Randomized techniques for parameterized algorithms

Dániel Marx1

1Computer and Automation Research Institute, Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary

IPEC 2012
September 13, 2012
Ljubljana, Slovenia
Why randomized?

- A guaranteed error probability of 10^{-100} is as good as a deterministic algorithm. (Probability of hardware failure is larger!)
- Randomized algorithms can be more efficient and/or conceptually simpler.
- Can be the first step towards a deterministic algorithm.
FPT

A parameterized problem is fixed-parameter tractable if it can be solved in time $f(k) \cdot n^{O(1)}$ for some computable function f.

Polynomial time vs. FPT

FPT

A parameterized problem is fixed-parameter tractable if it can be solved in time $f(k) \cdot n^{O(1)}$ for some computable function f.

Polynomial time vs. FPT

FPT

A parameterized problem is fixed-parameter tractable if it can be solved in time $f(k) \cdot n^{O(1)}$ for some computable function f.

Polynomial-time randomized algorithms

- Randomized selection to pick a **typical, unproblematic, average** element/subset.
- Error probability is constant or at most polynomially small.

Randomized FPT algorithms

- Randomized selection to satisfy a **bounded number of** (unknown) constraints.
- Error probability might be exponentially small.
Randomization

There are two main ways randomization appears:

- **Algebraic techniques** (Schwartz-Zippel Lemma)
 See *Andreas Björklund’s* talk, Friday 13:30.

- **Combinatorial techniques.**
 This talk.
Randomization as reduction

Problem A
(what we want to solve)

Randomized magic

Problem B
(what we can solve)
Color Coding

k-Path

Input: A graph G, integer k.

Find: A simple path of length k.

Note: The problem is clearly NP-hard, as it contains the Hamiltonian Path problem.

Theorem [Alon, Yuster, Zwick 1994]

k-Path can be solved in time $2^{O(k)} \cdot n^{O(1)}$.
Color Coding

- Assign colors from $[k]$ to vertices $V(G)$ uniformly and independently at random.
Color Coding

- Assign colors from $[k]$ to vertices $V(G)$ uniformly and independently at random.

![Graph with vertex color assignments](image)
Color Coding

- Assign colors from $[k]$ to vertices $V(G)$ uniformly and independently at random.

- Check if there is a path colored $1 - 2 - \cdots - k$; output “YES” or “NO”.
 - If there is no k-path: no path colored $1 - 2 - \cdots - k$ exists \Rightarrow “NO”.
 - If there is a k-path: the probability that such a path is colored $1 - 2 - \cdots - k$ is k^{-k} thus the algorithm outputs “YES” with at least that probability.
Error probability

Useful fact

If the probability of success is at least p, then the probability that the algorithm does not say “YES” after $1/p$ repetitions is at most

$$(1 - p)^{1/p} < (e^{-p})^{1/p} = 1/e \approx 0.38$$
Error probability

Useful fact
If the probability of success is at least p, then the probability that the algorithm does not say “YES” after $1/p$ repetitions is at most

$$(1 - p)^{1/p} < (e^{-p})^{1/p} = 1/e \approx 0.38$$

- Thus if $p > k^{-k}$, then error probability is at most $1/e$ after k^k repetitions.
- Repeating the whole algorithm a constant number of times can make the error probability an arbitrary small constant.
- For example, by trying $100 \cdot k^k$ random colorings, the probability of a wrong answer is at most $1/e^{100}$.
Finding a path colored $1 - 2 - \cdots - k$

- Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check if there is a directed path from class 1 to class k.
Finding a path colored $1 - 2 - \cdots - k$

- Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check if there is a directed path from class 1 to class k.
Finding a path colored $1 - 2 - \cdots - k$

Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check if there is a directed path from class 1 to class k.
Edges connecting nonadjacent color classes are removed.
The remaining edges are directed towards the larger class.
All we need to check if there is a directed path from class 1 to class k.
Finding a path colored $1 - 2 - \cdots - k$

- Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check if there is a directed path from class 1 to class k.
Color Coding

\(k \)-PATH

Color Coding success probability:

\[k^{-k} \]

Finding a 1 - 2 - \cdots - k colored path

polynomial-time solvable
Improved Color Coding

- Assign colors from $[k]$ to vertices $V(G)$ uniformly and independently at random.

- Check if there is a colorful path where each color appears exactly once on the vertices; output “YES” or “NO”.
Improved Color Coding

- Assign colors from $[k]$ to vertices $V(G)$ uniformly and independently at random.

- Check if there is a colorful path where each color appears exactly once on the vertices; output “YES” or “NO”.
 - If there is no k-path: no colorful path exists \Rightarrow “NO”.
 - If there is a k-path: the probability that it is colorful is

\[
\frac{k!}{k^k} > \frac{(\frac{k}{e})^k}{k^k} = e^{-k},
\]

thus the algorithm outputs “YES” with at least that probability.
Improved Color Coding

- Assign colors from $[k]$ to vertices $V(G)$ uniformly and independently at random.

- Repeating the algorithm $100e^k$ times decreases the error probability to e^{-100}.

How to find a colorful path?

- Try all permutations ($k! \cdot n^{O(1)}$ time)
- Dynamic programming ($2^k \cdot n^{O(1)}$ time)
Finding a colorful path

Subproblems:
We introduce $2^k \cdot |V(G)|$ Boolean variables:

$x(v, C) = \text{TRUE}$ for some $v \in V(G)$ and $C \subseteq [k]$

\iff

There is a P path ending at v such that each color in C appears on P exactly once and no other color appears.

Answer:
There is a colorful path $\iff x(v, [k]) = \text{TRUE}$ for some vertex v.

Initialization & Recurrence:
Exercise.
Improved Color Coding

k-PATH

Color Coding
success probability:

\[e^{-k} \]

Finding a colorful path

Solvable in time

\[2^k \cdot n^{O(1)} \]
Derandomization

Definition

A family \mathcal{H} of functions $[n] \rightarrow [k]$ is a k-perfect family of hash functions if for every $S \subseteq [n]$ with $|S| = k$, there is an $h \in \mathcal{H}$ such that $h(x) \neq h(y)$ for any $x, y \in S$, $x \neq y$.

Theorem

There is a k-perfect family of functions $[n] \rightarrow [k]$ having size $2^{O(k)} \log n$ (and can be constructed in time polynomial in the size of the family).
Derandomization

Definition

A family \mathcal{H} of functions $[n] \rightarrow [k]$ is a k-**perfect** family of hash functions if for every $S \subseteq [n]$ with $|S| = k$, there is an $h \in \mathcal{H}$ such that $h(x) \neq h(y)$ for any $x, y \in S$, $x \neq y$.

Theorem

There is a k-**perfect** family of functions $[n] \rightarrow [k]$ having size $2^{O(k)} \log n$ (and can be constructed in time polynomial in the size of the family).

Instead of trying $O(e^k)$ random colorings, we go through a k-**perfect** family \mathcal{H} of functions $V(G) \rightarrow [k]$.

If there is a solution S

\Rightarrow The vertices of S are colorful for at least one $h \in \mathcal{H}$

\Rightarrow Algorithm outputs “YES”.

\Rightarrow k-Path can be solved in **deterministic** time $2^{O(k)} \cdot n^{O(1)}$.
Derandomized Color Coding

Finding a colorful path

\(k \)-perfect family

\(2^{O(k) \log n} \) functions

\(k \)-PATH

Solvable in time

\(2^k \cdot n^{O(1)} \)
Bounded-degree graphs

Meta theorems exist for bounded-degree graphs, but randomization is usually simpler.

Dense k-vertex Subgraph

Input: A graph G, integers k, m.

Find: A set of k vertices inducing $\geq m$ edges.

Note: on general graphs, the problem is W[1]-hard parameterized by k, as it contains k-CLIQUE.

Theorem [Cai, Chan, Chan 2006]

Dense k-vertex Subgraph can be solved in randomized time $2^{k(d+1)} \cdot n^{O(1)}$ on graphs with maximum degree d.
Dense k-vertex Subgraph

- Remove each vertex with probability $1/2$ independently.
Dense k-vertex Subgraph

- Remove each vertex with probability $1/2$ independently.
- With probability 2^{-k} no vertex of the solution is removed.
- With probability 2^{-kd} every neighbor of the solution is removed.
- \Rightarrow We have to find a solution that is the union of connected components!
Dense k-vertex Subgraph

- Remove each vertex with probability $1/2$ independently.

- With probability 2^{-k} no vertex of the solution is removed.
- With probability 2^{-kd} every neighbor of the solution is removed.

\Rightarrow We have to find a solution that is the union of connected components!
Dense \(k \)-vertex Subgraph

- Remove each vertex with probability \(\frac{1}{2} \) independently.

\[
\begin{align*}
k_1 \text{ vertices} & \quad m_1 \text{ edges} \\
k_2 \text{ vertices} & \quad m_2 \text{ edges} \\
k_3 \text{ vertices} & \quad m_3 \text{ edges} \\
\vdots \\
k_i \text{ vertices} & \quad m_i \text{ edges}
\end{align*}
\]

Select connected components with
- at most \(k \) vertices and
- at least \(m \) edges.

What problem is this?
Dense k-vertex Subgraph

Select connected components with
- at most k vertices and
- at least m edges.

This is exactly KNAPSACK!
(I.e., pick objects of total weight at most S and value at least V.)

We can interpret
- number of vertices = weight of the items
- number of edges = value of the items

If the weights are integers, then DP solves the problem in time polynomial in the number of objects and the maximum weight.
Dense k-vertex Subgraph

Random deletions success probability: $2^{-k(d+1)}$

Knapsack

Polynomial time
Useful problem for recursion:

Balanced Separation

Input: A graph G, integers k, q.

Find: A set S of at most k vertices such that $G \setminus S$ has two components of size at least q.

Theorem [Chitnis et al. 2012]

Balanced Separation can be solved in randomized time $2^{O(q+k)} \cdot n^{O(1)}$.
Remove each vertex with probability $1/2$ independently.
Remove each vertex with probability $1/2$ independently.
Remove each vertex with probability $1/2$ independently.

With probability 2^{-k} every vertex of the solution is removed.

With probability 2^{-q} no vertex of T_1 is removed.

With probability 2^{-q} no vertex of T_2 is removed.
Balanced Separation

Remove each vertex with probability $\frac{1}{2}$ independently.

With probability 2^{-k} every vertex of the solution is removed.

With probability 2^{-q} no vertex of T_1 is removed.

With probability 2^{-q} no vertex of T_2 is removed.

⇒ The reduced graph G' has two components of size $\geq q$ that can be separated in the original graph G by k vertices.

For any pair of large components of G', we find a minimum $s-t$ cut in G.
Balanced Separation

Random deletions success probability:

$$2^{-(k+2q)}$$

Minimum $s - t$ cut

Polynomial time
Randomized sampling of important separators

A new technique used by several results:

- **Multicut** [M. and Razgon STOC 2011]
- Clustering problems [Lokshtanov and M. ICALP 2011]
- **Directed Multiway Cut** [Chitnis, Hajiaghayi, M. SODA 2012]
- **Directed Multicut** in DAGs [Kratsch, Pilipczuk, Pilipczuk, Wahlström ICALP 2012]
- **Directed Subset Feedback Vertex Set** [Chitnis, Cygan, Hajiaghayi, M. ICALP 2012]
- **Parity Multiway Cut** [Lokshtanov, Ramanujan ICALP 2012]
- ... more work in progress.
Transversal problems

Let G be a graph and let \mathcal{F} be a set of subgraphs in G.

Definition

\mathcal{F}-transversal: a set of edges of vertices intersecting each subgraph in \mathcal{F} (i.e., “hitting” or “killing” every object in \mathcal{F}).

Classical problems formulated as finding a minimum transversal:

- **$s-t$ Cut:**
 \mathcal{F} is the set of $s-t$ paths.

- **Multiway Cut:**
 \mathcal{F} is the set of paths between terminals.

- **(Directed) Feedback Vertex Set:**
 \mathcal{F} is the set of (directed) cycles.

- Delete edges/vertices to make the graph bipartite:
 \mathcal{F} is the set of odd cycles.
The setting

Let \mathcal{F} be a set of connected (not necessarily disjoint!) subgraphs, each intersecting a set T of vertices.

The shadow of an \mathcal{F}-transversal S is the set of vertices not reachable from T in $G \setminus S$.
The setting

Let \mathcal{F} be a set of connected (not necessarily disjoint!) subgraphs, each intersecting a set T of vertices.

The shadow of an \mathcal{F}-transversal S is the set of vertices not reachable from T in $G \setminus S$.
The random sampling (undirected edge version)

Shadow: Set of vertices not reachable in $G \setminus S$.

Condition: every $F \in \mathcal{F}$ is connected and intersects T.

Theorem

In $2^{O(k)} \cdot n^{O(1)}$ time, we can compute a set Z with the following property. If there exists an \mathcal{F}-transversal of at most k edges, then with probability $2^{-O(k)}$ there is a minimum \mathcal{F}-transversal S with

- the shadow of S is covered by Z and
- no edge of S is contained in Z.

Note: The algorithm *does not* have to know \mathcal{F}!

What is this good for?
Clustering

We want to partition objects into clusters subject to certain requirements (typically: related objects are clustered together, bounds on the number or size of the clusters etc.)

\((p, q)\)-CLUSTERING

Input: A graph \(G\), integers \(p, q\).

Find: A partition \((V_1, \ldots, V_m)\) of \(V(G)\) such that for every \(i\)

- \(|V_i| \leq p\) and
- \(d(V_i) \leq q\).

\(d(V_i)\): number of edges leaving \(V_i\).

Theorem [Lokshtanov and M. 2011]

\((p, q)\)-CLUSTERING can be solved in time \(2^{O(q)} \cdot n^{O(1)}\).
A sufficient and necessary condition

Good cluster: size at most p and at most q edges leaving it.

Necessary condition:
Every vertex is contained in a good cluster.

But surprisingly, this is also a sufficient condition!

Lemma

Graph G has a (p, q)-clustering if and only if every vertex is in a good cluster.
A sufficient and necessary condition

Good cluster: size at most p and at most q edges leaving it.

Necessary condition:
Every vertex is contained in a good cluster.

But surprisingly, this is also a sufficient condition!

Lemma
Graph G has a (p, q)-clustering if and only if every vertex is in a good cluster.
A sufficient and necessary condition

Lemma

Graph G has a (p, q)-clustering if and only if every vertex is in a good cluster.

Proof: Find a collection of good clusters covering every vertex and having minimum total size. Suppose two clusters intersect.
A sufficient and necessary condition

Lemma

Graph G has a (p, q)-clustering if and only if every vertex is in a good cluster.

Proof: Find a collection of good clusters covering every vertex and having minimum total size. Suppose two clusters intersect.

\[
d(X) + d(Y) \geq d(X \setminus Y) + d(Y \setminus X)
\]
\[
\implies \text{either } d(X) \geq d(X \setminus Y) \text{ or } d(Y) \geq d(Y \setminus X) \text{ holds.}
\]
A sufficient and necessary condition

Lemma

Graph G has a (p, q)-clustering if and only if every vertex is in a good cluster.

Proof: Find a collection of good clusters covering every vertex and having minimum total size. Suppose two clusters intersect.

\[d(X) + d(Y) \geq d(X \setminus Y) + d(Y \setminus X) \]

If $d(X) \geq d(X \setminus Y)$, replace X with $X \setminus Y$, strictly decreasing the total size of the clusters.
A sufficient and necessary condition

Lemma

Graph G has a (p, q)-clustering if and only if every vertex is in a good cluster.

Proof: Find a collection of good clusters covering every vertex and having minimum total size. Suppose two clusters intersect.

If $d(Y) \geq d(Y \setminus X)$, replace Y with $Y \setminus X$, strictly decreasing the total size of the clusters.

QED
Finding a good cluster

We have seen:

Lemma

Graph G has a (p, q)-clustering if and only if every vertex is in a good cluster.

All we have to do is to check if a given vertex v is in a good cluster. Trivial to do in time $n^{O(q)}$.
Finding a good cluster

We have seen:

Lemma

Graph G has a (p, q)-clustering if and only if every vertex is in a good cluster.

All we have to do is to check if a given vertex v is in a good cluster. Trivial to do in time $n^{O(q)}$.

We prove next:

Lemma

We can check in time $2^{O(q)} \cdot n^{O(1)}$ if v is in a good cluster.

This is a transversal problem: we want to hit with q edges every tree going through v and having more than p vertices.
Random sampling (repeated)

Shadow: Set of vertices not reachable in $G \setminus S$.

Condition: every $F \in \mathcal{F}$ is connected and intersects T.

Theorem

In $2^{O(k)} \cdot n^{O(1)}$ time, we can compute a set Z with the following property. If there exists an \mathcal{F}-transversal of at most k edges, then with probability at least $2^{-O(k)}$ there is a minimum \mathcal{F}-transversal S with

- the shadow of S is covered by Z and
- no edge of S is contained in Z.

Now:

- $T = \{v\}$
- \mathcal{F} contains every tree going through v having $> p$ vertices
Finding good clusters

- the shadow of S is covered by Z and
- no edge of S is contained in Z.

Where are the edges of S? Where is the good cluster?
Finding good clusters

- the shadow of S is covered by Z and
- no edge of S is contained in Z.

Where are the edges of S? Where is the good cluster?

Observe: Components of Z are either fully in the cluster or fully outside the cluster. What is this problem?
Finding good clusters

- the shadow of S is covered by Z and
- no edge of S is contained in Z.

Where are the edges of S? Where is the good cluster?

Observe: Components of Z are either fully in the cluster or fully outside the cluster. What is this problem?

KNAPSACK!
\((p, q)\)-CLUSTERING

Random set \(Z\) success probability: \(2^{-O(k)}\)

KNAPSACK

Polynomial time
Multiway cut

\textbf{(Directed) Multiway Cut}

\begin{tabular}{|l|}
\hline
\textbf{Input:} & Graph G, set of vertices T, integer k \\
\textbf{Find:} & A set S of at most k vertices such that $G \setminus S$ has no (directed) $t_1 - t_2$ path for any $t_1, t_2 \in T$ \\
\hline
\end{tabular}

The undirected version is fairly well understood: best known algorithm solves it in time $2^k \cdot n^{O(1)}$ [Cygan et al. IPEC 2011]

\textbf{Theorem [Chitnis, Hajiaghayi, Marx 2012]}

\textbf{Directed Multiway Cut} is FPT.

Can be formulated as minimum \mathcal{F}-transversal, where \mathcal{F} is the set of directed paths between vertices of T.
Directed Multiway Cut

Shadow: those vertices of $G \setminus S$ that cannot be reached from T AND those vertices of $G \setminus S$ from which T cannot be reached.
The random sampling (directed vertex version)

Shadow: those vertices of $G \setminus S$ that cannot be reached from T AND those vertices of $G \setminus S$ from which T cannot be reached.

Condition: for every $F \in \mathcal{F}$ and every vertex $v \in F$, there is a $T \rightarrow v$ and a $v \rightarrow T$ path in F.

Theorem

In $f(k) \cdot n^{O(1)}$ time, we can compute a set Z with the following property. If there exists an \mathcal{F}-transversal of at most k vertices, then with probability $2^{-O(k^2)}$ there is a minimum \mathcal{F}-transversal S with

- the shadow of S is covered by Z and
- $S \cap Z = \emptyset$.

Now:

- T: terminals
- \mathcal{F} contains every directed path between two distinct terminals
Shadow removal

We can assume that Z is disjoint from the solution, so we want to get rid of Z.

- Deleting Z is not a good idea: can make the problem easier.
- To compensate deleting Z, if there is an $a \rightarrow b$ path with internal vertices in Z, add a direct $a \rightarrow b$ edge.

Crucial observation: S remains a solution (since Z is disjoint from S) and S is a shadowless solution (since Z covers the shadow of S).
Shadow removal

We can assume that Z is disjoint from the solution, so we want to get rid of Z.

- Deleting Z is not a good idea: can make the problem easier.
- To compensate deleting Z, if there is an $a \rightarrow b$ path with internal vertices in Z, add a direct $a \rightarrow b$ edge.

![Diagram showing shadow removal]

Crucial observation: S remains a solution (since Z is disjoint from S) and S is a shadowless solution (since Z covers the shadow of S).
Shadow removal

We can assume that Z is disjoint from the solution, so we want to get rid of Z.

- Deleting Z is not a good idea: can make the problem easier.
- To compensate deleting Z, if there is an $a \rightarrow b$ path with internal vertices in Z, add a direct $a \rightarrow b$ edge.

![Diagram showing a network with vertices and edges labeled a, b, t_1, t_2, t_3, t_4, and set Z. The edges include $a \rightarrow b$, $a \rightarrow t_1$, $t_1 \rightarrow t_2$, $t_2 \rightarrow t_3$, and $t_3 \rightarrow t_4$. The set Z is shaded.]
Shadow removal

We can assume that Z is disjoint from the solution, so we want to get rid of Z.

- Deleting Z is not a good idea: can make the problem easier.
- To compensate deleting Z, if there is an $a \rightarrow b$ path with internal vertices in Z, add a direct $a \rightarrow b$ edge.

Crucial observation:
S remains a solution (since Z is disjoint from S) and S is a shadowless solution (since Z covers the shadow of S).
Shadowless solutions

How does a shadowless solution look like?
Shadowless solutions

How does a shadowless solution look like?
Shadowless solutions

How does a shadowless solution look like?

It is an undirected multiway cut in the underlying undirected graph!
⇒ Problem can be reduced to undirected multiway cut.
Directed Multiway Cut

Directed Multiway Cut

Undirected Multiway Cut

Random set Z

success probability:

$2^{-O(k^2)}$

$2^k \cdot n^{O(1)}$ time
Cut and count

A very powerful technique for many problems on graphs of bounded-treewidth.

Classical result:

Theorem

Given a tree decomposition of width k, Hamiltonian Cycle can be solved in time $k^{O(k)} \cdot n^{O(1)} = 2^{O(k \log k)} \cdot n^{O(1)}$.

Very recently:

Theorem [Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk 2011]

Given a tree decomposition of width k, Hamiltonian Cycle can be solved in time $4^k \cdot n^{O(1)}$.
Isolation Lemma

Isolation Lemma [Mulmuley, Vazirani, Vazirani 1987]

Let F be a nonempty family of subsets of U and assign a weight $w(u) \in [N]$ to each $u \in U$ uniformly and independently at random. The probability that there is a unique $S \in F$ having minimum weight is at least

$$1 - \frac{|U|}{N}. $$
Isolation Lemma

Isolation Lemma [Mulmuley, Vazirani, Vazirani 1987]

Let \mathcal{F} be a nonempty family of subsets of U and assign a weight $w(u) \in [N]$ to each $u \in U$ uniformly and independently at random. The probability that there is a unique $S \in \mathcal{F}$ having minimum weight is at least

$$1 - \frac{|U|}{N}.$$

Let $U = E(G)$ and \mathcal{F} be the set of all Hamiltonian cycles.

- By setting $N := |V(G)|^{O(1)}$, we can assume that there is a unique minimum weight Hamiltonian cycle.

- If N is polynomial in the input size, we can guess this minimum weight.

- So we are looking for a Hamiltonian cycle of weight exactly C, under the assumption that there is a unique such cycle.
Cycle covers

- **Cycle cover:** A subgraph having degree exactly two at each vertex.

![Diagram of cycle covers](attachment:image.png)
Cycle covers

- **Cycle cover**: A subgraph having degree exactly two at each vertex.

- A Hamiltonian cycle is a cycle cover, but a cycle cover can have more than one component.

![Diagram of a cycle cover](image-url)

If there is no weight-

(C) Hamiltonian cycle: the number of weight-

(C) colored cycle covers is 0 mod 4.

If there is a unique weight-

(C) Hamiltonian cycle: the number of weight-

(C) colored cycle covers is 2 mod 4.
Cycle covers

- **Cycle cover**: A subgraph having degree exactly two at each vertex.

- A Hamiltonian cycle is a cycle cover, but a cycle cover can have more than one component.

- **Colored cycle cover**: each component is colored black or white.
Cycle covers

- **Cycle cover**: A subgraph having degree exactly two at each vertex.

- A Hamiltonian cycle is a cycle cover, but a cycle cover can have more than one component.

- **Colored cycle cover**: each component is colored black or white.
Cycle covers

- **Cycle cover**: A subgraph having degree exactly two at each vertex.

- A Hamiltonian cycle is a cycle cover, but a cycle cover can have more than one component.

- **Colored cycle cover**: each component is colored black or white.

- A cycle cover with k components gives rise to 2^k colored cycle covers.

 - If there is no weight-C Hamiltonian cycle: the number of weight-C colored cycle covers is 0 mod 4.
 - If there is a unique weight-C Hamiltonian cycle: the number of weight-C colored cycle covers is 2 mod 4.
Cycle covers

- **Cycle cover**: A subgraph having degree exactly two at each vertex.

- A Hamiltonian cycle is a cycle cover, but a cycle cover can have more than one component.

- **Colored cycle cover**: each component is colored black or white.

- A cycle cover with k components gives rise to 2^k colored cycle covers.
 - If there is no weight-C Hamiltonian cycle: the number of weight-C colored cycle covers is $0 \mod 4$.
 - If there is a unique weight-C Hamiltonian cycle: the number of weight-C colored cycle covers is $2 \mod 4$.
Cycle covers

- **Cycle cover**: A subgraph having degree exactly two at each vertex.

- A Hamiltonian cycle is a cycle cover, but a cycle cover can have more than one component.

- **Colored cycle cover**: each component is colored black or white.

- A cycle cover with \(k \) components gives rise to \(2^k \) colored cycle covers.

 - If there is no weight-\(C \) Hamiltonian cycle: the number of weight-\(C \) colored cycle covers is 0 mod 4.
 - If there is a unique weight-\(C \) Hamiltonian cycle: the number of weight-\(C \) colored cycle covers is 2 mod 4.
Cut and Count

- Assign random weights \(\leq 2|E(G)| \) to the edges.
- If there is a Hamiltonian cycle, then with probability \(1/2 \), there is a \(C \) such that there is a unique weight-\(C \) Hamiltonian cycle.
- Try all possible \(C \).
- Count the number of weight-\(C \) colored cycle covers: can be done in time \(4^k \cdot n^{O(1)} \) if a tree decomposition of width \(k \) is given.
- Answer YES if this number is 2 mod 4.
Cut and Count

HAMILTONIAN CYCLE

Random weights success probability: $1/2$

Counting weighted colored cycle covers

$4^k \cdot n^{O(1)}$ time
Conclusions

- Randomization gives elegant solution to many problems.
- Derandomization is sometimes possible (but less elegant).
- Small (but $f(k)$) success probability is good for us.
- Reducing the problem we want to solve to a problem that is easier to solve.