1 = O(mp(∆−1)) = 2O(p∆ log(p∆)). However, using dynamic programming once again,

each subproblem S(e,X) can be solved in 2O(p∆) time. Denote by Te,i the union of the trees Te1 , Te2 ,
. . . , Tei

(the first i children of edge e). For every Y ⊆ {1, 2, . . . ,m} and 1 ≤ i ≤ k denote by P (i, Y ) the
minimum sum on Te,i with the restriction that exactly the colors in Y are used on the edges e1, . . . , ei.
Clearly, P (1, Y ) = S(e1, Y ). To calculate P (i, Y ) for some i > 1 notice that P (i, Y ) is the minimum of
S(i,Xi)+P (i−1, Y \Xi), where the minimum is taken over all x(ei) size subsets Xi of Y . Finally, S(e,X)
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can be easily determined by considering every set Y ⊆ {1, 2, . . . ,m} disjoint from X , and selecting the
one where P (k, Y ) is minimal.

At each edge we solve at most 2m · (∆ − 1) subproblems P (i, Y ). To solve a subproblem P (i, Y ),
we consider |Umx(ei)

| < 2m different sets Xi. Therefore the total number of combinations considered at

an edge is 2O(m). The work to be done for each combination is polynomial in m, hence it is dominated
by 2O(m). The number of edges in the tree is O(n), thus the total running time of the algorithm is
2O(m) · n = 2O(p∆) · n. �

On the other hand, we have seen in Theorem 5.3.1 that if only the demand is bounded, then the
problem becomes NP-hard.

In the minimum sum multicoloring problem our goal is to minimize the sum of finish times, not to
minimize the number of different colors used. Nevertheless, in Theorem 5.4.5 we show that the minimum
number of colors required for coloring the edges of a tree can be determined by a simple formula. We also
show that there is always an optimum solution where the color sets are relatively simple. This result will
be used by the approximation algorithm presented in Section 5.4.4 to solve certain subproblems.

Theorem 5.4.5. Let T be a tree and let C = maxv∈V (T )

∑
e∋v x(e). Every coloring of T uses at least C

colors, and one can find in linear time a coloring Ψ using C colors where each Ψ(e) consists of at most
two intervals of colors. Moreover, if each x(e) is an integer multiple of some integer q, then we can find
such a Ψ where the intervals in each Ψ(e) are of the form [qi1 + 1, qi2] for some integers i1 and i2.

Proof. It is clear that at least C colors are required in every coloring: there is a vertex v such that the
edges incident to v require C different colors. A coloring Ψ satisfying the requirements can be constructed
by a simple greedy algorithm. Call a set of colors S ⊆ [1, C] a circular interval if it is either an interval
[a, b] or the union of two intervals [1, a]∪ [b, C]. The algorithm presented below assigns a circular interval
of colors to each edge, therefore each Ψ(e) consists of one or two intervals.

Consider a top-down traversal of the edges. The edges are colored in a greedy manner following this
ordering. After each step of the algorithm, the coloring defined so far satisfies the following invariant
condition: for every node v, the set of colors used by the edges incident to v forms a circular interval of
[1, C].

At the start of the algorithm, we assign the set [1, x(r)] to the root edge r. When an edge e is visited
during the traversal, some of the edges incident to the upper node v of e are already colored, and none of
the edges incident to the lower node u of e has a coloring yet. By assumption, the colors used by the edges
incident to v form a circular interval S. Clearly, the size of [1, C] \ S is at least x(e), otherwise

∑
e∋v x(e)

would be strictly greater than C. We can assign to edge e a circular interval S′ of size x(e) such that S
and S′ are disjoint, and S∪S′ is also a circular interval. Thus the set of colors used at v remains a circular
interval. Because of the top-down traversal, the set of colors used at u is exactly S′, a circular interval,
hence the invariant condition remains valid and the algorithm can proceed with the next edge. Moreover,
if every demand is an integer multiple of q, then it can be shown by induction that every edge receives a
circular interval Ψ(e) such that the one or two intervals in Ψ(e) are of the form [qi1 + 1, qi2]. �

The fact that for trees a greedy algorithm can minimize the number of colors used was observed in
[Kub96]. However, in our applications it will be important that the color sets have the special form
described in Theorem 5.4.5.

5.4.2 Scaling and rounding

Consider an instance of minimum sum edge multicoloring: let G be a graph, and let x(e) be an arbitrary
demand function on the edges of G. Multiply the demand of every edge by an integer q, that is, consider
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the demand function x′(e) = q · x(e). The first observation is that this operation increases the minimum
sum at most by a factor of q, that is,

OPT(G, x′) ≤ q · OPT(G, x). (5.2)

To see this, take an optimum coloring Ψ of (G, x), and replace every color by q consecutive colors: for
every c ∈ Ψ(e), add {(c− 1)q + 1, (c− 1)q + 2, . . . , cq} to Φ(e). Clearly, coloring Φ satisfies the demand
x′ on every edge, and the finish time of every edge in Φ is exactly q times larger than in Ψ. Therefore the
sum of Φ is exactly q times larger than the optimum sum of (G, x), and (5.2) follows.

We mention it without proof that one can construct a bipartite graph G, and choose x, q in such a
way that (5.2) holds with strict inequality. The aim of this section is to show that if G is a tree, then
there is always equality in (5.2):

Theorem 5.4.6. For every tree T (V,E), demand function x and integer q, if x′(e) = q · x(e) for every
e ∈ E, then OPT(T, x′) = q · OPT(T, x) holds.

Before proving Theorem 5.4.6, we have to make some preparations. The following problem is the
weighted version of multicoloring (this problem is studied in [Jan00, Jan97] under the name Generalized
Optimum Cost Chromatic Partition). Every vertex has a cost function (thus the same color can have
different costs at different vertices), and the goal is to minimize the total cost of the colors used in the
coloring. As in the case of other coloring problems, we consider here the edge coloring version:

Generalized Minimum Cost Multicoloring

Input: A graph G(V,E), a demand function x: E → N, a set of available colors C =
{1, 2, . . . , C}, and a list of costs ce,i (for every e ∈ E, i ∈ C).

Output: A multicoloring Ψ: E → 2C such that

• Ψ(e1) ∩ Ψ(e2) = ∅ if e1 and e2 are adjacent in G, and

• |Ψ(e)| = x(e).

Goal: Minimize the total cost
∑
e∈E

∑
i∈Ψ(e) ce,i.

This problem can be formulated as an integer linear programming problem as follows. If the value of
the 0-1 variable ye,i is 1, then we assign color i to edge e. It is easy to verify that the integer solutions of
the following linear program correspond to the proper colorings of the graph:

minimize
∑

e∈E

C∑

i=1

ce,iye,i

s. t.

ye,i ≥ 0 ∀e ∈ E, 1 ≤ i ≤ C (5.3)
∑

e∋v

ye,i ≤ 1 ∀v ∈ V, 1 ≤ i ≤ C (5.4)

C∑

i=1

ye,i ≥ x(e) ∀e ∈ E (5.5)

ye,i ∈ {0, 1} ∀e ∈ E, 1 ≤ i ≤ C (5.6)

The inequalities (5.4) express the requirement that a color i can appear at most once on the edges
incident to v, while inequalities (5.5) ensure that edge e receives at least x(e) colors. The cost of an integer
solution equals the cost of the corresponding coloring. In general, the linear programming relaxation
(dropping (5.6) from the program) does not have an integer optimum solution, but if the graph is a tree,
then there is always an integer optimum:
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Lemma 5.4.7. For every tree T with arbitrary demand function x and costs ce,i the linear program has
an integer optimum solution.

Proof. We show that the coefficient matrix of the linear program is a network matrix, hence it is totally
unimodular. Since the right-hand side of the linear program is an integer vector, thus the lemma follows
from the well-known properties of totally unimodular matrices (cf. [Sch03]).

Recall the definition of network matrices. Let D be a directed graph and T be a spanning tree over
the same vertex set V . Denote by n and m the number of edges of T and D, respectively. Direct the
edges of T arbitrarily. Consider an n×m matrix N whose rows correspond to the edges of T and columns
correspond to the edges of D. Every directed edge e in D determines a unique path in the tree. If edge f
of T lies on this path and its orientation agrees with the directed path, then let the element of M in row f
and column e be 1; if its orientation is opposite, then let the element be −1. If f does not lie on the path
determined by e, then the element is zero. A matrix M that arises in such a way from some T and D is
called a network matrix. It is well known that every network matrix is totally unimodular (cf. [Sch03]).

The constraints (5.3) can be left out of the program: if an n×m matrix is totally unimodular, then it
remains totally unimodular after appending to it an m×m unit matrix. Denote the inequalities in (5.4)
by dv,i (v ∈ V , 1 ≤ i ≤ C) and those in (5.5) by de. Let V1 and V2 be the two bipartition classes of T .
Direct the edges of T from V1 to V2 and identify the directed edges with the constraints de. Connect C
new vertices vi (1 ≤ i ≤ C) to every vertex v. Identify the new edges with the constraints dv,i and direct
them away from v if v ∈ V1, and to v if v ∈ V2. Call this tree T ′. The directed graph D is defined as
follows: if e = uv (u ∈ V1, v ∈ V2) is an edge in T , then add the edges ye,i = −−→viui (1 ≤ i ≤ C) to D.
Now it can be verified that the network matrix corresponding to T ′ and D is the coefficient matrix of the
linear program: the unique path corresponding to edge ye,i = −−→viui contains the edges dv,i, de, du,i, and the
variable ye,i appears precisely in these inequalities. �

Proof (of Theorem 5.4.6). Given a coloring Ψ realizing the optimum OPT(T, x′), we construct a coloring
Φ that satisfies the demand function x and has sum at most OPT(T, x′)/q. Define the following cost
function:

ce,i =






0 i < ⌈fΨ(e)/q⌉
1 i = ⌈fΨ(e)/q⌉
2|E| i > ⌈fΨ(e)/q⌉

Consider the generalized minimum cost multicoloring problem on the edges of T , with demand x(e) and
color costs ce,i. Let C, the number of colors, be an integer larger then the total demand of the tree T . It
is clear that the linear program given by inequalities (5.3)–(5.5) always has a feasible solution: since C is
large enough, the demands can be satisfied even if every color is used at most once. By Lemma 5.4.7, this
program has an integer optimum solution with costs ce,i, let ye,i be such a solution. Clearly every variable
is 0 or 1. Define coloring Φ with i ∈ Φ(e) if and only ye,i = 1. Replace every color in the coloring Φ with a
sequence of q colors to obtain a coloring Φ′, that is, if i ∈ Φ(e), then add {(i− 1)q+ 1, (i− 1)q+ 2, . . . , iq}
to Φ′(e). Clearly, fΦ′(T ) = q · fΦ(T ), thus if it can be shown that fΦ′(T ) ≤ fΨ(T ) = OPT(T, x′), then
OPT(T, x) ≤ fΦ(T ) ≤ OPT(T, x′)/q and Theorem 5.4.6 follows.

Let ze,i be |Ψ(e) ∩ {(i− 1)q + 1, (i− 1)q + 2, . . . , iq}|/q. It can be easily verified that this is a feasible
solution of the linear program. Furthermore, the cost of this solution is strictly less than 2|E| since, by
definition, ze,i is 0 if i > ⌈fΨ(e)/q⌉. Therefore the optimum integral solution ye,i has cost strictly less
than 2|E|, which implies that ye,i = 0 for i > ⌈fΨ(e)/q⌉, and fΦ(e) ≤ ⌈fΨ(e)/q⌉.

Let cΦ(e) =
∑C

i=1 ce,iye,i and cΨ(e) =
∑C
i=1 ce,ize,i. We show that for every edge e, fΦ(e) ≤ fΨ(e)/q+

cΦ(e)−cΨ(e), or equivalently fΦ′(e) ≤ fΨ(e)+q(cΦ(e)−cΨ(e)). If the latter inequality holds, then summing
for every e ∈ E gives fΦ′(E) ≤ fΨ(E) + q(

∑
e∈E cΦ(e) −

∑
e∈E cΨ(e)). Since ye,i is an optimum solution

of the linear program with costs ce,i, thus
∑

e∈E cΦ(e) ≤
∑

e∈E cΨ(e), which implies fΦ′(E) ≤ fΨ(E),
proving the theorem.
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There are two cases to consider: (a) fΦ(e) = ⌈fΨ(e)/q⌉ and (b) fΦ(e) < ⌈fΨ(e)/q⌉ (we have seen that
fΦ(e) ≤ ⌈fΨ(e)/q⌉). Since Ψ(e) contains at most fΨ(e) − (⌈fΨ(e)/q⌉q − q) colors above ⌈fΨ(e)/q⌉q − q,
thus q · cΨ(e) ≤ fΨ(e) − (⌈fΨ(e)/q⌉q − q) and fΨ(e)/q − cψ(e) ≥ ⌈fΨ(e)/q⌉ − 1. If (a) holds, then
cΦ(e) = 1, thus fΨ(e)/q + cΦ(e) − cΨ(e) ≥ ⌈fΨ(e)/q⌉ = fΦ(e), as required. In case (b), cΦ(e) = 0,
therefore fΨ(e)/q + cΦ(e) − cΨ(e) ≥ ⌈fΨ(e)/q⌉ − 1 ≥ fΦ(e), what we had to prove. �

In Section 5.3, we have shown that the preemptive minimum sum edge coloring problem is NP-hard
for trees even if every demand is 1 or 2. However, it becomes polynomial time solvable if every demand
is 2, or more generally, if every edge has the same demand. By Theorem 5.4.6, the case where every edge
has the same demand can be reduced to the case where every edge has unit demand, which is polynomial
time solvable [GK00, Sal03, ZN04].

Corollary 5.4.8. The minimum sum edge multicoloring problem can be solved in polynomial time in trees
if every edge has the same demand. �

The following lemma is another corollary of Theorem 5.4.6: if the demand of every edge is increased
to at most λ times the original demand, then the optimum increases by at most a factor of λ. If λ is
an integer, then this is trivial (replace every color in the optimum coloring by λ consecutive colors), but
the lemma states that in trees this is true even if λ is not an integer. This observation will be used in
Section 5.4.5.

Lemma 5.4.9. Let (T, x) be an instance of minimum sum edge multicoloring and let x′ be a demand
function with x′(e) ≤ λ · x(e) for every edge e. If T is a tree, then OPT(T, x′) ≤ λ · OPT(T, x).

Proof. Assume that λ is rational and λ = a/b where a and b are integers. Let x2(e) = a · x(e). By
Theorem 5.4.6, OPT(T, x2) = a·OPT(T, x). Round down x2 to the nearest integer multiple of b, denote by
x3 the obtained demand function. Let x4(e) = x3(e)/b = ⌊ax(e)/b⌋ ≥ ⌊x′(e)⌋ = x′(e). By Theorem 5.4.6,
OPT(T, x4) = OPT(T, x3)/b ≤ OPT(T, x2)/b = (a/b)OPT(T, x) = λ · OPT(T, x). Thus x4(e) ≥ x′(e)
implies OPT(T, x′) ≤ OPT(T, x4) ≤ λ · OPT(T, x). �

5.4.3 Bounded demand

In Section 5.3 we have shown that the minimum sum edge multicoloring problem is NP-hard in trees,
even if every demand is at most 2. Therefore we cannot hope to find a polynomial time algorithm in the
special case where every demand is at most p, for a fixed constant p > 1. However, the problem admits a
linear time PTAS:

Theorem 5.4.10. For every ǫ0 > 0, there is a 2O(p2/ǫ20) ·n time algorithm that gives a (1+ǫ0)-approximate
solution to the minimum sum edge multicoloring problem in trees.

Proof. Let ǫ := ǫ0/4. A node with at least D := 4p/ǫ2 children will be called a high-degree node. We
partition the edge set of the tree T into connected subgraphs. If v is a high-degree node, then the child
edges of v form a class of the partition, which will be called the high-degree star at v. After deleting the
edges of the high-degree stars from the tree, some connected low-degree components (with maximum degree
D) remain, every such component is a class of the defined partition (see Figure 5.11). The tree defines a
tree structure on the components in a natural way, all but one component has a parent component. The
parent of a low-degree component is always a high-degree star.

First we color each component of the partition separately, later we show how these colorings can be
combined to obtain a coloring of the whole tree. Using the algorithm of Theorem 5.4.4, a low-degree
component having n′ edges and maximum degree D can be colored optimally in 2O(pD) ·n′ = 2O(p2/ǫ2) ·n′

time, thus coloring all these components requires 2O(p2/ǫ2) · n time.
The optimum coloring of a high-degree star is obtained by coloring the edges non-preemptively one

after the other, in the order of increasing demand size. We color the high-degree stars in a way that
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Figure 5.11: Partitioning the tree into high-degree stars (shaded regions) and low-degree components
(D = 4).

is slightly worse than this optimum coloring. Assume that the parent component of the star Sv at v
already has a coloring, this coloring assigns a set of colors to the edge e that connects v to its parent. We
color the edges in the star using only colors greater than B := p/ǫ. The edges are colored in the order
of increasing demand size, starting with the color B + 1, skipping the (at most p) colors used by e, if
necessary. Compared to the optimum coloring given above, the finish time of every edge in the star is
delayed by at most B+p. Therefore if v has d children, then the sum of the star in this coloring is greater
than the optimum by at most d(B + p) = d(p/ǫ + p) = dp(1/ǫ + 1) ≤ 2dp/ǫ ≤ dDǫ/2 ≤ ǫd2/2. On the

other hand, the sum of these d edges is at least
∑d
i=1 i > d2/2 in every optimum coloring. Therefore,

ǫ · OPT(Sv) ≥ ǫd2/2

and the sum of the coloring given to Sv is not greater than (1 + ǫ)OPT(Sv).

Putting together the colorings of the components, we obtain a coloring Ψ, which is not necessarily
a proper coloring: there might be conflicts between a low-degree component and its parent component,
a high-degree star. The second phase of the algorithm resolves these conflicts with only a 1 + ǫ factor
increase in the total sum. First we modify the coloring Ψ such that every color greater than B is shifted
up by p. This increases by p the finish time of those edges that have finish time greater than B, and
leaves the edges with finish time at most B unchanged. Therefore the finish time of every node is at most
(B + p)/B ≤ 1 + ǫ times the original.

Assume that e = vu is an edge in the high-degree star at v that conflicts with some of the edges
incident to u, the lower node of e. The conflict will be solved the following way: instead of using the (at
most p) colors assigned to e, the child edges of e will use the p colors {B + 1, . . . , B + p} (in any order).
This will not increase the finish time of any of the edges since the colors used by e, and therefore the
conflicting colors, are all greater than B + p. To see that this modification does not introduce additional
conflicts, notice first that conflicts can appear only between edges that received new colors, since the colors
{B+ 1, . . . , B+ p} were not used by any of the edges. Every recolored edge is in a low-degree component,
and its parent edge is in a high-degree star. Therefore if two recolored edge are adjacent, then they have
a common parent edge e. But this means that there cannot be conflict between the two edges, since every
color in {B + 1, . . . , B + p} was given to at most one child of e.



118 CHAPTER 5. MINIMUM SUM MULTICOLORING

The first phase of the algorithm produced a (not necessarily proper) coloring having sum at most
(1 + ǫ)OPT(T ), since the sum of the coloring was at most (1 + ǫ) times the optimum in each component
of the partition. The second phase resolved the conflicts and increased the sum by a factor of at most
1 + ǫ, thus the final coloring has sum at most (1 + ǫ)2OPT(T ) ≤ (1 + ǫ0)OPT(T ). The running time of
the algorithm is dominated by the first phase, the second phase can be done in O(np) time. �

5.4.4 Bounded degree

If a tree T has maximum degree ∆, then the line graph of T is a partial (∆ − 1)-tree. Halldórsson and

Kortsarz [HK02] gave a PTAS with running time nO(k2/ǫ5) for minimum sum multicoloring the vertices of
partial k-trees, therefore there is a PTAS for minimum sum edge multicoloring in bounded degree trees as
well. However, the method can be made simpler and more efficient in line graphs of trees. In this section
we present a linear time PTAS for minimum sum edge multicoloring in bounded degree trees, which makes
use of the special structure of trees. Furthermore, our algorithm works even in the more general class of
almost bounded degree trees: in trees that become bounded degree after deleting the degree one nodes.
Equivalently, we can say that a tree is an almost bounded degree tree if every node has at most a bounded
number of non-leaf child edges.

Most of the ideas presented in this section are taken from [HK02], with appropriate modifications. In
Section 5.4.5 a PTAS is given for general trees, which uses the result in this section as a subroutine.

Layers and Zones

An important idea of the approximation schemes given in [HK02, HKP+03] is to divide the color spectrum
into geometrically increasing layers, and to solve the problem in these layers separately. We use a similar
method for the minimum sum edge multicoloring problem in bounded degree trees (Theorem 5.4.14) and
general trees (Theorem 5.4.15).

For some ǫ > 0 and integer ℓ ≥ 0, the (ǫ, ℓ)-decomposition divides the infinite set of colors into layers
L0, L1, . . . and zones Z0, Z1, . . . , Zℓ. The layers are of geometrically increasing size: layer Li contains the
range of colors from qi to qi+1 − 1, where qi = ⌊(1 + ǫ)i⌋. If qi = qi+1, then layer Li is empty. Denote by
Qi = |Li| = qi+1 − qi the size of the ith layer. The total size of layers L0, L1, . . . , Li is qi+1 − 1. Later
we will use that (1 + 2ǫ)qi ≥ qi+1 − 1:

(1 + 2ǫ)qi > (1 + ǫ)((1 + ǫ)i − 1) + ǫqi = (1 + ǫ)i+1 − 1 − ǫ+ ǫqi ≥ (1 + ǫ)i+1 − 1 ≥ qi+1 − 1. (5.7)

That is, if we replace a color from layer Li with another color from Li, then the new color is at most
(1 + 2ǫ) times larger than the original.

Each layer is divided into a main block and an extra block. The extra block is further divided into
extra segments (see Figure 5.12). Layer Li is divided into two parts: the first 1

1+ǫℓQi colors form the main

block of layer Li and the remaining ǫℓ
1+ǫℓQi colors the extra block. The main block of layer Li is denoted

by Li. The union of the main block of every layer Li is the main zone Z0. Divide the extra block of every
layer Li into ℓ equal parts: these are the ℓ extra segments of Li. The union of the jth extra segment of
every layer Li forms the jth extra zone Zj . Each extra zone contains ǫ

1+ǫℓQi colors from layer Li.
Rounding problems will be handled as follows. Layer i is divided such that the first gi,0 colors are

assigned to the main zone Z0, and extra zone Zj receives gi,j colors. We show that the values gi,j can
be determined in such a way that the resulting zones approximate the “ideal” case where the main zone
contains the 1

1+ǫℓ part of the color spectrum, and each extra zone contains the ǫ
1+ǫℓ part of the colors.

First set gi,0 = ⌈ 1
1+ǫℓ (qi+1 − 1)⌉ − ⌈ 1

1+ǫℓ(qi − 1)⌉ ≤ ⌈ 1
1+ǫℓQi⌉. The inequality follows from ⌈a⌉ + ⌈b⌉ ≥

⌈a+ b⌉. This ensures that
∑i

k=0 gk,0 = ⌈ 1
1+ǫℓ(qi+1 − 1)⌉. Now there remains gi = Qi − gi,0 colors for the

extra zones in layer Li. The following lemma shows that these colors can be evenly divided among the ℓ
layers:
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Extra segments

L0 L1 L2 L3 L4

L1 L2 L3 L4L0

Main zone Z0

Extra zone Z2

Figure 5.12: The decomposition of the colors into layers (ℓ = 3)

Lemma 5.4.11. If ℓ and gi (0 ≤ i ≤ n) are nonnegative integers, then there are nonnegative integers gi,j
(0 ≤ i ≤ n, 1 ≤ j ≤ ℓ) such that for every i and j

i∑

k=0

gk,j ≥

⌊
1

ℓ

i∑

k=0

gk

⌋
(5.8)

and
ℓ∑

j=1

gi,j ≤ gi (5.9)

hold. Moreover, if
∑i

k=0 gk can be calculated with a constant number of arithmetic operations, then each
gi,j can be also calculated with a constant number of arithmetic operations.

Proof. We calculate gi,j by determining the values Gi,j =
∑i
k=0 gk,j , then gi,j can be obtained as gi,j =

Gi,j −Gi−1,j . Let

Gi,j =

{
⌈ 1
ℓ

∑i
k=0 gk⌉ if j ≤

∑i
k=0 gk − ℓ⌊ 1

ℓ

∑i
k=0 gk⌋,

⌊ 1
ℓ

∑i
k=0 gk⌋ otherwise.

Clearly,
∑ℓ
j=1Gi,j =

∑i
k=0 gk. It is clear that (5.8) holds, since Gi,j ≥ ⌊ 1

ℓ

∑i
k=0 gk⌋. Furthermore, (5.9)

also holds:
ℓ∑

j=1

gi,j =

ℓ∑

j=1

(Gi,j −Gi−1,j) =

i∑

k=0

gk −
i−1∑

k=0

gk = gi.

Each Gi,j can be calculated from
∑i
k=0 gk by a constant number of arithmetic operations, and this is

true also for gi,j = Gi,j −Gi−1,j , hence the claim of the lemma follows. �

We will need the following properties of the defined zones:

Lemma 5.4.12. For given ℓ and ǫ ≤ 1
2ℓ , one can calculate values gi,j such that the resulting (ǫ, ℓ)-

decomposition of the colors has the following properties:

(a) For every c ≥ 1, zone Z0 contains at least c colors not greater than ⌊(1 + ǫℓ)c⌋.

(b) For every c ≥ 1 and 1 ≤ j ≤ ℓ, zone Zj contains at least c colors not greater than 2/ǫ · c.

Moreover, each value gi,j can be calculated using a constant number of arithmetic operations.



120 CHAPTER 5. MINIMUM SUM MULTICOLORING

Proof. Consider the values gi,j given by Lemma 5.4.11. To verify property (a), notice that for every d ≥ 1,
there are at least ⌈ 1

1+ǫℓd⌉ colors in the main zone not greater than d. Indeed, if d = qi+1 − 1 (d is the last
color of layer Li), then this follows from the way gi,0 was defined, otherwise it follows from the fact that
the main zone uses the first gi,0 colors of layer Li, hence if it is true for d = qi − 1 and d = qi+1 − 1, then
it is true for every value in between. Thus there are at least ⌈ 1

1+ǫℓ⌊(1 + ǫℓ)c⌋⌉ ≥ c colors below ⌊(1 + ǫℓ)c⌋.
To verify property (b), assume that qi − 1 < (1 + ǫℓ)/ǫ · c ≤ qi+1 − 1 for some i. Since (1 + ǫℓ)/ǫ · c

is greater than 1/ǫ, hence (1 + 2ǫ)(1 + ǫℓ)/ǫ · c ≥ (1 + ǫℓ)/ǫ · c + 2 ≥ qi + 1 > (1 + ǫ)i. Multiplying by
1 + ǫ we get (1 + ǫ)(1 + 2ǫ)(1 + ǫℓ)/ǫ · c ≥ (1 + ǫ)i+1 > qi+1 − 1. If ǫ ≤ 1

2ℓ is sufficiently small, then
qi+1 − 1 ≤ 2/ǫ · c follows. We use Lemma 5.4.11 to calculate the number of colors in the first i layers (i.e.,
up to color qi+1 − 1) that belong to zone Zj :

i∑

k=0

gk,j ≥

⌊
1

ℓ

i∑

k=0

gk

⌋
=

⌊
1

ℓ

i∑

k=0

(Qk − gk,0)

⌋
=

⌊
1

ℓ

(
i∑

k=0

Qk −

⌈
i∑

k=0

1

1 + ǫℓ
Qk

⌉)⌋

=

⌊
1

ℓ

⌊
i∑

k=0

ǫℓ

1 + ǫℓ
Qk

⌋⌋
≥

⌊
1

ℓ
· ℓ

⌊
i∑

k=0

ǫ

1 + ǫℓ
Qk

⌋⌋
=

⌊
i∑

k=0

ǫ

1 + ǫℓ
Qk

⌋

=

⌊
ǫ

1 + ǫℓ
(qi+1 − 1)

⌋
≥

⌊
ǫ

1 + ǫℓ
· (1 + ǫℓ)/ǫ · c

⌋
= c

Therefore there are at least c colors in zone Zj not greater than qi+1−1 ≤ 2/ǫ ·c, proving property (b). �

Given a multicoloring Ψ, the operation (ǫ, ℓ)-augmentation creates a multicoloring Φ as follows. Con-
sider the (ǫ, ℓ)-decomposition of the colors, and if Ψ(e) contains color c, then let Φ(e) contain instead
the cth color from the main zone Z0. By Lemma 5.4.12a, fΦ(e) ≤ ⌊(1 + ǫℓ)fΨ(e)⌋, thus this operation
increases the sum by at most a factor of (1 + ǫℓ). In Φ only the colors of the main zone are used.

PTAS for Bounded Degree Trees

The polynomial time algorithm of Theorem 5.4.4 was based on the observation that we have to consider
only a constant number of different colorings at each edge if both the demand and the maximum degree
are bounded. In general, however, the number of different color sets that can be assigned to an edge is
exponentional in the demand. The main idea of the PTAS in [HK02] for vertex coloring partial k-trees is
that one can select a polynomial number of color sets for each vertex in such a way that there is a good
approximate coloring using only these sets. This gives a PTAS since the best coloring that uses only the
selected sets can be found in polynomial time with standard dynamic programming techniques.

Here we also follow this path: Lemma 5.4.13 shows that one can find a good approximate coloring by
considering only a constant number of different color sets at each edge. This results in a linear time PTAS
for the problem.

Lemma 5.4.13. For ǫ > 0, define bi,j = qi+j⌈ǫ2Qi/8⌉. If each vertex of the tree T has at most D non-leaf
child edges and ǫ ≤ 1

3D , then it has a (1 + 3Dǫ)-approximate coloring Ψ with the following properties:

1. In the (ǫ,D)-decomposition of the colors, if e is a non-leaf edge, then Ψ(e) contains colors from the
main zone only between ǫx(e)/4 and 2x(e)/ǫ.

2. If e is a non-leaf edge of type k, then Ψ(e) contains the first te colors from extra zone Zk (for some
te), and it does not contain colors from the other extra zones.

3. If e is a leaf edge, then Ψ(e) contains colors only from the main zone.

4. If e is a non-leaf edge, then Ψ(e) contains at most two continuous intervals of colors from the main
block of each layer, and the intervals in layer Li are of the form [bi,j1 , bi,j2 − 1] for some j1 and j2.
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Proof. Let Φ be an optimum solution, and let Ψ be the result of an (ǫ,D + 1)-augmentation on Φ. By
Lemma 5.4.12a, fΨ(e) ≤ (1 + (D + 1)ǫ)fΦ(e) for every e (note that we assumed ǫ ≤ 1

3D < 1
2(D+1) ).

If fΨ(e) > 2x(e)/ǫ for a non-leaf edge e of type j, then modify Ψ(e) to be the first x(e) colors of zone
Zj . By Lemma 5.4.12b, Zj contains at least x(e) colors not greater than 2x(e)/ǫ. Therefore the x(e) colors
assigned to e are not greater than 2x(e)/ǫ, hence fΨ(e) ≤ (1 + (D + 1)ǫ)fΦ(e). In this case requirements
2 and 4 are automatically satisfied for e, thus there is nothing else to do with this edge.

If Ψ(e) contains colors in the main zone below ǫx(e)/4, then delete these colors and let Ψ(e) contain
instead the first ǫx(e)/4 colors from zone Zj . There are at least ǫx(e)/4 colors in Zi below 2/ǫ · ǫx(e)/4 =
x(e)/2. Since the finish time of e is at least x(e), hence this modification does not increase the finish time
of e. Therefore Ψ satisfies the first three properties of the lemma.

Finally, we make Ψ satisfy the fourth requirement as well. For each non-leaf edge e, let xi(e) be
|Ψ(e) ∩ Li| rounded down to the next integer multiple of ⌈ǫ2Qi/8⌉. If we use xi as a demand function on
the non-leaf edges of the tree, then there is multicoloring satisfying xi that uses at most |Li| colors: Ψ(e)∩Li
is such a coloring. Therefore by Theorem 5.4.5, there is a multicoloring Ψi that uses at most |Li| colors,
satisfies xi, and where each Ψ(e) consists of at most two intervals of the form [1 + j1⌈ǫ2Qi/8⌉, j2⌈ǫ2Qi/8⌉]
for some j1, j2. Modify coloring Ψ: let Ψi determine how the colors are assigned in the main block of
layer i. Now the third requirement is satisfied, but it is possible that Ψ assigns less than x(e) colors to an
edge. We can lose at most ⌈ǫ2Qi/8⌉ − 1 < ǫ2Qi/8 colors in layer i, hence we lose at most the ǫ2/8 part
of each layer. Assume that the highest color of Ψ(e) is in layer Li. Since Ψ(e) contains colors only up to
2x(e)/ǫ, hence the last color of layer Li is less than 2(1 + 2ǫ)x(e)/ǫ ≤ 4x(e)/ǫ (Inequality (5.7)). Thus we
lose only at most ǫ2/8 · 4x(e)/ǫ = ǫx(e)/2 colors. If non-leaf edge e is of type j, then we use extra zone Zj
to replace the lost colors. So far, edge e uses at most ǫx(e)/2 colors from Zj (previous paragraph), hence
there is still place for at least ǫx(e)/2 colors in Zj below (1 + (D + 1)ǫ)x(e) ≤ (1 + (D + 1)ǫ)fΦ(e).

The modification in the previous paragraph can change the finish times of the non-leaf edges, but the
largest color of each edge remains in the same layer. By Inequality (5.7), (1 + 2ǫ)qi ≥ qi+1 − 1, therefore
the finish time of an edge can increase by at most a factor of (1+2ǫ). Moreover, since we modified only the
non-leaf edges, there can be conflicts between the non-leaf and the leaf edges. But that problem is easy to
solve: since the number of colors used by the non-leaf edges at vertex v from the main block of layer i does
not increase, there are enough colors in layer i for assigning new colors to the leaf edges. After recoloring
the leaf edges, the largest color of each edge remains in the same layer, hence the finish time of each leaf
edge can increase by at most a factor of 1 + 2ǫ, and fΨ(e) ≤ (1 + 2ǫ)(1 + (D+ 1)ǫ)fΦ(e) ≤ (1 + 3Dǫ)fΦ(e)
follows for every edge e. �

Call a coloring satisfying the requirements of Lemma 5.4.13 a standard coloring. Notice that on a
non-leaf edge e only a constant number of different color sets can appear in standard colorings: the main
zone is not empty only in a constant number of layers, and in each layer the (at most two) intervals
can be placed in a constant number of different ways. More precisely, in a standard coloring edge e can
use the main zone only from layer ⌊log1+ǫ ǫx(e)/4⌋ to layer ⌈log1+ǫ 2x(e)/ǫ⌉, that is, only in at most
log1+ǫ((2x(e)/ǫ)/(ǫx(e)/4)) + 2 = log1+ǫ 8/ǫ2 + 2 = O(1/ǫ · log 1/ǫ) layers. In each layer, the end points
of the intervals can take only at most 8/ǫ2 different values, hence there are (8/ǫ2)2 different possibilities
for each of the two intervals. Therefore if we denote by Ce the different color sets that can appear in a
standard coloring on non-leaf edge e, then |Ce| = ((8/ǫ2)4)O((1/ǫ)·log 1/ǫ) = 2O((1/ǫ)·log2 1/ǫ).

Theorem 5.4.14. If every edge of T (V,E) has at most D non-leaf child edges, then for every ǫ0 > 0,

there is a 2O(D2/ǫ0·log
2(D/ǫ0)) ·n time algorithm that gives a (1 + ǫ0)-approximate solution to the minimum

sum edge multicoloring problem.

Proof. Set ǫ := ǫ0/3D. We use dynamic programming to find the best standard coloring: for every non-
leaf edge e, and every set S ∈ Ce, we determine OPT(e, S), which is defined to be the sum of the best
standard coloring of Te, with the additional requirement that edge e receives color set S. Clearly, if all the
values {OPT(r, S) : S ∈ Cr} are determined for the root edge r of T , then the minimum of these values is
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the sum of the best standard coloring, which is by Lemma 5.4.13 at most (1 + 3Dǫ) = (1 + ǫ0) times the
minimum sum.

The values OPT(e, S) are calculated in a bottom-up traversal of the edges. Assume that e has k
non-leaf child edges e1, e2, . . . , ek and ℓ leaf child edges e′1, e

′
2, . . . , e

′
ℓ. When OPT(e, S) is determined, the

values OPT(ei, Si) are already available for every 1 ≤ i ≤ k and Si ∈ Cei
. In a standard coloring of Te

every edge ei is assigned a color set from Cei
. We enumerate all the

∏k
i=1 |Cei

| possibilities for these color
sets. For each combination S1 ∈ Ce1 , . . . , Sk ∈ Cek

, we check whether these sets are pairwise disjoint. If
so, then we determine the minimum sum that a standard coloring can have with these assignments. The
minimum sum of subtree Tei

with color set Si on ei is given by OPT(ei, Si). The finish time of edge e
can be calculated from S. Now only the leaf edges e′1, . . . , e′ℓ remain to be colored. It is easy to see that
the best thing to do is to order these leaf edges by increasing demand size, and color them one after the
other, using the colors not already assigned to e, e1, . . . , ek. Therefore we can calculate the minimum
sum corresponding to a choice of color sets S1 ∈ Ce1 , . . . , Sk ∈ Cek

, and we set OPT(e, S) to the minimum
over all the combinations.

The algorithm solves at most
∑

e∈E |Ce| = n · 2O((1/ǫ)·log2 1/ǫ) subproblems. To solve a subproblem,

at most 2O(D·(1/ǫ)·log2 1/ǫ) different combinations of the sets S1, . . . , Sk have to be considered. Each color
set can be described by O(1/ǫ · log 1/ǫ) intervals, and the time required to handle each combination
is polynomial in D and the number of intervals. Therefore the total running time of the algorithm is
2O(D·1/ǫ·log2(1/ǫ)) · n = 2O(D2/ǫ0·log

2(D/ǫ0)) · n. �

5.4.5 The general case

In this section we prove that minimum sum edge multicoloring admits a PTAS for arbitrary trees. The
edges of the tree are partitioned into subtrees in such a way that each subtree is an almost bounded
degree tree (recall that in an almost bounded degree tree each node has a bounded number of non-leaf
child edges). Now the algorithm presented in Section 5.4.4 can be used to obtain a good approximate
coloring for each subtree. These colorings can be merged into a coloring of the whole tree, but this coloring
will not be necessarily a proper coloring, since there might be conflicts between edges that were in different
subtrees. However, using a series of transformations, these conflicts can be resolved with only a small
increase of the sum.

Theorem 5.4.15. For every ǫ0 > 0, there is a 2O(1/ǫ110 ·log2(1/ǫ0)) · n time algorithm that gives a (1 +
ǫ0)-approximate solution to the minimum sum edge multicoloring problem for every tree T and demand
function x0.

Proof. Let ǫ := ǫ0/32. The algorithm consists of a series of phases. The last phase produces a proper
coloring of (T, x0), and has cost at most (1 + ǫ0)OPT(T, x0). In the following we describe these phases.

Phase 1: Rounding the Demands. Let x(e) be the smallest qi that is not smaller than x0(e). Since
qi+1 ≤ (1 + ǫ)i+1 ≤ (1 + ǫ)(qi + 1), thus x(e) ≤ (1 + ǫ)x0(e). Therefore by Lemma 5.4.9, this modification
increases the minimum sum by at most a factor of 1 + ǫ. An edge e with demand qi will be called a class
i edge (if x(e) = qi for more than one i, then take the smallest i). The class of edge e will be denoted by
class(e).

Phase 2: Partitioning the Tree. We partition the edges of the tree into connected components such
that in every subtree the number of non-leaf child edges of a node is bounded by a constant. To obtain
this partition, the edges of the tree are divided into large edges, small edges, and frequent edges. It will
be done in such a way that every node has at most D := 6/ǫ5 large child edges. If a node has less than
D children, then its child edges are large edges. Let v be a node with at least D children, and denote
by n(v, i) the number of class i child edges of v. Let N(v) be the largest i such that n(v, i) > 0 and set
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F := 6/ǫ3. Let e be a class i child edge of v. If n(v, i) > F , then e is a frequent edge. If n(v, i) ≤ F and
i ≤ N(v) − 1/ǫ2, then e is a small edge. Otherwise, if n(v, i) ≤ F and i > N(v) − 1/ǫ2, then e is a large
edge. Clearly, v can have at most F · 1/ǫ2 = 6/ǫ5 = D large child edges: for each class N(v), N(v) − 1,
. . . , N(v) − 1/ǫ2 + 1, there are at most F such edges.

The tree is split at the lower node of every small and frequent edge, the connected components of the
resulting forest form the classes of the partition. Another way to describe this partition: delete every
small and large edge, make the connected components of the remaining graph the classes of the partition,
and put every deleted edge into the class where its upper node belongs. Clearly, every small and frequent
edge becomes a leaf edge in its subtree, thus if every node has at most D large child edges in the tree,
then in every subtree each node has at most D non-leaf child edges.

Color each subtree with the algorithm of Theorem 5.4.14. This step can be done in 2O(D2/ǫ·log2(D/ǫ)) ·
n = 2O(36/ǫ10·1/ǫ·log2(6/ǫ6)) · n = 2O(1/ǫ11·log2(1/ǫ)) · n time. Each coloring is a (1 + ǫ)-approximate coloring
of the given subtree, thus merging these colorings yields a (not necessarily proper) coloring Ψ1 of T such
that fΨ1(T ) ≤ (1 + ǫ)OPT (T, x). In the rest of the proof, we transform Ψ1 into a proper coloring in such
a way that the sum of the coloring does not increase too much.

Phase 3: Small Edges. Consider the (ǫ, ℓ)-augmentation of the coloring Ψ1 with ℓ := 6. This results
in a coloring Ψ2 such that fΨ2(G) ≤ (1 + ǫℓ)fΨ1(G) (see Section 5.4.4). First we modify Ψ2 in such
a way that the small edges use only the extra zones Z1 and Z2. More precisely, if a small edge e has
parity r ∈ {1, 2}, then e is recolored using the colors in Zr (recall that the parity of the edge is the parity
of its upper node). Since the extra zones contain only a very small fraction of the color spectrum, the
recoloring can significantly increase the finish time of the small edges, but not more than by a factor of 2/ǫ
(Lemma 5.4.12b). However, we show that the total demand of the small edges at v is so small compared
to the largest demand on the child edges of v, that their total finish time will be negligible, even after this
large increase. By definition, the largest child edge of v has demand qN(v).

Let Sv be the set of those small edges whose upper node is v. Let r be the parity of v. Color the edges
in Sv one after the other, in the order of increasing demand size, using only the colors in Zr. Call the
resulting coloring Ψ3. We claim that fΨ3(Sv) ≤ ǫqN(v) for every node v, thus transforming Ψ2 into Ψ3

increases the total sum by at most
∑

v∈T fΨ3(Sv) ≤ ǫ
∑
v∈T qN(v) ≤ ǫfΨ2(T ) and fΨ3(T ) ≤ (1 + ǫ)fΨ2(T )

follows. To give an upper bound on fΨ3(Sv), we assume the worst case, that is, n(v, i) = F for every
i ≤ N(v) − 1/ǫ2. Imagine first that the small edges are colored using the full color spectrum, not only
with the colors of zone Zr. Assume that the small edges are colored in the order of increasing demand
size, and consider a class k edge e. In the coloring, only edges of class not greater than k are colored
before e. Hence the finish time of e is at most

k∑

i=0

n(v, i)qi ≤ F
k∑

i=0

(1 + ǫ)i ≤ 6(1 + ǫ)/ǫ4 · (1 + ǫ)k

≤ 14/ǫ4 ·
1

2
(1 + ǫ)k ≤ 14/ǫ4 · ⌊(1 + ǫ)k⌋ = 14/ǫ4 · qk.

That is, the finish time of an edge is at most 14/ǫ4 times its demand (in the second inequality, we used∑k
i=0(1 + ǫ)i = ((1 + ǫ)k+1 − 1)/ǫ < (1 + ǫ)k+1/ǫ). Therefore the total finish time of the small edges is at

most 14/ǫ4 times the total demand, which is

14

ǫ4

N(v)−1/ǫ2∑

i=0

n(v, i)qi ≤
84

ǫ7

N(v)−1/ǫ2∑

i=0

(1 + ǫ)i

≤
85

ǫ8
(1 + ǫ)N(v)−1/ǫ2 ≤

85

ǫ8
· 2−1/ǫ · (1 + ǫ)N(v)

≤
ǫ2

2
·

1

2
(1 + ǫ)N(v) ≤

ǫ2

2
· ⌊(1 + ǫ)N(v)⌋ =

ǫ2

2
· qN(v).
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(In the third inequality we use (1 + ǫ)1/ǫ ≥ 2, in the fourth inequality it is assumed that ǫ is sufficiently
small that 21/ǫ ≥ 4 · 85/ǫ10 holds.) However, the small edges do not use the full color spectrum, only the
colors in zone Zr. By Lemma 5.4.12b, zone Zr contains at least c colors up to 2/ǫ · c, thus every finish
time in the calculation above should be multiplied by at most 2/ǫ. Therefore the sum of the small edges
is at most

fΨ3(Sv) ≤ 2/ǫ ·
ǫ2

2
· qN(v) ≤ ǫqN(v),

as claimed.

Phase 4: Shifting the Frequent Edges. Now we have a coloring Ψ3 that is still not a proper coloring,
but conflicts appear only between some frequent edges and their child edges. In Phases 4 and 5 we ensure
that every frequent edge e uses only colors greater than 2x(e)/ǫ from the main zone. In Phase 6, the
conflicts are resolved using a set of so far unused colors, the colors in extra zones Z5 and Z6.

Let Fv be the set of frequent child edges of v, and let Λv =
⋃
e∈Fv

Ψ3(e) be the colors used by the
frequent child edges of node v. We recolor the edges in Fv using only the colors in Λv and some colors
from zones Z3 and Z4. Let e1, e2, . . . , e|Fv| be an ordering of the edges in Fv by increasing demand size.
Recall that the algorithm in Theorem 5.4.14 assigned the colors to the leaf edges in increasing order of
demand size, thus it can be assumed that frequent edge e1 uses the first x(e1) colors in Λv, edge e2 uses
the x(e2) colors after that, etc. Denote by t(c) = |{e ∈ Fv : fΨ3(e) ≥ c}| the number of edges whose finish
time is at least c, and denote by t(c, i) = |{e ∈ Fv : fΨ3(e) ≥ c, class(e) = i}| the number of class i edges
among them. Clearly, t(c) =

∑∞
i=0 t(c, i) holds. Moreover, it can be easily verified that the total finish

time of the edges in Fv can be expressed as fΨ3(Fv) =
∑∞

c=1 t(c).
The first step is to produce a coloring Ψ4 where every frequent edge e has only (1−2ǫ/5)x(e) colors, but

these colors are all greater than 2x(e)/ǫ. The demand function is split into two parts: x(e) = x1(e)+x2(e),
where x1(e) is (1− 2ǫ/5)x(e) and x2(e) is 2ǫx(e)/5, but rounding has to be done carefully. What we want
to achieve is that

k∑

j=1

x2(ej) ≤
2ǫ

5

k∑

j=1

x(ej) (5.10)

holds for every 1 ≤ k ≤ |Fv|, and the total demand of the class i edges in x1 is at most

∑

e∈Fv , class(e)=i

x1(e) ≤ ⌈n(e, i)(1 − 2ǫ/5)qi⌉. (5.11)

It can be easily verified that these two requirements hold if x1 is defined as x1(e) = ⌈(1− 2ǫ/5)qi⌉ for the
first m edges of class i, and x1(e) = ⌊(1 − 2ǫ/5)qi⌋ for the rest of the class i edges, where

m = ⌈n(v, i)(1 − 2ǫ/5)qi⌉ − n(v, i) ⌊(1 − 2ǫ/5)qi⌋ .

This phase of the algorithm produces a coloring Ψ4 of Fv that assigns only x1(e) colors to every edge
e ∈ Fv, but satisfies the condition that it uses only the colors in Λv, and every edge e receives only colors
greater than 2x(e)/ǫ. In the next phase we will extend this coloring using the colors in zones Z3 and Z4:
every edge e will receive an additional x2(e) colors.

Coloring Ψ4 is defined as follows. Consider the edges e1, . . . , e|Fv| in this order, and assign to ek the
first x1(ek) colors in Λv greater than 2x(ek)/ǫ and not already assigned to an edge ej (j < k). Notice
the following property of Ψ4: if j < k, then every color in Ψ4(ej) is less than every color in Ψ4(ek).
This follows from 2x(ej)/ǫ ≤ 2x(ek)/ǫ: every color usable for ek is also usable for ej if j < k. Define
t′(c) = |{e ∈ Fv : fΨ4(e) ≥ c}| and t′(c, i) = |{e ∈ Fv : fΨ4(e) ≥ c, class(e) = i}| as before, but now using
the coloring Ψ4. We claim that t′(c, i) ≤ (1 + ǫ)t(c, i) holds for every c ≥ 1, i ≥ 0. If this is true, then
t′(c) ≤ (1 + ǫ)t(c) holds and fΨ4(Fv) ≤ (1 + ǫ)fΨ3(Fv) follows from fΨ4(Fv) =

∑∞
c=1 t

′(c). Summing this
for every node v gives fΨ4(T ) ≤ (1 + ǫ)fΨ3(T ).
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First we show that t′(c, i) ≤ t(c, i) + 2/ǫ. If every class i edge has finish time at least c in Ψ3, then
t(c, i) = n(c, i) ≥ t′(c, i) and we are ready. Therefore there is at least one class i edge that has finish time
less than c in Ψ3. This implies that the frequent edges of class 0, 1, . . . , i − 1 use only colors less than
c. Denote by X the total demand of these edges (in the demand function x(e)), and denote by Y the
number of colors used by the class i edges below c in Ψ3.

Now recall the way Ψ4 was defined, and consider the step when every edge with class less than i is
already colored. At this point at most X colors of Λv are used below c (possibly less, since Ψ4 assigns only
x1(e) colors to every edge e, and only colors above 2x(e)/ǫ). Therefore at least Y colors are still unused
in Λv below c. From these colors at least Y − 2qi/ǫ of them are above 2qi/ǫ. Thus Ψ4 can color at least
(Y − 2qi/ǫ)/qi = Y/qi − 2/ǫ edges of class i using only colors below c. However, Ψ3 uses Y colors below c
for the class i edges, hence it can color at most Y/qi such edges below c, and t′(c, i) ≤ t(c, i) + 2/ǫ follows.

We consider two cases. If t(c, i) ≥ 2/ǫ2, then t′(c, i) ≤ t(c, i) + 2/ǫ ≤ (1 + ǫ)t(c, i), and we are ready.
Let us assume therefore that t(c, i) ≤ 2/ǫ2, it will turn out that in this case t′(c, i) = 0. There are
n(v, i) − t(c, i) ≥ n(v, i) − 2/ǫ2 class i edges that has finish time less than c in Ψ3. Therefore, as in the
previous paragraph, before Ψ4 starts coloring the class i edges, there are at least (n(v, i)−2/ǫ2) ·qi unused
colors less than c in Λv. By (5.11), the total demand of the class i edges in demand function x1(e) is
at most ⌈n(e, i)(1 − 2ǫ/5)qi⌉. The following calculation shows that the unused colors below c in Λv is
sufficient to satisfy all these edges, thus Ψ4 assigns to these edges only colors less than c. We have to skip
the colors not greater than 2qi/ǫ, these colors cannot be assigned to the edges of class i, which means that
the number of usable colors is at least

(n(v, i) − 2/ǫ2) · qi − 2qi/ǫ ≥ (n(v, i) − 12/5ǫ2) · qi + 1

≥ (1 − 2ǫ/5)n(v, i)qi + 1 ≥ ⌈n(e, i)(1 − 2ǫ/5)qi⌉,

since n(v, i) ≥ 6/ǫ3 by the definition of the frequent edges. Therefore Ψ4 assigns to the class i edges only
colors less than c, and t(c, i) = 0 follows.

Phase 5: Full Demand for the Frequent Edges. The next step is to modify Ψ4 such that every
frequent edge receives x(e) colors, not only x1(e). Coloring Ψ5 is obtained from Ψ4 by assigning to every
frequent edge e an additional x2(e) colors from zone Z3 or Z4. More precisely, let v be a node with parity
r, and let e1, . . . , e|Fv| be its frequent child edges, ordered in increasing demand size, as before. Assign to
e1 the first x2(e1) colors from Z2+r, to e2 the first x2(e2) colors from Z2+r not used by e1, etc. It is clear
that no conflict arises with the assignment of these colors.

We claim that these additional colors do not increase the finish time of the frequent edges. Let
x∗i =

∑i
j=1 x1(ej) be the total demand in x1 of the first i frequent edges at v. The finish time of ei

in Ψ4 is clearly at least x∗i , since Ψ4 colors every edge ej with j < i before ei. On the other hand, by
Lemma 5.4.12b, zone Z2+r contains at least ⌊ǫx∗i /2⌋ colors not greater than x∗i . These colors are sufficient
to satisfy the additional demand of the first i edges: by (5.10) the first i edges need a total of at most
2ǫ
5

∑i
j=1 x(e) ≤ ǫx∗i /2 colors.

Phase 6: Resolving the Conflicts. Now we have a coloring Ψ5 such that there are conflicts only
between frequent edges and their child edges. Furthermore, if e is a frequent edge, then Ψ5(e) contains
only colors greater than 2x(e)/ǫ from the main zone. It is clear from the construction of Ψ5 that only the
colors in the main zone can conflict.

Let e be a frequent edge that conflicts with some of its children. Assume that the child edges of e have
parity r. There are at most x(e) colors that are used by both e and a child of e. We resolve this conflict
by recoloring the child edges of e in such a way that they use the first at most x(e) colors in zone Z4+r

instead of the colors in Ψ5(e). It is clear that if this operation is applied for every frequent edge e, then
the resulting color Ψ6 is a proper coloring.
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Notice that if a child edge e′ of e is recolored, then it has finish time at least 2x(e)/ǫ, otherwise it
does not conflict with e. On the other hand, by Lemma 5.4.12b, zone Z4+r contains at least x(e) colors
up to 2x(e)/ǫ, thus the recoloring does not add colors above that. Therefore the finish time of e′ is not
increased.

Analysis. The sum of the coloring Ψ6 can be bounded as follows (assuming that ǫ is sufficiently small):

fΨ6(T ) = fΨ5(T ) = fΨ4(T ) ≤ (1 + ǫ)fΨ3(T )

≤ (1 + ǫ)2fΨ2(T ) ≤ (1 + (ℓ+ 1)ǫ)(1 + ǫ)2fΨ1(T )

≤ (1 + (ℓ+ 1)ǫ)(1 + ǫ)3OPT(T, x) ≤ (1 + (ℓ+ 1)ǫ)(1 + ǫ)4OPT(T, x0)

≤ (1 + 7ǫ)(1 + 8ǫ)OPT(T, x0) ≤ (1 + 32ǫ)OPT(T, x0)

= (1 + ǫ0)OPT(T, x0)

Therefore Ψ6 is a (1 + ǫ0)-approximate solution to the minimum sum edge multicoloring instance (T, x0).
The running time of the algorithm is dominated by the coloring of the low-degree components with the

algorithm of Theorem 5.4.14. This phase requires 2O(36/ǫ10·1/ǫ·log2(6/ǫ6)) · n = 2O(1/ǫ110 log2(1/ǫ0)) · n time.
The other parts of the algorithm can be done in time linear in the size of the input. Therefore the total
running time is 2O(1/ǫ110 log2(1/ǫ0)) · n, which completes the proof of Theorem 5.4.15. �



CHAPTER 6

Clique coloring

The worst cliques are those which consist of one man.
George Bernard Shaw (1856–1950)

In clique coloring we have to satisfy weaker requirements than in ordinary vertex coloring. Instead
of requiring that the two end points of each edge have two different colors, we only require that every
inclusionwise maximal (nonextendable) clique contains at least two different colors. It is possible that a
graph is k-clique-colorable, but its chromatic number is greater than k. For example, a clique of size n is
2-clique-colorable, but its chromatic number is n.

Clique coloring can be also thought of as coloring the clique hypergraph. Given a graph G(V,E), the
clique hypergraph C(G) of G is defined on the same vertex set V , and a subset V ′ ⊆ V is a hyperedge
of C(G) if and only if |V ′| > 1 and V ′ induces an inclusionwise maximal clique of G. The study of
the clique hypergraph was initiated by Gallai. Most of the research on the clique hypergraph focuses
on the transversals of C(G), that is, how many vertices are required to meet all the maximal cliques
[EGT92, AF96]. However, it is equally natural to study the colorings of the clique hypergraph. Coloring
a hypergraph means assigning colors to the vertices in such a way that every hyperedge contains at least
two colors. Clearly, a graph G is k-clique-colorable if and only if the hypergraph C(G) is k-colorable. If
the graph G is triangle-free, then the maximal cliques are the edges, hence C(G) is the same as G.

Clique coloring can be very different from ordinary vertex coloring. The most notable difference is that
clique coloring is not a hereditary property: it is possible that a graph is k-clique-colorable, but it has a
subgraph that is not. The reason why this can happen is that deleting vertices can create new inclusionwise
maximal cliques: it is possible that in the original graph a clique is contained in a larger clique, but after
deleting some vertices this clique becomes maximal. Another difference is that a large clique is not an
obstruction for clique colorability, even 2-clique-colorable graphs can contain large cliques. In fact, it
is conjectured that every prefect graph (or perhaps every odd-hole free graph) is 3-clique-colorable (see
[BGG+04]). There are no counterexamples known for this conjecture, but so far only some special cases
have been proved.

In this chapter we prove complexity results for clique coloring and related problems. Clique coloring
is harder than ordinary vertex coloring: it is coNP-complete even to check whether a 2-clique-coloring is
valid [BGG+04]. The complexity of 2-clique-colorability is investigated in [KT02], where they show that
it is NP-hard to decide whether a perfect graph is 2-clique-colorable. However, it is not clear whether this
problem belongs to NP. A valid 2-clique-coloring is not a good certificate, since we cannot verify it in
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Figure 6.1: The graph is 2-clique-colorable, but it does not remain 2-clique-colorable after deleting the
central vertex.

polynomial time: as mentioned above, it is coNP-complete to check whether a 2-clique-coloring is valid.
In Section 6.2 we determine the exact complexity of the problem: we show that it is Σp2-complete to check
whether a graph is 2-clique-colorable.

A graph is k-clique-choosable if whenever a list of k colors are assigned to each vertex (the lists of
the different vertices do not have to be the same), then the graph has a clique coloring where the color
of each vertex is taken from its list. This notion is an adaptation of choosability introduced for graphs
independently by Erdős, Rubin, and Taylor [ERT80] and by Vizing [Viz76]. In [MŠ99] it is shown that
every planar or projective planar graph is 4-clique-choosable. In Section 6.3 we investigate the complexity
of clique-choosability. It turns out that the complexity of clique-choosability lies higher in the polynomial
hierarchy than either clique-coloring or choosability: we show that for every k ≥ 2 it is Πp

3-complete to
decide whether a graph is k-clique-choosable or not.

As mentioned above, a k-clique-colorable graph can contain an induced subgraph that is not k-clique-
colorable. Therefore it is natural to investigate graphs that are hereditary k-clique-colorable: graphs
where every induced subgraph is k-clique-colorable. In Section 6.4 we show that recognizing such graphs
is Πp

3-complete for every k ≥ 3.

The results in this chapter are taken from [Mar04b].

6.1 Preliminaries

In this section we introduce notations and make some preliminary observations about clique colorings.
We also introduce the complexity classes that appear in our completeness results (see also Appendix A.3
for more background on these classes).

A clique is a complete subgraph of at least 2 vertices. A clique is maximal if it cannot be extended
to a larger clique. An edge is flat if it is not contained in any triangle. Since a flat edge is a maximal
clique of size 2, the two end vertices of a flat edge receive different colors in every proper clique coloring.
The core of G is the subgraph containing only the flat edges. Clearly, a proper clique coloring of G is a
proper vertex coloring of the core of G. A vertex v of G is simple if it is not contained in any triangle, or,
equivalently, all the edges incident to it are flat.

Unlike k-vertex-coloring, a k-clique-coloring of the graph G does not necessarily give a proper k-clique-
coloring for the induced subgraphs of G. In fact, it can happen that deleting vertices from G makes it
impossible to k-clique-color it. For example, the 5-wheel shown on Figure 6.1 is 2-clique-colorable, but
after deleting the central vertex, the remaining C5 is not. On the other hand, the following proposition
shows that G remains k-clique-colorable if we delete only simple vertices:
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Proposition 6.1.1. Let S ⊆ V be a set of simple vertices in G(V,E). If ψ is a proper clique coloring of
G, then ψ induces a proper clique coloring of G \ S.

Proof. Consider the coloring ψ′ of G \ S induced by ψ. If ψ′ is not a clique coloring of G, then there is
a monochromatic maximal clique K in G \ S. This is not a maximal clique in G, otherwise ψ would not
be a proper k-clique-coloring. Therefore K is properly contained in a maximal clique K ′ of G. Since K ′

is not a maximal clique of G \ S, it contains at least one vertex v of S. However, K ′ has size at least 3,
contradicting the assumption that vertex v ∈ S is simple. �

The following two propositions will also be useful:

Proposition 6.1.2. Let S ⊆ V be an arbitrary subset of the vertices in G(V,E). If ψ induces a proper
clique coloring of G \ S, and every vertex in S has different color from its neighbors, then ψ is a proper
clique coloring of G.

Proof. If there is a monochromatic maximal clique K in G, then it contains a vertex v from S. However,
vertex v has different color from its neighbors, a contradiction. �

Proposition 6.1.3. Let S ⊆ V be the set of simple vertices in G(V,E). If ψ is a k-clique-coloring of G,
then it induces a proper k-vertex-coloring of G[S], the graph induced by S.

Proof. Observe that every edge in G[S] is a flat edge, they are maximal cliques in G. Therefore ψ assigns
different colors to the end vertices of every edge in G[S], thus it induces a proper k-vertex-coloring of
G[S]. �

The complexity class Σp2 = NPNP contains those problems that can be solved by a polynomial time
nondeterministic Turing machine equipped with an NP-oracle. An oracle can be thought of as a subroutine
that is capable of solving instantaneously a certain problem. More formally, let L be a language. A Turing
machine equipped with an L oracle has a special tape called the oracle tape. Whenever the Turing machine
wishes, it can ask the oracle whether the contents of the oracle tape is a word from L or not (there are
special states for this purpose). Asking the oracle counts as only one step. If the language L is simple,
then this oracle does not help very much. On the other hand, if L is a computationally hard language,
then this oracle can increase the power of the Turing machine. We say that a Turing machine is equipped
with an NP-oracle, if the language L is NP-complete. Note that here it is not really important which
particular NP-complete language is L: any NP-complete language gives the same power to the Turing
machine, up to a polynomial factor. Thus the class Σp2 contains those problems that can be solved in
polynomial time by a polynomial time nondeterministic Turing machine if one NP-complete problem (say,
the satisfiability problem) can be solved in constant time.

Similarly to NP, the class Σp2 has an equivalent characterization using certificates. A problem is in NP
if there is a polynomial-size certificate for each yes-instance, and verifying this certificate is a problem in
P. The characterization of the class Σp2 is similar, but here we require only that verifying the certificate
is in coNP (cf. [Pap94] for more details).

Like SAT, which is the canonical complete problem for NP, the problem QSAT2 is the canonical
Σp2-complete problem:

2-Quantified Satisfiability (QSAT
2
)

Input: An n + m variable boolean 3DNF formula ϕ(x,y) (where x = (x1, . . . , xn), y =
(y1, . . . , ym))

Question: Is there a vector x ∈ {0, 1}n such that for every y ∈ {0, 1}m, ϕ(x,y) is true?
(Shorthand notation: is it true that ∃x∀yϕ(x,y)?)
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A 3DNF (disjunctive normal form) formula is a disjunction of terms, where each term is a conjunction
of 3 literals. To see that QSAT2 is in Σp2, observe that if the answer is yes to the problem, then an
assignment x0 satisfying ∀yϕ(x0,y) is a good certificate. To verify the certificate, we have to check that
∀yϕ(x0,y) holds, or equivalently, we have to check whether there is a y such that ϕ(x0,y) is false. This
verification problem is in coNP, hence QSAT2 is in Σp2. For the proof that QSAT2 is hard for Σp2, see e.g.,
[Pap94].

The complexity class Πp
2 contains those languages whose complements are in Σp2. The class Σp3 contains

the problems solvable by a polynomial time nondeterministic Turing machine equipped with a Σp2 oracle.
The following problem is complete for Σp3:

3-Quantified Satisfiability (QSAT
3
)

Input: An n + m + p variable boolean 3CNF formula ϕ(x,y, z) (x = (x1, . . . , xn), y =
(y1, . . . , ym), z = (z1, . . . , zp))

Question: Is there a vector x ∈ {0, 1}n such that for every y ∈ {0, 1}m, there is a vector
z ∈ {0, 1}p with ϕ(x,y, z) true? (Shorthand notation: is it true that ∃x∀y∃zϕ(x,y, z)?)

Repeating this construction, we obtain the polynomial hierarchy: let Σpi+1 contain those problems
that can be solved by a polynomial time nondeterministic Turing machine equipped with a Σpi -oracle.
The class Πp

i contains those languages whose complement is in Σpi . The definition of these classes might
seem very technical, but as this chapter shows, there are natural problems whose complexities are exactly
characterized by these classes.

6.2 Complexity of clique coloring

In this section we investigate the complexity of the following problem:

k-Clique-Coloring

Input: A graph G(V,E)

Question: Is there a k-clique-coloring c: V → {1, 2, . . . , k} such that in every maximal clique
K of G, there are two vertices u, v ∈ K with c(u) 6= c(v)?

Unlike ordinary vertex coloring, which is easy for two colors, this problem is hard even for k = 2:

Theorem 6.2.1. 2-Clique-Coloring is Σp2-complete.

Proof. To see that k-Clique-Coloring is in Σp2, notice that the problem of verifying whether a coloring is
a proper k-clique-coloring is in coNP: a monochromatic maximal clique is a polynomial time verifiable
certificate that the coloring is not proper. A proper k-clique-coloring is a certificate that the graph is k-
clique-colorable, and this certificate can be verified in polynomial time if an NP-oracle is available. Thus
clearly the problem is in NPNP = Σp2.

We prove that 2-Clique-Coloring is Σp2-complete by a reduction from QSAT2. For a formula ϕ(x,y),
we construct a graph G that is 2-clique-colorable if and only if there is an x ∈ {0, 1}n such that ϕ(x,y)
is true for every y ∈ {0, 1}m. Graph G has 4(n+ m) + 2q vertices, where q is the number of terms in ϕ.
For every variable xi (1 ≤ i ≤ n), the graph contains a path of 4 vertices xi, x

′
i, x

′
i, xi. For every variable

yj (1 ≤ j ≤ m), the graph contains 4 vertices yj , y
′
j , yj , y

′
j . These 4m vertices form a path y1, y′1, y1, y′1,

y2, . . . , ym, y′m. Furthermore, the vertices xi, xi, yj, yj form a clique of size 2(n+m) minus a matching:
there are no edges between xi and xi, and between yj and yj .
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p3 p′3p′2p2p′1p1

y2y2y1y1x3x3x2x2x1x1

y′2y′2y′1y′1x′3x′3x′2x′2x′1x′1

Figure 6.2: The construction for the formula ϕ = (x1 ∧ x2 ∧ y2) ∨ (x1 ∧ x3 ∧ y2) ∨ (x1 ∧ x2 ∧ y1). The
vertices x1, x1, x2, . . . , y2, y2 form a clique minus the five dashed edges. The coloring shown on the figure
is a proper 2-clique-coloring, implying that x1 = 1, x2 = 0, x3 = 1 satisfy ϕ regardless of the values of y1
and y2.

For every term Pℓ (1 ≤ ℓ ≤ q) of the DNF formula ϕ, the graph contains two vertices pℓ and p′ℓ. These
vertices form a path p1, p′1, p2, p′2, . . . , pq, p

′
q of 2q vertices, and vertex p′q is connected to y′m. Vertex

pℓ is connected to those literals that correspond to literals not contradicting Pℓ. That is, if xi (resp. xi)
is in Pℓ, then pℓ and xi (resp. xi) is connected. (It is assumed that at most one of xi and xi appears in
a term.) If neither xi nor xi appears in Pℓ, then pℓ is connected to both xi and xi. Vertices yj and yj
are connected to pℓ in a similar fashion. This completes the description of the graph G. An example is
shown on Figure 6.2. Notice that ϕ(x,y) is true for some variable assignment x, y if and only if there is
a vertex pℓ such that it is connected to all the n+m true literals.

Assume that x ∈ {0, 1}n such that ϕ(x,y) is true for every y ∈ {0, 1}m. We define a 2-clique-coloring
of the graph G based on x. Vertices pℓ (1 ≤ ℓ ≤ q) and y′j , y

′
j (1 ≤ j ≤ m) are colored white. If xi is true

in x, then vertices x′i and xi are colored white, while vertices xi and x′i are black; if xi is false in x, then
vertices x′i and xi are colored black, and vertices xi, x

′
i are white. The remaining vertices are black.

It can be verified that the coloring defined above properly colors every flat edge of the graph. Now
suppose that there is a monochromatic maximal clique K of size greater than two. Since vertices x′i, x

′
i,

y′i, y
′
i, p

′
ℓ are simple vertices, they cannot appear in K. Assume first that K is colored white, then it

contains some of the 2n vertices xi, xi (1 ≤ i ≤ n), and at most one of the vertices pℓ (1 ≤ ℓ ≤ q) (the
vertices yj , yj are black). However, this clique is not maximal: pℓ is connected to at least one of y1 and
y1, therefore K can be extended by one of these two vertices. Now suppose that K is colored black, then
it can contain only vertices of the form xi , xi, yj , yj . Furthermore, for every 1 ≤ i ≤ n, clique K contains
exactly one of xi and xi, and for every 1 ≤ j ≤ m, clique K contains exactly one of yj and yj , otherwise
K is not a maximal clique. Define the vector y such that variable yj is true if and only if vertex yj is
in K. By the assumption on x, the value of ϕ(x,y) is true, therefore there is a term Pℓ that is satisfied
in ϕ(x,y). We claim that K ∪ {pℓ} is a clique, contradicting the maximality of K. To see this, observe
that xi ∈ K if and only if the value of variable xi is true in x. Therefore K contains those vertices that
correspond to true literals in the assignment (x,y). This assignment satisfies term Pℓ, thus these literals
do not contradict Pℓ. By the construction, these vertices are connected to pℓ, and K ∪ {pℓ} is indeed a
clique.

Now assume that G is 2-clique-colored, it can be assumed that p1 is white. Since {pℓ, p′ℓ} and {p′ℓ, pℓ+1}
are maximal cliques, pℓ is white and p′ℓ is black for every 1 ≤ ℓ ≤ q. Because {p′q, y

′
m} is also a maximal

clique, y′m is black. Since {yj, y′j}, {y′j , yj}, {yj , y
′
j}, {y′j , yj+1} are maximal cliques, we have that yj and
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yx

Figure 6.3: The graph D4, which is the Mycielski graph M4 (the Grötzch graph) minus the edge xy.

yj are colored black, y′j and y′j are colored white for every 1 ≤ j ≤ m. Furthermore, {xi, x′i}, {x′i, x
′
i},

{x′i, xi} are also maximal cliques, thus xi and xi have different color.
Define the vector x as variable xi is true if and only if the color of vertex xi is colored black. We show

that ϕ(x,y) is true for every y. To see that ϕ(x,y) is true for the given assignment it is sufficient to see
that there is a 1 ≤ ℓ ≤ q such that vertex pℓ is connected to all true literals. This is obvious, since the
true literals have color black and they form a clique, so this is not a maximal clique. The only way to
increase it is by adding a pℓ. �

We show that the hardness result holds for every k > 2 as well. The proof is by reducing k-clique-
colorability to (k + 1)-clique-colorability. The reduction uses the Mycielski graphs as gadgets.

For every k ≥ 2, the construction of Mycielski gives a triangle-free graph Mk with chromatic number
k. For completeness, we recall the construction here. For k = 2, the graph M2 is a K2. To obtain the
graph Mk+1, take a copy of Mk, let v1, v2, . . . , vn be its vertices. Add n+ 1 new vertices u1, u2, . . . , un, w,
connect ui to the neighbors of vi in Mk, and connect w to every vertex ui. It can be shown that Mk+1

is triangle-free, and χ(Mk+1) = χ(Mk) + 1. Moreover, Mk is edge-critical (see [Lov93, Problem 9.18]):
for every edge e of Mk, the graph Mk \ e is (k − 1)-colorable. Remove an arbitrary edge e = xy of Mk,
denote by Dk the resulting graph (see D4 on Figure 6.3). It follows that in every (k − 1)-coloring if Dk,
the vertices x and y have the same color, otherwise it would be a proper (k − 1)-coloring of Mk.

The following corollary shows that k-Clique-Coloring remains Σp2-complete for every k > 2 (note that
the problem becomes trivial for k = 1).

Corollary 6.2.2. k-Clique-Coloring is Σp2-complete for every k ≥ 2.

Proof. For every k ≥ 2, we give a polynomial time reduction from k-Clique-Coloring to (k + 1)-Clique-
Coloring. By Theorem 6.2.1, 2-Clique-Coloring is Σp2-complete, thus the theorem follows by induction.

Let G be a graph with n vertices v1, v2, . . . , vn. Add n+ 1 vertices u1, u2, . . . , un, w, and connect every
vertex ui with vi. Furthermore, add n copies of the graph Dk+2 such that vertex x of the ith copy is
identified with w, and vertex y is identified with ui. Denote the new vertices added to G by W , observe
that every vertex in W is simple. We claim that the resulting graph G′ is (k + 1)-clique-colorable if and
only if G is k-clique-colorable.

Assume first that there is a (k+ 1)-clique-coloring ψ of G′, we show that it induces a k-clique-coloring
of G. By Prop. 6.1.3, G[W ] is (k+1)-vertex-colored in ψ, thus the construction of the graph Dk+2 implies
that ψ(w) = ψ(u1) = · · · = ψ(un) = α, and none of the vertices v1, v2, . . . , vn has color α. Hence ψ uses
at most k colors on G = G′ \W , and by Prop. 6.1.1, it is a proper k-clique-coloring.

On the other hand, if there is a proper k-clique-coloring of G, then color the vertices u1, . . . , un, w with
color k + 1, and extend this coloring to the copies of the graph Dk+2 in such a way that the coloring is a
proper (k+1)-vertex-coloring on every copy of Dk+2. By Prop. 6.1.2, this results in a proper (k+1)-clique
coloring of G′, since each vertex in W has different color from its neighbors. �
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6.3 Clique choosability

We define the list coloring version of clique coloring. In a k-clique-coloring, the vertices can use only the
colors 1, 2, . . . , k. In the list coloring version, each vertex v has a set L(v) of k admissible colors, the color
of the vertex has to be selected from this set. A list assignment L is a k-list assignment if the size of L(v)
is k for every vertex v. We say that a graph G(V,E) is k-clique-choosable, if for every k-list assignment
L: V → 2N there is a proper clique coloring ψ of G with ψ(v) ∈ L(v).

k-Clique-Choosability

Input: A graph G(V,E)

Question: Is G k-clique-choosable?

Rubin [ERT80] characterized 2-vertex-choosable graphs, which can be turned into a polynomial time
algorithm for the 2-vertex-choosability problem. Therefore 2-vertex-coloring and 2-vertex-choosability
have the same complexity, both can be solved in polynomial time. However, 3-vertex-choosability is harder
than 3-vertex-coloring: the former is Πp

2-complete [Gut96], whereas the latter is “only” NP-complete. The
situation is different in the case of clique coloring: we show that the 2-Clique-Choosability problem is
more difficult than 2-Clique-Coloring, it lies one level higher in the polynomial hierarchy.

Theorem 6.3.1. 2-Clique-Choosability is Πp
3-complete.

Proof. Notice first that deciding whether a graph has a proper clique coloring with the given lists is in
Σp2: a proper coloring is a certificate proving that such a coloring exists, and verifying this certificate
is in coNP. Therefore k-Clique-Choosability is in Πp

3: if the graph is not k-clique-choosable, then an
uncolorable list assignment exists, which is a Σp2 certificate that the graph is not k-clique-choosable.

We prove that the 2-Clique-Choosability problem is Πp
3-complete by reducing QSAT3 to the comple-

ment of 2-Clique-Choosability. That is, for every 3CNF formula ϕ(x,y, z), a graph G is constructed in
such a way that G is not 2-clique-choosable if and only if ∃x∀y∃zϕ(x,y, z) holds.

Before describing the construction of the graph G in detail, we present the outline of the proof. Assume
first that a vector x exists with ∀y∃zϕ(x,y, z), it has to be shown that G is not 2-clique-choosable. Based
on this vector x, we define a 2-list assignment L of G, and claim that G is not clique colorable with this
assignment. If, on the contrary, such a coloring ψ exists, then a vector y is defined based on this coloring.
By assumption, there is a vector z with ϕ(x,y, z) true. Based on vectors x, y, z, we construct a clique K,
which is monochromatic in ψ, a contradiction. This direction of the proof is summarized in the following
diagram:

A vector
x with

∀y∃zϕ(x,y, z)
⇒

A list
assignment L

for G

⇒
An L-coloring

ψ of G′ ⇒ A vector y ⇒
A vector
z with

ϕ(x,y, z) = 1
⇒

A monochro-
matic clique
K in ψ

The other direction is to prove that if G is not 2-clique-choosable, then ∃x∀y∃zϕ(x,y, z). The outline
of this direction is the following. Given an uncolorable 2-list assignment L, we define a vector x. Assume
indirectly that there is a vector y with ∄zϕ(x,y, z). Based on this vector y, an L-coloring ψ of G is
defined. By assumption, ψ is not a proper clique coloring, thus it contains a monochromatic maximal
clique K. Based on K, a vector z is constructed satisfying ϕ(x,y, z), a contradiction. (The actual proof
is slightly more complicated than this: because of technical reasons, not one vector x, but two vectors
x1,x2 are defined based on the list assignment L). The summary of this direction:

A list
assignment L

for G

⇒ A vector x ⇒
A vector y

with
∄zϕ(x,y, z)

⇒
An L-coloring

ψ of G
⇒

A monochro-
matic clique
K in ψ

⇒
A vector
z with

ϕ(x,y, z) = 1
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Figure 6.4: The structure of graph G in the proof of Theorem 6.3.1 for n = 2, m = 2, p = 2, q = 3.
The sets H1 and H2 almost form a clique, the pairs connected by dashed lines are not neighbors. For the
sake of clarity, the edges connecting the clause vertices c1, c2, c3 to the vertices representing the literals
are omitted.

Now we define graph G. For every variable xi (1 ≤ i ≤ n), the graph G contains two cycles of 4
vertices: xi,1, x′i,1, xi,1, x′′i,1 and xi,2, x′i,2, xi,2, x′′i,2 (see Figure 6.4). For every variable yj (1 ≤ j ≤ m),
there are two paths of 4 vertices: yj,1, y′j,1, y′j,1, yj,1 and yj,2, y′j,2, y′j,2, yj,2. For every variable zk
(1 ≤ k ≤ p), there are 4 vertices zk, z′k, zk, z′k, these 4p vertices form a path z1, z′1, z1, z′1, z2, z′2, . . . , zp,
z′p, zp, z

′
p. There is a path of 5 vertices t1, t2, t3, t4, t5, and for every clause Cℓ of ϕ (1 ≤ ℓ ≤ q), there is

a vertex cℓ, which is connected to t3. Vertex t1 is connected to z′p. The edges defined so far are all flat
edges in G, they form the core of G. The following edges appear in cliques greater than 2. Vertex cℓ is
connected to t1, t5, and to every vertex that corresponds to a literal not satisfying clause Cℓ. That is, if
variable xi does not appear in clause Cℓ, then ci is connected to xi,1, xi,1, xi,2, xi,2, and if variable xi
appears in Cℓ (but xi does not), then ci is connected to xi,1, xi,2. Moreover, the 2n+ 2m+ 2p+ 2 vertices
H1 = {xi,1, xi,1, yj,1, yj,1, zk, zk, t1, t5} almost form a clique, the n+m+ p edges xi,1xi,1, yi,1yi,1, zkzk are
missing from the graph. Similarly the 2n + 2m + 2p + 2 vertices H2 = {xi,2, xi,2, yj,2, yj,2, zk, zk, t1, t5}
almost form a clique, the n+m+p edges yi,2yi,2, xi,2xi,2, zkzk are missing from the graph. This completes
the description of the graph G. Notice that every maximal clique of G greater than 2 contains the vertices
t1 and t5, and it contains exactly one of zk and zk.

Assume first that there is an x ∈ {0, 1}n such that ∀y∃zϕ(x,y, z) holds, we show that there is a list
assignment L to the vertices of G such that no proper clique coloring is possible with these lists. We make
the following list assignments:

• If xi is true in x, then set L(xi,1) = {1, 2}, L(x′i,1) = {2, 3}, L(xi,1) = {1, 3}, L(x′i,1) = {1, 2}. This
list assignment forces xi,1 to color 1: giving color 2 to xi,1 would imply that there is color 3 on x′i,1
and there is color 1 on x′i,1, which means that there is no color left for xi,1.

• If xi is true, then set L(xi,2) = {1, 2}, L(x′i,2) = {1, 3}, L(xi,2) = {2, 3}, L(x′i,2) = {1, 2}, forcing
xi,2 to color 2.
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• If xi is false, then set L(xi,1) = {1, 3}, L(x′i,1) = {2, 3}, L(xi,1) = {1, 2}, L(x′i,1) = {1, 2}, forcing
xi,1 to color 1.

• If xi is false, then set L(xi,2) = {2, 3}, L(x′i,2) = {1, 3} L(xi,2) = {1, 2}, L(x′i,2) = {1, 2}, forcing xi,2
to color 2.

Set L(v) = {1, 2} for every other vertex v. We claim that there is no proper clique coloring with these list
assignments.

Assume that, on the contrary, there is a proper clique coloring ψ. Since the edges titi+1 (1 ≤ i ≤ 4)
are flat edges, the vertices t1, t3, t5 have the same color, suppose first that it is color 1. Then every vertex
cℓ has color 2 (edge t3cℓ is a flat edge) and the vertices zk, zk (1 ≤ k ≤ p have color 1 (every edge of the
path from z1 to t1 is a flat edge and the vertices in the path have the list {1, 2}). For every 1 ≤ j ≤ m,
exactly one of yj,1 and yj,1 have color 1, since edges yj,1y

′
j,1, y

′
j,1y

′
j,1, y

′
j,1yj,1 are flat edges. Define the

vector y ∈ {0, 1}m such that variable yj is true if and only if yj,1 has color 1. By assumption, there is a
vector z such that ϕ(x,y, z) holds. Based on x, y, and z, we can define a clique K of G as follows:

• xi,1 ∈ K iff xi is true,

• xi,1 ∈ K iff xi is false,

• yj,1 ∈ K iff yj is true,

• yj,1 ∈ K iff yj is false,

• zk ∈ K iff zk is true,

• zk ∈ K iff zk is false,

• t1, t5 ∈ K.

Notice that every vertex in clique K has color 1: if xi is true (resp. false) then the list assignments force
xi,1 (resp. xi,1) to color 1. Moreover, exactly one of yj,1 and yj,1 have color 1, and the definition of y and
K implies that from these two vertices, the one with color 1 is selected into K. By assumption, ψ is a
proper clique coloring, therefore K is not a maximal clique. It is clear that only a vertex cℓ can extend
K to a larger clique, thus there is a cℓ such that K ∪ {cℓ} is also a clique. However, by the construction,
this means that in ϕ(x,y, z), no variable satisfies clause Cℓ, a contradiction.

If vertices t1, t3, t5 have color 2, then we proceed similarly. Vector y is defined such that yj is true if
and only if yi,2 has color 2. In this case the definition of K is similar, but now K contains the vertices
xi,2, xi,2, yj,2, yj,2 instead of xi,1, xi,1, yj,1, yj,1. Every vertex in K has color 2: the list assignment ensures
that if variable xi is true, then vertex xi,2 has color 2. The other parts of the proof remain the same.

To prove the other direction, we show that if ∃x∀y∃zϕ(x,y, z) does not hold, then there is proper
clique coloring for every list assignment L. The core of G is the disjoint union of trees and even cycles,
hence it is 2-choosable. In particular, the path T = t1, t2, . . . , t5 can be colored with the lists, and every
coloring of T can be extended to an L-coloring of the core of G. If there is a coloring of this path such
that t1 and t5 have different color, then this can be extended to a proper vertex coloring of the core of G.
Moreover, this coloring is also a proper clique coloring of G: every maximal clique greater than 2 contains
both t1 and t5, thus the clique contains at least two different colors. Therefore, if the list assignment is
uncolorable, then it can be assumed that in every coloring of the path T , vertices t1 and t5 receive the
same color. It is easy to verify that this is only possible if all 5 vertices of T have the same list, say {1, 2}.
In this case we give color 1 to the vertices t1, t3, t5, and color 2 to vertices t2, t4. Color the path from z1
to z′p with arbitrary colors. Furthermore, give a color different from 1 to every vertex cℓ.

The rest of the graph is colored as follows. The length 4 cycle formed by the vertices xi,1, x
′
i,1, xi,1, x

′′
i,1

is 2-choosable, thus it can be colored with the given lists. Moreover, it can be verified by a simple case
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analysis that we can choose a coloring that does not assign color 1 to both xi,1 and xi,1. The vertices
xi,2, x

′
i,2, xi,2, x

′′
i,2 are colored similarly. Define the vectors x1,x2 ∈ {0, 1}n such that variable x1

i (resp. x2
i )

is true if and only if vertex xi,1 (resp, xi,2) has color 1.
By assumption, ∃x∀y∃zϕ(x,y, z) does not hold, thus ∀y∃zϕ(x1 ,y, z) and ∀y∃zϕ(x2 ,y, z) are false

in particular. Therefore there are vectors y1,y2 ∈ {0, 1}m such that ∃zϕ(x1,y1, z) does not hold and
∃zϕ(x2,y2, z) does not hold. Based on the vectors y1, y2, we continue the coloring of G. The path yi,1,
y′i,1, y′i,1, yi,1 can be colored with the lists. Moreover, this path has a coloring such that yi,1 does not have

color 1, and it has another coloring where yi,1 does not have color 1. If y1
i is true (resp. false), then color

the path in such a way that yi,1 (resp. yi,1) has a color different from 1. Color the path yi,2, y′i,2, y′i,2, yi,2
analogously. We claim that this coloring is a proper clique coloring. Since the coloring is a proper vertex
coloring of the core of G, it is sufficient to check the maximal cliques greater than 2. Since every such
clique K contains the vertices t1 and t5 having color 1, thus every vertex in K has color 1. This implies
that K does not contain any of the vertices cℓ, since we have assigned colors different from 1 to these
vertices. For every 1 ≤ k ≤ p, clique K contains exactly one of zk and zk. Define the vector z ∈ {0, 1}p

such that variable zk is true if and only if zk ∈ K. Clique K contains exactly one of xi,1, xi,1, xi,2,
xi,2, suppose that it contains xi,1 or xi,1 (the other case is handled analogously). Since K contains only
vertices with color 1, and at most one of xi,1 and xi,1 has color 1, thus xi,1 ∈ K if and only if x1

i is true.
Similarly, K contains exactly one of yi,1 and yi,1, more precisely, yi,1 ∈ K if and only if y1

i is true. To
arrive to a contradiction, we show that ϕ(x1,y1, z) is true. Suppose that clause Cℓ is not satisfied by this
variable assignment. The vertices in K correspond to the true literals in the variable assignment x1,y1, z,
therefore by the construction, cℓ is connected to every vertex in K, contradicting the assumption that K
is a maximal clique. �

The k-Clique-Choosability problem remains Πp
3-complete for every k > 2. The proof is similar to the

proof of Corollary 6.2.2: the case k is reduced to the case k+1 by attaching some special graphs. However,
here we attach complete bipartite graphs instead of Mycielski graphs.

Lemma 6.3.2. There is k-vertex-choosable bipartite graph Bk with a distinguished vertex x that has the
following property: for every color c there is a k-list assignment such that in every list coloring x receives
color c.

Proof. We claim that the complete bipartite graph Bk = Kk,kk−1 is such a graph, with x ∈ V1 being a
vertex of the smaller class V1. To see that Bk is k-vertex-choosable, assume first that L(u) ∩ L(v) 6= ∅
for some u, v ∈ V1. In this case the k vertices in V1 can be colored such that they receive at most k − 1
distinct colors, thus every vertex w ∈ V2 can be given a color from L(w) that is not used by the vertices in
V1. If the lists in V1 are disjoint, then V1 can be colored in kk different ways, every such coloring assigns
a different set of k colors to the vertices in V1. A coloring of V1 can be extended to V2 unless there is a
vertex w ∈ V2 whose list contains exactly the k colors used by V1. Since there are only kk − 1 vertices in
V2, they can exclude at most kk − 1 colorings of V1, thus at least one of the kk different colorings of V1

can be extended to V2.
On the other hand, let V1 = {v1, . . . , vk} and L(vi) = {ci,1, ci,2, . . . , ci,k}. There are kk sets of

the form {c1,i1 , c2,i2 , . . . , ck,ik} with 1 ≤ i1, i2, . . . , ik ≤ k. Assign these sets, with the exception of
{c1,1, c2,1, . . . , ck,1}, to the vertices in V2. It is easy to see that with these list assignments, every coloring
gives color ci,1 to vertex vi. Therefore x = v1 and c = c1,1 satisfies the requirements. �

Corollary 6.3.3. For every k ≥ 2, k-Clique-Choosability is Πp
3-complete.

Proof. For every k ≥ 2, we give a polynomial time reduction from k-Clique-Choosability to (k + 1)-
Clique-Choosability. By Theorem 6.3.1, 2-Clique-Choosability is Πp

3-complete, thus the theorem follows
by induction.

Let G(V,E) be a graph with n vertices v1, v2, . . . , vn. Add n disjoint copies of the graph Bk+1

(Lemma 6.3.2) such that vertex xi, which is the distinguished vertex x of the ith copy, is connected
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to vi. Denote by W the new vertices added to G, observe that every vertex in W is simple (Bk+1 is
bipartite, thus it does not contain triangles). We claim that the resulting graph G′(V ∪W,E′) is (k + 1)-
clique-choosable if and only if G is k-clique-choosable.

Assume first that G′ is (k + 1)-clique-choosable, we show that G is k-clique-choosable. Let L be an
arbitrary k-assignment of G. Let c be a color not appearing in L. Define the (k + 1)-assignment L′ as
L′(v) = L(v)∪{c} for every v ∈ V , and extend L′ to W (i.e., to the copies of Bk+1) in such a way that in
every list coloring of G′, the vertices xi receive the color c. By assumption, G′ has a clique coloring ψ with
the lists L′. By Prop. 6.1.3, ψ is a proper vertex coloring of W , therefore ψ(xi) = c for every 1 ≤ i ≤ n.
Thus ψ(vi) 6= c and ψ(vi) ∈ L(vi) follow, hence ψ induces a list coloring of G. Moreover, by Prop. 6.1.1,
ψ is a proper clique coloring of G, proving this direction of the reduction.

Now assume that G is k-clique-choosable, it has to be shown that G′ is (k + 1)-clique-choosable. Let
L be a k + 1 assignment of V ∪W . Since Bk+1 is (k + 1)-choosable, every copy of Bk+1 can be colored
with these lists, let ψ be this coloring of W . Define the k-assignment L′ of V as L′(vi) = L(vi) \ {ψ(xi)}
if ψ(xi) ∈ L(vi), otherwise let L′(vi) an arbitrary k element subset of L(vi). By assumption, there is a
proper clique coloring of V with the lists L′, extend ψ to V with these assignment of colors. By Prop. 6.1.2,
ψ is also a proper clique coloring of G′. �

6.4 Hereditary clique coloring

Graph G is hereditary k-clique-colorable if every induced subgraph of G is k-clique-colorable. Since clique
coloring is not a hereditary property in general, an induced subgraph of a k-clique-colorable graph G is not
necessarily k-clique-colorable, thus hereditary k-clique-colorability is not the same as k-clique-colorability.
The main result of this section is that we show that Hereditary k-Clique-Coloring is Πp

3-complete for every
k ≥ 3.

Hereditary k-Clique-Coloring

Input: A graph G(V,E)

Question: Is it true that every induced subgraph of G is k-clique-colorable?

The proof follows the same general framework as the proof of Theorem 6.3.1, but selecting an induced
subgraph of G plays here the same role as selecting a list assignment in that proof. To show that
∃x∀y∃zϕ(x,y, z) implies that G is not hereditary 3-clique-colorable, assume that a vector x exists with
∀y∃zϕ(x,y, z). Based on this vector x, we select an induced subgraph G(x) of G. If subgraph G(x) has
a 3-clique-coloring ψ, then a vector y can be defined based on ψ. By assumption, there is a vector z such
that ϕ(x,y, z) is true. We arrive to a contradiction by showing that vectors x,y, z can be used to find a
monochromatic maximal clique K in ψ. The overview of this direction:

A vector
x with

∀y∃zϕ(x,y, z)
⇒

A subgraph
G(x) of G

⇒
An arbitrary

coloring
ψ of G(x)

⇒ A vector y ⇒
A vector
z with

ϕ(x,y, z) = 1
⇒

A monochro-
matic clique
K in ψ

The proof of the reverse direction is much more delicate. We have to show that if there is an induced
subgraph G′ of G that is not 3-clique-colorable, then ∃x∀y∃zϕ(x,y, z) holds. If G′ is a subgraph G(x)
for some vector x (as defined by the first direction of the proof), then we proceed as follows. Assume that
∃x∀y∃zϕ(x,y, z) does not hold, then there is vector y with ∄zϕ(x,y, z). Based on this vector y, one can
define a 3-coloring ψ of G′. By assumption, G′ is not 3-clique-colorable, thus ψ contains a monochromatic
maximal clique K. Now we can a find a vector z satisfying ϕ(x,y, z), a contradiction.
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A subgraph
G′ of G

⇒ A vector x ⇒
A vector y

with
∄zϕ(x,y, z)

⇒ A coloring ψ
of G′

⇒
A monochro-
matic clique
K in ψ

⇒
A vector
z with

ϕ(x,y, z) = 1

However, it might be possible that the uncolorable subgraphG′ does not correspond to a subgraphG(x)
for any vector x. In this case the above proof does not work, we cannot define x based on the subgraph.
In order to avoid this problem, we implement a delicate “self-destruct” mechanism, which ensures that
every such nonstandard subgraph can be easily 3-clique-colored. This will be done the following way.
We start with a graph G0, and G is obtained by attaching several gadgets to G0. Graph G0 is easy to
color, but a coloring of G0 can be extended to the gadgets only if the coloring of G0 satisfies certain
requirements (some pairs of vertices have the same color, some pairs have different colors). However, if G′

is a nonstandard subgraph of G (e.g., a vertex is missing from G′ that cannot be missing in any subgraph
G(x)), then the gadgets are “turned off,” and every coloring of G0 can be extended easily to G′. The
important thing is that a single missing vertex will turn off every gadget. We define these gadgets in the
following two lemmas.

Lemma 6.4.1. There is a graph Z1 (called the γ-copier), with distinguished vertices α, β, γ, satisfying
the following properties:

1. Z1 is triangle free.

2. In every 3-vertex-coloring of Z1, vertices α and β receive the same color.

3. Z1 can be 3-vertex-colored such that α, β, γ receive the same color, and it can be 3-vertex-colored
such that α and γ receive different colors.

4. In Z1 \ γ, every assignment of colors to α and β can be extended to a proper 3-vertex-coloring.

5. Vertices α, β, γ form an independent set in Z1.

Proof. The graph Z ′
1 shown on Figure 6.5a is not triangle free, but it can be proved by inspection that

Z ′
1 satisfies properties 2–5. The graph Z1 is created from Z ′

1 as follows. Every edge e = uv is replaced
by a new vertex e that is connected to u. Furthermore, a copy of D4 (see Figure 6.3) is added to the
graph such that the distinguished vertices x and y are identified with vertices e and v. It is clear that
every 3-coloring of Z1 induces a coloring of Z ′

1: vertices u and v have different colors, since vertices e and
v have the same color in every 3-coloring of Z1 (because of the properties of the graph D4) and e, u are
neighbors. Moreover, every 3-coloring of Z ′

1 can be extended to a coloring of Z1. Therefore properties 2–5
hold for Z1 as well. �

Thus the γ-copier ensures that α and β have the same color, but deleting γ turns off the gadget. The
gadget defined by the following lemma is similar, but γ is replaced by several vertices, deleting any of
them turns off the gadget.

Lemma 6.4.2. For every n ≥ 1, there is a graph Zn (called an n-copier), with distinguished vertices
α, β, γ1, γ2, . . . , γn, satisfying the following properties:

1. Zn is triangle free.

2. In every 3-vertex-coloring of Zn, vertices α and β receive the same colors.

3. Every coloring of the vertices α, β, γ1, γ2, . . . , γn can be extended to a 3-vertex-coloring of Zn, if α
and β have the same color.

4. In Zn\γi (1 ≤ i ≤ n), every assignment of colors to α, β, γ1, γ2, . . . , γi−1, γi+1, . . . , γn can be extended
to a proper 3-vertex-coloring.

5. Vertices α, β, γ1, γ2, . . . , γn form an independent set in Zn.
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Z1Z ′
1

(a) (b)

γ

γ

β βα α

Figure 6.5: The γ-copier Z1. Figure (a) shows the graph Z ′
1 that served as base for constructing Z1. On

Figure (b), every shaded ellipse is a copy of D4.

γ1 γ2 γ3 γ4 γ5

α = v1

v2 v3 v4 v5

β = v6

Figure 6.6: The n-copier Zn. Every shaded ellipse is a copy of the γ-copier.

Proof. Graph Zn is created by concatenating n copies of the graph Z1 (see Lemma 6.4.1). Take n + 1
vertices v1, v2, . . . , vn+1 and add n copies of Z1 such that vertex α of the ith copy is identified with vertex
vi, and vertex β is identified with vertex vi+1 (see Figure 6.6). Let α = v1, β = vn+1, and let γi be vertex
γ of the ith copy.

It is clear that Zn is triangle free. Property 2 holds, since by Property 2 of Lemma 6.4.1, vertices vi
and vi+1 have the same color for 1 ≤ i ≤ n. To see that Property 3 holds, observe that the coloring can be
extended on every copy of Z1 to a 3-vertex-coloring such that the vertices vi (1 ≤ i ≤ n+1) have the same
color. Property 4 follows from Property 3 if the same color is assigned to α and β. Otherwise assign the
same color to v1 = α, v2, . . . , vi, and the same color to vi+1, . . . , vn+1 = β. This coloring can be extended
to a 3-vertex-coloring on every copy of Z1: for every copy but the ith, the distinguished vertices α and
β have the same color, thus there is such a coloring by Property 3 of Lemma 6.4.1. On the other hand,
for the ith copy, the distinguished vertex γi is missing, thus there is such an extension by Property 4 of
Lemma 6.4.1. �

The n-edge is obtained from the n-copier by renaming vertex β to β′, and connecting a new vertex β
to β′. It has the same properties as the n-copier, except that in Property 2 and 3 of Lemma 6.4.2, vertices
α and β must have different colors.

Now we are ready to prove the main result of the section:

Theorem 6.4.3. Hereditary 3-Clique-Coloring is Πp
3-complete.

Proof. The problem is in Πp
3: if G is not hereditary 3-clique-colorable, then it has an induced subgraph G′

that is not 3-clique-colorable, which can serve as a certificate proving that G is not hereditary 3-clique-
colorable. Checking 3-clique-colorability is in Σp2, thus verifying this certificate is in Σp2, implying that the
problem is in Πp

3.
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The Πp
3-completeness of the problem is proved by reducing the Σp3-complete problem QSAT3 to the

complement of Hereditary 3-Clique-Choosability. That is, for every 3CNF formula ϕ(x,y, z), a graph G
is constructed in such a way that G is not hereditary 3-clique-colorable if and only if ∃x∀y∃zϕ(x,y, z)
holds.

The graph G(V,E) consists of a graph G0(V0, E0) and some added n-copiers and n-edges. G0 contains

• 5 vertices xi, x
′
i, xi, x

′
i, x

∗
i for every variable xi (1 ≤ i ≤ n),

• 2 vertices yj, yj for every variable yj (1 ≤ j ≤ m),

• 2 vertices zk, zk for every variable zk (1 ≤ k ≤ p),

• a vertex cℓ for every clause Cℓ (1 ≤ ℓ ≤ q),

• 2n vertices ti, t
′
i (1 ≤ i ≤ n),

• 3 vertices f1, f2, f3.

Graph G0 has the following edges. The 4n + 2m + 2p + 1 vertices xi, xi, yj , yj , zk, zk, ti, t
′
i, f1

(1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ p) almost form a clique, except that the edges xixi, yjyj , zkzk are
missing. For every 1 ≤ i ≤ n, the 3 vertices xi, x

′
i, x

∗
i , and the 3 vertices xi, x

′
i, x

∗
i form a triangle. Every

vertex cℓ is connected to those vertices that correspond to literals not satisfying clause Cℓ. Furthermore,
vertex cℓ is also connected to vertices f1, ti, t

′
i (1 ≤ i ≤ n).

To obtain the graph G, several n-copiers and n-edges are added to G0. Let S contain every vertex
defined above, except xi and xi (1 ≤ i ≤ n), thus S has size 5n+ 2m+ 2p+ q + 3. Adding an S-copier
between a and b means the following: let S′ = S \ {a, b}, we add an |S′|-copier to the graph such that
distinguished vertices α, β are identified with a, b, and the vertices γ1, . . . , γ|S′| are identified with the
vertices in S′ (in any order). Adding an S-edge is defined similarly. Adding an xi-copier between a and
b means that we add a γ-copier to the graph, and identify α, β with a, b, and identify γ with xi. The
description of G is completed by adding an

• S-edge between f1 and f2, between f2 and f3, between f1 and f3,

• S-copier between f1 and xi (1 ≤ i ≤ n),

• S-copier between f1 and xi (1 ≤ i ≤ n),

• S-edge between f3 and x′i (1 ≤ i ≤ n),

• S-edge between f3 and x′i (1 ≤ i ≤ n),

• S-copier between x′i and t′i (1 ≤ i ≤ n),

• S-copier between x′i and t′i (1 ≤ i ≤ n),

• S-copier between f2 and x∗i (1 ≤ i ≤ n),

• xi-copier between f1 and ti (1 ≤ i ≤ n),

• xi-copier between f1 and ti (1 ≤ i ≤ n),

• S-edge between f3 and yj (1 ≤ j ≤ m),

• S-edge between f3 and yj (1 ≤ j ≤ m),

• S-edge between yj and yj (1 ≤ j ≤ m),
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Figure 6.7: Sketch of the construction used in the proof of Theorem 6.4.3. The vertices f1, f2, f3 are
shown multiple times, e.g., every appearance of the white vertex 1 is identical to f1. The two dotted edges
between f1 and t1 represent the x1-copier and the x1-copier. In the rounded box, every vertex is connected
to every other vertex, except the pairs xixi, yjyj , and zkzk. Depending on the formula ϕ, vertex cℓ is
connected to some vertices representing literals.

• S-copier between f1 and zk (1 ≤ k ≤ p),

• S-copier between f1 and zk (1 ≤ k ≤ p),

• S-copier between f3 and cℓ (1 ≤ ℓ ≤ q).

The graph G for n = m = p = 2, q = 3 is shown on Figure 6.7. It can be verified that the maximal
cliques of G can be divided into the following three types:

1. The flat edges of G.

2. The xi-triangles xi, x
∗
i , x

′
i, and the xi-triangles xi, x

∗
i , x

′
i.

3. The assignment cliques that contain the vertices f1, ti, t
′
i (1 ≤ i ≤ n). Besides these vertices, an

assignment clique contains exactly one of xi and xi, exactly one of yj , yj , exactly one of zk, zk, and
at most one cℓ (1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ p, 1 ≤ ℓ ≤ q).

First we show that if there is an x ∈ {0, 1}n such that ∀y∃zϕ(x,y, z), then there is an induced subgraph
G(x) of G that is not 3-clique-colorable. To obtain G(x), delete vertex xi from G iff variable xi is true in
x, and delete vertex xi from G iff variable xi is false. Recall that xi and xi are not in S.

Assume that there is a 3-clique-coloring ψ of G(x). Since every vertex of S is present in G(x), the S-
edge between f1 and f2 ensures that ψ(f1) 6= ψ(f2), thus it can be assumed that ψ(f1) = 1 and ψ(f2) = 2.
Because of the S-edge between f1 and f3, and between f2 and f3, we also have that ψ(f3) = 3. We claim
that xi, xi (if they are present in G(x)), ti, t

′
i, zk, zk all have color 1. Assume that xi is in G(x) (the

argument is similar, if xi is in G(x), and xi is not). Vertex xi has color 1 because of the S-copier between
f1 and xi. There is an S-copier between f2 and x∗i , thus ψ(x∗i ) = 2. Since xi ∈ G(x), the xi-copier
between f1 and ti ensures that ψ(ti) = 1. If xi is in G(x), then xi is not in G(x) and the edge x∗i x

′
i is

a maximal clique, thus ψ(x′i) 6= ψ(x∗i ) = 2. Moreover, because of the S-edge between x′i and f3, we have
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ψ(x′i) 6= 3, implying ψ(x′i) = 1. Since there is an S-copier between x′i and t′i, hence ψ(t′i) = 1. Finally, the
S-copier between f1 and zk, and between f1 and zk implies that ψ(zk) = ψ(zk) = 1.

The S-edge between f3 and yj , and between f3 and yj ensure that yj and yj have color 1 or 2.
Furthermore, because of the S-edge between yj and yj , one of them has color 1, and the other has color 2.
Define the vector y ∈ {0, 1}m such that variable yj is true if and only if ψ(yj) = 1. By assumption, there
is a vector z ∈ {0, 1}p such that ϕ(x,y, z) is true. Let K contain all the vertices of G(x) that corresponds
to true literals in x,y, z. Moreover, add to K the vertices f1, ti, t

′
i (1 ≤ i ≤ n). Clearly, K is a clique.

Furthermore, because of the way K was constructed, every vertex in K has color 1. We claim that K is a
monochromatic maximal clique, contradicting the assumption that ψ is a proper 3-clique-coloring of G(x).
It is easy to see that only a vertex cℓ corresponding to a clause might extend K to larger clique. However,
in this case the assignment x, y, z does not satisfy ϕ since clause Cℓ is not satisfied: otherwise there is
a vertex in K that corresponds to a literal satisfying Cℓ, and by the construction cℓ is not connected to
this vertex.

To prove the other direction of the reduction, assume that there is an induced subgraph G′ of G
that is not 3-clique-colorable, we have to show that ∃x∀y∃zϕ(x,y, z) holds. By Prop. 6.1.1, it can be
assumed that G′ contains all the simple vertices of G: adding simple vertices to G′ does not make it
3-clique-colorable.

Call an induced subgraph of G standard, if for every 1 ≤ i ≤ n, it contains exactly one of xi and xi,
and it contains every other vertex of G (in particular, it contains every vertex of S). First we show that
every nonstandard subgraph of G is 3-clique-colorable, thus G′ must be standard. Next we show that if
there is a standard subgraph G′ of G that is not 3-clique-colorable, then there is an x ∈ {0, 1}n satisfying
∀y∃zϕ(x,y, z). These two lemmas complete the proof of this direction of the reduction.

Lemma 6.4.4. If G′ is a nonstandard induced subgraph of G, then G′ is 3-clique-colorable.

Proof. Let G′ be a nonstandard subgraph of G. By Lemma 6.1.1 it can be assumed that G′ contains
every simple vertex of G. Moreover, we show that G′ contains every vertex of S. Assume that a vertex
v ∈ S is missing from G′. The absence of v turns off the S-copiers and the S-edges, which makes the
coloring very easy. However, the xi-copiers might still be working. Let G′

0 be the induced subgraph of G′

containing only those vertices that are in G0. We show that there is a 3-clique-coloring of G′
0 with the

following property: if both f1 and ti are in G′
0 for some 1 ≤ i ≤ n, and at least one of xi, xi is in G′

0, then
f1 and ti have the same color. If this is true, then this coloring can be extended to a 3-clique-coloring of
G′: by Property 4 of Lemma 6.4.2, the coloring can be extended to every S-copier and S-edge, since v ∈ S
is missing from G′. Here we use Prop. 6.1.2: if we extend the coloring of G′

0 such that every gadget is
3-vertex-colored, then it gives a 3-clique-coloring of G. Moreover, the xi-copier and the xi-copier between
f1 and ti can be colored as well, since both xi and xi are missing (Property 4 of Lemma 6.4.1), or f1 and
ti have the same color (Property 3 of Lemma 6.4.1).

To see that such a coloring of G′
0 exists, consider the following assignment of colors:

• Vertices f1, x
′
i, x

′
i, ti, t

′
i have color 1 (1 ≤ i ≤ n).

• Vertices f2, xi, xi, yj , yj , zk, zk have color 2 (1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ p).

• Vertices f3, x
∗
i , cℓ have color 3 (1 ≤ i ≤ n, 1 ≤ ℓ ≤ q).

This is a proper 3-clique-coloring of G′
0 if at least one of T1 = {f1, x′i, x

′
i, ti, t

′
i} and at least one of

T2 = {f2, xi, xi, yj , yj , zk, zk} is present in G′
0, it can be verified that a clique with color 1 can be extended

by a vertex with color 2, and a clique with color 2 can be extended by a vertex with color 1. The two
special cases, when either all of T1 or all of T2 is missing, have to be considered separately. However, these
cases are easy to handle, the details are left to the reader.

Now assume that G′ is a nonstandard subgraph of G and every vertex of S is in G′. Since the graph is
nonstandard, there is an 1 ≤ i0 ≤ n such that either G′ contains both xi0 and xi0 , or G′ contains neither
xi0 nor xi0 . The following coloring of G′

0 can be extended to a proper 3-clique-coloring of G′:
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• Vertices f1, xi, xi, x
′
i, x

′
i, ti, t

′
i have color 1, where 1 ≤ i ≤ n and i 6= i0.

• Vertices yj , yj , zk, zk have color 1 (1 ≤ j ≤ m, 1 ≤ k ≤ p)

• Vertices f2, x∗i have color 2 (1 ≤ i ≤ n).

• Vertices f3, cℓ have color 3 (1 ≤ ℓ ≤ q).

• If both xi0 and xi0 are in G′, then x′i0 , x′i0 , t′i0 have color 2 and xi0 , xi0 , ti0 have color 1.

• If neither xi0 nor xi0 are in G′, then x′i0 , x′i0 , t′i0 have color 1 and ti0 has color 2.

This coloring can be extended to G′ in such a way that the flat edges are properly colored (that is, it can be
extended to the internal vertices of the copier and edge gadgets). Indeed, it can be verified by inspection
that the two distinguished vertices of the S-copiers (resp. S-edges) have the same (resp. different) colors,
respectively. Moreover, for i 6= i0, both f1 and ti have color 1, thus the coloring can be extended to the
xi-copier and xi-copier between f1 and ti. However, if both xi0 and xi0 are missing from G′, then f1
has color 1 and ti0 has color 2. But in this case the absence of xi0 and xi0 ensures that the two copiers
between f1 and ti0 can be colored, regardless of the color of f1 and ti0 (Property 4 of Lemma 6.4.1).

The triangles xi, x
∗
i , x

′
i and xi, x

∗
i , x

′
i contain both color 1 and 2. Therefore only the assignment

cliques can be monochromatic in this coloring. However, every assignment clique contains ti0 and t′i0 , and
these two vertices have different colors. �

Therefore we can assume that G′ is a standard subgraph. We show that based on G′ we can define an
assignment x such that ∀y∃zϕ(x,y, z). The proof is similar to the proof of the first direction.

Lemma 6.4.5. If there is a standard subgraph G′ of G that is not 3-clique-colorable, then there is an
x ∈ {0, 1}n satisfying ∀y∃zϕ(x,y, z).

Proof. Define vector x ∈ {0, 1}n by setting variable xi to true if xi ∈ G′, and to false if xi ∈ G′. We claim
that ∀y∃zϕ(x,y, z). Suppose that, on the contrary, there is a vector y ∈ {0, 1}m such that ϕ(x,y, z) is
false for every z ∈ {0, 1}p.

Consider the following coloring of G′:

• Vertices f1, xi, xi, x
′
i, x

′
i, t

′
i, ti, zk, zk have color 1 (1 ≤ i ≤ n, 1 ≤ k ≤ p).

• Vertices f2, x
∗
i have color 2 (1 ≤ i ≤ n).

• Vertices f3, cℓ have color 3 (1 ≤ ℓ ≤ q).

• If variable yj is true in y, then vertex yj has color 1 and vertex yj has color 2 (1 ≤ j ≤ m).

• If variable yj is false in y, then vertex yj has color 2 and vertex yj has color 1 (1 ≤ j ≤ m).

As in the proof of the previous lemma, this coloring can be extended to the whole G′ in such a way that
every flat edge and every xi-triangle is properly colored. By assumption, this coloring is not a proper
3-clique-coloring, thus there is a monochromatic maximal clique K, which must be an assignment clique.
Since every assignment clique contains f1, therefore every vertex of K has color 1. By the definition of the
coloring, this means that K contains yj if and only if yj is true in y. For every 1 ≤ k ≤ p, an assignment
clique contains exactly one of zk and zk, define the vector z ∈ {0, 1}p by setting variable zk to true if and
only if zk ∈ K. Notice that apart from f1, ti, t

′
i, clique K contains those vertices that correspond to true

literals in the assignment x,y, z.
We claim that ϕ(x,y, z) is true. To see this, assume that clause Cℓ is not satisfied by this assignment.

Vertex cℓ is not in K, since cℓ has color 3. Now clique K contains the vertices f1, ti, t
′
i, and vertices

corresponding literals not satisfying Cℓ, therefore K ∪ {cℓ} is also a clique, contradicting the maximality
of K. �

Putting together these two lemmas completes the proof of the theorem. �
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Hereditary k-clique-coloring is also Πp
3-complete for every k > 3. The proof is analogous to the proof

of Corollary 6.2.2, the same construction can be used to reduce the case of k colors to k + 1 colors.

Corollary 6.4.6. For every k ≥ 3, Hereditary k-Clique-Coloring is Πp
3-complete. �

The complexity of the case k = 2 remains an open question. The problems seems to be very different
if there are only 2-colors. For example, we cannot build the copier and edge gadgets.



CHAPTER 7

Open questions

I am sorry that I have had to leave so many problems unsolved.
I always have to make this apology, but the world

really is rather puzzling and I cannot help it.
Bertrand Russell (1872–1970)

In this chapter we list some open questions related to result discussed in the previous chapters. Re-
solving these questions might be fruitful directions for future work.

1. In Section 2.3 we gave a polynomial time algorithm for list edge multicoloring odd cycles, and
a randomized polynomial time algorithm for even cycles. Find a deterministic polynomial time
algorithm for even cycles as well.

2. Biró, Hujter, and Tuza [BHT92] have shown that precoloring extension is NP-hard for interval
graphs, and in Section 3.3 we have strengthened this result by showing that the problem remains
NP-hard for unit interval graphs. However, [BHT92] proves that precoloring extension is NP-hard
for interval graphs even if every color is used at most twice in the precoloring (2-PrExt). Does the
problem remain NP-hard for unit interval graphs with this restriction?

3. For interval graphs and chordal graphs the 1-PrExt problem is easier then the general precoloring
extension problem: the former is polynomial-time solvable, while the latter is NP-hard. Are there
any other classes of graphs where 1-PrExt is easy? Line graphs of bipartite graphs or line graphs
of planar bipartite graphs might be good candidates.

4. In Section 4.4 we have seen graphs where the chromatic index and the chromatic edge strength are
different. In particular, we have presented a 3-edge-colorable graph with chromatic edge strength 4.
Can we find such a graph that is planar as well?

5. Kovács [Kov04] gave a pseudopolynomial algorithm for the minimum sum multicoloring of paths.
The algorithm is polynomial only if the demands can be bounded by a polynomial of the size of
the path. Is it possible to find an algorithm that runs in polynomial time even if the demands are
exponentially large?



146 CHAPTER 7. OPEN QUESTIONS

6. In Section 5.3 we have shown that minimum sum edge coloring is NP-hard for trees. In Section 5.4
we presented a PTAS for the problem. First we gave a PTAS for bounded degree trees, the PTAS
for general trees uses the algorithm for bounded degree trees as a subroutine. But we haven’t shown
that the problem is NP-hard, so it might be possible that there is a polynomial-time algorithm for
bounded degree trees. What is the complexity of minimum sum edge multicoloring for bounded
degree trees?

7. In Section 6.4 we have shown that Hereditary k-Clique-Coloring is Πp
3-complete for every k ≥ 3. But

what is the complexity of the case k = 2? It seems that in the case of two colors, the combinatorics
of the problem is very different. Thus it might happen that the problem is easier in this case, and
it is not Πp

3-complete.
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Conclusions

In this dissertation we have considered several different coloring problems. The study of these problems is
important, since they appear in many applications. Our goal was to better explore the borderline between
the polynomial-time solvable and NP-hard cases of these problems. We achieved this goal by presenting
algorithms and proving complexity results.

Tighter complexity results were obtained for the list edge coloring problem. List edge coloring is
polynomial-time solvable for trees, but it turned out that the problem becomes NP-hard for partial 2-
trees. This result is somewhat surprising, since usually we expect that the algorithms for trees can be
generalized for partial k-trees.

Algorithms were presented for list edge multicoloring on graphs with few cycles. These algorithms can
be used to schedule file transfers or other biprocessor tasks. The vertices represent the processors, the
edges represent the tasks, and the colors correspond to the available time slots. The tasks have to be
scheduled in such a way that a processor can work on only one task at the same time (as discussed in
Section 2.3.3, the results can be generalized to the case where a processor can participate in at most f tasks
simultaneously). Previous algorithms for list edge multicoloring worked only on acyclic graphs, therefore
the new algorithms allow us to solve the problem for more general networks. We also discussed a worker-
assignment application that can be modeled by list multicoloring. The problem of assigning workers to
one-day and two-day jobs can be reduced to the list edge multicoloring of a tree. Furthermore, we can
consider additional constraints such as a worker cannot be assigned to one-day jobs on two consecutive
days. If we want to handle these constraints, then it is no longer possible to reduce the problem to the
list edge multicoloring of a tree, we have to solve the list edge multicoloring problem in a graph that has
cycles. If there are only a few of these additional constraints, then the problem can be efficiently solved
with the algorithm of Theorem 2.3.10. Thus the new results on list edge multicoloring increase the range
of problems that can be efficiently solved.

In Chapter 3 we answered two open questions of Hujter and Tuza [HT96] on precoloring extension.
First, we have shown that 1-PrExt is polynomial-time solvable for chordal graphs. In Section 3.1.5 we
have discussed an application of this result to the configuration of WDM optical networks. In WDM
networks we have to assign wavelengths to the connections in such a way that if two connections use the
same optical equipment, then they have to receive different wavelengths. We have investigated a version
of the problem on tree networks. It turned out that the problem can be formulated as the coloring of a
chordal graph. Using the algorithm developed for precoloring extension, we can solve the more general
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problem where the connections going through one of the switches are already configured, and we have to
extend this configuration to the whole network.

Answering an open question of Biró, Hujter, and Tuza, we have shown that precoloring extension
remains NP-hard for unit interval graphs. The first step of proving this result was to show the NP-
completeness of an Eulerian disjoint paths problem, which answered an open question of Vygen [Vyg94].

Complexity results were given for several cases of minimum sum edge coloring. These results nicely
complement the positive results. In particular, we know that the problem is polynomial-time solvable for
trees, but NP-hard for partial 2-trees; for planar graphs the problem is NP-hard, but admits a PTAS; and
for bipartite graphs there are constant-factor approximation algorithms, but the problem is APX-hard.
The complexity of chromatic strength and chromatic edge strength was also investigated, it turned out
that the less-known complexity class Θp

2 appears naturally in the study of these concepts.
The multicoloring version of minimum sum coloring is motivated by applications in scheduling. It

can be used to minimize the average completion time of interfering jobs. The vertices correspond to the
jobs, two jobs are connected if they cannot be performed at the same time. The colors correspond to the
available time slots, the demand of each vertex is the number of time slots required by the corresponding
job. Assigning color sets to the vertices is equivalent to finding a scheduling of the jobs. By minimizing the
sum of the largest color at each vertex we minimize the average completion time of the jobs. Minimizing
the average completion time is an important goal if the jobs belong to separate users: the users want their
jobs to be finished quickly, and they are not interested in the length of the schedule.

We answer an open question of Halldórsson et al. [HKP+03] by showing that minimum sum multicol-
oring is NP-hard for binary trees. In the edge coloring case we show that minimum sum edge multicoloring
is NP-hard for trees, but admits a polynomial-time approximation scheme. For minimum sum edge multi-
coloring, there were only constant-factor approximation algorithms known in the literature, this is the first
time that an approximation scheme is obtained for the problem. The approximation scheme is extended
for planar graphs and partial k-trees in [Mar04f]. As noted above, edge multicoloring models biprocessor
task scheduling (file transfers, mutual diagnostic testing, etc.) if the goal is to minimize the average com-
pletion time of the tasks. The approximation schemes give good approximate solutions for these problems
if the network is tree-like or planar. These graph classes are very important, as they often appear in
practical applications.

The clique coloring problem was known to be NP-hard, we have determined the exact complexity of the
problem by showing that the problem is in fact Σp2-complete. The choosability and hereditary versions of
the problem are also considered, we have shown that these problems lie higher in the polynomial hierarchy:
they are Πp

3-complete.



APPENDIX A

Technical background

appendix: /�hpend*ks/ appendices /�hpend*si:z/ or appendixes.
Your appendix is a small closed tube inside

your body which is attached to your digestive system.
It has no particular function.

COLLINS COBUILD Learner’s Dictionary, 1996

In this appendix we review some of the most important notions and concepts that are used throughout
this work.

A.1 Treewidth

The notion of treewidth was introduced by Robertson and Seymour in their long series of papers on graph
minors [RS86]. Treewidth turned out to be a very powerful tool for designing algorithms and proving
structural results on graphs. For a detailed treatment of treewidth and related concepts, the reader is
referred to [Bod93, Bod98]. Here we summarize the most important facts about treewidth, and give some
background on its importance to motivate the study of bounded treewidth graphs.

Treewidth can be defined in three equivalent ways. None of the definitions seem overwhelmingly
natural, but the applications show that it is indeed an important concept worth studying.

Definition 1: Tree decomposition. Let G(V,E) be an undirected graph. A tree decomposition of G
is a tree T (U,F ) together with a set Sx ⊆ V for each node x ∈ U such that

1.
⋃
x∈U Sx = V ,

2. if v, w ∈ V are neighbors in G, then there is an x ∈ U with v, w ∈ Sx, and

3. for each x, y, z ∈ U , if y is on the unique path connecting x and z in T , then Sx ∩ Sz ⊆ Sy.

For the sake of clarity, it is customary to call V the vertices of G and U the nodes of T . The width
of a tree decomposition is maxx∈U |Sx| − 1. The treewidth of a graph is the minimum width of its tree
decompositions. The only reason for subtracting 1 in the definition is to ensure that every tree has
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treewidth 1. Indeed, it is not difficult to show that every tree has a tree decomposition where every set
Sx has size 2. (Assume that the graph G is a rooted tree. The nodes in U correspond to the edges of G,
the tree T is obtained by connecting x, y ∈ U if the lower end point of edge x is the same as the upper
end point of edge y. For every x ∈ U , let Sx contain the two end points of edge x.)

Another way to look at the tree decomposition is the following. Let Tv contain those nodes x of T
where v ∈ Sx. The third property ensures that Tv is a connected subset of T , that is, it induces a subtree
of T . The second property says that the subtrees of two adjacent vertices have to intersect each other.
Therefore a tree decomposition is a way of embedding the graph into a tree such that the subtrees do not
overlap very much. Thus if a graph has small treewidth, then it is “tree-like” in some sense.

Definition 2: Chordal graphs. A graph is chordal if every cycle of length greater than 3 contains at
least one chord, i.e., an edge connecting two vertices not adjacent in the cycle. Equivalently, a graph is
chordal if and only if it does not contain a cycle of length greater than 3 as an induced subgraph. Chordal
graphs can be also characterized as the intersection graphs of subtrees of a tree (see e.g., [Gol80]):

Theorem A.1.1. The following two statements are equivalent:

1. G(V,E) is chordal.

2. There exists a tree T (U,F ) and a subtree Tv ⊆ T for each vertex v ∈ V such that vertices u, v ∈ V
are neighbors in G(V,E) if and only if Tu ∩ Tv 6= ∅.

Let x ∈ U be an arbitrary node of T , it is clear that the those vertices whose subtree contain x induce
a clique. Therefore Theorem A.1.1 implies that every chordal graph with clique size k + 1 has a width
k tree decomposition. Thus if it is possible to add edges to the graph in such a way that it becomes a
chordal graph with clique size k+1, then the graph has treewidth at most k. In fact, it can be shown that
the treewidth of a graph G is minω(H) − 1, where the minimum is taken over all chordal supergraphs H
of G.

Definition 3: Partial k-trees. We define k-trees recursively as follows:

1. A clique of size k is a k-tree.

2. If G is a k-tree and K is clique of size k in G, then the graph obtained by adding a new vertex v to
G and connecting v with every vertex of K is also a k-tree.

3. Every k-tree can be obtained with the previous two rules.

In particular, 1-trees are exactly the trees. A graph is a partial k-tree if it is the subgraph of a k-tree.
A partial k-tree has clique size at most k + 1. Every k-tree is chordal, hence using the second definition
it follows that every partial k-tree has treewidth at most k. Moreover, it can be shown that a graph
is a partial k-tree if and only if it has treewidth at most k, thus we obtain another characterization of
treewidth. We will use the notion of partial k-trees and graphs with bounded treewidth interchangeably.

Algorithms. A large number of NP-hard problems can be solved efficiently for partial k-trees. Most
of these algorithms generalize the dynamic programming method that can solve many problems for trees.
To give the flavor of these algorithms, we show how to solve maximum weighted independent set for trees,
and briefly sketch how the algorithm can be generalized to partial k-trees.

In the weighted independent set problem a graph is given with a positive integer weight w(v) for each
vertex v. The goal is to find an independent set I such that

∑
v∈I w(v) is maximal. Assume that the

graph is a rooted tree with root r. For a node v of T , let T v be the subtree of T rooted at v (i.e., T v

contains v and its descendants). We give a dynamic programming algorithm that solves a large number of
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subproblems. Most of these subproblems are of no direct interest to us, but we have to solve all of them
to be able to answer the original question.

We solve the weighted maximum independent set problem for each subtree Tv. More precisely, we
solve two subproblems for each node v of T : let Av be the weight of the maximum independent set in Tv
with the further requirement that v has to be in the set, and let Bv be the maximum set if the set must
not contain v. Clearly, the answer to the problem is max{Ar, Br} for the root r.

The values Av, Bv are determined in a bottom-up fashion. If v is a leaf, then trivially Av = w(v),
Bv = 0. Now assume that v1, . . . , vt are the children of v, and Av1 , . . . , Avt

, Bv1 , . . . , Bvt
are already

determined. It is easy to see that

Av = w(v) +

t∑

i=1

Bvt
,

since if v is selected, then v1, . . . , vt cannot be selected and therefore Bvi
is the maximum weight that we

can achieve in the subtree Tvi
. On the other hand, if v is not selected into the independent set, then the

weight that can be selected from Tvi
is max{Avi

, Bvi
}. Thus we obtain

Bv =

t∑

i=1

max{Avi
, Bvi

}.

Using these two recurrence relations repeatedly, we can arrive to the root r, which solves the problem in
linear time.

How can we generalize this method to partial k-trees? Consider the tree decomposition T (U,F ) of the
partial k-tree G(V,E). For a node x ∈ U , let T x be the subtree of T rooted at x. Let Vx =

⋃
y∈Tx Sy, that

is, Vx contains those vertices that appear in the set of a node of T x. The subgraph of G induced by Vx will
be denoted by Gx = G[Vx]. The following important property of Gx can be verified directly: if a vertex v
of Gx has a neighbor outside Gx, then v is in Sx. When we were considering trees, we used the fact that
for each subtree only one vertex, the root, can be “seen” from outside. For each subgraph Gx only the
at most k + 1 vertices in Sx can be seen from outside Gx. Therefore we will solve 2k+1 subproblems for
each node x ∈ T : for each Z ⊆ Sx we determine the maximum weight of an independent set that contains
Z, but does not contain any of Sx \ Z. It can be shown that these subproblems can be solved using a
bottom-up method similar to the one used in the case of trees. However, the recurrence relations for the
subproblems will be more complicated, we spare the reader the gory details.

Courcelle’s Theorem [Cou90] (see also [DF99, Section 6.5]) gives a clean way of quickly showing that
a problem is linear time solvable on bounded treewidth graphs. Sentences in the Extended Monadic
Second Order Logic of Graphs contain quantifiers, logical connectives (¬, ∨, and ∧), vertex variables, edge
variables, vertex set variables, edge set variables, and the following binary relations: ∈, =, inc(e, v) (edge
variable e is incident to vertex variable v), and adj(u, v) (vertex variables u, v are neighbors). If a graph
property can be described in this language, then this description can be turned into an algorithm:

Theorem A.1.2 (Courcelle [Cou90]). If a graph property can be described in the Extended Monadic
Second Order Logic of Graphs, then for every w, there is a linear-time algorithm for the recognition of
this property on graphs with treewidth at most w.

For example, we can easily describe 3-colorability in this language. By Theorem A.1.2, this immediately
implies that we can decide in linear time whether a partial k-tree is 3-colorable.
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3-colorable(V,E) := ∃C1 ⊆ V, ∃C2 ⊆ V, ∃C3 ⊆ V : (∀v : v ∈ C1 ∨ v ∈ C2 ∨ v ∈ C3)

∧ (∀u, v ∈ V : ¬adj(u, v) ∨ u 6∈ C1 ∨ v 6∈ C1)

∧ (∀u, v ∈ V : ¬adj(u, v) ∨ u 6∈ C2 ∨ v 6∈ C2)

∧ (∀u, v ∈ V : ¬adj(u, v) ∨ u 6∈ C3 ∨ v 6∈ C3)

The three sets C1, C2, C3 correspond to the three color classes. The first line expresses the requirement
that every vertex should belong to one of the color classes. The next three lines ensure that each color
class is independent.

If a class of graph has bounded treewidth, then the methods for partial k-trees can be used to solve
problems for this graph class. A graph is outerplanar if it can be embedded in the plane such that every
vertex is on the exterior infinite face. Every outerplanar graph has treewidth at most 2, thus the results
above imply that weighted maximum independent set and 3-coloring can be solved in linear time for such
graphs. Series-parallel graphs are defined as follows:

1. The graph consisting only an edge is a series-parallel graph.

2. Subdividing an edge of a series-parallel graph gives another series-parallel graph.

3. Adding a new edge parallel to an old edge of a series-parallel graph gives another series-parallel
graph.

4. Every series-parallel graph can be obtained with these operations.

Every series-parallel graph has treewidth at most 2. The converse is almost true: if a 2-connected graph
has treewidth at most 2, then it is series-parallel.

Besides finding algorithms for special graph classes, treewidth can be useful when handling general
graphs as well. There are algorithms that first check whether the graph has small treewidth, if so, then
they use a method suited for partial k-trees, if not, then they make use of the fact that the graph has
large treewidth and do something else. For example, this pattern is used for finding disjoint paths [RS95].
Parameterized complexity (see [DF99]) uses bounded-treewidth methods extensively.

We remark that there are some problems that can be solved in polynomial time for trees, but become
NP-hard for partial k-trees. For example, the edge disjoint paths problem is trivial for trees: there is a
unique path connecting each pair of terminals. However, the problem becomes NP-hard for partial 2-trees
[NVZ01]. We show that the situation is similar with the list edge coloring, edge precoloring extension,
and minimum sum edge coloring problems. These problems are polynomial-time solvable for trees, but
we prove in Section 2.1.2, 3.4, and 4.3, respectively, that they are NP-hard for partial 2-trees.

A.2 Approximation algorithms

The theory of NP-completeness, introduced by Cook [Coo71], Levin [Lev73] and Karp [Kar72] in the
early 70s, tells us that we should not try to find polynomial-time algorithms for certain problems, because
most probably no such algorithms exist. It turned out that this theory can be applied to a wide range
of practically interesting problems. The ubiquity of NP-complete problems made NP-completeness one
of the most important concepts of theoretical computer science. However, proving that certain problems
are hard does not alleviate the need to solve these problems. The most common way to cope with hard
problems is to use heuristic algorithms, which do not guarantee an optimum solution, but we hope that
they provide solutions that are “good enough.”
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Approximation algorithms are special kinds of heuristic algorithms: they guarantee that the solutions
they find are close to the optimum. In a minimization problem (such as minimum vertex cover, traveling
salesperson, etc.) we are trying to find a solution with cost as small as possible. An algorithm for
a minimization problem is an α-approximation algorithm if it always produces a solution with cost at
most α times the optimum. Clearly, α is always at least 1, and the closer it is to 1, the better is the
algorithm. If α is a constant, then we say that the algorithm provides a constant-factor approximation.
For example, there is a simple 2-approximation algorithm for the minimum vertex cover problem (find
a set of vertices such that every edge has a selected vertex). However, for certain problems no such
constant-factor approximation is known, in every approximation algorithm the value of α is a function of
the instance size. For example, as shown by Johnson [Joh74] and Lovász [Lov75], the set cover problem
(given a family of sets, find a subset of the elements such that every set contains at least one selected
element) can be O(log n)-approximated by a simple greedy method. However, as shown by [LY94] and
[BGLR93], it is unlikely that the problem has an approximation algorithm significantly better than that.

For a maximization problem, an α-approximation algorithm produces a solution that is always at least
1/α times the optimum. As in the case of the minimization problems, the smaller is α, the better is the
algorithm.

There are problems where there is no best approximation algorithm: there is a polynomial-time α-
approximation algorithm for every α > 1. In this case we say that the problem admits a polynomial-time
approximation scheme (PTAS). A PTAS can be also thought of as an algorithm that has an additional
parameter ǫ > 0, and the algorithm produces an (1 + ǫ)-approximate solution. Moreover, for a fixed value
of ǫ, the running time of the PTAS has to be polynomial (typically it is something like O(21/ǫ · n) or
O(n1/ǫ)). It is important to realize that the possibility of having an arbitrarily close approximation in
polynomial time does not contradict the fact that finding the optimum is NP-hard.

NP-completeness gives a way of showing that a problem cannot be solved in polynomial time, unless
P = NP. Similarly, we have tools to show that a problem cannot be α-approximated in polynomial time
for some α. Some of these techniques are based on the theory of Probabilistically Checkable Proofs (PCP),
which was the most important development of computational complexity in the 90s (see e.g., [ACG+99]).
Here we concentrate on how to show that a problem does not have a PTAS.

The class APX contains those optimization problems that have polynomial-time α-approximation
algorithms for some constant value of α. Given a problem instance x, we denote by OPT(x) the cost of
the optimum solution, and we denote by c(x, s) the cost of a particular solution s. Following [Pap94], we
define a notion of reducibility between optimization problems. This reduction has the property that if a
problem A is reducible to problem B, and B has a PTAS, then it follows that A has a PTAS as well.
Formally, we say that A is L-reducible to B if there are two polynomial-time computable functions f and
g, and two positive constants λ and µ such that

• If x is an instance of A, then f(x) is an instance of B with OPT(f(x)) ≤ λ · OPT(x).

• If s is a solution for instance f(x), then g(s) is a solution for instance x with

|c(x, g(s)) − OPT(x)| ≤ µ · |c(f(x), s) − OPT(f(x))|.

That is, an instance of A can be transformed into an instance of B in such a way that the optimum does
not increase by too much. Moreover, if a solution for the transformed instance is close to the optimum,
then we can obtain a solution for the original instance that is also close to the optimum. It is easy to see
that if A is L-reducible to B and B has a PTAS than A has a PTAS as well.

An optimization problem is APX-hard if every problem in APX is L-reducible to it. If an APX-hard
problem has a PTAS, then every problem in APX would have a PTAS, which is considered highly unlikely.
Moreover, it can be shown (and here is where the deep results of PCP theory come into play) that if an
APX-hard problem has a PTAS, then P = NP follows, which makes this possibility even less likely.
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As a nice case study, we end this section by briefly summarizing the approximability of the different
variants of the famous traveling salesperson problem (TSP). Given a set of cities and a distance function
d(x, y) between the cities, the salesperson has to visit every city exactly once. Our goal is to find an
ordering of the cities such that the total distance between the cities is minimized. Depending on the
assumptions we have on the distance function, the complexity of the problem is the following:

• Without any restriction on the distance function, there cannot be a constant factor approximation
algorithm for TSP, unless P = NP. This follows fairly easily from the NP-completeness of the
Hamiltonian cycle problem (see e.g., [Pap94]).

• In the metric TSP problem we assume that the triangle inequality d(x, y) ≤ d(x, z) + d(z, y) holds
for every three cities x, y, z. In this case the algorithm of Christofides (see e.g., [ACG+99]) gives a
3
2 -approximation. However, the problem is APX-hard [PY93], thus there is no PTAS unless P = NP.

• In the Euclidean TSP problem the cities are given with coordinates in the 2-dimensional plane, and
the distance is the usual Euclidean distance. Euclidean TSP has a PTAS [Aro98].

• The PTAS for Euclidean TSP can be generalized to the d-dimensional version of the problem for
every fixed d. However, if the dimension can be as high as Θ(logn), then the problem becomes
APX-hard [Tre00].

A.3 Oracles and the polynomial hierarchy

In computational complexity we often want to say statements like “assuming we have a subroutine for
problem A, we can solve problem B.” For example, the main result in Cook’s original paper introducing
NP-completeness [Coo71] is stated the following way: if we have a magical subroutine that solves the SAT
problem instantaneously, then every language in NP can be solved in polynomial time. (Later Karp [Kar72]
introduced many-one reductions, which shows that NP-completeness can be defined without subroutines.)

The formal way of talking about subroutines is to use oracle Turing-machines. Let A be an arbitrary
language. A Turing-machine equipped with an A-oracle is a Turing-machine with three special states q?,
qyes, qno, and a distinguished tape called the oracle tape. The machine works identically to a classical
Turing-machine, with one exception. If it reaches the query state q?, then the next state is qyes if the
contents of the oracle tape is a member of A, and the next state is qno if the oracle tape is not in A. Thus
the machine can quickly determine whether a word is in A or not: it just copies the word to the oracle
tape and goes to the state q?. The machine can go to the state q? multiple times during a computation,
thus the “subroutine” for A can be called as many times as required.

The important thing is that, however complicated is the language A, the transition from q? to qyes or
to qno counts only as one step. Therefore if A has high complexity, then equipping a machine with an
A-oracle can highly increase its power. For example, if A is undecidable, then a machine with an A-oracle
can solve problems that no Turing-machine can solve. If A is NP-hard, then it may be possible that a
machine with an A-oracle solves in polynomial time a problem that a classical Turing-machine can solve
only in exponential time.

As we have seen above, one use of oracle machines is to define reductions between problems. We say
that a language B is polynomial-time Turing-reducible to language A, if B can be solved in polynomial
time by a polynomial-time Turing-machine equipped with an A-oracle. Therefore Cook’s Theorem is
formally stated as every language in NP is polynomial-time Turing-reducible to SAT.

Another use of oracles is to define new complexity classes. If A is an arbitrary language, then we denote
by PA the set of languages that can be decided by a polynomial-time Turing-machine equipped with an
A-oracle. The classes NPA, EXPA, etc. are similarly defined.1 Baker, Gill, and Solovay have shown in

1However, we have to be careful with the oracle notation. The notation XA has a meaning only if X is a complexity class
defined by Turing-machines. If X is an arbitrary collection of languages, then we cannot define XA.
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their seminal paper [BGS75] that there are languages A and B such that PA = NPA and PB 6= NPB.
Why is this result important? Its importance comes from the fact that it rules out certain types of

approaches for resolving P
?
= NP. For example, P 6= EXP can be proved by a simple argument based on

diagonalization. The proof uses just one property of Turing-machines: there are universal Turing-machines
that can simulate other Turing-machines. Therefore the proof remains the same if we add an A-oracle to
the Turing-machines. We say that the proof of P 6= EXP relativizes, thus PA 6= EXPA follows for every

language A. The result of Baker, Gill, and Solovay implies that P
?
= NP cannot be resolved by a proof

that relativizes, since there are oracles such that there is equality with one oracle, and there is inequality
with the other. There are very few proofs that do not relativize, hence we need fundamentally new ideas

to resolve P
?
= NP.

If A and B are two NP-complete languages, then PA and PB are the same complexity classes: an NP-
complete language can simulate another with a polynomial amount of additional work. We will denote
this class by PNP: polynomial-time deterministic computation with an NP-complete oracle. When we use
oracle notation and there is a complexity class in the exponent, then this will mean that the oracle is a
complete set for that class, and it doesn’t really matter which complete set we choose.

The polynomial hierarchy was introduced by Stockmeyer [Sto76]. The hierarchy starts with ∆p
1 = P,

Σp1 = NP, Πp
1 = coNP, and for i > 1 we have

∆p
i = PΣp

i−1 ,

Σpi = NPΣp

i−1 ,

Πp
i = coNPΣp

i−1 .

We can characterize the class Σpi also by certificates. Recall that a language L is in NP if we can present
a polynomial-time verifiable certificate for each member of L. Formally, a language is in NP if there is
a language L′ ∈ P such that if x ∈ L, then there is a polynomially-bounded y with (x, y) ∈ L′, but if
x 6∈ L, then (x, y) 6∈ L′ for any such y. It can be shown that if instead of requiring L′ ∈ P we require only
L′ ∈ Πp

i , then we obtain the class Σpi+1: the class Σpi+1 contains exactly those problems where there is a
Πp
i -verifiable certificate. To illustrate these concepts, we finish this section by presenting three problems

complete for higher levels of the polynomial-hierarchy:

• Consider the following problem: given a boolean formula ϕ(x1, x2, . . . , xn, y1, y2, . . . , ym), is it possi-
ble to assign values to the variables x1, x2, . . . , xn in such a way that the formula is satisfied no matter
what values are assigned to y1, . . . , ym? For example, if ϕ(x1, y1, y2, y3) = (x1∨y1∨y2)∧(x1∨y1∨y3),
then the answer is yes (set x1 = 1). However, for ϕ(x1, y1, y2, y3) = (x1 ∨ y1) ∧ (y2 ∨ y3) the answer
is no. Notice that if the answer is yes, then the assignment to x1, . . . , xn is a certificate for the yes
answer. To verify that the certificate is correct, we have to check whether the formula is satisfied for
every assignment to the variables y1, . . . , ym. Thus checking the certificate is in coNP = Πp

1, there-
fore it follows that the problem is in Σp2. It can be shown that the problem is in fact Σp2-complete
(see e.g., [Pap94]).

• Given a formula in disjunctive normal form (DNF), is it possible to find an equivalent DNF with
length at most k? This problem is Σp2-complete [Uma01]. If the answer is yes, then an equivalent
DNF of length at most k can be a certificate. To verify this certificate, it has to be checked whether it
is equivalent to the original formula. It is coNP-complete to check whether two DNFs are equivalent.

• Given a graph G with a set of vertices S, is it true that every 2-coloring of S can be extended to
a 3-coloring of G? This problem is Πp

2-complete [Sze02], which means that now we have a coNP-
verifiable certificate for every no instance. If the answer is no, then we can certify this by presenting
a 2-coloring of S that is not extendable. Checking whether a 2-coloring is really unextendable is in
coNP.
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[BHT93] M. Biró, M. Hujter, and Zs. Tuza. Cross fertilisation of graph theory and aircraft maintenance
scheduling. In G. Davidson, editor, Thirty Second Annual Symposium AGIFORS (Airline
Group of the International Federation of Operation Research Societies, pages 307–317, 1993.

→ pp. 25, 45

[BJW94] H. L. Bodlaender, K. Jansen, and G. J. Woeginger. Scheduling with incompatible jobs.
Discrete Appl. Math., 55(3):219–232, 1994. → pp. 25–26, 70

[BNBH+98] A. Bar-Noy, M. Bellare, M. M. Halldórsson, H. Shachnai, and T. Tamir. On chromatic
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Budapest, 1989. → pp. 35–36

[Rec92] A. Recski. Minimax results and polynomial algorithms in VLSI routing. In Fourth Czechoslo-
vakian Symposium on Combinatorics, Graphs and Complexity (Prachatice, 1990), pages 261–
273. North-Holland, Amsterdam, 1992. → p. 45

[Rob69] F. S. Roberts. Indifference graphs. In Proof Techniques in Graph Theory (Proc. Second Ann
Arbor Graph Theory Conf., Ann Arbor, Mich., 1968), pages 139–146. Academic Press, New
York, 1969. → p. 44

[RS86] N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-width. J.
Algorithms, 7(3):309–322, 1986. → p. 149

[RS95] N. Robertson and P. D. Seymour. Graph minors. XIII. The disjoint paths problem. J.
Combin. Theory Ser. B, 63(1):65–110, 1995. → p. 152



BIBLIOGRAPHY 165

[RTL76] D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of vertex elimination on
graphs. SIAM J. Comput., 5(2):266–283, 1976. → pp. 27, 34

[Sal00] M. Salavatipour. On sum coloring of graphs. Master’s thesis, University of Toronto, 2000.
→ p. 53

[Sal03] M. R. Salavatipour. On sum coloring of graphs. Discrete Appl. Math., 127(3):477–488, 2003.
→ pp. 7–8, 52–53, 60, 68–69, 89, 116

[Sch03] A. Schrijver. Combinatorial optimization. Polyhedra and efficiency., volume 24 of Algorithms
and Combinatorics. Springer-Verlag, Berlin, 2003. → p. 115

[Sto76] L. J. Stockmeyer. The polynomial-time hierarchy. Theoret. Comput. Sci., 3(1):1–22, 1976.
→ p. 155

[Sup87] K. J. Supowit. Finding a maximum planar subset of nets in a channel. IEEE Trans. Comput.
Aided Design, 6(1):93–94, 1987. → p. 52

[Sze02] S. Szeider. Generalizations of matched CNF formulas, 2002. To appear in Annals of Mathe-
matics and Artificial Intelligence. → p. 155

[Szk99] T. Szkaliczki. Routing with minimum wire length in the dogleg-free Manhattan model is
NP-complete. SIAM J. Comput., 29(1):274–287, 1999. → p. 52

[Tre00] L. Trevisan. When Hamming meets Euclid: the approximability of geometric TSP and
Steiner tree. SIAM J. Comput., 30(2):475–485, 2000. → p. 154

[TT85] A. Teng and A. Tucker. An O(qn) algorithm to q-color a proper family of circular arcs.
Discrete Math., 55(2):233–243, 1985. → p. 45

[Tuz97] Zs. Tuza. Graph colorings with local constraints—a survey. Discuss. Math. Graph Theory,
17(2):161–228, 1997. → pp. 4, 10, 15

[Uma01] C. Umans. The minimum equivalent DNF problem and shortest implicants. J. Comput.
System Sci., 63(4):597–611, 2001. Special issue on FOCS 98 (Palo Alto, CA). → p. 155

[Viz76] V. G. Vizing. Coloring the vertices of a graph in prescribed colors. Diskret. Analiz, (29
Metody Diskret. Anal. v Teorii Kodov i Shem):3–10, 101, 1976. → pp. 4, 9, 128

[Vyg94] J. Vygen. Disjoint paths. Technical Report 94816, Research Institute for Discrete Mathe-
mathics, University of Bonn, 1994. → pp. 6, 26, 37–39, 43–44, 148

[Vyg95] J. Vygen. NP-completeness of some edge-disjoint paths problems. Discrete Appl. Math.,
61(1):83–90, 1995. → pp. 39, 43

[Wag87] K. W. Wagner. More complicated questions about maxima and minima, and some closures
of NP. Theoret. Comput. Sci., 51(1-2):53–80, 1987. → pp. 73–74

[Wag90] K. W. Wagner. Bounded query classes. SIAM J. Comput., 19(5):833–846, 1990. → p. 73

[Wes95] D. West. Open problems section. The SIAM Activity Group on Discrete Mathematics
Newsletter, 5(2):9, Winter 1994–95. → pp. 68, 71

[Wu00] J. L. Wu. List-edge coloring of series-parallel graphs. Shandong Daxue Xuebao Ziran Kexue
Ban, 35(2):144–149, 2000. (in Chinese). → p. 9



166 BIBLIOGRAPHY

[ZFN00] X. Zhou, K. Fuse, and T. Nishizeki. A linear algorithm for finding [g, f ]-colorings of partial
k-trees. Algorithmica, 27(3-4):227–243, 2000. → p. 22

[ZN99] X. Zhou and T. Nishizeki. Edge-coloring and f -coloring for various classes of graphs. J.
Graph Algorithms Appl., 3:no. 1, 18 pp., 1999. → p. 22

[ZN04] X. Zhou and T. Nishizeki. Algorithm for the cost edge-coloring of trees. J. Comb. Optim.,
8(1):97–108, 2004. → pp. 7, 52–53, 60, 116


	Acknowledgments
	Introduction
	List coloring
	List edge coloring planar graphs
	Planar bipartite graphs
	Outerplanar graphs

	List multicoloring of trees
	Graphs with few cycles
	A polynomial case
	Graphs with few cycles
	Applications and extensions


	Precoloring extension
	Chordal graphs
	Tree decomposition
	System of extensions
	The algorithm
	Matroidal systems
	Applications

	The Eulerian disjoint paths problem
	The reduction

	Unit interval graphs
	The reduction

	Complexity of edge precoloring extension

	Minimum sum coloring
	Minimum sum edge coloring
	Bipartite graphs
	Planar graphs
	Approximability

	Partial 2-trees
	Chromatic strength
	Vertex strength of bipartite graphs
	Graphs with s'(G)>'(G)
	The complexity class 2p
	The reduction
	Special vertex gadget


	Minimum sum multicoloring
	Number of preemptions
	Preliminaries
	Operations
	Bounding the reduced sequence
	Optimum coloring
	Perfect graphs

	Complexity of minimum sum multicoloring for trees
	The penalty gadgets
	The reduction

	Complexity of minimum sum edge multicoloring for trees
	Approximating minimum sum multicoloring on the edges of trees
	Preliminaries
	Scaling and rounding
	Bounded demand
	Bounded degree
	The general case


	Clique coloring
	Preliminaries
	Complexity of clique coloring
	Clique choosability
	Hereditary clique coloring

	Open questions
	Conclusions
	Technical background
	Treewidth
	Approximation algorithms
	Oracles and the polynomial hierarchy

	Bibliography

