

Closest substring problems with small distances

Dániel Marx

Humboldt-Universität zu Berlin

dmarx@informatik.hu-berlin.de

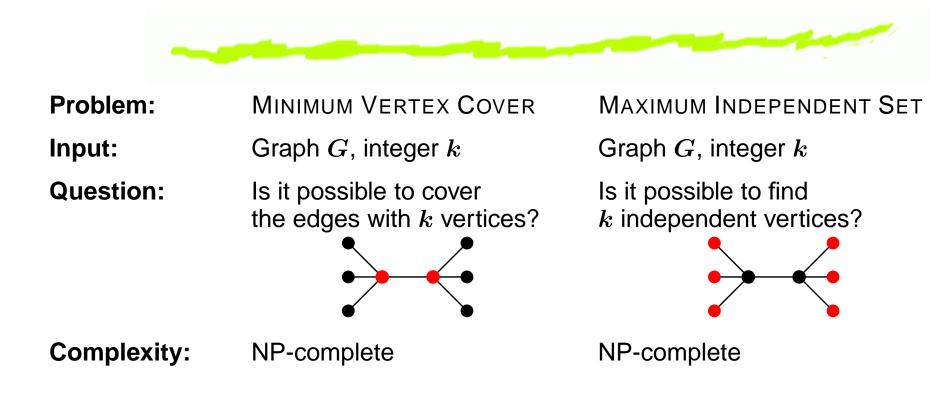
April 20, 2006

Department of Computer Science and Operations Research

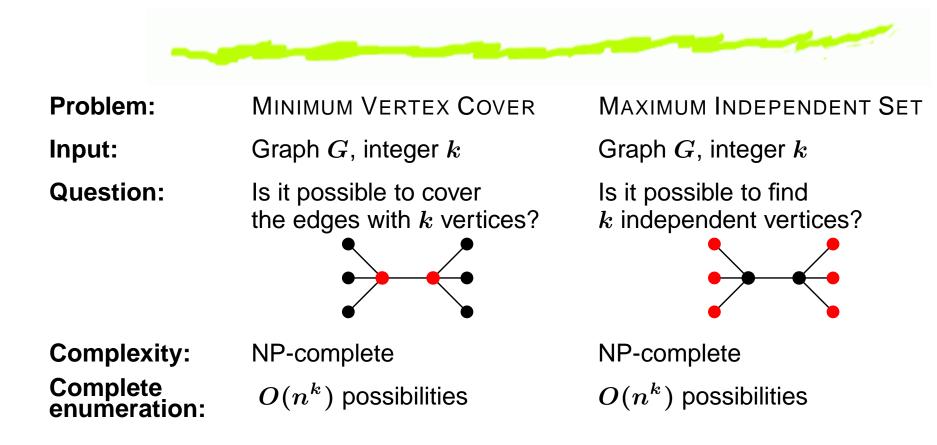
Université de Montréal

- 6 Parameterized complexity
- 5 The CLOSEST SUBSTRING problem
 - Complexity
 - First algorithm
 - Results on hypergraphs
 - Second algorithm
- **6** The Consensus Patterns problem

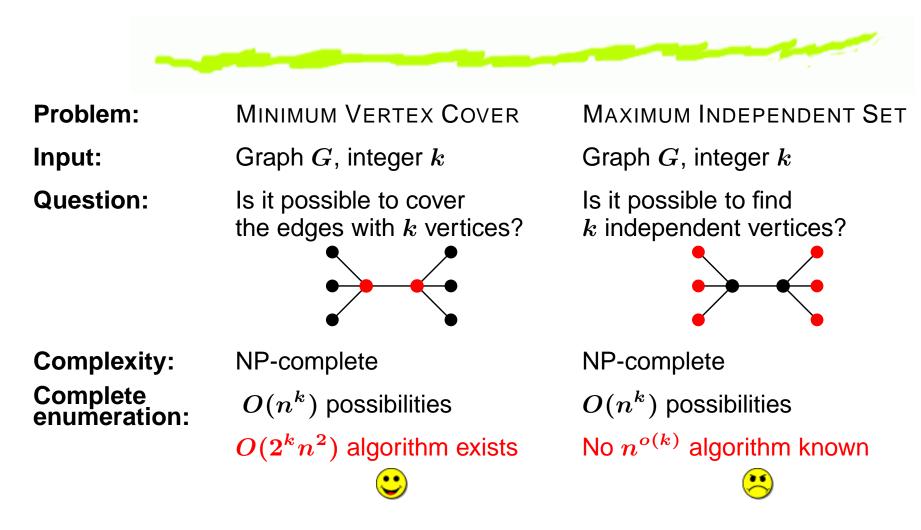
Parameterized complexity



Parameterized complexity



Parameterized complexity



Parameterized Complexity

Parameterized problem: input has a special part (usually an integer) called the **parameter**.

Parameterized Complexity

Parameterized problem: input has a special part (usually an integer) called the **parameter.**

6 A parameterized problem is **fixed-parameter tractable (FPT)** if it has an $f(k) \cdot n^c$ time algorithm, where c is independent of k.

Example: MINIMUM VERTEX COVER is solvable in $O(2^k \cdot n^2)$ time (or even in $O(1.2832^k k + k|V|)$ time!).

Parameterized Complexity

Parameterized problem: input has a special part (usually an integer) called the parameter.

6 A parameterized problem is **fixed-parameter tractable (FPT)** if it has an $f(k) \cdot n^c$ time algorithm, where c is independent of k.

Example: MINIMUM VERTEX COVER is solvable in $O(2^k \cdot n^2)$ time (or even in $O(1.2832^k k + k|V|)$ time!).

6 A W[1]-hard problem is unlikely to be FPT. To show that a problem L is W[1]-hard, we have to give a parameterized reduction from a known W[1]-hard problem to L.

Example: MAXIMUM INDEPENDENT SET is W[1]-hard, no $n^{o(k)}$ algorithm is known.

Parameterized Problems

For a large number of NP-hard problems, the parameterized version is fixed-parameter tractable. For some other problems, the parameterized version is W[1]-hard.

Fixed-parameter tractable problems:

- 6 MINIMUM VERTEX COVER
- 6 LONGEST PATH
- **6** DISJOINT TRIANGLES
- 6 GRAPH GENUS
- 6..

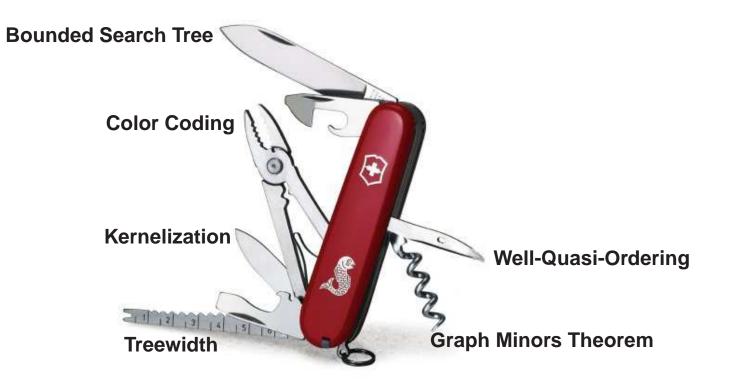
W[1]-hard problems:

- 6 Maximum Independent Set
- MINIMUM DOMINATING SET
- LONGEST COMMON SUBSEQUENCE
- 6 Set Packing

6.

Parameterized Complexity – Motivation

- Solution Practical importance: efficient algorithms for small values of k.
- 9 Powerful toolbox for designing FPT algorithms:



The Closest String problem

CLOSEST STRING

Input: Strings s_1, \ldots, s_k of length L

Solution: A string *s* of length *L* (center string)

Minimize: $\max_{i=1}^{k} d(s, s_i)$

 $d(w_1, w_2)$: the number of positions where w_1 and w_2 differ (Hamming distance).

Applications: computational biology (e.g., finding common ancestors)

Problem is NP-hard even with binary alphabet [Frances and Litman, 1997].

The Closest Substring problem

CLOSEST SUBSTRING

Input: Strings s_1, \ldots, s_k , an integer L

Solution: — string s of length L (center string),

— a length L substring s'_i of s_i for every i

Minimize: $\max_{i=1}^{k} d(s, s'_i)$

Remark: For a given s, it is easy to find the best s'_i for every i.

Applications: finding common patterns, drug design.

The Closest Substring problem

CLOSEST SUBSTRING

Input: Strings s_1, \ldots, s_k , an integer L

Solution: — string s of length L (center string),

— a length L substring s'_i of s_i for every i

Minimize: $\max_{i=1}^{k} d(s, s'_i)$

Remark: For a given s, it is easy to find the best s'_i for every i.

Applications: finding common patterns, drug design.

- ⁶ Problem is NP-hard even with binary alphabet (CLOSEST STRING is the special case $|s_i| = L$.)
- 6 CLOSEST SUBSTRING admits a PTAS [Li, Ma, & Wang, 2002]: for every $\epsilon > 0$ there is an $n^{O(1/\epsilon^4)}$ algorithm that produces a $(1 + \epsilon)$ -approximation.

Parameterized Closest Substring

CLOSEST SUBSTRING	
Input:	Strings s_1,\ldots,s_k over Σ , integers L and d
Possible parameters:	$k,L,d, \Sigma $
Find:	— string s of length L (center string),
	— a length L substring s_i^\prime of s_i for every i
	such that $d(s,s'_i) \leq d$ for every i

Possible parameters:

- 6 k: might be small
- 6 d: might be small
- 6 L: usually large
- $|\Sigma|$: usually a small constant

Closest Substring—Results

parameter	$ \Sigma $ is constant	$ \Sigma $ is unbounded
d	?	W[1]-hard
k	W[1]-hard	W[1]-hard
d,k	?	W[1]-hard
L	FPT	W[1]-hard
d,k,L	FPT	W[1]-hard

(Hardness results by [Fellows, Gramm, Niedermeier 2002].)

Closest Substring—Results

parameter	$ \Sigma $ is constant	$ \Sigma $ is unbounded
d	W[1]-hard	W[1]-hard
k	W[1]-hard	W[1]-hard
d,k	W[1]-hard	W[1]-hard
L	FPT	W[1]-hard
d,k,L	FPT	W[1]-hard

(Hardness results by [Fellows, Gramm, Niedermeier 2002].)

Theorem: [D.M.] CLOSEST SUBTRING is W[1]-hard with parameters k and d, even if $|\Sigma| = 2$. (In the rest of the talk, Σ is always $\{0, 1\}$.)

 \Rightarrow

Theorem: [D.M.] CLOSEST SUBTRING is W[1]-hard with parameters k and d.

Proof by parameterized reduction from MAXIMUM INDEPENDENT SET.

Maximum Independent Set(G,t)

Closest Substring $k=2^{2^{O(t)}}$ $d=2^{O(t)}$

Corollary: No $f(k, d) \cdot n^c$ algorithm for CLOSEST SUBSTRING unless FPT=W[1].

Theorem: [D.M.] CLOSEST SUBTRING is W[1]-hard with parameters k and d.

Proof by parameterized reduction from MAXIMUM INDEPENDENT SET.

Maximum Independent Set(G,t)

Closest Substring
$$k=2^{2^{O(t)}}$$
 $d=2^{O(t)}$

Corollary: No $f(k, d) \cdot n^c$ algorithm for CLOSEST SUBSTRING unless FPT=W[1].

Corollary: No $f(k, d) \cdot n^{o(\log d)}$ or $f(k, d) \cdot n^{o(\log \log k)}$ algorithm for CLOS-EST SUBSTRING unless MAXIMUM INDEPENDENT SET has an $f(t) \cdot n^{o(t)}$ algorithm.

Corollary: No $f(k, d) \cdot n^{o(\log d)}$ or $f(k, d) \cdot n^{o(\log \log k)}$ algorithm for CLOSEST SUBSTRING unless MAXIMUM INDEPENDENT SET has an $f(t) \cdot n^{o(t)}$ algorithm.

Corollary: No $f(k, d) \cdot n^{o(\log d)}$ or $f(k, d) \cdot n^{o(\log \log k)}$ algorithm for CLOSEST SUBSTRING unless MAXIMUM INDEPENDENT SET has an $f(t) \cdot n^{o(t)}$ algorithm.

The lower bound on the exponent of n is best possible:

Theorem: [D.M.] CLOSEST SUBSTRING can be solved in $f_1(d,k) \cdot n^{O(\log d)}$ time.

Theorem: [D.M.] CLOSEST SUBSTRING can be solved in $f_2(d,k) \cdot n^{O(\log \log k)}$ time.

Relation to approximability

PTAS: algorithm that produces a $(1 + \epsilon)$ -approximation in time $n^{f(\epsilon)}$.

EPTAS: (efficient PTAS) a PTAS with running time $f(\epsilon) \cdot n^{O(1)}$.

Observation: if $\epsilon = \frac{1}{2d}$, then a $(1 + \epsilon)$ -approximation algorithm can correctly decide whether the optimum is d or d + 1

 \Rightarrow if an optimization problem has an EPTAS, then it is FPT.

Corollary: CLOSEST SUBSTRING has no EPTAS, unless FPT=W[1].

The first algorithm

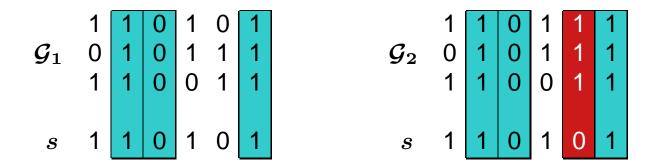
Definition: A solution is a **minimal solution** if $\sum_{i=1}^{k} d(s, s'_i)$ is as small as possible (and $d(s, s'_i) \leq d$ for every *i*).

The first algorithm

Definition: A solution is a **minimal solution** if $\sum_{i=1}^{k} d(s, s'_i)$ is as small as possible (and $d(s, s'_i) \leq d$ for every *i*).

Definition: A set of length *L* strings \mathcal{G} generates a length *L* string *s* if whenever the strings in \mathcal{G} agree at the *i*-th position, then *s* has the same character at this position.

Example: \mathcal{G}_1 generates s but \mathcal{G}_2 does not.



First algorithm

Let \mathcal{S} be the set of all length L substrings of s_1, \ldots, s_k . Clearly, $|\mathcal{S}| \leq n$.

Lemma: If *s* is the center string of a minimal solution, then S has a subset G of size $O(\log d)$ that generates *s*, and the strings in G agree in all but at most $O(d \log d)$ positions.

First algorithm

Let \mathcal{S} be the set of all length L substrings of s_1, \ldots, s_k . Clearly, $|\mathcal{S}| \leq n$.

Lemma: If *s* is the center string of a minimal solution, then S has a subset G of size $O(\log d)$ that generates *s*, and the strings in G agree in all but at most $O(d \log d)$ positions.

Algorithm:

- \circ Construct the set \mathcal{S} .
- 6 Consider every subset $\mathcal{G} \subseteq \mathcal{S}$ of size $O(\log d)$.
- If there are at most $O(d \log d)$ positions in \mathcal{G} where they disagree, then try every center string generated by \mathcal{G} .

Running time: $|\Sigma|^{O(d \log d)} \cdot n^{O(\log d)}$.

Proof of the lemma

Lemma: If *s* is the center string of a minimal solution, then S has a subset G of size $O(\log d)$ that generates *s*, and the strings in G agree in all but at most $O(d \log d)$ positions.

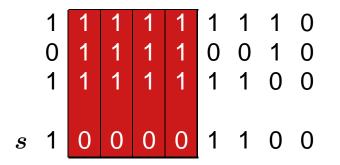
Proof: Let (s, s'_1, \ldots, s'_k) be a minimal solution. We show that $\{s'_1, \ldots, s'_k\}$ has a $O(\log d)$ subset that generates s.

The **bad positions** of a set of strings are the positions where they agree, but *s* is different. Clearly, $\{s'_1\}$ has at most *d* bad positions.

We show that if a set of strings has p bad positions, then we can decrease the number of bad positions to p/2 by adding a string $s'_i \Rightarrow$ no bad position remains after adding $\log d$ strings.

Proof of the lemma (cont.)

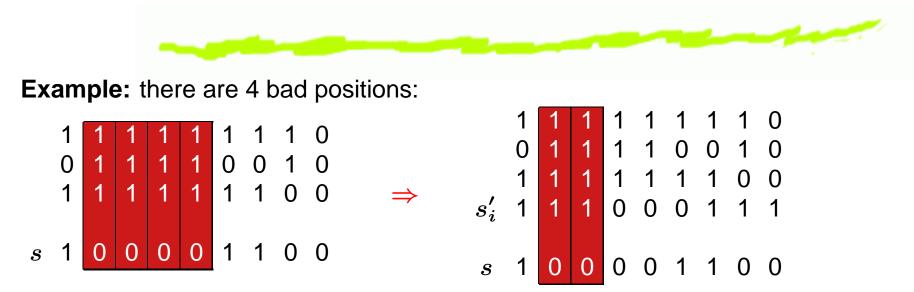
Example: there are 4 bad positions:



To make a bad position non-bad, we have to add a string that disagree with the previous strings at this position.

There is a string s'_i that disagree on at least half of the bad positions, otherwise we could change *s* to make $\sum_{i=1}^{k} d(s, s'_i)$ smaller.

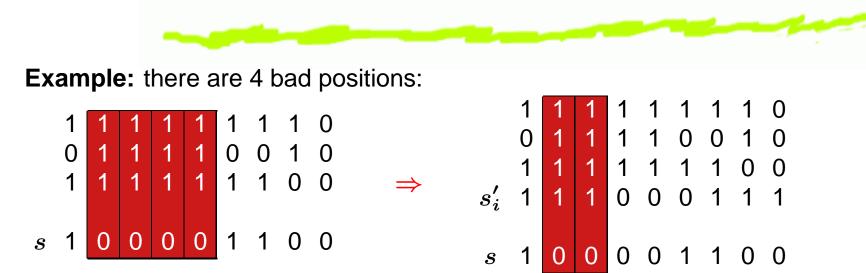
Proof of the lemma (cont.)



To make a bad position non-bad, we have to add a string that disagree with the previous strings at this position.

There is a string s'_i that disagree on at least half of the bad positions, otherwise we could change *s* to make $\sum_{i=1}^{k} d(s, s'_i)$ smaller.

Proof of the lemma (cont.)



To make a bad position non-bad, we have to add a string that disagree with the previous strings at this position.

There is a string s'_i that disagree on at least half of the bad positions, otherwise we could change s to make $\sum_{i=1}^{k} d(s, s'_i)$ smaller.

(Since every s'_i differs from s on at most d positions, the $O(\log d)$ strings will agree on all but at most $O(d \log d)$ positions.)

(Fractional) edge covering

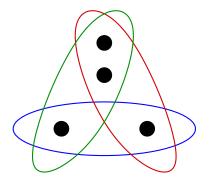
Hypergraph: each edge is an arbitrary set of vertices.

An **edge cover** is a subset of the edges such that every vertex is covered by at least one edge.

 $\rho(H)$: size of the smallest edge cover.

A **fractional edge cover** is a weight assignment to the edges such that every vertex is covered by total weight at least 1.

 $\rho^*(H)$: smallest total weight of a fractional edge cover.



(Fractional) edge covering

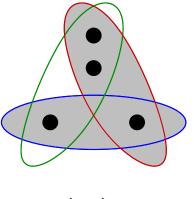
Hypergraph: each edge is an arbitrary set of vertices.

An **edge cover** is a subset of the edges such that every vertex is covered by at least one edge.

 $\rho(H)$: size of the smallest edge cover.

A **fractional edge cover** is a weight assignment to the edges such that every vertex is covered by total weight at least 1.

 $\rho^*(H)$: smallest total weight of a fractional edge cover.



(Fractional) edge covering

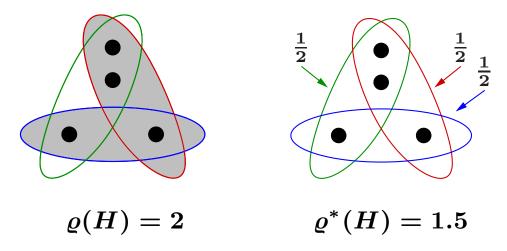
Hypergraph: each edge is an arbitrary set of vertices.

An **edge cover** is a subset of the edges such that every vertex is covered by at least one edge.

 $\varrho(H)$: size of the smallest edge cover.

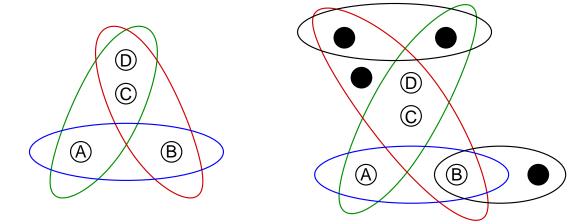
A **fractional edge cover** is a weight assignment to the edges such that every vertex is covered by total weight at least 1.

 $\varrho^*(H)$: smallest total weight of a fractional edge cover.



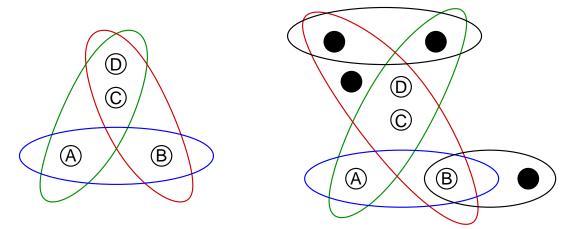
Finding subhypergraphs

Definition: Hypergraph H_1 appears in H_2 as **subhypergraph** at vertex set X, if there is a mapping π between X and the vertices of H_1 such that for each edge E_1 of H_1 , there is an edge E_2 of H_2 with $E_2 \cap X = \pi(E_1)$.



Finding subhypergraphs

Definition: Hypergraph H_1 appears in H_2 as **subhypergraph** at vertex set X, if there is a mapping π between X and the vertices of H_1 such that for each edge E_1 of H_1 , there is an edge E_2 of H_2 with $E_2 \cap X = \pi(E_1)$.

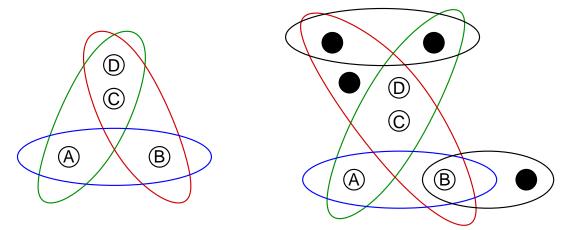


We would like to enumerate all the places where H_1 appears in H_2 . Assume that H_2 has m edges and each has size at most ℓ .

Lemma: (easy) H_1 can appear in H_2 at max. $f(\ell, \varrho(H_1)) \cdot m^{\varrho(H_1)}$ places.

Finding subhypergraphs

Definition: Hypergraph H_1 appears in H_2 as **subhypergraph** at vertex set X, if there is a mapping π between X and the vertices of H_1 such that for each edge E_1 of H_1 , there is an edge E_2 of H_2 with $E_2 \cap X = \pi(E_1)$.



We would like to enumerate all the places where H_1 appears in H_2 . Assume that H_2 has m edges and each has size at most ℓ .

Lemma: (easy) H_1 can appear in H_2 at max. $f(\ell, \varrho(H_1)) \cdot m^{\varrho(H_1)}$ places. **Lemma:** [follows from Friedgut and Kahn, 1998] H_1 can appear in H_2 at max. $f(\ell, \varrho^*(H_1)) \cdot m^{\varrho^*(H_1)}$ places.

Half-covering

Definition: A hypergraph has the half-covering property if for every set X of vertices there is an edge Y with $|X \cap Y| > |X|/2$.

Lemma: If a hypergraph *H* with *m* edges has the half-covering property, then $\varrho^*(H) = O(\log \log m)$.

(The $O(\log \log m)$ is best possible.)

Proof: by probabilistic arguments.

CLOSEST SUBSTRING	
Input:	Strings s_1,\ldots,s_k over Σ , integers L and d
Possible parameters:	$k,L,d, \Sigma $
Find:	— string s of length L (center string),
	— a length L substring s_i' of s_i for every i
	such that $d(s,s_i') \leq d$ for every i

Goal: $f(k, d, \Sigma) \cdot n^{O(\log \log k)}$ running time.

The second algorithm

First step: guess the correct $s'_1 (\leq n \text{ possibilities})$.

Consider the set S of all length L substrings of s_1, \ldots, s_k . We turn S into a hypergraph H on vertices $\{1, 2, \ldots, L\}$: if a string in S differs from s'_1 on positions $P \subseteq \{1, 2, \ldots, L\}$, then let P be an edge of H.

The second algorithm

First step: guess the correct $s'_1 (\leq n \text{ possibilities})$.

Consider the set S of all length L substrings of s_1, \ldots, s_k . We turn S into a hypergraph H on vertices $\{1, 2, \ldots, L\}$: if a string in S differs from s'_1 on positions $P \subseteq \{1, 2, \ldots, L\}$, then let P be an edge of H.

Lemma: Assume that in a minimal solution s differs from s'_1 on positions P. Then there is a hypergraph H_0 with at most d vertices and k edges having the half-covering property such that H_0 appears at P in H.

The second algorithm

First step: guess the correct $s'_1 (\leq n \text{ possibilities})$.

Consider the set S of all length L substrings of s_1, \ldots, s_k . We turn S into a hypergraph H on vertices $\{1, 2, \ldots, L\}$: if a string in S differs from s'_1 on positions $P \subseteq \{1, 2, \ldots, L\}$, then let P be an edge of H.

Lemma: Assume that in a minimal solution s differs from s'_1 on positions P. Then there is a hypergraph H_0 with at most d vertices and k edges having the half-covering property such that H_0 appears at P in H.

Algorithm: Consider every hypergraph H_0 as above and enumerate all the places where H_0 appears in H.

The second algorithm (cont.)

Algorithm:

- 6 Construct the hypergraph H.
- 6 Enumerate every hypergraph H_0 with at most d vertices and k edges (constant number).
- 6 Check if H_0 has the half-covering property.
- 6 If so, then enumerate every place P where H_0 appears in H. (max. $\approx n^{O(\varrho^*(H_0))} = n^{O(\log \log k)}$ places).
- 6 For each place P, check if there is a good center string that differs from s'_1 only at P.

Running time: $f(k, d, \Sigma) \cdot n^{O(\log \log k)}$.

Consensus Patterns

CONSENSUS PATTERNS	
Input:	Strings s_1,\ldots,s_k over $\Sigma,$ integers L and D
Possible parameters:	$k,L,D, \Sigma $
Find:	— string s of length L (center string),
	— a length L substring s_i' of s_i for every i
	such that $\sum_{i=1}^k d(s,s_i') \leq D$ for every i

Another natural parameter: $\delta = D/k$, the average distance.

Consensus Patterns — Results

parameter	$ \Sigma $ is constant	$ \Sigma $ is unbounded
δ	?	W[1]-hard
D	?	W[1]-hard
k	W[1]-hard	W[1]-hard
L	FPT	W[1]-hard

D: total distance

 δ : average distance

Consensus Patterns — Results

parameter	$ \Sigma $ is constant	$ \Sigma $ is unbounded
δ	FPT	W[1]-hard
D	FPT	W[1]-hard
k	W[1]-hard	W[1]-hard
L	FPT	W[1]-hard

D: total distance

 δ : average distance

Theorem: [D.M.] CONSENSUS PATTERNS is fixed-parameter tractable with parameter δ if Σ is bounded.

Algorithm for CONSENSUS PATTERNS

First step: guess the correct $s'_1 (\leq n \text{ possibilities})$.

Consider the set S of all length L substrings of s_1, \ldots, s_k . We turn S into a hypergraph H on vertices $\{1, 2, \ldots, L\}$: if a string in S differs from s'_1 on positions $P \subseteq \{1, 2, \ldots, L\}$, then let P be an edge of H.

Algorithm for CONSENSUS PATTERNS

First step: guess the correct $s'_1 (\leq n \text{ possibilities})$.

Consider the set S of all length L substrings of s_1, \ldots, s_k . We turn S into a hypergraph H on vertices $\{1, 2, \ldots, L\}$: if a string in S differs from s'_1 on positions $P \subseteq \{1, 2, \ldots, L\}$, then let P be an edge of H.

Lemma: Assume that in a minimal solution *s* differs from s'_1 on positions *P*. Then there is a hypergraph H_0 with at most δ and $\varrho^*(G) \leq 5$ such that H_0 appears at *P* in *H*.

Algorithm for CONSENSUS PATTERNS

First step: guess the correct $s'_1 (\leq n \text{ possibilities})$.

Consider the set S of all length L substrings of s_1, \ldots, s_k . We turn S into a hypergraph H on vertices $\{1, 2, \ldots, L\}$: if a string in S differs from s'_1 on positions $P \subseteq \{1, 2, \ldots, L\}$, then let P be an edge of H.

Lemma: Assume that in a minimal solution *s* differs from s'_1 on positions *P*. Then there is a hypergraph H_0 with at most δ and $\varrho^*(G) \leq 5$ such that H_0 appears at *P* in *H*.

Algorithm: Consider every hypergraph H_0 as above and enumerate all the places where H_0 appears in H.

As H_0 has constant fractional edge cover number, the search can be done in polynomial time!

Conclusions

- 6 Complete parameterized analysis of CLOSEST SUBSTRING and CONSENSUS PATTERNS.
- 5 Tight bounds for subexponential algorithms.
- $^{\circ}$ "Weak" parameterized reduction \Rightarrow subexponential algorithms?
- Subexponential algorithms ⇒ proving optimality using parameterized complexity?
- Other applications of fractional edge cover number and finding hypergraphs?