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Abstract
Given a set of n points S in the plane, a triangulation T of S is a maximal set of non-crossing seg-
ments with endpoints in S. We present an algorithm that computes the number of triangulations
on a given set of n points in time n(11+o(1))

√
n, significantly improving the previous best running

time of O(2nn2) by Alvarez and Seidel [SoCG 2013]. Our main tool is identifying separators of
size O(

√
n) of a triangulation in a canonical way. The definition of the separators are based on

the decomposition of the triangulation into nested layers (“cactus graphs”). Based on the above
algorithm, we develop a simple and formal framework to count other non-crossing straight-line
graphs in nO(

√
n) time. We demonstrate the usefulness of the framework by applying it to count-

ing non-crossing Hamilton cycles, spanning trees, perfect matchings, 3-colorable triangulations,
connected graphs, cycle decompositions, quadrangulations, 3-regular graphs, and more.
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1 Introduction

Given a set S of n points in the plane, a triangulation T of S is defined to be a maximal set of
non-crossing line segments with both endpoints in S. This set of segments together with the
set S defines a plane graph. It is easy to see that every bounded face of a triangulation T is
indeed a triangle. We assume that S is in general position: no three points of S are on a line.
Triangulations are one of the most studied concepts in discrete and computational geometry,
studied both from combinatorial and algorithmic perspectives [8, 9, 11, 22, 23, 27, 28, 43].
It is well known that the number of possible triangulations of n points in convex position
is exactly the (n − 2)-th Catalan number, but counting the number of triangulations of
arbitrary point sets seems to be a much harder problem. There is a long line of research
devoted to finding better and better exponential-time algorithms for counting triangulations
[1–7, 21, 26, 30, 33, 42]. The sequence of improvements culminated in the O(2nn2) time
algorithm of Alvarez and Seidel [5], winning the best paper award at SoCG 2013. Our
main result significantly improves the running time of counting triangulations by making it
subexponential:
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52:2 Counting Triangulations

I Theorem 1 (General Plane Algorithm). There exists an algorithm that, given a set S of n

points in the plane, computes the number of all triangulations of S in n(11+o(1))
√

n time.

It is very often the case that restricting an algorithmic problem to planar graphs allows us
to solve it with much better worst-case running time than what is possible for the unrestricted
problem. One can observe a certain “square root phenomenon”: in many cases, the best
known running time for a planar problem contains a square root in the exponent. For
example, the 3-Coloring problem on an n-vertex graph can be solved in subexponential time
2O(

√
n) on planar graphs (e.g., by observing that a planar graph on n vertices has treewidth

O(
√

n) ), but only 2O(n) time algorithms are known for general graphs. Moreover, it is
known that if we assume the Exponential-Time Hypothesis (ETH), which states that there
is no 2o(n) time algorithm for n-variable 3SAT, then there is no 2o(

√
n) time algorithm for 3-

Coloring on planar graphs and no 2o(n) time algorithm on general graphs [37]. The situation
is similar for the planar restrictions of many other NP-hard problems, thus it seems that the
appearance of the square root of the running time is an essential feature of planar problems.
A similar phenomenon occurs in the framework of parameterized problems, where running
times of the form 2O(

√
k) · nO(1) or nO(

√
k) appear for many planar problems and are known

to be essentially best possible (assuming ETH) [10, 12–20, 24, 25, 31, 32, 39–41, 44].
A triangulation of n points can be considered as a planar graph on n vertices, hence it is

a natural question whether the square root phenomenon holds for the problem of counting
triangulations. Indeed, for the related problem of finding a minimum weight triangulation,
subexponential algorithms with running time nO(

√
n) are known [34, 35]. These algorithms

are based on the use of small balanced separators. Given a plane triangulation on n points in
the plane, it is well known that there exists a balanced O(

√
n)-sized separator that divides

the triangulation into at least two independent graphs [36]. The basic idea is to guess
a correct O(

√
n)-sized separator of a minimum weight triangulation and recurse on every

occurring subproblem. As there are only nO(
√

n) potential graphs on O(
√

n) vertices, one
can show that the whole algorithm takes nO(

√
n) time [34, 35].

Unfortunately, this approach has serious problems when we try to apply it to counting
triangulations. The fundamental issue with this approach is that a triangulation of course
may have more than one O(

√
n)-sized balanced separators and hence we may overcount

the number of triangulations, as a triangulation would be taken into account in more than
one of the guesses. To get around this problem, an obvious simple idea would be to say
that we always try to guess a “canonical” separator, for example, the lexicographically first
separator. However, it is a complete mystery how to guarantee in subsequent recursion steps
that the separator we have chosen is indeed the lexicographic first for all the triangulations
we want to count. Perhaps the most important technical idea of the paper is finding a
suitable way of making the separators canonical.

This extended abstract is committed to give a comprehensive self-contained explanation
of the main concepts of the algorithm. For a version with all details and proofs see [38].

1.1 Preliminaries
We interpret a collection of points V and non-crossing segments E in R2 as a plane graph,
if every segment e ∈ E shares exactly its endpoints with V . We usually identify points
with vertices and edges with segments. We always denote by n the number of vertices. A
plane graph induces naturally a partition of the plane into open faces, open segments and
a finite collection of points. The unique unbounded face is called the outer face. We call
a plane graph G a cactus graph (or just cactus) if all its vertices and edges are incident to
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Figure 1 A triangulation with three cactus layers. Layer 1 is colored orange,
Layer two is colored red and Layer 3 is colored green. Note that the layers do not
need to be connected.

the outer face. Such a graph is outerplane, but some outerplane graphs are not cacti. For
convenience, we do not require cactus graphs to be connected. A triangulation of a set of
points is a maximal plane graph on those points.

We define a decomposition of a triangulation into nested (cactus) layers of cacti. The
first (cactus) layer is defined by the set of vertices and edges incident to the outer face.
Inductively, the i-th layer is defined by the vertices and edges incident to the outer faces
after the first i−1 layers are removed and has index i. We say layer i is further outside then
layer j if i < j and in this case layer j is more inside than layer i. The outerplanar index of
a graph is defined by the number of non-empty (cactus) layers. Further, we can give each
vertex uniquely the index of the layer it is contained in. It is not difficult to see that the
index equals the distance to the boundary of the convex hull.

We define ∂CH(S) as the boundary of the convex hull of the point set S. The onion
layers of a set of points S are defined inductively in a similar fashion. The first layer is
∂CH(S). The i-th layer is the boundary of the convex hull after the first i − 1 layers are
removed.

The definition of cactus layers and onion layers should not be confused: the onion layers
are completely defined by the point set only, whereas cactus layers are defined by the point
set and the triangulation. In particular, it is easy to construct a point set with an arbitrary
large number of onion layers, but having a triangulation with only two cactus layers.

1.2 Results

Given a triangulation T , we define small canonical separators by distinguishing two cases.
If T has more than

√
n cactus layers, then one of the first

√
n layers has size at most

√
n

and we can define the one with smallest index to be the canonical separator. Using such
a separator, we peel off some cacti to reduce the problem size. In the case when we have
only a few cactus layers, we can define short canonical separator paths from any vertex to
the outer face of the triangulation. We formalize both ideas into a dynamic programming
algorithm. The main difficulty is to define the subproblems appropriately. We define ring
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52:4 Counting Triangulations

subproblems to be suitable for layer separators and nibbled ring subproblems to be suitable
for the separator paths.

As a byproduct of this algorithmic scheme, we can efficiently count triangulations with
a small number of layers. This is similar to previous work on finding a minimum weight
triangulation [6] and counting triangulations [2] for point sets with a small number of onion
layers.

I Theorem 2 (Thin Plane Algorithm). There exists an algorithm that given a set S of n

points in the plane computes the number of all triangulations of S with outerplanar index k

in nO(k) time.

One may want to count triangulations subject to certain constraints (e.g., degree bounds,
or bounds on the angles of the triangles, etc.) or generalize the problem to counting colored
triangulations with colors on the vertices or edges. We introduce an annotated version of the
problem to express such generalizations in a clean and formal way. An annotated triangle
is a 9-tuple consisting of 3 points of S, which form an empty triangle and 6 strings, one for
each vertex and edge of the triangle. An annotation system is a list L of annotated triangles.
An annotated triangulation T is a triangulation with a string defined for each vertex and
each edge (so these strings define an annotated triangle for each triangle of T ). Given an
annotation system L, we call an annotated triangulation T valid if every annotated triangle
∆ of T belongs to L. With little extra effort, we can generalize our algorithms to count also
valid annotated triangulations. We denote by |L| the number of annotated triangles and
assume that each string can be described with nO(1) bits.

I Theorem 3 (Counting Annotated Triangulations). Given an annotation system L and a
set S of n points in the plane, we can count all valid annotated triangulations in time
n(11+o(1))

√
n · |L|(12+o(1))

√
n.

As examples of this generalization, we can count triangulations that are 3-colorable or
where each point has a specified degree in the triangulation: all we need is to carefully design
a suitable annotation system.

I Theorem 4. Given a set S of n points in the plane, we can count all 3-colorable triangu-
lations of S in time nO(

√
n).

I Theorem 5. Given a set S of n points in the plane with prescribed degrees on each vertex,
we can count all triangulations T satisfying the degree constraints in time nO(

√
n).

More generally, instead of triangulations, we could be interested in counting other geo-
metric graph classes, such as non-crossing perfect matchings, non-crossing Hamilton cycles,
etc. Surprisingly, many such problems can be expressed in a completely formal way in our
framework of counting annotated triangulations. The idea here is to extend the geomet-
ric graph into a 2-edge-colored triangulation, with one color forming the original geometric
graph itself and the other color representing the edges of the triangulation that were not
present in the original graph. To make this idea work, we have to ensure that for each
member of our graph class, we count only one 2-edge-colored triangulation. This is non-
trivial, as a given geometric graph can be extended into a 2-edge-colored triangulation in
many different ways. Similarly to previous work [2, 4], we use the notion of constrained
Delaunay triangulation (see [29]) to enforce that each graph has a unique extension into a
valid 2-edge-colored triangulation. By formalizing this idea and carefully designing annota-
tion systems, it is possible to get nO(

√
n) time algorithms for a large number of graph classes.

The following theorem states some important examples to demonstrate the applicability of
our approach.
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Figure 2 Cactus layes are ideal separators, as they separate in a simple way the
inside from the outside and we can easily peel off large layers from the outside.

I Theorem 6 (Counting Geometric Structures). The following non-crossing structures can
be counted in time nO(

√
n) on a set of n points in the plane: the set of all graphs, perfect

matchings, cycle decompositions, Hamilton cycles, Hamiltonian paths, Euler tours, spanning
trees, d-regular graphs, and quadrangulations.

We would like to emphasize that the proof of Theorem 6 uses the algorithm of Theorem 3
as a black box. Thus these results can be proved in a completely formal way without the
need for revisiting the details of the proof of Theorem 3. In addition to the actual algorithms
presented in the paper, we consider our second main contribution to be the development
of the framework of annotated triangulations and demonstrating its flexibility in modeling
other problems.

1.3 The Essence of the Key Ideas of the Algorithm
The complete proof can be found in the full online version. We want to use this extended
abstract to present the key ideas of the algorithm in a level of detail that gives the reader
a good understanding of the algorithm without indulging into the nuances of the technical
details. Before we do this, we want to give the reader the essence in an even more condensed
high level form.

Similar to almost all previous algorithms, our algorithm is based on separators. There
are two major differences: the separators are defined not in terms of the input (point set),
but in terms of the output (triangulation). We use two kind of separators. Depending on
the type of triangulation we want to count, we choose which kind of separator we use.

Given a triangulation with outerplanar index k >
√

n, there exists a layer of size at
most

√
n by the pigeonhole principle, see Figure 2. This layer is an ideal candidate for a

separator. As layers are nested and separate the inner from the outer part completely. In
order to make them canonical, we choose the outermost small cactus layer and peel it off. In
subsequent recursions, we have to ensure that we count only triangulations where this was
indeed the outermost small cactus layer. This can be done by guessing all possible sizes of
all layers that have smaller index.

In case that the outerplanar index k is below
√

n, there exists a path of length at most
k − 1 from any vertex to the outermost layer, see Figure 3. (The idea is that every vertex
either is adjacent to the outer face or has a neighbor with smaller index.) If done correctly,
these paths can be used as a separator within a well designed dynamic programming scheme.
Anagnostou and Corneil [6] demonstrated this for finding a minimum weight triangulation,
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52:6 Counting Triangulations

Figure 3 Paths from the interior to the outside are short separators, if the
triangulation does not have too many layers. The resulting dynamic programming
scheme is a little unintuitive, as it nibbles off the algorithmic problem from the
outside.

using layers defined in terms of the input instead of layers defined in terms of the output.
The algorithmic idea is essentially the same. Alvarez, Bringmann, Curticapean and Ray
showed how to make these separators canonical and thus suitable for counting problems [2],
by giving each vertex a fixed distinguished rank and always choose the next vertex on the
separator path with the smallest available rank.

We use these separator paths in an, at first, unintuitive way. Consider the case, where we
have already made a few recursion steps, see Figure 3. (The very first step is degenerate and
not suitable for an illustrative example.) In this situation, we have to triangulate a simple
polygon, where one edge e = (u, v) is singled out. Some part of the polygon comes from
separator paths of previous recursion steps. We guess all triangles ∆ = ∆(u, v, w) incident
to e = (u, v) and all short paths p from w to ∂CH(S). In this way, we attain a large and
a small subproblem. The triangle ∆ defines special edges for subsequent subproblems. We
repeat the procedure for all appearing subproblems till the subproblems are of constant size.
We nibble off small bites in each recursion step. Only at later stages larger bites are taken.

The technical and conceptual difficulties come from the need to combine the two different
separators into one dynamic programming scheme. Note that we might first guess a layer
then the sizes of layers with smaller index and thereafter use the path separators as described
above. Thus, we have to define very carefully subproblems for our dynamic programing
routine that are specifically designed to work for both separators.

The runtime bound follows from the size of the separators. Whenever we guess a separ-
ator of size O(

√
n), we have at most

(
n

O(
√

n)
)

= nO(
√

n) possibilities.

2 Ring Subproblems

Our algorithm is based on dynamic programming: we define a large number of subproblems
that are more general than the problem we are trying to solve. We generalize the problem
by considering rings: we need to triangulate a point set in a region between a polygon and
a cactus. Additionally, we may have layer-constraints prescribing that a certain number of
vertices should appear on certain layers.

We proceed to give the crucial ingredients of ring subproblems, which serve as the basis of
the dynamic programming, see Figure 4 for an illustration. We omit any technical conditions,
which are important to show correctness, but are not essential for the main ideas.

I Definition 7 (Ring Subproblems). A ring subproblem S consists of an outer layer Qout an
inner layer Qin, some width information, and an optional layer-constraint vector c.
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outer layer Qout

inner layer Qin

free region

forbidden
region

free points P

Figure 4 At the left a layer-unconstrained ring subproblem is depicted. At the
right a valid triangulation of the ring subproblem is drawn. It consists of three layers:
The outer layer drawn in black, the “middle” layer drawn in orange and the inner
layer drawn in blue.

outer layer: The outer layer Qout is a simple poylgon.
inner layer: The inner layer Qin is a cactus contained in the outer layer. An important

special case is that the inner layer might be empty.
layer-constraint vector: This vector c prescribes the size of each layer of the triangulation

we are looking for. We do not always specify a layer constraint vector: We distinuish
between layer-constrained ring subproblems and layer-unconstrained ring subproblems.

width: The width is a natural number w that specifies how many non-empty cactus layers
any valid triangulation may have.

free region: The free region is the region “between” the inner and outer layer.
free points: The free points P are the points of the original point set inside the free region.

Given a layer-unconstrained ring subproblem S and a layer-constraint vector c, we denote
by S(c) the layer-constrained ring subproblem defined by them.

I Definition 8 (Valid Triangulation). Given a ring subproblem S, consider a graph T ex-
tending the graph formed by Qin∪Qout and the free points. We assume that all faces in the
free region are triangles and there are no edges outside the free region. The graph T can be
decomposed into cactus layers Li as explained in Section 1.1. We call such a graph T of S
a valid triangulation of S if the following conditions are satisfied:
1. The inner layer Qin corresponds indeed with the innermost cactus layer of T .
2. The number of layers equals the width w.
3. In case that a layer constraint vector c is given, we require that each layer has the size

given by c.

Note that Condition 3 subsumes Condition 2, in case a layer-constraint vector is given.

I Theorem 9. There exists an algorithm that given an annotated layer-unconstrained ring
subproblem S with n free points computes the number of all triangulations of S in time
n(11+o(1))

√
n.

Given a set of points S, we can define a set of ring subproblems, such that each triangu-
lation of S is a valid triangulation of exactly one of the ring subproblems. We use the convex
hull as outer layer and the empty graph as inner layer. We do not need layer constraints. It
is technical, but straightforward to show that this works indeed.

SoCG 2016



52:8 Counting Triangulations

outer layer Qout

inner layer Qin

base edge

free region

boundary paths
p1 and p2

forbidden
region

free points P

Figure 5 Left: A nibbled ring subproblem S consisting of a base edge depicted
in dark blue dashed; two boundary paths, displayed in dotted brown from the base
edge to the outer layer Qout, displayed in black; the free region depicted in yellow;
containing free points, depicted in green; The forbidden region is depicted in white.
Right: A nibbled ring subproblem together with a valid triangulation. It consists of
four layers. The middle two layers are colored orange. The base edge belongs to the
third layer.

3 Thin Rings

This section sketches the proof of the following theorem, which gives an algorithm for solving
ring subproblems with a certain width w. This algorithm will be invoked by the main
algorithm for values w ≤

√
n. We will sketch the main ideas of the algorithm and its

runtime analysis.

I Theorem 10. There exists an algorithm that given a (layer-constrained or layer-unconstrained)
ring subproblem S with width w and at most n free points, computes the number of all valid
triangulations of S in time n(5+o(1))w.

Theorem 10 implies easily Theorem 2 in a similar fashion as Theorem 9 implies The-
orem 3. We use path-separators for this algorithm. This requires a yet more specialized
definition of subproblems for our dynamic programming scheme: nibbled ring subproblems.

We start with the key ingredients of nibbled ring problems omitting the parts that are
equivalent to ring subproblems, see Figure 5 for an illustration of the nibbled ring subprob-
lems. We omit the inner layer, the width, the free region, the free points and the layer
constraints.

I Definition 11 (Nibbled Ring Subproblem). The outer layer is always a polygonal chain
(i.e. , a plane graph that is a path as a graph.). We have additionally two disjoint boundary
paths p1 and p2 that end on the outer layer and start at the base edge. Note that the
boundary paths are allowed to have length zero. The base edge, the boundary paths and
the polygonal chain form a cycle that bounds the free region, see Figure 5.

Next we define valid triangulations for a nibbled ring subproblems. As for ring problems,
we also want to define a cactus layer structure for nibbled ring problems that is consistent
with the previous definition. The definition of cactus-layers does not generalize in a straight-
forward way to nibbled ring subproblems. Recall that the length of the shortest path from
any vertex of the i-th layer to the boundary of the convex hull (outer layer) has length i−1.
Therefore, we will define the layers in terms of distance to the outer layer. This way of
defining layers is equivalent for triangulations of point sets and carries over to nibbled ring
subproblems.
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Figure 6 Left: a ring subproblem Right: the transformed nibbled ring subprob-
lem.

Another important ingredient is the concept of order labels of the vertices. Each vertex
has a distinct order label from 1, . . . , n. The importance here is that the order label is
defined as a preprocessing step. It is never altered during the algorithm.

I Definition 12 (Valid Triangulation). Given a nibbled ring subproblem S consider a tri-
angulation T of S. For each vertex v ∈ V (T ), we define d(v) as the length of the shortest
path to the outer-layer Qout. We call T a valid triangulation of S if the conditions for ring
subproblems and the following additional condition are satisfied:
4. For any vertex vi of any boundary path p = (v1, . . . , vk), we have that d(vi) = d(vi+1)+1

holds. Furthermore, we require that the neighbor vi+1 of vi be the neighbor of vi in T

with the smallest order label among the neighbors with smaller distance to the outer
layer.

I Theorem 13. There exists an algorithm that given a nibbled ring subproblem S with width
w computes the number of all valid triangulations of S in time n(5+o(1))w.

Theorem 13 easily implies Theorem 10, using a simple transformation from ring sub-
problems to nibbled ring subproblems, see Figure 6.

We start with a description of the separators, see Figure 7. Given a valid triangulation
T of a nibbled ring subproblem S, recall that every vertex on layer i has a neighbor w.r.t.T
in layer i − 1. Furthermore, there is a unique triangle ∆ incident to the base edge. From
vertex v of ∆, which is not incident to the base edge, there exists a path to the outer layer
of S by always choosing an adjacent vertex closer to the outer layer. There is exactly one
such path p, if we further require that the vertex with lowest order label is taken. (Recall
that the order label is fixed in advance.) Such paths are called canonical outgoing paths.

Let us now move to the algorithmic scheme using the paths as separators. We recurse
on a nibbled ring subproblem by guessing all potential such triangles ∆ incident to the base
edge and all potential canonical paths p as described above. For each such path, we can
define two subproblems Sright(p) and Sleft(p), see Figure 7. We can restrict our triangulation
T to these subproblems and receive two new triangulations Tleft and Tright, and conversely,
given two triangulations Tleft and Tright, we can combine it to a triangulation T . This is
the point where property 4 of Definition 12 becomes relevant: if Tleft and Tright satisfy this
property, then it will be true for T that the path p is the canonical outgoing path starting
at vertex v of ∆.

Thus we count recursively the number of valid triangulations of subproblems Sright and
Sleft and get exactly the number of valid triangulations of S where ∆ is the triangle incident
to the base edge and p is the canonical outgoing path starting at vertex v of ∆. More
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Sleft

Sright

p2

p

∆

p1

Sright

Sleft

Tright

Tleft

Figure 7 On the top left is a nibbled ring subproblem S together with a valid
triangulation T . There is a unique triangle ∆ adjacent to the base edges. From
the vertex v of ∆ that is not incident to the base edge exists a path p to the outer
layer. The triangle ∆ and the path p are drawn dashed brown. The path p is
uniquely determined if we always use the vertex with the smallest order label among
all available choices. On the top right the nibbled ring problem S is depicted together
with the separator path p that splits it into two subproblem Sright and Sleft. At the
bottom left, both subproblems are displayed. The three white vertices are shared.
At the bottom right the restricted triangulations Tleft and Tright are displayed.

precisely, we sum over all potential canonical outgoing paths p and multiply the number of
valid triangulations for Sleft(p) with the number of valid triangulations for Sright(p).

If there are layer constraints in S, then we have to do some more work. Let d, dleft, and
dright be the vectors that indicate the size of the layers for T , Tleft, and Tright respectively.
Except for the vertices shared by Tleft and Tright, it holds that d equals dleft + dright. Now,
let us go back to our subproblems Sleft and Sright. Let c be the layer-constraint vector
of S. Then, we define all pairs of compatible layer-constraints (cleft, cright) such that two
valid triangulations for Sright(cright) and Sleft(cleft) respectively give a triangulation for S
with the correct number of vertices on each layer. Thus for each pair Sleft and Sright of
nibbled ring subproblems we sum over all pairs of compatible layer constraint vectors cleft
and cright and multiply the number of valid triangulations of Sleft(cleft) with the number of
valid triangulations of Sright(cright).

Here, the technical difficulty is to take into consideration the vertices shared by both
subproblems. Further we need to ensure that vertices in the i-th layer of Sright will also be
in the i-th layer of S. We recurse on all subproblems occurring in this way.
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layer-constrained
outer ring

subproblem Sout

layer-unconstrained
ring subproblem S

collection of
layer-unconstrained inner

ring subproblem Sin

layer-unconstrained ring
subproblem S1

layer-unconstrained
ring subproblem S2

Figure 8 On the top is a ring subproblem S depicted with the outer layer drawn
with solid lines, the inner layer in dotted and a separator layer is dashed. In the
middle left the outer ring subproblem is depicted and on the middle right is the inner
ring subproblem depicted. At the bottom two layer-unconstrained ring subproblems
are depicted. The free region is marked yellow in all cases.

Proof sketch (of Theorem 13). The correctness of the algorithm follows from the correct-
ness of the recursion. The bound on the running time follows from bounding the time
required to solve a subproblem times the number of subproblems. We save our intermediate
results in a search tree in order to prevent to handle any subproblem more than once. The
bound on the number of subproblems follows from the fact that all of their items are fixed
by at most two path separators, and from the fact that a separator has at most length
w, thus there are at most nO(w) of them. The number of layer constraints is bounded by
the assumption that at most w layers are constrained. The time for the recursive steps
for one subproblem can be asymptotically bounded by the number of recursions, which in
turn depends only on the number of potential canonical paths and ways to split the layer
constraints in a compatible way. J

4 Layer-Unconstrained Ring Subproblems

We sketch the main algorithm in this section and estimate its running time.
The way we solve general ring subproblems is to distinguish two cases. In the case that

the ring subproblem is thin, that is, has only few layers (≤
√

n), we will use the algorithm
of Theorem 10 as explained in Section 3. In case that we have many layers (w >

√
n), we

know that one of the outermost
√

n layers must be of size ≤
√

n by the pigeon hole principle.
We use this layer as a separator that splits the problem into a thin outer part and an inner
part.

In the course of the algorithm, we will never add layer-constraint vectors to ring subprob-
lems with more than

√
n layers. Thus we do not have to deal in this part of the algorithm

with layer-constraint vectors.
We start with a description of the layer-separators: To be more explicit, let S be a ring

subproblem and let T be a valid triangulation of S. The width w tells us already the exact
number of layers that T has. Consider the case that T has more than

√
n layers. Then

among the
√

n layers closest to the outer layer, one must have size less than or equal to
√

n.
Note that the layer L that is actually closest to the outer layer of S is uniquely determined.

SoCG 2016



52:12 Counting Triangulations

This layer is our separator layer.
The algorithm works as follows: We guess all potential separator layers L, which requires

guessing at most
√

n points and O(
√

n) edges. Each guess defines an inner ring subproblem
Sin and an outer ring subproblem Sout, as depicted in Figure 8. We recurse on all Sin and
Sout created in this way. To compute the number of valid triangulations of S, we sum over
all separator layers L and multiply the number of valid triangulations of Sin with the number
of valid triangulations of Sout, for each appearing L.

In case the cactus layer L is disconnected or has disconnected bounded faces, we deal with
a collection of inner ring subproblems. In this case, we recurse on each inner ring subproblem
separetly, and multiply the numbers of valid triangulations of each ring subproblem.

We can restrict T to Sout to attain a triangulation Tout. It is clear that all layers different
from L and Qout in Tout have size larger than

√
n. Therefore, we want to count only those

triangulations of Sout that have all layers (except L and Qout) of size larger than
√

n. We
use layer constraints for this purpose: we solve Sout with every possible layer constraint
where every layer is require to have size greater than

√
n. Thus, we sum over all such layer-

constraint vector c the number of valid triangulations of Sout(c). Also note that Sout has at
most

√
n layers and thus the number of constraint layers are at most

√
n holds by induction.

Note that we do not recurse on the outer ring subproblems by the main algorithm, but
rather solve them with the algorithm of Section 3. The runtime is given in Theorem 10.

The running time can be estimated by bounding the total number of ring subproblems
times the time spent per ring subproblem. Each layer-unconstrained ring subproblem is
defined by an inner and an outer layer. In the course of the algorithm only inner and outer
layers of size less than or equal to

√
n are guessed, and there are at most nO(

√
n) of them.

In the recursion step, we either guess all potential layer separators or we deal with rings of
width smaller than

√
n. In the first case there are at most nO(

√
n) many guesses. In the

second case, the runtime is given by Theorem 10. Thus the total running time is bounded
by nO(

√
n) · nO(

√
n) = nO(

√
n).

5 Counting Annotated Triangulations

Here we describe how we adapt the algorithm to also count annotated triangulations with
given annotation system L. The adaptation consists of a few straightforward steps. Most
prominently, whenever we guess a separator, we guess an annotation for all k1 vertices and
k2 edges that we guessed. It is easy to see that there are at most |L|k1+k2 possible guesses.
The next step is to check each time we guess a triangle whether the triangle belongs to L.
The last step is more subtle. We need to guess also annotations on the outer layer of our
initial ring subproblems. However, the initial outer layer is the convex hull, which might
contain a linear number of vertices. To circumvent this, we use a standard trick to add a
triangle ∆ containing the whole point set. This adds some additional constraints on the
triangulations we want to count, but circumvents the problem of guessing the annotations
of the boundary of the convex hull.

6 Applications for Counting Other Structures

In this section, we develop a framework for counting non-crossing straight line graphs (e.g.,
non-crossing matchings or non-crossing Hamiltonian cycles), based on our algorithms for
counting annotated triangulations. The key idea here is to introduce a new color and extend
the graph into a triangulation by filling it with edges of this new color in a canonical way.
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For these filler-edges, we use the constrained Delaunay triangulation, in a similar fashion as
previous authors have done already [2, 4]. We give only a sketch of the argument here.

As a running example of this section, let us consider the problem of counting non-crossing
perfect matchings. We show how this problem can be reduced to counting annotated trian-
gulations and then Theorem 3 can be invoked to obtain a subexponential-time algorithm.

I Theorem 14 (Counting Perfect Matchings). There exists an algorithm that, given a set
S of n points in the plane, counts the total number of non-crossing perfect straight line
matchings in nO(

√
n) time.

The obvious idea of reducing counting perfect matchings to counting annotated trian-
gulations is the following. Let us say that the edges appearing in a perfect matchings have
red color and let us extend a perfect matching to a triangulation with edges of color blue.
It is not very difficult to construct an annotation system enforcing that each edge of the
triangulation is either red or blue, and each vertex has exactly one red edge incident to
it. One way of doing this would be to annotate each vertex v with the index of the other
endpoint v′ of its red edge and then to enforce this interpretation by forbidding any triangle
incident to v that contains an edge separating v from v′. Now counting triangulations with
this annotation system overcounts the number of perfect matchings: each perfect matching
can be extended into one or more triangulations satisfying the annotation system. Thus
we need to further restrict the annotation system in a way that ensures that each perfect
matching has exactly one, canonical extension.

Let G be a straight line graph on a set of n points and T be a triangulation extending G on
the same set of points. We say that T is the constrained Delaunay triangulation of G if every
edge e ∈ E(T ) \E(G) satisfies the Delaunay Condition, that is, the circumference of neither
adjacent triangle contains the other adjacent triangle. (In case that e is on the boundary of
the convex hull of S, then we define that the Delaunay Condition is automatically satisfied
for e.) It is known that each G has a unique constrained Delaunay triangulation.

I Theorem 15 ([29]). Given a straight line graph G on a set of n points, there exists exactly
one constrained Delaunay triangulation T extending G.

It is not very difficult to construct an annotation system that enforces that the Delaunay
Condition holds for every blue edge. First, we annotate each blue edge with a pair of
vertices: a pair containing the third vertex of each of the two triangles incident to the edge.
This interpretation is easy to enforce. Then we allow only those annotations where the two
triangles of the edge satisfy the Delaunay Condition: neither of them is contained in the
circumscribed circle of the other. It is clear that now any valid annotated triangulation has
the property that it is the Delaunay triangulation of the red edges and in particular any set
of red edges has a unique extension into a valid annotated triangulation.

Combining the two annotation systems, we arrive to an annotation system where the valid
annotated triangulations are exactly the Delaunay triangulations of non-crossing perfect
matchings. Thus counting the number of annotated triangulations using the algorithm of
Theorem 3 counts the number of non-crossing perfect matchings. This proves Theorem 14.

In a similar way, we can construct annotation systems requiring the red edges form other
non-crossing structures such as Hamiltonian cycles, spanning trees, quadrangulations, and
many more. Combining these annotation systems with the annotation system enforcing the
Delaunay Condition on the blue edges, we can construct annotation systems counting these
structures as well. This allows us to prove Theorem 6 as stated in the introduction.
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