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Abstract

Matroid theory gives us powerful techniques for understanding com-
binatorial optimization problems and for designing polynomial-time algo-
rithms. However, several natural matroid problems, such as 3-matroid
intersection, are NP-hard. Here we investigate these problems from the
parameterized complexity point of view: instead of the trivial nO(k) time
brute force algorithm for finding a k-element solution, we try to give al-
gorithms with uniformly polynomial (i.e., f(k) · nO(1)) running time. The
main result is that if the ground set of a represented linear matroid is
partitioned into blocks of size ℓ, then we can determine in randomized
time f(k, ℓ) · nO(1) whether there is an independent set that is the union
of k blocks. As consequence, algorithms with similar running time are
obtained for other problems such as finding a k-element set in the inter-
section of ℓ matroids, or finding k terminals in a network such that each of
them can be connected simultaneously to the source by ℓ disjoint paths.

1 Introduction

Many of the classical combinatorial optimization problems can be studied in the
framework of matroid theory. The polynomial-time solvability of finding mini-
mum weight spanning trees, finding perfect matchings in bipartite and general
graphs, and certain connectivity problems all follow from the general algorithmic
results on matroids.

Deciding whether there is an independent set of size k in the intersection of
two matroids can be done in polynomial time, but the problem becomes NP-
hard if we have to find a k-element set in the intersection of three matroids.

∗Research partially supported by the Magyary Zoltán Felsőoktatási Közalaṕıtvány and the
Hungarian National Research Fund (Grant Number OTKA 67651).
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Of course, the problem can be solved in nO(k) time by brute force, hence it is
polynomial-time solvable for every fixed value of k. However, the running time
is prohibitively large, even for small values of k (e.g., k = 10) and moderate
values of n (e.g., n = 1000). In general, if k appears in the exponent of n in
the running time, then the algorithm is usually too slow even for small values
of k. The aim of parameterized complexity is to identify problems where the
exponential increase of the running time can be restricted to some parameter
k, thus the problem might be efficiently solvable for small values of k, even
if n is large. A problem is called fixed-parameter tractable (FPT) if it has an
algorithm with running time f(k) ·nO(1). Notice that here the exponent of n is
independent of the parameter k, thus the running time depends polynomially on
n and f(k) can be considered as a constant factor for small values of k. There is
a huge qualitative difference between running times such as O(2k · n2) and nk:
the former can be efficient even for, say, k = 15, while the latter has no chance
of working. For more background and details on parameterized complexity, see
Section 2 and [2, 3].

The question that we investigate in this paper is whether the NP-hard ma-
troid optimization problems are fixed-parameter tractable if the parameter k is
the size of the object that we are looking for. The most general result is the
following:

Theorem 1.1 (Main). Let M(E, I) be a linear matroid where the ground set is
partitioned into blocks of size ℓ. Given a linear representation A of M , it can be
determined in f(k, ℓ) · ‖A‖O(1) randomized time whether there is an independent
set that is the union of k blocks. (‖A‖ denotes the length of A in the input.)

Actually, our algorithm finds such an independent set, if it exists. Since
it is easy to test whether a set is really independent in a linear matroid, the
algorithm has only one-sided error: it cannot produce false positives.

For ℓ = 2, this problem is exactly the so-called matroid parity problem: given
a partition of the ground set into pairs, find an independent set of maximum
size that contains 0 or 2 elements from each pair. A celebrated result of Lovász
shows that matroid parity is polynomial-time solvable for linear matroids, if
the linear representation is given in the input [6]. For ℓ ≥ 3, the problem is
NP-hard: this can be shown by a reduction from the intersection problem of
three matroids.

As applications of the main result, we show that the following problems are
also solvable in randomized time f(k, ℓ) · nO(1). It is easy to see that these
problems are polynomial-time solvable for every fixed value of k; the result
states that there is such an algorithm where the exponent does not depend on
k.

1. Given a family of subsets each of size at most ℓ, find k of them that are
pairwise disjoint.

2. Given a graph G, find k (edge) disjoint triangles in G.

3. Given ℓ matroids over the same ground set, find a set of size k that is
independent in each matroid.
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4. Feedback Edge Set with Budget Vectors: given a graph with ℓ-
dimensional cost vectors on the edges, find a feedback edge set of size at
most k such that the total cost does not exceed a given vector C (see
Section 5.3 for the precise definition).

5. Reliable Terminals: select k terminals and connect each of them to
the source s with ℓ paths such that these k · ℓ paths are pairwise disjoint.

The fixed-parameter tractability of the first two problems is well-known: they
can be solved either with color coding or using representative systems [1, 9].
However, it is interesting to see that (randomized) fixed-parameter tractability
can be obtained as a straightforward corollary of our results on matroids. We
are not aware of any parameterized investigations of the last three problems.
The algorithms presented in the paper are not practical, thus the results are
of theoretical interest only. Therefore, determining exactly and optimizing the
running time is not the focus of the paper. Nevertheless, as our techniques can
be used to quickly show that certain problems are fixed-parameter tractable, we
believe that it is a useful addition to the toolbox of parameterized complexity.

The algorithm behind the main result is inspired by the technique of rep-
resentative systems introduced by Monien [9] (see also [11, 8] and [2, Section
8.2]). Iteratively for i = 1, 2, . . . , ℓ, we construct a collection Si that contains
independent sets arising as the union of i blocks (if there are such independent
sets). The crucial observation is that it is sufficient to consider a subcollection
of Si whose size is at most a constant depending only on k and ℓ. In [8], this
bound is obtained using Bollobás’ Inequality. In our case, the bound can be
obtained using a linear-algebraic generalization of Bollobás’ Inequality due to
Lovász [5, Theorem 4.8] (see also [4, Chapter 31, Lemma 3.2]). However, we
need an algorithmic way of bounding the size of the Si’s, hence we do not state
and use these inequalities here, but rather reproduce the proof of Lovász in a
way that can be used in the algorithm (Lemma 4.2). The proof of this lemma
is a simple application of multilinear algebra.

The algorithms that we obtain are randomized in the sense that they use
random numbers and there is a small probability of not finding a solution even
if it exists. The randomized nature of the algorithm comes from the fact that
we rely on the Zippel-Schwartz Lemma in some of the operations involving
matroid representations. Additionally, when working with representations over
finite fields, then some of the algebraic operations are most conveniently done
randomized. As the main result makes essential use of the Zippel-Schwartz
Lemma (and hence is inherently randomized), we do not discuss whether these
miscellaneous algebraic operations can be derandomized.

The paper is organized as follows. Section 2 summarizes the most important
notions of parameterized complexity and matroid theory. (Some further defini-
tions appear in Section 3.) Section 3 discusses how certain operations can be
performed on the representations of matroids. Most of these constructions are
either easy or folklore. The reason why we discuss them in detail is that we need
these results in algorithmic form. The main result is presented in Section 4. In
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Section 5, the randomized fixed-parameter tractability of certain problems are
deduced as corollaries of the main result.

2 Preliminaries

This section briefly states the most important definitions of parameterized com-
plexity, matroid theory, and randomized algorithms.

2.1 Parameterized Complexity

We follow [3] for the standard definitions of parameterized complexity. Let Σ be
a finite alphabet. A decision problem is represented by a set Q ⊆ Σ∗ of strings
over Σ. A parameterization of a problem is a polynomial-time computable
function κ : Σ∗ → N. A parameterized decision problem is a pair (Q, κ), where
Q ⊆ Σ∗ is an arbitrary decision problem and κ is a parameterization. Intuitively,
we can imagine a parameterized problem as a decision problem where each input
instance x ∈ Σ∗ has a positive integer κ(x) associated with it. A parameterized
problem (Q, κ) is fixed-parameter tractable (FPT) if there is an algorithm that
decides whether x ∈ Q in time f(κ(x)) · |x|c for some constant c and computable
function f . An algorithm with such running time is called an fpt-time algorithm
or simply fpt-algorithm. In a straightforward way, the theory can be extended
to parameterization with more than one parameters. For example, we say that
a problem is FPT with combined parameters κ1, κ2 if it has an algorithm with
running time f(κ1(x), κ2(x)) · |x|c.

Many NP-hard problems were investigated in the parameterized complex-
ity literature, with the goal of identifying fixed-parameter tractable problems.
There is a powerful toolbox of techniques for designing fpt-algorithms: kernel-
ization, bounded search trees, color coding, well-quasi ordering—just to name
some of the more important ones. On the other hand, certain problems resisted
every attempt at obtaining fpt-algorithms. Analogously to NP-completeness in
classical complexity, the theory of W[1]-hardness can be used to give strong
evidence that certain problems are unlikely to be fixed-parameter tractable. As
the current paper does not contain any hardness result, we omit the details of
W[1]-hardness theory; see [2, 3].

2.2 Matroids

A matroid M(E, I) is defined by a ground set E and a collection I ⊆ 2E of
independent sets satisfying the following three properties:

(I1) ∅ ∈ I

(I2) If X ⊆ Y and Y ∈ I, then X ∈ I.

(I3) If X, Y ∈ I and |X | < |Y |, then ∃e ∈ Y \ X such that X ∪ {e} ∈ I.
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An inclusionwise maximal set of I is called a basis of the matroid. It can be
shown that the bases of a matroid all have the same size. This size is called
the rank of the matroid M , and is denoted by r(M). The rank r(S) of a subset
S ⊆ E is the size of the largest independent set in S.

The definition of matroids was motivated by two classical examples. Let
G(V, E) be a graph, and let a subset X ⊆ E of edges be independent if X
does not contain any cycles. This results in a matroid, which is called the cycle
matroid of G. The second example comes from linear algebra. Let A be a matrix
over an arbitrary field F . Let E be the set of columns of A, and let X ⊆ E be
independent if these columns are linearly independent. The matroids that can
be defined by such a construction are called linear matroids, and if a matroid
can be defined by a matrix A over a field F , then we say that the matroid is
representable over F . In this paper we consider only representable matroids,
hence we assume that the matroids are given by a matrix A in the input. To
avoid complications involving the representations of the elements in the matrix,
we assume that F is either a finite field or the rationals. If F is a finite field
with pn elements, then we assume that elements of F are given as degree n− 1
polynomials over Z[p], and a degree n irreducible polynomial is also given in the
input. We denote by ‖A‖ the size of the representation A: the total number of
bits required to describe all elements of the matrix.

2.3 Randomized Algorithms

Some of the algorithms presented in this paper are randomized, which means
that they can produce incorrect answer, but the probability of doing so is small.
More precisely, we assume that the algorithm has an integer parameter P given
in unary, and the probability of incorrect answer is 2−P . We say that an al-
gorithm is randomized polynomial time if the running time can be bounded
by a polynomial of the input size (which includes the unary description of P ).
It is easy to see that if an algorithm performs a polynomial number of opera-
tions, and each operation can be done in randomized polynomial time, then the
whole algorithm is randomized polynomial time as well. Most of the randomized
algorithms in this paper are based on the following lemma:

Lemma 2.1 (Zippel-Schwartz [13, 15]). Let p(x1, . . . , xn) be a nonzero poly-
nomial of degree d over some field F , and let S be an N element subset of F . If
each xi is independently assigned a value from S with uniform probability, then
p(x1, . . . , xn) = 0 with probability at most d/N .

3 Representation Issues

The algorithm in Section 4 is based on algebraic manipulations, hence it requires
that the matroid is given by a linear representation in the input. Therefore, in
the proof of the main result and in its applications, we need algorithmic results
on how to find representations for certain matroids, and if some operation is
performed on a matroid, then how to obtain a representation of the result.
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3.1 Dimension

The rank of a matroid represented by an m×n matrix is a most m: if the columns
are m-dimensional vectors, then more than m of them cannot be independent.
Conversely, every linear matroid of rank r has a representation with r rows:

Proposition 3.1. Given a matroid M of rank r with a representation A over
F , we can find in polynomial time a representation A′ over F having r rows.

Proof. Let r be the rank of the matroid M . By applying Gaussian elimination
and possibly reordering the columns, it can be assumed that A is of the form

(

Ir×r B
0 0

)

,

where Ir×r is the unit matrix of size r× r, and B is a matrix of size r× (n− r).
Clearly, only the first r rows of the representation have to be retained. Gaussian
elimination requires a polynomial number of arithmetic operations. If F is
a finite field, then it is clear that each arithmetic operation can be done in
polynomial time. In the case when F is the rationals, the arithmetic operations
are polynomial if the length of the elements remain polynomially bounded during
every step of Gaussian elimination. We briefly sketch a possible argument to
show that the length of the elements are of polynomial size. The row operations
of Gaussian elimination can be interpreted as multiplying the matrix with a
square matrix from the left. Gaussian elimination transforms the first r columns
into a unit matrix, hence this square matrix is the inverse of the submatrix
formed by the first r columns. The entries of this inverse matrix can be obtained
as the ratio of a cofactor and the determinant, hence they are of polynomial
length. Therefore, after Gaussian elimination terminates, the length of each
entry is polynomially bounded. The argument can be tweaked to bound the
length of the elements in the intermediate steps.

3.2 Increasing the Size of the Field

The applications of Lemma 2.1 requires N to be large, so the probability of
accidentally finding a root is small. However, N can be large only if the field
F contains a sufficient number of elements. Therefore, if a matroid is given by
a representation over some small field F , then we need a method of transform-
ing this representation into a representation over a field F ′ having at least N
elements.

Let |F | = q and let n = ⌈logq N⌉. We construct a field F ′ having qn ≥ N
elements. In order to do this, an irreducible polynomial p(x) of degree n over F
is required. Such a polynomial p(x) can be found for example by the randomized
algorithm of Shoup [14] in time polynomial in n and log q. Now the ring of degree
n polynomials over F modulo p(x) is a field F ′ of size qn. If a representation
over F is given, then each element can be replaced by the corresponding degree
0 polynomial from F ′, which yields a representation over F ′.
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Proposition 3.2. Let A be the representation of a matroid M over some field
F . For every N , it is possible to construct a representation A′ of M over some
field F ′ with |F ′| ≥ N in randomized time (‖A‖ · log N)O(1).

3.3 Making the Field Finite

If a matroid is represented over the rationals, and we perform repeated opera-
tions on the representation, then the size of the rational elements can become
very large, and it is not at all clear whether the size of the resulting represen-
tation is polynomially bounded in the original size. On the other hand, if the
representation is over a finite field, then the size of the representation cannot
increase above a certain size. Therefore, sometimes it is convenient to assume
that the representation is over a finite field:

Proposition 3.3. Given a matroid M with a representation A over the ratio-
nals, we can construct in randomized polynomial time a representation A′ that
is over some finite field F .

Proof. Using Prop. 3.1, it can be assumed that A is of size r×n, where r is the
rank of the matroid. Multiplying by the product of the denominators, it can be
assumed that the elements are integers (note that the length of the elements in-
crease only polynomially). Let M be the maximum absolute value in the matrix,
and let N = 4r!M r. The determinant of an r × r submatrix is clearly between
−r!M r and r!M r, hence if we calculate the determinant of a submatrix with
modulo p arithmetic where p ≥ N , then we get the same value. It is not difficult
to find a prime number p with N ≤ p ≤ 2N in randomized polynomial time.
Replacing each element with the corresponding element from the p-element field
does not change which submatrices have nonzero determinants and hence does
not change which set of columns are independent.

3.4 Direct Sum

Let M1(E1, I1) and M2(E2, I2) be two matroids with E1 ∩ E2 = ∅. The direct
sum M1 ⊕ M2 is a matroid over E := E1 ∪ E2 such that X ⊆ E is independent
if and only if X ∩ E1 ∈ I1 and X ∩ E2 ∈ I2. If A1 and A2 are representations
of the two matroids over the same field F , then it is easy to see that

A =

(

A1 0
0 A2

)

is a representation of M1 ⊕ M2. The construction can be generalized for the
sum of more than two matroids, hence we have

Proposition 3.4. Given representations of matroids M1, . . . , Mk over the
same field F , a representation of their direct sum can be found in polynomial
time.
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3.5 Uniform and Partition Matroids

The uniform matroid Un,k has an n-element ground set E, and a set X ⊆ E is
independent if and only if |X | ≤ k. Every uniform matroid is linear and can
be represented over the rationals by a k × n matrix where the element in the
i-th column of j-th row is i(j−1). Clearly, no set of size larger than k can be
independent in this representation, and every set of k columns is independent,
as they form a Vandermonde matrix.

A partition matroid is given by a ground set E partitioned into k blocks E1,
. . . , Ek, and by k integers a1, . . . , ak. A set X ⊆ E is independent if and only
if |X ∩ Ei| ≤ ai holds for every i = 1, . . . , k. As this partition matroid is the
direct sum of uniform matroids U|E1|,a1

, . . . , U|Ek|,ak
, we have

Proposition 3.5. A representation over the rationals of a partition matroid
can be constructed in polynomial time.

3.6 Dual

The dual of a matroid M(E, I) is a matroid M∗(E, I∗) over the same ground
set where a set B ⊆ E is a basis of M∗ if and only if E \ B is a basis of M .

Proposition 3.6. Given a representation A of a matroid M , a representation
of the dual matroid M∗ can be found in polynomial time.

Proof. Let r be the rank of the matroid M . By Prop. 3.1, it can be assumed
that A is of the form (Ir×r B), where Ir×r is the unit matrix of size r × r, and
B is a matrix of size r × (n − r). Now the matrix A∗ = (B⊤ I(n−r)×(n−r))
represents the dual matroid M∗; see any text on matroid theory (e.g., [12]).

3.7 Truncation

The k-truncation of a matroid M(E, I) is a matroid M ′(E, I ′) such that S ⊆ E
is independent in M ′ if and only if |S| ≤ k and S is independent in M .

Proposition 3.7. Given a matroid M with a representation A over a finite
field F and an integer k, a representation of the k-truncation M ′ can be found
in randomized polynomial time.

Proof. By Prop. 3.1 and 3.2, it can be assumed that A is of size r × n and
the size of F is at least N := 2P · knk (where P is the parameter describing
the amount of error we tolerate, see Section 2.3). Let R be a random matrix
of size k × r, where each element is taken from F with uniform distribution.
We claim that with high probability, the matroid M ′ represented by RA is
the k-truncation of M . Since the k × m matrix RA cannot have more than k
independent columns, all we have to show is that a k-element set is independent
in M ′ if and only if it is independent in M . Let S be a set of size k, let A0

be the r × k submatrix of A formed by the corresponding k columns, and let
B0 = RA0 be the corresponding k columns in RA. If S is not independent in
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M , (i.e., the columns of A0 are not independent), then the columns of B0 are
not independent either. This means that S is not independent in the matroid
M ′ represented by RA. Assume now that S is independent in M . The columns
of A0 are independent, thus detRA0 6= 0 with positive probability (e.g., there is
a matrix R such that RA0 is the unit matrix). We use Lemma 2.1 to show that
this probability is at least 1− 2−P /nk. The value det RA0 can be considered as
a polynomial, with the kr elements of the matrix R being the variables. Since
detRA0 is not always zero, the polynomial is not identically zero. As the degree
of this polynomial is k, Lemma 2.1 ensures that detRA0 = 0 with probability
at most k/N = 2−P /nk. Thus the probability that a particular k-element
independent set of M is not independent in M ′ is at most 2−P /nk. Matroid M
has not more than nk independent set of size k, hence the probability that M ′

is not the k-truncation of M is at most 2−P .

Given a matroid represented over the rationals, we can find a representation
over a finite field in randomized polynomial time (Prop. 3.3) and then apply
Prop. 3.8 to obtain the truncation. Thus we have:

Proposition 3.8. Given a matroid M with a representation A over the ratio-
nals and an integer k, a representation of the k-truncation M ′ can be found in
randomized polynomial time.

3.8 Deletion and Contraction

Let M(E, I) be a matroid, and let X be a subset of E. Deleting X from M
gives a matroid M \ X = (E \ X, I ′) such that S ⊆ E \ X is independent in
M \ X if and only if S is independent in M . Given a representation of M , a
representation of M \X can be obtained by deleting the columns corresponding
to X .

Contracting the set X gives a matroid M/X(E \ X, I ′′) where S ⊆ E \ X
is independent if and only if r(S ∪ X) = |S| + r(X). Deletion and contraction
are dual operations: if M∗ is the dual of M , then M∗ \ X is the dual of M/X .
Therefore, a representation of M/X can be obtained by finding a representation
of the dual matroid M∗ (using Prop. 3.6), deleting X , and taking the dual of
the resulting matroid.

Proposition 3.9. Given a matroid M over E with a representation A and a
subset X ⊆ E, representations of the matroids M \ X and M/X can be found
in polynomial time.

3.9 Cycle Matroids

The cycle matroid of G(V, E) can be represented over the 2-element field as
follows. Consider the |V |× |E| incidence matrix of G, where the i-th element of
the j-th row is 1 if and only if the i-th vertex is an endpoint of the j-th edge. If
a set of edges form a cycle, then the sum of the corresponding columns is zero
(mod 2), hence these columns are not independent. On the other hand, if some
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columns are not independent, then these columns have a subset whose sum is
zero. These columns form at least one cycle, which means that a set of columns
is linearly independent if and only if the corresponding edges are acyclic.

Proposition 3.10. Given a graph, a representation of the cycle matroid over
the two element field can be constructed in polynomial time.

3.10 Transversal Matroids

Let G(A, B; E) be a bipartite graph. The transversal matroid M of G has A as
its ground set, and a subset X ⊆ A is independent in M if and only if there is
a matching that covers X . That is, X is independent if and only if there is an
injective mapping φ : X → B such that φ(v) is a neighbor of v for every v ∈ X .

Proposition 3.11. Given a bipartite graph G(A, B; E), a representation of its
transversal matroid can be constructed in randomized polynomial time.

Proof. Let R be a |B| × |A| matrix, where the i-th element in the j-th row is

• a random integer between 1 and N := 2P · |A| · 2|A| if the i-th element of
A and the j-th element of B are adjacent, and

• 0 otherwise.

We claim that with high probability, R represents the transversal matroid of
M . Assume that a subset X of columns is independent. These columns have
a |X | × |X | submatrix with nonzero determinant, hence there is at least one
nonzero term in the expansion of this determinant. The nonzero term is a
product of |X | nonzero cells, and these cells define a matching covering X : they
map each column in X to a distinct row.

Assume now that X ⊆ A is independent in the transversal matroid: it can
be matched with elements Y ⊆ B. This means that the determinant of the
|Y | × |X | submatrix R0 of R corresponding to X and Y has a term that is the
product of nonzero elements. The determinant of R0 can be considered as a
polynomial of degree at most |A|, where the variables are the random elements
of R0. The polynomial has at most |X ||Y | ≤ |A||B| variables and degree at most
|A|. The existence of the matching and the corresponding nonzero term in the
determinant shows that this polynomial is not identically zero. By Lemma 2.1,
the probability that the determinant of R0 is zero is at most |A|/N = 2−P /2|A|,
implying that the columns X are independent with high probability. There are
at most 2|A| independent sets in M , thus the probability that not all of them
are independent in the matroid represented by R is at most 2−P .

4 The Main Result

In this section we give a randomized fpt-algorithm for determining whether there
are k blocks whose union is independent, if a matroid is given with a partition
of the ground set into blocks of size ℓ. The idea is to construct for i = 1, . . . , k
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the collection Si of all independent sets that arise as the union of i blocks. A
solution exists if and only if Sk is not empty. It is not difficult to see that the set
Si can be constructed if Si−1 is already known. The problem is that the size of
Si can be as large as nΩ(i), hence we cannot handle sets of this size in fpt-time.
The crucial idea is that we retain only a constant size subcollection of each Si

in such a way that we do not throw away any sets essential for the solution.
The property that this reduced collection has to satisfy is the following:

Definition 4.1. Given a matroid M(E, I) and a collection S of subsets of E,
we say that a subcollection S∗ ⊆ S is r-representative for S if the following
holds: for every set Y ⊆ E of size at most r, if there is a set X ∈ S disjoint
from Y with X ∪ Y ∈ I, then there is a set X∗ ∈ S∗ disjoint from Y with
X∗ ∪ Y ∈ I.

That is, if some independent set in S can be extended to a larger independent
set by r new elements, then there is a set in S∗ that can be extended by the
same r elements. 0-representative means that S∗ is not empty if S is not empty.
We use the following lemma to obtain a representative subcollection of constant
size. The lemma is essentially the same as [5, Theorem 4.8] and [4, Chapter 31,
Lemma 3.2] due to Lovász, but here it is presented in an algorithmic way.

Lemma 4.2. Let M be a linear matroid of rank r+s, and let S = {S1, . . . , Sm}
be a collection of independent sets, each of size s. If |S| >

(

r+s
s

)

, then there is
a set S ∈ S such that S \ {S} is r-representative for S. Furthermore, given a
representation A of M , we can find such a set S in f(r, s) · (‖A‖m)O(1) time.

Proof. Assume that M is represented by an (r + s) × n matrix A over some
field F . Let E be the ground set of the matroid M , and for each element
e ∈ E, let xe be the corresponding (r + s)-dimensional column vector of A. Let
wi =

∧

e∈Si
xe, a vector in the exterior algebra of the linear space F r+s (cf. [7,

Sections 6-10]). As every wi is the wedge product of s vectors, the wi’s span a
space of dimension at most

(

r+s
s

)

. Therefore, if |S| >
(

r+s
s

)

, then the wi’s are
not independent. Thus it can be assumed that some vector wk can be expressed
as the linear combination of the other vectors.

We claim that if Sk is removed from S, then the resulting subsystem is r-
representative for S. Assume that, on the contrary, there is a set Y of size at
most r such that Sk ∩ Y = ∅ and Sk ∪ Y is independent, but this does not
hold for any other Si with i 6= k. Let y =

∧

e∈Y xe. A crucial property of the
wedge product is that the product of some vectors in F r+s is zero if and only
if they are not independent. Therefore, wk ∧ y 6= 0, but wi ∧ y = 0 for every
i 6= k. However, wk is the linear combination of the other wi’s, thus, by the
multilinearity of the wedge product, wk ∧ y 6= 0 is a linear combination of the
values wi ∧ y = 0 for i 6= k, which is a contradiction.

It is straightforward to make this proof algorithmic. First we determine
the vectors wi, then a vector wk that is spanned by the other vectors can be
found by standard techniques of linear algebra. Let us fix a basis of F r+s,
and express the vectors xe as the linear combination of the basis vectors. The
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vector wi is the wedge product of s vectors, hence, using the multilinearity of
the wedge product, each wi can be expressed as the sum of (r+s)s terms. Each
term is the wedge product of basis vectors of F r+s; therefore, the antisymmetry
property can be used to reduce each term to 0 or a basis vector of the exterior
algebra. Thus we obtain each wi as a linear combination of at most

(

r+s
s

)

basis
vectors. Now Gaussian elimination can be used to determine the rank of the
subspace spanned by the wi’s, and to check whether the rank remains the same
if one of the vectors is removed. If so, then the set corresponding to this vector
can be removed from S, and the resulting subsystem S∗ is representative for
S. The running time of the algorithm can be bounded by a polynomial of
the number m of vectors, the number of terms in the expression of a wi (i.e.,
(r + s)s), the dimension of the subspace spanned by the wi’s (i.e.,

(

r+s
s

)

), and
the size of the representation of M . Therefore, the running time is of the form
f(r, s) · (‖A‖m)O(1) for some function f(r, s).

Now we are ready to prove the main result:

of Theorem 1.1. First we obtain a representation A′ for the kℓ-truncation of the
matroid. By Prop 3.8, this can be done in time polynomial in ‖A‖. Using A′

instead of A does not change the answer to the problem, as we consider the inde-
pendence of the union of at most k blocks. However, when invoking Lemma 4.2,
it will be important that the elements are represented as kℓ-dimensional vectors.

For i = 1, . . . , k, let Si be the set system containing those independent sets
that arise as the union of i blocks. Clearly, the task is to determine whether Sk

is empty or not. For each i, we construct a subsystem S∗
i ⊆ Si that is (k − i)ℓ-

representative for Si. As S∗
k is 0-representative for Sk, the emptiness of Sk can

be checked by checking whether S∗
k is empty.

The set system S1 is easy to construct, hence we can take S∗
1 = S1. Assume

now that we have a set system S∗
i as above. The set system S∗

i+1 can be

constructed as follows. First, if |S∗
i | >

(

iℓ+(k−i)ℓ
iℓ

)

=
(

kℓ
iℓ

)

, then by Lemma 4.2,
we can throw away an element of S∗

i in such a way that S∗
i remains (k − i)ℓ-

representative for Si. Therefore, it can be assumed that |S∗
i | ≤

(

kℓ
iℓ

)

. To obtain
S∗

i+1, we enumerate every set S in S∗
i and every block B, and if S and B are

disjoint and S ∪ B is independent, then S ∪ B is put into S∗
i+1. We claim that

the resulting system is (k − i − 1)ℓ-representative for Si+1 provided that S∗
i is

(k − i)ℓ-representative for Si. Assume that there is a set X ∈ Si+1 and a set Y
of size (k− i−1)ℓ such that X∩Y = ∅ and X∪Y is independent. By definition,
X is the union of i+1 blocks; let B be an arbitrary block of X . Let X0 = X \B
and Y0 = Y ∪B. Now X0 is in Si, and we have X0∩Y0 = ∅ and X0∪Y0 = X∪Y
is independent. Therefore, there is a set X∗

0 ∈ S∗
i with X∗

0 ∩Y0 = ∅ and X∗
0 ∪Y0

independent. This means that the independent set X∗ := X∗
0 ∪ B is put into

S∗
i+1, and it satisfies X∗ ∩ Y = ∅ and X∗ ∪ Y independent.

When constructing the set system S∗
i+1, the amount of work to be done is

polynomial in ‖A′‖ for each member S of S∗
i . As discussed above, the size of

each S∗
i can be bounded by

(

kℓ
iℓ

)

, thus the running time is f(k, ℓ) · ‖A′‖O(1).
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We remark that the above algorithm actually finds a required independent
set, if it exists: any member of S∗

k is a solution.

5 Applications

In this section we derive some consequences of the main result: we list problems
that can be solved using the algorithm of Theorem 1.1.

5.1 Matroid Intersection

Given matroids M1(E, I1), . . . , Mℓ(E, Iℓ) over a common ground set, their
intersection is the set system I1∩· · ·∩Iℓ. In general, the resulting set system is
not a matroid, even for ℓ = 2. Deciding whether there is a k-element set in the
intersection of two matroids is polynomial-time solvable (cf. [12]), but NP-hard
for more than two matroids. Here we show that the problem is randomized
fixed-parameter tractable for a fixed number of represented matroids:

Theorem 5.1. Let M1, . . . , Mℓ be matroids with the same ground set E, given
by their linear representations A1, . . . , Aℓ over the same field F . We can decide
in f(k, ℓ) · (

∑ℓ

i=1 ‖Ai‖)O(1) randomized time if there is a k-element set that is
independent in every Mi.

Proof. Let E = {e1, . . . , en}. We rename the elements of the matroids to make

the ground sets pairwise disjoint: let e
(i)
j be the copy of ej in Mi. By Prop. 3.4,

a representation of M := M1 ⊕ · · · ⊕ Mℓ can be obtained in polynomial time.
Partition the ground set of M into blocks of size ℓ: for 1 ≤ j ≤ n, block Bj

is {e
(1)
j , . . . , e

(ℓ)
j }. If M has an independent set that is the union of k blocks,

then the corresponding k elements of E is independent in each of M1, . . . ,
Mℓ. Conversely, if X ⊆ E is independent in every matroid, then the union
of the corresponding blocks is independent in M . Therefore, the algorithm of
Theorem 1.1 answers the question.

5.2 Disjoint Sets

Packing problems form a well-studied class of combinatorial optimization prob-
lems. Here we study the case when the objects to be packed are small:

Theorem 5.2. Let S = {S1, . . . , Sn} be a collection of subsets of E, each of
size at most ℓ. There is an f(k, ℓ)·nO(1) time randomized algorithm for deciding
whether it is possible to select k pairwise disjoint subsets from S.

Proof. By adding dummy elements, it can be assumed that each Si is of size
exactly ℓ. Let V = {vi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ ℓ}. We define a partition
matroid over V as follows. For every element e ∈ E, let Ve ⊆ V contain vi,j if
and only if the j-th element of Si is e. Clearly, the Ve’s form a partition of V .
Consider the partition matroid M where a set is independent if and only if it
contains at most 1 element from each class of the partition. Let block Bi be
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{vi,1, . . . , vi,ℓ}. If k pairwise disjoint sets can be selected from S, then the union
of the corresponding k blocks is independent in M as every element is contained
in at most one of the selected sets. The converse is also true: if the union of
k blocks is independent, then the corresponding k sets are disjoint, hence the
result follows from Theorem 1.1.

Theorem 5.2 immediately implies the existence of randomized fixed-parameter
tractable algorithms for two well-know problems: Disjoint Triangles and
Edge Disjoint Triangles. In these problems the task is to find, given a
graph G and an integer k, a collection of k triangles that are pairwise (edge)
disjoint. If E is the set of vertices (edges) of G, and the sets in S are the triangles
of G, then it is clear that the algorithm of Theorem 5.2 solves the problem.

5.3 Feedback Edge Set with Budget Vectors

Given a graph G(V, E), a feedback edge set is a subset X of edges such that
G(V, E \ X) is acyclic. If the edges of the graph are weighted, then finding a
minimum weight feedback edge set is the same as finding a maximum weight
spanning forest, which is well-known to be polynomial-time solvable. Here we
study a generalization of the problem, where each edge has a vector of integer
weights:

Feedback Edge Set with Budget Vectors

Input: A graph G(V, E), a vector xe ∈ [0, 1, . . . , m]ℓ

for each e ∈ E, a vector C ∈ Z
ℓ
+, and an integer

k.

Parameter: k, ℓ, m

Question: Find a feedback edge set X of ≤ k edges such
that

∑

e∈X xe ≤ C.

That is, the cost of each edge has ℓ components, and we have to satisfy an
upper bound on each component of the total cost. For ℓ = 1, the we get the
weighted version of Feedback Edge Set, which well-known to be solvable by
a greedy algorithm. However, it can be shown that Feedback Edge Set with

Budget Vectors is NP-hard. On the other hand, the problem is randomized
fixed-parameter tractable with parameters k and ℓ:

Theorem 5.3. Feedback Edge Set with Budget Vectors can be solved
in f(k, ℓ, m) · nO(1) randomized time.

Proof. It can be assumed that k = |E| − |V |+ c(G) (where c(G) is the number
of components of G): if k is smaller, then there is no solution; if k is larger,
then it can be decreased without changing the problem. Let M0(E, I0) be the
dual of the cycle matroid of G. The rank of M0 is k, and a set X of k edges is
a basis of M if and only if the complement of X is a spanning forest, i.e., X is
a feedback edge set.
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Let C = [c1, . . . , cℓ] and n = |E|. For i = 1, . . . , ℓ, let Mi(Ei, Ii) be the
uniform matroid Unm,ci

. By Props. 3.10, 3.2, 3.6, 3.5, and 3.4, a representation
of the direct sum M = M0 ⊕ M1 ⊕ · · · ⊕ Mk can be constructed in polynomial

time. For each e ∈ E, let Be be a block containing e ∈ E and x
(i)
e arbitrary

elements of Ei for every i = 1, . . . , ℓ (where x
(i)
e ≤ m denotes the i-th component

of xe). Each set Ei contains nm elements, which is sufficiently large to make
the blocks Bi disjoint. The size of each block is at most ℓ′ := 1+mℓ. By adding
dummy elements (elements that are independent from every subset of elements),
we can ensure that the size of each block is exactly ℓ′. Hence the algorithm of
Theorem 1.1 can be used to determine in randomized time f(k, ℓ′)·nO(1) whether
there is an independent set that is the union of k blocks. It is clear that every
such independent set corresponds to a feedback edge set such that the total
weight of the edges does not exceed C at any component.

5.4 Reliable Terminals

In this section we give a randomized fixed-parameter tractable algorithm for a
combinatorial problem motivated by network design applications.

Reliable Terminals

Input: A directed graph D(V, A), a source vertex s ∈
V , a set T ⊆ V \ {s} of possible terminals.

Parameter: k, ℓ

Question: Select k terminals t1, . . . , tk ∈ T and k · ℓ in-
ternally vertex disjoint paths Pi,j (1 ≤ i ≤ k,
1 ≤ j ≤ ℓ) such that path Pi,j goes from s to
ti.

The problem models the situation when k terminals have to be selected that
receive k different data streams (hence the paths going to different terminals
should be disjoint due to capacity constraints) and each data stream is protected
from ℓ−1 node failures (hence the ℓ paths of each data stream should be disjoint).

Let D(V, A) be a directed graph, and let S ⊆ V be a subset of vertices. We
say that a subset X ⊆ V is linked to S if there are |X | vertex disjoint paths
going from S to X . (Note that here we require that the paths are disjoint,
not only internally disjoint. Furthermore, zero-length paths are also allowed if
X ∩ S 6= ∅.) A result due to Perfect shows that the set of linked vertices form
a matroid:

Theorem 5.4 (Perfect [10]). Let D(V, A) be a directed graph, and let S ⊆ V
be a subset of vertices. The subsets that are linked to S form the independent
sets of a matroid over V . Furthermore, a representation of this matroid can be
obtained in randomized polynomial time.

Proof. Let V = {v1, . . . , vn} and assume for convenience that no arc enters S.
(Deleting these arcs does not change which sets are linked.) Let G(U, W ; E) be
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a bipartite graph where a vertex ui ∈ U corresponds to each vertex vi ∈ V , and
a vertex wi ∈ W corresponds to each vertex vi ∈ V \ S. For each vi ∈ V \ S,
there is an edge wiui ∈ E, and for each −−→vivj ∈ A, there is an edge uiwj ∈ E.

The size of a maximum matching in G is at most |W | = n−|S|. Furthermore,
a matching of size n − |S| can be obtained by taking the edges uiwi for every
vi ∈ V \ S. Let V0 ⊆ V be a subset of size |S|, and let U0 be the corresponding
subset of U . We claim that V0 is linked to S if and only G has a matching
covering U \ U0. Assume first that there are |S| disjoint paths going from S to
V0. Consider the matching where wi ∈ W is matched to uj if one of the paths
enters vi from vj , and wi is matched to ui otherwise. This means that ui is
matched if one of the paths reaches vi and continues further on, or if none of
the paths reaches vi. Thus the unmatched ui’s corresponds to the end points of
the paths, as required.

To see the other direction, consider a matching covering U \U0. As |U \U0| =
n− |S|, this is only possible if the matching fully covers W . Let vi1 be a vertex
of S \ U0. Let wi2 be the pair of ui1 in the matching, let wi3 be the pair of
ui2 , etc. We can continue this until a vertex uik

is found that is not covered
in the matching. Now vi1 , vi2 , . . . , vik

is a path going from S to vik
∈ V0. If

this procedure is repeated for every vertex of S, then we obtain |S| paths that
are pairwise disjoint, and each of them ends in a vertex of V0. This completes
the proof of the claim that V0 is linked if and only if G has a matching covering
U \ U0.

If X is linked to S, then X can be extended to a linked set of size exactly
|S| by adding vertices of S to it (as they are connected to S by zero-length
paths). The observation above shows that linked sets of size |S| are exactly the
bases of the dual of the transversal matroid of G, which means that the linked
sets are exactly the independent sets of this matroid. By Props. 3.11 and 3.6,
a representation of this matroid can be constructed in randomized polynomial
time.

Theorem 5.5. Reliable Terminals is solvable in f(k, ℓ) · nO(1) randomized
time.

Proof. Let us replace the vertex s with k·ℓ independent vertices S = {s1, . . . , skℓ}
such that each new vertex has the same neighborhood as s. Similarly, each t ∈ T
is replaced with ℓ vertices t(1), . . . , t(ℓ), but now we remove every outgoing edge
from t(2), . . . , t(ℓ). (Note that the outgoing edges of t(1) are preserved.) De-
note by D′ the new graph. It is easy to see that a set of terminals t1, . . . ,
tk form a solution for the Reliable Terminals problem if and only if the

set {t
(j)
i : 1 ≤ i ≤ k, 1 ≤ j ≤ ℓ} is linked to S in D′. Using Theorem 5.4,

we can construct a representation of the matroid whose independent sets are
exactly the sets linked to S in D′. Delete the columns that do not correspond
to vertices in T , hence the ground set of the matroid has ℓ|T | elements. Par-
tition the ground set into blocks of size ℓ: for every t ∈ T , there is a block
Bt = {t(1), . . . , t(ℓ)}. Clearly, the Reliable Terminals problem has a solution
if and only if the matroid has an independent set that is the union of k blocks.
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Therefore, Theorem 1.1 can be used to solve the problem.
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