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Parameterized complexity

Problem: MINIMUM VERTEX COVER MAXIMUM INDEPENDENT SET

Input: Graph G, integer k Graph G, integer k

Question: Is it possible to cover
the edges with k vertices?

Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete
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Problem: MINIMUM VERTEX COVER MAXIMUM INDEPENDENT SET

Input: Graph G, integer k Graph G, integer k

Question: Is it possible to cover
the edges with k vertices?

Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete
Complete O(nk) possibilities O(nk) possibilitiesenumeration:
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Parameterized complexity

Problem: MINIMUM VERTEX COVER MAXIMUM INDEPENDENT SET

Input: Graph G, integer k Graph G, integer k

Question: Is it possible to cover
the edges with k vertices?

Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete
Complete O(nk) possibilities O(nk) possibilitiesenumeration:

O(2kn2) algorithm exists No no(k) algorithm known

Closest substring problems with small distances – p.3/27



Parameterized Complexity

Parameterized problem: input has a special part (usually an integer) called

the parameter.
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Parameterized Complexity

Parameterized problem: input has a special part (usually an integer) called

the parameter.

A parameterized problem is fixed-parameter tractable (FPT) if it has an

f(k) · nc time algorithm, where c is independent of k.

Example: MINIMUM VERTEX COVER is solvable in O(2k · n2) time
(or even in O(1.2832kk + k|V |) time!).
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Parameterized Complexity

Parameterized problem: input has a special part (usually an integer) called

the parameter.

A parameterized problem is fixed-parameter tractable (FPT) if it has an

f(k) · nc time algorithm, where c is independent of k.

Example: MINIMUM VERTEX COVER is solvable in O(2k · n2) time
(or even in O(1.2832kk + k|V |) time!).

A W[1]-hard problem is unlikely to be FPT. To show that a problem L is

W[1]-hard, we have to give a parameterized reduction from a known
W[1]-hard problem to L.

Example: MAXIMUM INDEPENDENT SET is W[1]-hard, no no(k) algorithm

is known.
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Parameterized Problems

For a large number of NP-hard problems, the parameterized version is

fixed-parameter tractable. For some other problems, the parameterized version
is W[1]-hard.

Fixed-parameter tractable problems:

MINIMUM VERTEX COVER

LONGEST PATH

DISJOINT TRIANGLES

GRAPH GENUS

. . .

W[1]-hard problems:

MAXIMUM INDEPENDENT SET

MINIMUM DOMINATING SET

LONGEST COMMON

SUBSEQUENCE

SET PACKING

. . .
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Parameterized Complexity – Motivation

Practical importance: efficient algorithms for small values of k.

Powerful toolbox for designing FPT algorithms:

Bounded Search Tree

Kernelization

Color Coding

Treewidth Graph Minors Theorem

Well-Quasi-Ordering
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The Closest String problem

CLOSEST STRING

Input: Strings s1, . . . , sk of length L

Solution: A string s of length L (center string)

Minimize: maxk
i=1 d(s, si)

d(w1, w2): the number of positions where w1 and w2 differ (Hamming

distance).

Applications: computational biology (e.g., finding common ancestors)

Problem is NP-hard even with binary alphabet [Frances and Litman, 1997].
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The Closest Substring problem

CLOSEST SUBSTRING

Input: Strings s1, . . . , sk , an integer L

Solution: — string s of length L (center string),

— a length L substring s′

i of si for every i

Minimize: maxk
i=1 d(s, s′

i)

Remark: For a given s, it is easy to find the best s′

i for every i.

Applications: finding common patterns, drug design.
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The Closest Substring problem

CLOSEST SUBSTRING

Input: Strings s1, . . . , sk , an integer L

Solution: — string s of length L (center string),

— a length L substring s′

i of si for every i

Minimize: maxk
i=1 d(s, s′

i)

Remark: For a given s, it is easy to find the best s′

i for every i.

Applications: finding common patterns, drug design.

Problem is NP-hard even with binary alphabet (CLOSEST STRING is the
special case |si| = L.)

CLOSEST SUBSTRING admits a PTAS [Li, Ma, & Wang, 2002]:

for every ǫ > 0 there is an nO(1/ǫ4) algorithm that produces a

(1 + ǫ)-approximation.
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Parameterized Closest Substring

CLOSEST SUBSTRING

Input: Strings s1, . . . , sk over Σ, integers L and d

Possible parameters: k, L, d, |Σ|

Find: — string s of length L (center string),

— a length L substring s′

i of si for every i

such that d(s, s′

i) ≤ d for every i

Possible parameters:

k: might be small

d: might be small

L: usually large

|Σ|: usually a small constant

Closest substring problems with small distances – p.9/27



Closest Substring—Results

parameter |Σ| is constant |Σ| is unbounded

d ? W[1]-hard

k W[1]-hard W[1]-hard

d,k ? W[1]-hard

L FPT W[1]-hard

d,k,L FPT W[1]-hard

(Hardness results by [Fellows, Gramm, Niedermeier 2002].)
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Closest Substring—Results

parameter |Σ| is constant |Σ| is unbounded

d W[1]-hard W[1]-hard

k W[1]-hard W[1]-hard

d,k W[1]-hard W[1]-hard

L FPT W[1]-hard

d,k,L FPT W[1]-hard

(Hardness results by [Fellows, Gramm, Niedermeier 2002].)

Theorem: [D.M.] CLOSEST SUBTRING is W[1]-hard with parameters k and d,
even if |Σ| = 2. (In the rest of the talk, Σ is always {0, 1}.)
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Hardness of Closest Substring

Theorem: [D.M.] CLOSEST SUBTRING is W[1]-hard with parameters k and d.

Proof by parameterized reduction from MAXIMUM INDEPENDENT SET.

MAXIMUM INDEPENDENT SET

(G, t)
⇒

CLOSEST SUBSTRING

k = 22O(t)

d = 2O(t)

Corollary: No f(k, d) · nc algorithm for CLOSEST SUBSTRING unless

FPT=W[1].
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Hardness of Closest Substring

Theorem: [D.M.] CLOSEST SUBTRING is W[1]-hard with parameters k and d.

Proof by parameterized reduction from MAXIMUM INDEPENDENT SET.

MAXIMUM INDEPENDENT SET

(G, t)
⇒

CLOSEST SUBSTRING

k = 22O(t)

d = 2O(t)

Corollary: No f(k, d) · nc algorithm for CLOSEST SUBSTRING unless

FPT=W[1].

Corollary: No f(k, d) · no(log d) or f(k, d) · no(log log k) algorithm for CLOS-

EST SUBSTRING unless MAXIMUM INDEPENDENT SET has an f(t) · no(t) algo-

rithm.
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Hardness of Closest Substring

Corollary: No f(k, d) · no(log d) or f(k, d) · no(log log k) algorithm for

CLOSEST SUBSTRING unless MAXIMUM INDEPENDENT SET has an
f(t) · no(t) algorithm.
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Hardness of Closest Substring

Corollary: No f(k, d) · no(log d) or f(k, d) · no(log log k) algorithm for

CLOSEST SUBSTRING unless MAXIMUM INDEPENDENT SET has an
f(t) · no(t) algorithm.

The lower bound on the exponent of n is best possible:

Theorem: [D.M.] CLOSEST SUBSTRING can be solved in f1(d, k) · nO(log d)

time.

Theorem: [D.M.] CLOSEST SUBSTRING can be solved in f2(d, k) ·nO(log log k)

time.
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Relation to approximability

PTAS: algorithm that produces a (1 + ǫ)-approximation in time nf(ǫ).

EPTAS: (efficient PTAS) a PTAS with running time f(ǫ) · nO(1).

Observation: if ǫ = 1
2d

, then a (1 + ǫ)-approximation algorithm can correctly

decide whether the optimum is d or d + 1

⇒ if an optimization problem has an EPTAS, then it is FPT.

Corollary: CLOSEST SUBSTRING has no EPTAS, unless FPT=W[1].
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The first algorithm

Definition: A solution is a minimal solution if
∑k

i=1 d(s, s′

i) is as small as
possible (and d(s, s′

i) ≤ d for every i).
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The first algorithm

Definition: A solution is a minimal solution if
∑k

i=1 d(s, s′

i) is as small as
possible (and d(s, s′

i) ≤ d for every i).

Definition: A set of length L strings G generates a length L string s if
whenever the strings in G agree at the i-th position, then s has the same

character at this position.

Example: G1 generates s but G2 does not.

1 1 0 1 0 1
G1 0 1 0 1 1 1

1 1 0 0 1 1

s 1 1 0 1 0 1

1 1 0 1 1 1
G2 0 1 0 1 1 1

1 1 0 0 1 1

s 1 1 0 1 0 1
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First algorithm

Let S be the set of all length L substrings of s1, . . . , sk . Clearly, |S| ≤ n.

Lemma: If s is the center string of a minimal solution, then S has a subset G

of size O(log d) that generates s, and the strings in G agree in all but at most
O(d log d) positions.
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First algorithm

Let S be the set of all length L substrings of s1, . . . , sk . Clearly, |S| ≤ n.

Lemma: If s is the center string of a minimal solution, then S has a subset G

of size O(log d) that generates s, and the strings in G agree in all but at most
O(d log d) positions.

Algorithm:

Construct the set S .

Consider every subset G ⊆ S of size O(log d).

If there are at most O(d log d) positions in G where they disagree, then try

every center string generated by G.

Running time: |Σ|O(d log d) · nO(log d).
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Proof of the lemma

Lemma: If s is the center string of a minimal solution, then S has a subset G

of size O(log d) that generates s, and the strings in G agree in all but at most
O(d log d) positions.

Proof: Let (s, s′

1, . . . , s′

k) be a minimal solution. We show that {s′

1, . . . , s′

k}

has a O(log d) subset that generates s.

The bad positions of a set of strings are the positions where they agree, but s

is different. Clearly, {s′

1} has at most d bad positions.

We show that if a set of strings has p bad positions, then we can decrease the
number of bad positions to p/2 by adding a string s′

i ⇒ no bad position

remains after adding log d strings.
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Proof of the lemma (cont.)

Example: there are 4 bad positions:

1 1 1 1 1 1 1 1 0
0 1 1 1 1 0 0 1 0
1 1 1 1 1 1 1 0 0

s 1 0 0 0 0 1 1 0 0

To make a bad position non-bad, we have to add a string that disagree with the

previous strings at this position.

There is a string s′

i that disagree on at least half of the bad positions,
otherwise we could change s to make

∑k
i=1 d(s, s′

i) smaller.
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Proof of the lemma (cont.)

Example: there are 4 bad positions:

1 1 1 1 1 1 1 1 0
0 1 1 1 1 0 0 1 0
1 1 1 1 1 1 1 0 0

s 1 0 0 0 0 1 1 0 0

⇒

1 1 1 1 1 1 1 1 0
0 1 1 1 1 0 0 1 0
1 1 1 1 1 1 1 0 0

s′

i 1 1 1 0 0 0 1 1 1

s 1 0 0 0 0 1 1 0 0

To make a bad position non-bad, we have to add a string that disagree with the

previous strings at this position.

There is a string s′

i that disagree on at least half of the bad positions,
otherwise we could change s to make

∑k
i=1 d(s, s′

i) smaller.
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Proof of the lemma (cont.)

Example: there are 4 bad positions:

1 1 1 1 1 1 1 1 0
0 1 1 1 1 0 0 1 0
1 1 1 1 1 1 1 0 0

s 1 0 0 0 0 1 1 0 0

⇒

1 1 1 1 1 1 1 1 0
0 1 1 1 1 0 0 1 0
1 1 1 1 1 1 1 0 0

s′

i 1 1 1 0 0 0 1 1 1

s 1 0 0 0 0 1 1 0 0

To make a bad position non-bad, we have to add a string that disagree with the

previous strings at this position.

There is a string s′

i that disagree on at least half of the bad positions,
otherwise we could change s to make

∑k
i=1 d(s, s′

i) smaller.

(Since every s′

i differs from s on at most d positions, the O(log d) strings will

agree on all but at most O(d log d) positions.)

Closest substring problems with small distances – p.17/27



(Fractional) edge covering

Hypergraph: each edge is an arbitrary set of vertices.

An edge cover is a subset of the edges such that every vertex is covered by at
least one edge.

̺(H): size of the smallest edge cover.

A fractional edge cover is a weight assignment to the edges such that every
vertex is covered by total weight at least 1.

̺∗(H): smallest total weight of a fractional edge cover.
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(Fractional) edge covering

Hypergraph: each edge is an arbitrary set of vertices.

An edge cover is a subset of the edges such that every vertex is covered by at
least one edge.

̺(H): size of the smallest edge cover.

A fractional edge cover is a weight assignment to the edges such that every
vertex is covered by total weight at least 1.

̺∗(H): smallest total weight of a fractional edge cover.

̺(H) = 2
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(Fractional) edge covering

Hypergraph: each edge is an arbitrary set of vertices.

An edge cover is a subset of the edges such that every vertex is covered by at
least one edge.

̺(H): size of the smallest edge cover.

A fractional edge cover is a weight assignment to the edges such that every
vertex is covered by total weight at least 1.

̺∗(H): smallest total weight of a fractional edge cover.

̺(H) = 2

1
2

1
2 1

2

̺∗(H) = 1.5
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Finding subhypergraphs

Definition: Hypergraph H1 appears in H2 as subhypergraph at vertex set

X , if there is a mapping π between X and the vertices of H1 such that for
each edge E1 of H1, there is an edge E2 of H2 with E2 ∩ X = π(E1).

A
A B

D

C

B

D

C
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Finding subhypergraphs

Definition: Hypergraph H1 appears in H2 as subhypergraph at vertex set

X , if there is a mapping π between X and the vertices of H1 such that for
each edge E1 of H1, there is an edge E2 of H2 with E2 ∩ X = π(E1).

A
A B

D

C

B

D

C

We would like to enumerate all the places where H1 appears in H2. Assume

that H2 has m edges and each has size at most ℓ.

Lemma: (easy) H1 can appear in H2 at max. f(ℓ, ̺(H1)) · m̺(H1) places.
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Finding subhypergraphs

Definition: Hypergraph H1 appears in H2 as subhypergraph at vertex set

X , if there is a mapping π between X and the vertices of H1 such that for
each edge E1 of H1, there is an edge E2 of H2 with E2 ∩ X = π(E1).

A
A B

D

C

B

D

C

We would like to enumerate all the places where H1 appears in H2. Assume

that H2 has m edges and each has size at most ℓ.

Lemma: (easy) H1 can appear in H2 at max. f(ℓ, ̺(H1)) · m̺(H1) places.

Lemma: [follows from Friedgut and Kahn, 1998] H1 can appear in H2 at max.

f(ℓ, ̺∗(H1)) · m̺∗(H1) places.
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Half-covering

Defintion: A hypergraph has the half-covering property if for every set X of

vertices there is an edge Y with |X ∩ Y | > |X |/2.

Lemma: If a hypergraph H with m edges has the half-covering property, then

̺∗(H) = O(log log m).

(The O(log log m) is best possible.)

Proof: by probabilistic arguments.
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Reminder

CLOSEST SUBSTRING

Input: Strings s1, . . . , sk over Σ, integers L and d

Possible parameters: k, L, d, |Σ|

Find: — string s of length L (center string),

— a length L substring s′

i of si for every i

such that d(s, s′

i) ≤ d for every i

Goal: f(k, d, Σ) · nO(log log k) running time.
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The second algorithm

First step: guess the correct s′

1 (≤ n possibilities).

Consider the set S of all length L substrings of s1, . . . , sk . We turn S into a

hypergraph H on vertices {1, 2, . . . , L}: if a string in S differs from s′

1 on
positions P ⊆ {1, 2, . . . , L}, then let P be an edge of H .
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The second algorithm

First step: guess the correct s′

1 (≤ n possibilities).

Consider the set S of all length L substrings of s1, . . . , sk . We turn S into a

hypergraph H on vertices {1, 2, . . . , L}: if a string in S differs from s′

1 on
positions P ⊆ {1, 2, . . . , L}, then let P be an edge of H .

Lemma: Assume that in a minimal solution s differs from s′

1 on positions P .
Then there is a hypergraph H0 with at most d vertices and k edges having the

half-covering property such that H0 appears at P in H .
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The second algorithm

First step: guess the correct s′

1 (≤ n possibilities).

Consider the set S of all length L substrings of s1, . . . , sk . We turn S into a

hypergraph H on vertices {1, 2, . . . , L}: if a string in S differs from s′

1 on
positions P ⊆ {1, 2, . . . , L}, then let P be an edge of H .

Lemma: Assume that in a minimal solution s differs from s′

1 on positions P .
Then there is a hypergraph H0 with at most d vertices and k edges having the

half-covering property such that H0 appears at P in H .

Algorithm: Consider every hypergraph H0 as above and enumerate all the
places where H0 appears in H .
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The second algorithm (cont.)

Algorithm:

Construct the hypergraph H .

Enumerate every hypergraph H0 with at most d vertices and k edges
(constant number).

Check if H0 has the half-covering property.

If so, then enumerate every place P where H0 appears in H .

(max. ≈ nO(̺∗(H0)) = nO(log log k) places).

For each place P , check if there is a good center string that differs from s′

1

only at P .

Running time: f(k, d, Σ) · nO(log log k).
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Consensus Patterns

CONSENSUS PATTERNS

Input: Strings s1, . . . , sk over Σ, integers L and D

Possible parameters: k, L, D, |Σ|

Find: — string s of length L (center string),

— a length L substring s′

i of si for every i

such that
∑k

i=1 d(s, s′

i) ≤ D for every i

Another natural parameter: δ = D/k, the average distance.
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Consensus Patterns —Results

parameter |Σ| is constant |Σ| is unbounded

δ ? W[1]-hard

D ? W[1]-hard

k W[1]-hard W[1]-hard

L FPT W[1]-hard

D: total distance

δ: average distance
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Consensus Patterns —Results

parameter |Σ| is constant |Σ| is unbounded

δ FPT W[1]-hard

D FPT W[1]-hard

k W[1]-hard W[1]-hard

L FPT W[1]-hard

D: total distance

δ: average distance

Theorem: [D.M.] CONSENSUS PATTERNS is fixed-parameter tractable with pa-

rameter δ if Σ is bounded.
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Algorithm for CONSENSUS PATTERNS

First step: guess the correct s′

1 (≤ n possibilities).

Consider the set S of all length L substrings of s1, . . . , sk . We turn S into a

hypergraph H on vertices {1, 2, . . . , L}: if a string in S differs from s′

1 on
positions P ⊆ {1, 2, . . . , L}, then let P be an edge of H .
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Algorithm for CONSENSUS PATTERNS

First step: guess the correct s′

1 (≤ n possibilities).

Consider the set S of all length L substrings of s1, . . . , sk . We turn S into a

hypergraph H on vertices {1, 2, . . . , L}: if a string in S differs from s′

1 on
positions P ⊆ {1, 2, . . . , L}, then let P be an edge of H .

Lemma: Assume that in a minimal solution s differs from s′

1 on positions P .
Then there is a hypergraph H0 with at most δ and ̺∗(G) ≤ 5 such that H0

appears at P in H .
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Algorithm for CONSENSUS PATTERNS

First step: guess the correct s′

1 (≤ n possibilities).

Consider the set S of all length L substrings of s1, . . . , sk . We turn S into a

hypergraph H on vertices {1, 2, . . . , L}: if a string in S differs from s′

1 on
positions P ⊆ {1, 2, . . . , L}, then let P be an edge of H .

Lemma: Assume that in a minimal solution s differs from s′

1 on positions P .
Then there is a hypergraph H0 with at most δ and ̺∗(G) ≤ 5 such that H0

appears at P in H .

Algorithm: Consider every hypergraph H0 as above and enumerate all the
places where H0 appears in H .

As H0 has constant fractional edge cover number, the search can be done in

polynomial time!
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Conclusions

Complete parameterized analysis of CLOSEST SUBSTRING and

CONSENSUS PATTERNS.

Tight bounds for subexponential algorithms.

“Weak” parameterized reduction ⇒ subexponential algorithms?

Subexponential algorithms ⇒ proving optimality using parameterized

complexity?

Other applications of fractional edge cover number and finding
hypergraphs?
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