
Closest substring problems with small
distances

Dániel Marx

Humboldt-Universität zu Berlin

dmarx@informatik.hu-berlin.de

April 20, 2006

Department of Computer Science and Operations Research

Université de Montréal

Closest substring problems with small distances – p.1/27

Overview

Parameterized complexity

The CLOSEST SUBSTRING problem

Complexity

First algorithm

Results on hypergraphs

Second algorithm

The CONSENSUS PATTERNS problem

Closest substring problems with small distances – p.2/27

Parameterized complexity

Problem: MINIMUM VERTEX COVER MAXIMUM INDEPENDENT SET

Input: Graph G, integer k Graph G, integer k

Question: Is it possible to cover
the edges with k vertices?

Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete

Closest substring problems with small distances – p.3/27

Parameterized complexity

Problem: MINIMUM VERTEX COVER MAXIMUM INDEPENDENT SET

Input: Graph G, integer k Graph G, integer k

Question: Is it possible to cover
the edges with k vertices?

Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete
Complete O(nk) possibilities O(nk) possibilitiesenumeration:

Closest substring problems with small distances – p.3/27

Parameterized complexity

Problem: MINIMUM VERTEX COVER MAXIMUM INDEPENDENT SET

Input: Graph G, integer k Graph G, integer k

Question: Is it possible to cover
the edges with k vertices?

Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete
Complete O(nk) possibilities O(nk) possibilitiesenumeration:

O(2kn2) algorithm exists No no(k) algorithm known

Closest substring problems with small distances – p.3/27

Parameterized Complexity

Parameterized problem: input has a special part (usually an integer) called

the parameter.

Closest substring problems with small distances – p.4/27

Parameterized Complexity

Parameterized problem: input has a special part (usually an integer) called

the parameter.

A parameterized problem is fixed-parameter tractable (FPT) if it has an

f(k) · nc time algorithm, where c is independent of k.

Example: MINIMUM VERTEX COVER is solvable in O(2k · n2) time
(or even in O(1.2832kk + k|V |) time!).

Closest substring problems with small distances – p.4/27

Parameterized Complexity

Parameterized problem: input has a special part (usually an integer) called

the parameter.

A parameterized problem is fixed-parameter tractable (FPT) if it has an

f(k) · nc time algorithm, where c is independent of k.

Example: MINIMUM VERTEX COVER is solvable in O(2k · n2) time
(or even in O(1.2832kk + k|V |) time!).

A W[1]-hard problem is unlikely to be FPT. To show that a problem L is

W[1]-hard, we have to give a parameterized reduction from a known
W[1]-hard problem to L.

Example: MAXIMUM INDEPENDENT SET is W[1]-hard, no no(k) algorithm

is known.

Closest substring problems with small distances – p.4/27

Parameterized Problems

For a large number of NP-hard problems, the parameterized version is

fixed-parameter tractable. For some other problems, the parameterized version
is W[1]-hard.

Fixed-parameter tractable problems:

MINIMUM VERTEX COVER

LONGEST PATH

DISJOINT TRIANGLES

GRAPH GENUS

. . .

W[1]-hard problems:

MAXIMUM INDEPENDENT SET

MINIMUM DOMINATING SET

LONGEST COMMON

SUBSEQUENCE

SET PACKING

. . .

Closest substring problems with small distances – p.5/27

Parameterized Complexity – Motivation

Practical importance: efficient algorithms for small values of k.

Powerful toolbox for designing FPT algorithms:

Bounded Search Tree

Kernelization

Color Coding

Treewidth Graph Minors Theorem

Well-Quasi-Ordering

Closest substring problems with small distances – p.6/27

The Closest String problem

CLOSEST STRING

Input: Strings s1, . . . , sk of length L

Solution: A string s of length L (center string)

Minimize: maxk
i=1 d(s, si)

d(w1, w2): the number of positions where w1 and w2 differ (Hamming

distance).

Applications: computational biology (e.g., finding common ancestors)

Problem is NP-hard even with binary alphabet [Frances and Litman, 1997].

Closest substring problems with small distances – p.7/27

The Closest Substring problem

CLOSEST SUBSTRING

Input: Strings s1, . . . , sk , an integer L

Solution: — string s of length L (center string),

— a length L substring s′

i of si for every i

Minimize: maxk
i=1 d(s, s′

i)

Remark: For a given s, it is easy to find the best s′

i for every i.

Applications: finding common patterns, drug design.

Closest substring problems with small distances – p.8/27

The Closest Substring problem

CLOSEST SUBSTRING

Input: Strings s1, . . . , sk , an integer L

Solution: — string s of length L (center string),

— a length L substring s′

i of si for every i

Minimize: maxk
i=1 d(s, s′

i)

Remark: For a given s, it is easy to find the best s′

i for every i.

Applications: finding common patterns, drug design.

Problem is NP-hard even with binary alphabet (CLOSEST STRING is the
special case |si| = L.)

CLOSEST SUBSTRING admits a PTAS [Li, Ma, & Wang, 2002]:

for every ǫ > 0 there is an nO(1/ǫ4) algorithm that produces a

(1 + ǫ)-approximation.
Closest substring problems with small distances – p.8/27

Parameterized Closest Substring

CLOSEST SUBSTRING

Input: Strings s1, . . . , sk over Σ, integers L and d

Possible parameters: k, L, d, |Σ|

Find: — string s of length L (center string),

— a length L substring s′

i of si for every i

such that d(s, s′

i) ≤ d for every i

Possible parameters:

k: might be small

d: might be small

L: usually large

|Σ|: usually a small constant

Closest substring problems with small distances – p.9/27

Closest Substring—Results

parameter |Σ| is constant |Σ| is unbounded

d ? W[1]-hard

k W[1]-hard W[1]-hard

d,k ? W[1]-hard

L FPT W[1]-hard

d,k,L FPT W[1]-hard

(Hardness results by [Fellows, Gramm, Niedermeier 2002].)

Closest substring problems with small distances – p.10/27

Closest Substring—Results

parameter |Σ| is constant |Σ| is unbounded

d W[1]-hard W[1]-hard

k W[1]-hard W[1]-hard

d,k W[1]-hard W[1]-hard

L FPT W[1]-hard

d,k,L FPT W[1]-hard

(Hardness results by [Fellows, Gramm, Niedermeier 2002].)

Theorem: [D.M.] CLOSEST SUBTRING is W[1]-hard with parameters k and d,
even if |Σ| = 2. (In the rest of the talk, Σ is always {0, 1}.)

Closest substring problems with small distances – p.10/27

Hardness of Closest Substring

Theorem: [D.M.] CLOSEST SUBTRING is W[1]-hard with parameters k and d.

Proof by parameterized reduction from MAXIMUM INDEPENDENT SET.

MAXIMUM INDEPENDENT SET

(G, t)
⇒

CLOSEST SUBSTRING

k = 22O(t)

d = 2O(t)

Corollary: No f(k, d) · nc algorithm for CLOSEST SUBSTRING unless

FPT=W[1].

Closest substring problems with small distances – p.11/27

Hardness of Closest Substring

Theorem: [D.M.] CLOSEST SUBTRING is W[1]-hard with parameters k and d.

Proof by parameterized reduction from MAXIMUM INDEPENDENT SET.

MAXIMUM INDEPENDENT SET

(G, t)
⇒

CLOSEST SUBSTRING

k = 22O(t)

d = 2O(t)

Corollary: No f(k, d) · nc algorithm for CLOSEST SUBSTRING unless

FPT=W[1].

Corollary: No f(k, d) · no(log d) or f(k, d) · no(log log k) algorithm for CLOS-

EST SUBSTRING unless MAXIMUM INDEPENDENT SET has an f(t) · no(t) algo-

rithm.

Closest substring problems with small distances – p.11/27

Hardness of Closest Substring

Corollary: No f(k, d) · no(log d) or f(k, d) · no(log log k) algorithm for

CLOSEST SUBSTRING unless MAXIMUM INDEPENDENT SET has an
f(t) · no(t) algorithm.

Closest substring problems with small distances – p.12/27

Hardness of Closest Substring

Corollary: No f(k, d) · no(log d) or f(k, d) · no(log log k) algorithm for

CLOSEST SUBSTRING unless MAXIMUM INDEPENDENT SET has an
f(t) · no(t) algorithm.

The lower bound on the exponent of n is best possible:

Theorem: [D.M.] CLOSEST SUBSTRING can be solved in f1(d, k) · nO(log d)

time.

Theorem: [D.M.] CLOSEST SUBSTRING can be solved in f2(d, k) ·nO(log log k)

time.

Closest substring problems with small distances – p.12/27

Relation to approximability

PTAS: algorithm that produces a (1 + ǫ)-approximation in time nf(ǫ).

EPTAS: (efficient PTAS) a PTAS with running time f(ǫ) · nO(1).

Observation: if ǫ = 1
2d

, then a (1 + ǫ)-approximation algorithm can correctly

decide whether the optimum is d or d + 1

⇒ if an optimization problem has an EPTAS, then it is FPT.

Corollary: CLOSEST SUBSTRING has no EPTAS, unless FPT=W[1].

Closest substring problems with small distances – p.13/27

The first algorithm

Definition: A solution is a minimal solution if
∑k

i=1 d(s, s′

i) is as small as
possible (and d(s, s′

i) ≤ d for every i).

Closest substring problems with small distances – p.14/27

The first algorithm

Definition: A solution is a minimal solution if
∑k

i=1 d(s, s′

i) is as small as
possible (and d(s, s′

i) ≤ d for every i).

Definition: A set of length L strings G generates a length L string s if
whenever the strings in G agree at the i-th position, then s has the same

character at this position.

Example: G1 generates s but G2 does not.

1 1 0 1 0 1
G1 0 1 0 1 1 1

1 1 0 0 1 1

s 1 1 0 1 0 1

1 1 0 1 1 1
G2 0 1 0 1 1 1

1 1 0 0 1 1

s 1 1 0 1 0 1

Closest substring problems with small distances – p.14/27

First algorithm

Let S be the set of all length L substrings of s1, . . . , sk . Clearly, |S| ≤ n.

Lemma: If s is the center string of a minimal solution, then S has a subset G

of size O(log d) that generates s, and the strings in G agree in all but at most
O(d log d) positions.

Closest substring problems with small distances – p.15/27

First algorithm

Let S be the set of all length L substrings of s1, . . . , sk . Clearly, |S| ≤ n.

Lemma: If s is the center string of a minimal solution, then S has a subset G

of size O(log d) that generates s, and the strings in G agree in all but at most
O(d log d) positions.

Algorithm:

Construct the set S .

Consider every subset G ⊆ S of size O(log d).

If there are at most O(d log d) positions in G where they disagree, then try

every center string generated by G.

Running time: |Σ|O(d log d) · nO(log d).

Closest substring problems with small distances – p.15/27

Proof of the lemma

Lemma: If s is the center string of a minimal solution, then S has a subset G

of size O(log d) that generates s, and the strings in G agree in all but at most
O(d log d) positions.

Proof: Let (s, s′

1, . . . , s′

k) be a minimal solution. We show that {s′

1, . . . , s′

k}

has a O(log d) subset that generates s.

The bad positions of a set of strings are the positions where they agree, but s

is different. Clearly, {s′

1} has at most d bad positions.

We show that if a set of strings has p bad positions, then we can decrease the
number of bad positions to p/2 by adding a string s′

i ⇒ no bad position

remains after adding log d strings.

Closest substring problems with small distances – p.16/27

Proof of the lemma (cont.)

Example: there are 4 bad positions:

1 1 1 1 1 1 1 1 0
0 1 1 1 1 0 0 1 0
1 1 1 1 1 1 1 0 0

s 1 0 0 0 0 1 1 0 0

To make a bad position non-bad, we have to add a string that disagree with the

previous strings at this position.

There is a string s′

i that disagree on at least half of the bad positions,
otherwise we could change s to make

∑k
i=1 d(s, s′

i) smaller.

Closest substring problems with small distances – p.17/27

Proof of the lemma (cont.)

Example: there are 4 bad positions:

1 1 1 1 1 1 1 1 0
0 1 1 1 1 0 0 1 0
1 1 1 1 1 1 1 0 0

s 1 0 0 0 0 1 1 0 0

⇒

1 1 1 1 1 1 1 1 0
0 1 1 1 1 0 0 1 0
1 1 1 1 1 1 1 0 0

s′

i 1 1 1 0 0 0 1 1 1

s 1 0 0 0 0 1 1 0 0

To make a bad position non-bad, we have to add a string that disagree with the

previous strings at this position.

There is a string s′

i that disagree on at least half of the bad positions,
otherwise we could change s to make

∑k
i=1 d(s, s′

i) smaller.

Closest substring problems with small distances – p.17/27

Proof of the lemma (cont.)

Example: there are 4 bad positions:

1 1 1 1 1 1 1 1 0
0 1 1 1 1 0 0 1 0
1 1 1 1 1 1 1 0 0

s 1 0 0 0 0 1 1 0 0

⇒

1 1 1 1 1 1 1 1 0
0 1 1 1 1 0 0 1 0
1 1 1 1 1 1 1 0 0

s′

i 1 1 1 0 0 0 1 1 1

s 1 0 0 0 0 1 1 0 0

To make a bad position non-bad, we have to add a string that disagree with the

previous strings at this position.

There is a string s′

i that disagree on at least half of the bad positions,
otherwise we could change s to make

∑k
i=1 d(s, s′

i) smaller.

(Since every s′

i differs from s on at most d positions, the O(log d) strings will

agree on all but at most O(d log d) positions.)

Closest substring problems with small distances – p.17/27

(Fractional) edge covering

Hypergraph: each edge is an arbitrary set of vertices.

An edge cover is a subset of the edges such that every vertex is covered by at
least one edge.

̺(H): size of the smallest edge cover.

A fractional edge cover is a weight assignment to the edges such that every
vertex is covered by total weight at least 1.

̺∗(H): smallest total weight of a fractional edge cover.

Closest substring problems with small distances – p.18/27

(Fractional) edge covering

Hypergraph: each edge is an arbitrary set of vertices.

An edge cover is a subset of the edges such that every vertex is covered by at
least one edge.

̺(H): size of the smallest edge cover.

A fractional edge cover is a weight assignment to the edges such that every
vertex is covered by total weight at least 1.

̺∗(H): smallest total weight of a fractional edge cover.

̺(H) = 2

Closest substring problems with small distances – p.18/27

(Fractional) edge covering

Hypergraph: each edge is an arbitrary set of vertices.

An edge cover is a subset of the edges such that every vertex is covered by at
least one edge.

̺(H): size of the smallest edge cover.

A fractional edge cover is a weight assignment to the edges such that every
vertex is covered by total weight at least 1.

̺∗(H): smallest total weight of a fractional edge cover.

̺(H) = 2

1
2

1
2 1

2

̺∗(H) = 1.5

Closest substring problems with small distances – p.18/27

Finding subhypergraphs

Definition: Hypergraph H1 appears in H2 as subhypergraph at vertex set

X , if there is a mapping π between X and the vertices of H1 such that for
each edge E1 of H1, there is an edge E2 of H2 with E2 ∩ X = π(E1).

A
A B

D

C

B

D

C

Closest substring problems with small distances – p.19/27

Finding subhypergraphs

Definition: Hypergraph H1 appears in H2 as subhypergraph at vertex set

X , if there is a mapping π between X and the vertices of H1 such that for
each edge E1 of H1, there is an edge E2 of H2 with E2 ∩ X = π(E1).

A
A B

D

C

B

D

C

We would like to enumerate all the places where H1 appears in H2. Assume

that H2 has m edges and each has size at most ℓ.

Lemma: (easy) H1 can appear in H2 at max. f(ℓ, ̺(H1)) · m̺(H1) places.

Closest substring problems with small distances – p.19/27

Finding subhypergraphs

Definition: Hypergraph H1 appears in H2 as subhypergraph at vertex set

X , if there is a mapping π between X and the vertices of H1 such that for
each edge E1 of H1, there is an edge E2 of H2 with E2 ∩ X = π(E1).

A
A B

D

C

B

D

C

We would like to enumerate all the places where H1 appears in H2. Assume

that H2 has m edges and each has size at most ℓ.

Lemma: (easy) H1 can appear in H2 at max. f(ℓ, ̺(H1)) · m̺(H1) places.

Lemma: [follows from Friedgut and Kahn, 1998] H1 can appear in H2 at max.

f(ℓ, ̺∗(H1)) · m̺∗(H1) places.
Closest substring problems with small distances – p.19/27

Half-covering

Defintion: A hypergraph has the half-covering property if for every set X of

vertices there is an edge Y with |X ∩ Y | > |X |/2.

Lemma: If a hypergraph H with m edges has the half-covering property, then

̺∗(H) = O(log log m).

(The O(log log m) is best possible.)

Proof: by probabilistic arguments.

Closest substring problems with small distances – p.20/27

Reminder

CLOSEST SUBSTRING

Input: Strings s1, . . . , sk over Σ, integers L and d

Possible parameters: k, L, d, |Σ|

Find: — string s of length L (center string),

— a length L substring s′

i of si for every i

such that d(s, s′

i) ≤ d for every i

Goal: f(k, d, Σ) · nO(log log k) running time.

Closest substring problems with small distances – p.21/27

The second algorithm

First step: guess the correct s′

1 (≤ n possibilities).

Consider the set S of all length L substrings of s1, . . . , sk . We turn S into a

hypergraph H on vertices {1, 2, . . . , L}: if a string in S differs from s′

1 on
positions P ⊆ {1, 2, . . . , L}, then let P be an edge of H .

Closest substring problems with small distances – p.22/27

The second algorithm

First step: guess the correct s′

1 (≤ n possibilities).

Consider the set S of all length L substrings of s1, . . . , sk . We turn S into a

hypergraph H on vertices {1, 2, . . . , L}: if a string in S differs from s′

1 on
positions P ⊆ {1, 2, . . . , L}, then let P be an edge of H .

Lemma: Assume that in a minimal solution s differs from s′

1 on positions P .
Then there is a hypergraph H0 with at most d vertices and k edges having the

half-covering property such that H0 appears at P in H .

Closest substring problems with small distances – p.22/27

The second algorithm

First step: guess the correct s′

1 (≤ n possibilities).

Consider the set S of all length L substrings of s1, . . . , sk . We turn S into a

hypergraph H on vertices {1, 2, . . . , L}: if a string in S differs from s′

1 on
positions P ⊆ {1, 2, . . . , L}, then let P be an edge of H .

Lemma: Assume that in a minimal solution s differs from s′

1 on positions P .
Then there is a hypergraph H0 with at most d vertices and k edges having the

half-covering property such that H0 appears at P in H .

Algorithm: Consider every hypergraph H0 as above and enumerate all the
places where H0 appears in H .

Closest substring problems with small distances – p.22/27

The second algorithm (cont.)

Algorithm:

Construct the hypergraph H .

Enumerate every hypergraph H0 with at most d vertices and k edges
(constant number).

Check if H0 has the half-covering property.

If so, then enumerate every place P where H0 appears in H .

(max. ≈ nO(̺∗(H0)) = nO(log log k) places).

For each place P , check if there is a good center string that differs from s′

1

only at P .

Running time: f(k, d, Σ) · nO(log log k).

Closest substring problems with small distances – p.23/27

Consensus Patterns

CONSENSUS PATTERNS

Input: Strings s1, . . . , sk over Σ, integers L and D

Possible parameters: k, L, D, |Σ|

Find: — string s of length L (center string),

— a length L substring s′

i of si for every i

such that
∑k

i=1 d(s, s′

i) ≤ D for every i

Another natural parameter: δ = D/k, the average distance.

Closest substring problems with small distances – p.24/27

Consensus Patterns —Results

parameter |Σ| is constant |Σ| is unbounded

δ ? W[1]-hard

D ? W[1]-hard

k W[1]-hard W[1]-hard

L FPT W[1]-hard

D: total distance

δ: average distance

Closest substring problems with small distances – p.25/27

Consensus Patterns —Results

parameter |Σ| is constant |Σ| is unbounded

δ FPT W[1]-hard

D FPT W[1]-hard

k W[1]-hard W[1]-hard

L FPT W[1]-hard

D: total distance

δ: average distance

Theorem: [D.M.] CONSENSUS PATTERNS is fixed-parameter tractable with pa-

rameter δ if Σ is bounded.

Closest substring problems with small distances – p.25/27

Algorithm for CONSENSUS PATTERNS

First step: guess the correct s′

1 (≤ n possibilities).

Consider the set S of all length L substrings of s1, . . . , sk . We turn S into a

hypergraph H on vertices {1, 2, . . . , L}: if a string in S differs from s′

1 on
positions P ⊆ {1, 2, . . . , L}, then let P be an edge of H .

Closest substring problems with small distances – p.26/27

Algorithm for CONSENSUS PATTERNS

First step: guess the correct s′

1 (≤ n possibilities).

Consider the set S of all length L substrings of s1, . . . , sk . We turn S into a

hypergraph H on vertices {1, 2, . . . , L}: if a string in S differs from s′

1 on
positions P ⊆ {1, 2, . . . , L}, then let P be an edge of H .

Lemma: Assume that in a minimal solution s differs from s′

1 on positions P .
Then there is a hypergraph H0 with at most δ and ̺∗(G) ≤ 5 such that H0

appears at P in H .

Closest substring problems with small distances – p.26/27

Algorithm for CONSENSUS PATTERNS

First step: guess the correct s′

1 (≤ n possibilities).

Consider the set S of all length L substrings of s1, . . . , sk . We turn S into a

hypergraph H on vertices {1, 2, . . . , L}: if a string in S differs from s′

1 on
positions P ⊆ {1, 2, . . . , L}, then let P be an edge of H .

Lemma: Assume that in a minimal solution s differs from s′

1 on positions P .
Then there is a hypergraph H0 with at most δ and ̺∗(G) ≤ 5 such that H0

appears at P in H .

Algorithm: Consider every hypergraph H0 as above and enumerate all the
places where H0 appears in H .

As H0 has constant fractional edge cover number, the search can be done in

polynomial time!

Closest substring problems with small distances – p.26/27

Conclusions

Complete parameterized analysis of CLOSEST SUBSTRING and

CONSENSUS PATTERNS.

Tight bounds for subexponential algorithms.

“Weak” parameterized reduction ⇒ subexponential algorithms?

Subexponential algorithms ⇒ proving optimality using parameterized

complexity?

Other applications of fractional edge cover number and finding
hypergraphs?

Closest substring problems with small distances – p.27/27

	Overview
	Parameterized complexity
	Parameterized Complexity
	Parameterized Problems
	Parameterized Complexity -- Motivation
	The Closest String problem
	The Closest 	extcolor {red}{Sub}string problem
	Parameterized Closest Substring
	Closest Substring---Results
	Hardness of Closest Substring
	Hardness of Closest Substring
	Relation to approximability
	The first algorithm
	First algorithm
	Proof of the lemma
	Proof of the lemma (cont.)
	(Fractional)
edge covering
	Finding subhypergraphs
	Half-covering
	Reminder
	The second algorithm
	The second algorithm (cont.)
	Consensus Patterns
	Consensus Patterns ---Results
	Algorithm for 	extsc {Consensus Patterns}
	Conclusions

