Constraint Solving via Fractional Edge Covers

Dániel Marx

Joint work with Martin Grohe

Humboldt-Universität zu Berlin
Institut für Informatik

MathCSP Workshop
March 22, 2006, Oxford
Constraint Satisfaction Problems (CSP)

A CSP instance is given by describing the

- variables,
- domain of the variables,
- constraints on the variables.

Task: Find an assignment that satisfies every constraint.

\[I = C_1(x_1, x_2, x_3) \land C_2(x_2, x_4) \land C_3(x_1, x_3, x_4) \]
Representation issues

How are the constraints represented in the input?

- full truth table
- listing the satisfying tuples
- formula/circuit
- oracle

Does not really matter if the constraints have small arities.
How are the constraints represented in the input?

- full truth table
- listing the satisfying tuples
- formula/circuit
- oracle

Does not really matter if the constraints have small arities.

In this talk: Each constraint is given by listing all the tuples that satisfy it.

Motivation: Applications in database theory & AI.
Constraints are known databases, “satisfying” means “appears in the database.”
Tractable structures

Our aim: identify structural properties that can make a CSP instance tractable.

- bounded tree width
- bounded (generalized) hypertree width
- bounded fractional edge cover number
- bounded fractional hypertree width
Tractable structures

Our aim: identify structural properties that can make a CSP instance tractable.

- bounded tree width
- bounded (generalized) hypertree width
- bounded fractional edge cover number
- bounded fractional hypertree width
Our aim: identify structural properties that can make a CSP instance tractable.

- bounded tree width
- bounded (generalized) hypertree width
- bounded fractional edge cover number
- bounded fractional hypertree width

Hypergraph of an instance: vertices are variables, edges are constraint scopes.

If \mathcal{H} is a class of hypergraphs, then $\text{CSP}(\mathcal{H})$ is the CSP problem restricted to instances whose hypergraph is in \mathcal{H}.

Task: Identify classes \mathcal{H} such that $\text{CSP}(\mathcal{H})$ is polynomial-time solvable.
Tree width—reminder

Connectedness condition for h

```
  ah
 / \  
ahq  hkl
 / \   /  
|   |  klo
|   | /   
hij   abc
 / \  /  
ag  cef  bcd
```

Constraint Solving via Fractional Edge Covers – p.5/23
Tree width

Tree width: A measure of how “tree-like” the hypergraph is. (Introduced by Robertson and Seymour.)

Tree decomposition: Bags of vertices are arranged in a tree structure satisfying the following properties:

1. For every edge e, there is a bag containing the vertices of e.
2. For every vertex v, the bags containing v form a connected subtree.

Width of the decomposition: size of the largest bag minus 1.

Tree width: width of the best decomposition.
In a generalized hypertree decomposition [Gottlob et al. ’99] of width w, bags of vertices are arranged in a tree structure such that

1. For every edge e, there is a bag containing the vertices of e.
2. For every vertex v, the bags containing v form a connected subtree.
3. For each bag, w edges are given (called the guards) that cover the bag.

Generalized hypertree width: width of the best decomposition.
Theorem: [Gottlob et al. ’99] For every w, there is a polynomial-time algorithm for solving CSP on instances with hypergraphs having generalized hypertree width at most w.

Algorithm: Bottom up dynamic programming. There are at most $\|I\|^w$ possible satisfying assignments for each bag.
Generalized hypertree width

Theorem: [Gottlob et al. ’99] For every w, there is a polynomial-time algorithm for solving CSP on instances with hypergraphs having generalized hypertree width at most w.

Algorithm: Bottom up dynamic programming. There are at most $||I||^w$ possible satisfying assignments for each bag.

Generalization: Is there some more general property that makes the number of satisfying assignments of a bag polynomial?
(Fractional) edge covering

An edge cover of a hypergraph is a subset of the edges such that every vertex is covered by at least one edge.

$\varrho(H)$: size of the smallest edge cover.

A fractional edge cover is a weight assignment to the edges such that every vertex is covered by total weight at least 1.

$\varrho^*(H)$: smallest total weight of a fractional edge cover.
An **edge cover** of a hypergraph is a subset of the edges such that every vertex is covered by at least one edge.

\(\varrho(H) \): size of the smallest edge cover.

A **fractional edge cover** is a weight assignment to the edges such that every vertex is covered by total weight at least 1.

\(\varrho^*(H) \): smallest total weight of a fractional edge cover.

\(\varrho(H) = 2 \)
An edge cover of a hypergraph is a subset of the edges such that every vertex is covered by at least one edge.

$\varrho(H)$: size of the smallest edge cover.

A fractional edge cover is a weight assignment to the edges such that every vertex is covered by total weight at least 1.

$\varrho^*(H)$: smallest total weight of a fractional edge cover.

$\varrho(H) = 2$ \hspace{1cm} $\varrho^*(H) = 1.5$
Edge covers vs. fractional edge covers

Fact: It is NP-hard to determine the edge cover number $\varrho(H)$.

Fact: The fractional edge cover number $\varrho^*(H)$ can be determined in polynomial time using linear programming.

The gap between $\varrho(H)$ and $\varrho^*(H)$ can be arbitrarily large.
Edge covers vs. fractional edge covers

Fact: It is NP-hard to determine the edge cover number $\phi(H)$.

Fact: The fractional edge cover number $\phi^*(H)$ can be determined in polynomial time using linear programming.

The gap between $\phi(H)$ and $\phi^*(H)$ can be arbitrarily large.

Example:

$\binom{2k}{k}$ vertices: all the possible strings with k 0’s and k 1’s.

$2k$ hyperedges: edge E_i contains the vertices with 1 at the i-th position.
Edge covers vs. fractional edge covers

Fact: It is NP-hard to determine the edge cover number $\varrho(H)$.

Fact: The fractional edge cover number $\varrho^*(H)$ can be determined in polynomial time using linear programming.

The gap between $\varrho(H)$ and $\varrho^*(H)$ can be arbitrarily large.

Example:

$\binom{2k}{k}$ vertices: all the possible strings with k 0’s and k 1’s.

$2k$ hyperedges: edge E_i contains the vertices with 1 at the i-th position.

Edge cover: if only k edges are selected, then there is a vertex that contains 1’s only at the remaining k positions, hence not covered $\Rightarrow \varrho(H) \geq k + 1$.

Fractional edge cover: assign weight $1/k$ to each edge, each vertex is covered by exactly k edges $\Rightarrow \varrho^*(H) \leq 2k \cdot 1/k = 2$.
Lemma: [easy] If the hypergraph of instance I has edge cover number w, then there are at most $||I||^w$ satisfying assignments.

Proof: Assume that C_1, \ldots, C_w cover the instance. Fixing a satisfying assignment for each C_i determines all the variables.

Lemma: If the hypergraph of instance I has fractional edge cover number w, then there are at most $||I||^w$ satisfying assignments (and they can be enumerated in polynomial time).

Proof: By Shearer’s Lemma.

Corollary: CSP(\mathcal{H}) is polynomial-time solvable if \mathcal{H} has bounded fractional edge cover number.
Lemma: [easy] If the hypergraph of instance I has edge cover number w, then there are at most $\|I\|^w$ satisfying assignments.

Proof: Assume that C_1, \ldots, C_w cover the instance. Fixing a satisfying assignment for each C_i determines all the variables.

Lemma: If the hypergraph of instance I has fractional edge cover number w, then there are at most $\|I\|^w$ satisfying assignments (and they can be enumerated in polynomial time).

Proof: By Shearer’s Lemma.

Corollary: CSP(\mathcal{H}) is polynomial-time solvable if \mathcal{H} has bounded fractional edge cover number.

Remark: $\|I\|^w$ is tight, hence if the fractional edge cover number can be unbounded, then there is no polynomial bound on the number of solutions.
Shearer’s Lemma—combinatorial version

Shearer’s Lemma: Let $H = (V, E)$ be a hypergraph, and let A_1, A_2, \ldots, A_p be (not necessarily distinct) subsets of V such that each $v \in V$ is contained in at least q of the A_i’s. Denote by E_i the edge set of the hypergraph projected to A_i. Then

$$|E| \leq \prod_{i=1}^{p} |E_i|^{1/q}.$$
Shearer’s Lemma—combinatorial version

Shearer’s Lemma: Let $H = (V, E)$ be a hypergraph, and let A_1, A_2, \ldots, A_p be (not necessarily distinct) subsets of V such that each $v \in V$ is contained in at least q of the A_i’s. Denote by E_i the edge set of the hypergraph projected to A_i. Then

$$|E| \leq \prod_{i=1}^{p} |E_i|^{1/q}.$$

Example:

$$E = \{1, 13, 2, 23, 234, 24\} \quad q = 2$$

$$A_1 = 123 \quad A_2 = 124 \quad A_3 = 34$$

$$E_1 = \{1, 13, 2, 23\} \quad E_2 = \{1, 24\} \quad E_3 = \{\emptyset, 3, 4, 34\}$$

$$6 = |E| \leq (|E_1| \cdot |E_2| \cdot |E_3|)^{1/q} = (4 \cdot 3 \cdot 4)^{1/2} = 6.928$$
Shearer’s Lemma: Assume we have the following random variables:

- X_1, \ldots, X_n,
- Y_1, \ldots, Y_m, where each $Y_i = (X_{i_1}, \ldots, X_{i_k})$ is a combination of some X_i’s,
- $X = (X_1, \ldots, X_n)$.

If each X_j appears in at least q of the Y_i’s, then $H(X) \leq \frac{1}{q} \sum H(Y_i)$.

Entropy: “information content”

$$H(X) = - \sum_x P(X = x) \log_2 P(X = x)$$
Bounding the number of solutions

Lemma: If the hypergraph of instance I has fractional edge cover number w, then there are at most $\|I\|^w$ satisfying assignments.

Example: Let $C_1(x_1, x_2) \land C_2(x_2, x_3) \land C_3(x_1, x_3)$ be an instance where each constraint is satisfied by at most n pairs.

Fractional edge cover number: $3/2 \Rightarrow$ we have to show that there are at most $n^{3/2}$ solutions.
Bounding the number of solutions

Lemma: If the hypergraph of instance I has fractional edge cover number w, then there are at most $\|I\|^w$ satisfying assignments.

Example: Let $C_1(x_1, x_2) \land C_2(x_2, x_3) \land C_3(x_1, x_3)$ be an instance where each constraint is satisfied by at most n pairs.

Fractional edge cover number: $\frac{3}{2} \Rightarrow$ we have to show that there are at most $n^{3/2}$ solutions.

Let $X = (x_1, x_2, x_3)$ be a random variable with uniform distribution over the satisfying assignments of the instance.

$Y_1 = (x_1, x_2)$ $Y_2 = (x_2, x_3)$ $Y_3 = (x_1, x_3)$

$H(Y_i) \leq \log_2 n$ (has at most n different values)

$H(X) \leq \frac{1}{2}(H(Y_1) + H(Y_2) + H(Y_3)) \leq \frac{3}{2} \log_2 n$

X has uniform distribution, hence it has $2^{H(X)} = 2^{\frac{3}{2} \log_2 n} = n^{3/2}$ different values.
In a **fractional hypertree decomposition** of width w, bags of vertices are arranged in a tree structure such that

1. For every edge e, there is a bag containing the vertices of e.
2. For every vertex v, the bags containing v form a connected subtree.
3. A fractional edge cover of weight w is given for each bag.

Fractional hypertree width: width of the best decomposition.

Note: fractional hypertree width \leq generalized hypertree width
In a **fractional hypertree decomposition** of width w, bags of vertices are arranged in a tree structure such that

1. For every edge e, there is a bag containing the vertices of e.
2. For every vertex v, the bags containing v form a connected subtree.
3. A fractional edge cover of weight w is given for each bag.

Fractional hypertree width: width of the best decomposition.

Note: fractional hypertree width \leq generalized hypertree width

Theorem: For every w, there is a polynomial-time algorithm for solving CSP if a fractional hypertree decomposition of width at most w is given in the input.
Determining fractional hypertree width

Currently we do not know if deciding fractional hypertree width $\leq w$ is possible in polynomial time for every fixed value of w.

For the applications, an approximate form would be sufficient:

Conjecture: There are functions $f_1(w)$, $f_2(w)$ such that for every w, there is an algorithm that constructs in time $n^{f_1(w)}$ a fractional hypertree decomposition of width $\leq f_2(w)$ for hypergraphs having fractional hypertree width $\leq w$.
Determining fractional hypertree width

Currently we do not know if deciding fractional hypertree width $\leq w$ is possible in polynomial time for every fixed value of w.

For the applications, an approximate form would be sufficient:

Conjecture: There are functions $f_1(w), f_2(w)$ such that for every w, there is an algorithm that constructs in time $n^{f_1(w)}$ a fractional hypertree decomposition of width $\leq f_2(w)$ for hypergraphs having fractional hypertree width $\leq w$.

Two possible approaches:

1. **Separator-based approach.** Problem: given sets X, Y, we have to find a separator that can be fractionally edge covered with weight $\leq w$.
2. **Game-theoretic approach.**
Robber and Cops Game: k cops try to capture a robber in the graph.

- In each step, the cops can move from vertex to vertex arbitrarily with helicopters.
- The robber moves infinitely fast, and sees where the cops will land.
- The robber cannot go through the vertices blocked by the cops.
Law enforcement on graphs

Robber and Cops Game: k cops try to capture a robber in the graph.

- In each step, the cops can move from vertex to vertex arbitrarily with helicopters.
- The robber moves infinitely fast, and sees where the cops will land.
- The robber cannot go through the vertices blocked by the cops.
Robber and Cops Game: k cops try to capture a robber in the graph.

- In each step, the cops can move from vertex to vertex arbitrarily with helicopters.
- The robber moves infinitely fast, and sees where the cops will land.
- The robber cannot go through the vertices blocked by the cops.

Theorem: [Seymour and Thomas '93]
k cops can win the game \iff the tree width of the graph is at most $k - 1$.

The winner of the game can be determined in $n^{O(k)}$ time \Rightarrow tree width $\leq k$ can be checked in polynomial time for fixed k.
Example: 2 cops have a winning strategy in a tree.
The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.
Example: 2 cops have a winning strategy in a tree.
Example: 2 cops have a winning strategy in a tree.
Example: 2 cops have a winning strategy in a tree.
Example: 2 cops have a winning strategy in a tree.
The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.
The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.
The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.
Law enforcement on hypergraphs

Robber and Marshals Game:
Played on a hypergraph, a marshal can occupy an edge blocking all the vertices of the edge at the same time.

Theorem: [Adler et al. ’05] k marshals can win the game if generalized hypertree width is $\leq k$, and they cannot win the game if generalized hypertree width is $\geq 3k + 1$.

$\Rightarrow n^{O(k)}$ algorithm for approximating generalized hypertree width:

Theorem: [Adler et al. ’05] There is an $n^{O(k)}$ time algorithm that constructs a generalized hypertree decomposition of width $\leq 3k$ if generalized hypertree width is $\leq k$.
Law enforcement on hypergraphs

Robber and Army Game:
A general has k battalions. A battalion can be divided arbitrarily, each part can be assigned to an edge. A vertex is blocked if it is covered by one full battalion.

Theorem: k battalions can win the game if fractional hypertree width is $\leq k$, and they cannot win the game if fractional hypertree width is $\geq 3k + 2$.

We don’t know how to turn this result into an algorithm (there are too many army positions).
Robber and Army Game:
A general has k battalions. A battalion can be divided arbitrarily, each part can be assigned to an edge. A vertex is blocked if it is covered by one full battalion.

Theorem: k battalions can win the game if fractional hypertree width is $\leq k$, and they cannot win the game if fractional hypertree width is $\geq 3k + 2$.

We don’t know how to turn this result into an algorithm (there are too many army positions).

But maybe not so many:

Conjecture: If hypergraph H has fractional hypertree width w, then for every $r \leq w$ there are at most $|V(H) + E(H)|^{O(w)}$ maximal r-covered sets. Furthermore, there is a polynomial-time algorithm that enumerates all these sets.
Given a class of hypergraphs \(\mathcal{H} \), CSP(\(\mathcal{H} \)) is the problem restricted to instances with hypergraphs in \(\mathcal{H} \).

Holy Grail: Determine all those classes of hypergraphs that make CSP(\(\mathcal{H} \)) polynomial-time solvable.

- Is there a hypergraph property more general than bounded fractional hypertree width that makes CSP polynomial-time solvable?
- Is it possible to show that there is no polynomial-time algorithm for CSP(\(\mathcal{H} \)) if \(\mathcal{H} \) has unbounded fractional hypertree width? (modulo some complexity-theoretic assumption)
Given a class of hypergraphs \mathcal{H}, CSP(\mathcal{H}) is the problem restricted to instances with hypergraphs in \mathcal{H}.

Holy Grail: Determine all those classes of hypergraphs that make CSP(\mathcal{H}) polynomial-time solvable.

- Is there a hypergraph property more general than bounded fractional hypertree width that makes CSP polynomial-time solvable?

- Is it possible to show that there is no polynomial-time algorithm for CSP(\mathcal{H}) if \mathcal{H} has unbounded fractional hypertree width? (modulo some complexity-theoretic assumption)

Theorem: [Grohe '03] If \mathcal{H} has bounded edge size, then CSP(\mathcal{H}) is polynomial-time solvable $\iff \mathcal{H}$ has bounded tree width (assuming FPT \neq W[1]).
Conclusions

- CSP where constraints are represented as lists of satisfying tuples.
- Bounded tree width and bounded hypertree width make the problem polynomial-time solvable.
- **New:** Bounded fractional edge cover number.
- **New:** Fractional hypertree width.
- **Open:** Finding fractional hypertree decompositions.
- Robber and Army Game: equivalent to fractional hypertree width (up to a constant factor).
- **Open:** Are there other classes of hypergraphs where CSP is easy? Can we prove that bounded fractional hypertree width is best possible?
Conclusions

Bounded fractional hypertree width

Bounded hypertree width

Bounded tree width

Bounded fractional edge cover number