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Why randomized?

A guaranteed error probability of 10−100 is as good as a
deterministic algorithm.
(Probability of hardware failure is larger!)
Randomized algorithms can be more efficient and/or
conceptually simpler.
Can be the first step towards a deterministic algorithm.



Polynomial time vs. FPT

FPT
A parameterized problem is fixed-parameter tractable if it can be
solved in time f (k) · nO(1) for some computable function f .

Polynomial-time randomized algorithms

Randomized selection to pick a typical, unproblematic, average
element/subset.
Error probability is constant or at most polynomially small.

Randomized FPT algorithms
Randomized selection to satisfy a bounded number of
(unknown) constraints.
Error probability might be exponentially small.
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Randomization

There are two main ways randomization appears:
Algebraic techniques (Schwartz-Zippel Lemma)
See Andreas Björklund’s talk, Friday 13:30.

Combinatorial techniques.
This talk.



Randomization as reduction

Problem A
(what we want to

solve)

Randomized magic
Problem B

(what we can solve)



Color Coding

k-Path
Input: A graph G , integer k .
Find: A simple path of length k .

Note: The problem is clearly NP-hard, as it contains the
Hamiltonian Path problem.

Theorem [Alon, Yuster, Zwick 1994]

k-Path can be solved in time 2O(k) · nO(1).



Color Coding

Assign colors from [k] to vertices V (G ) uniformly and
independently at random.

Check if there is a path colored 1− 2− · · · − k ; output “YES”
or “NO”.

If there is no k-path: no path colored 1− 2− · · · − k exists ⇒
“NO”.
If there is a k-path: the probability that such a path is colored
1− 2− · · · − k is k−k thus the algorithm outputs “YES” with
at least that probability.
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Check if there is a path colored 1− 2− · · · − k ; output “YES”
or “NO”.

If there is no k-path: no path colored 1− 2− · · · − k exists ⇒
“NO”.
If there is a k-path: the probability that such a path is colored
1− 2− · · · − k is k−k thus the algorithm outputs “YES” with
at least that probability.



Error probability

Useful fact
If the probability of success is at least p, then the probability that
the algorithm does not say “YES” after 1/p repetitions is at most

(1− p)1/p <
(
e−p)1/p

= 1/e ≈ 0.38

Thus if p > k−k , then error probability is at most 1/e after kk

repetitions.
Repeating the whole algorithm a constant number of times
can make the error probability an arbitrary small constant.
For example, by trying 100 · kk random colorings, the
probability of a wrong answer is at most 1/e100.
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Finding a path colored 1− 2− · · · − k
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Edges connecting nonadjacent color classes are removed.
The remaining edges are directed towards the larger class.
All we need to check if there is a directed path from class 1 to
class k .
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Color Coding

k-PATH

Color Coding
success probability:

k−k
Finding a

1− 2− · · · − k
colored path

polynomial-time
solvable



Improved Color Coding
Assign colors from [k] to vertices V (G ) uniformly and
independently at random.
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Check if there is a colorful path where each color appears
exactly once on the vertices; output “YES” or “NO”.
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Check if there is a colorful path where each color appears
exactly once on the vertices; output “YES” or “NO”.

If there is no k-path: no colorful path exists ⇒ “NO”.
If there is a k-path: the probability that it is colorful is

k!
kk >

( k
e )

k

kk = e−k ,

thus the algorithm outputs “YES” with at least that probability.



Improved Color Coding
Assign colors from [k] to vertices V (G ) uniformly and
independently at random.
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Repeating the algorithm 100ek times decreases the error
probability to e−100.

How to find a colorful path?
Try all permutations (k! · nO(1) time)
Dynamic programming (2k · nO(1) time)



Finding a colorful path
Subproblems:
We introduce 2k · |V (G )| Boolean variables:

x(v ,C ) = TRUE for some v ∈ V (G ) and C ⊆ [k]
m

There is a P path ending at v such that each color in
C appears on P exactly once and no other color

appears.

Answer:
There is a colorful path ⇐⇒ x(v , [k]) = TRUE for some vertex v .

Initialization & Recurrence:
Exercise.



Improved Color Coding

k-PATH

Color Coding
success probability:

e−k

Finding a
colorful path

Solvable in time
2k · nO(1)



Derandomization

Definition
A family H of functions [n]→ [k] is a k-perfect family of hash
functions if for every S ⊆ [n] with |S | = k , there is an h ∈ H such
that h(x) 6= h(y) for any x , y ∈ S , x 6= y .

Theorem
There is a k-perfect family of functions [n]→ [k] having size
2O(k) log n (and can be constructed in time polynomial in the size
of the family).

Instead of trying O(ek) random colorings, we go through a
k-perfect family H of functions V (G )→ [k].

If there is a solution S
⇒ The vertices of S are colorful for at least one h ∈ H
⇒ Algorithm outputs “YES”.
⇒ k-Path can be solved in deterministic time 2O(k) · nO(1).
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Derandomized Color Coding

k-PATH

k-perfect family
2O(k) log n functions

Finding a
colorful path

Solvable in time
2k · nO(1)



Bounded-degree graphs

Meta theorems exist for bounded-degree graphs, but randomization
is usually simpler.

Dense k-vertex Subgraph
Input: A graph G , integers k , m.
Find: A set of k vertices inducing ≥ m edges.

Note: on general graphs, the problem is W[1]-hard parameterized
by k , as it contains k-Clique.

Theorem [Cai, Chan, Chan 2006]
Dense k-vertex Subgraph can be solved in randomized time
2k(d+1) · nO(1) on graphs with maximum degree d .



Dense k-vertex Subgraph
Remove each vertex with probability 1/2 independently.



Dense k-vertex Subgraph
Remove each vertex with probability 1/2 independently.

With probability 2−k no vertex of the solution is removed.
With probability 2−kd every neighbor of the solution is
removed.
⇒ We have to find a solution that is the union of connected
components!
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Dense k-vertex Subgraph
Remove each vertex with probability 1/2 independently.

k1 vertices

m1 edges
. . .

k2 vertices

m2 edges

k3 vertices

m3 edges

ki vertices

mi edges

Select connected components with
at most k vertices and
at least m edges.

What problem is this?



Dense k-vertex Subgraph

Select connected components with
at most k vertices and
at least m edges.

This is exactly KNAPSACK!
(I.e., pick objects of total weight at most S and value at least V .)

We can interpret
number of vertices = weight of the items
number of edges = value of the items

If the weights are integers, then DP solves the problem in time
polynomial in the number of objects and the maximum weight.



Dense k-vertex Subgraph

DENSE
k-VERTEX
SUBGRAPH

Random deletions
success probability:

2−k(d+1)

KNAPSACK

Polynomial time



Balanced Separation

Useful problem for recursion:

Balanced Separation
Input: A graph G , integers k , q.
Find: A set S of at most k vertices such that G \ S has

two components of size at least q.

Theorem [Chitnis et al. 2012]
Balanced Separation can be solved in randomized time
2O(q+k) · nO(1).



Balanced Separation

C1 C2S

Remove each vertex with probability 1/2 independently.

With probability 2−k every vertex of the solution is removed.
With probability 2−q no vertex of T1 is removed.
With probability 2−q no vertex of T2 is removed.
⇒ The reduced graph G ′ has two components of size ≥ q that
can be separated in the original graph G by k vertices.
For any pair of large components of G ′, we find a minimum
s − t cut in G .
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Balanced Separation

BALANCED
SEPARATION

Random deletions
success probability:

2−(k+2q)

MINIMUM s − t
CUT

Polynomial time



Randomized sampling of important separators

A new technique used by several results:
Multicut [M. and Razgon STOC 2011]

Clustering problems [Lokshtanov and M. ICALP 2011]

Directed Multiway Cut [Chitnis, Hajiaghayi, M. SODA
2012]

Directed Multicut in DAGs [Kratsch, Pilipczuk, Pilipczuk,
Wahlström ICALP 2012]

Directed Subset Feedback Vertex Set [Chitnis,
Cygan, Hajiaghayi, M. ICALP 2012]

Parity Multiway Cut [Lokshtanov, Ramanujan ICALP 2012]

. . . more work in progress.



Transversal problems

Let G be a graph and let F be a set of subgraphs in G .

Definition
F -transversal: a set of edges of vertices intersecting each subgraph
in F (i.e., “hitting” or “killing” every object in F).

Classical problems formulated as finding a minimum transversal:
s − t Cut:
F is the set of s − t paths.
Multiway Cut:
F is the set of paths between terminals.
(Directed) Feedback Vertex Set:
F is the set of (directed) cycles.
Delete edges/vertices to make the graph bipartite:
F is the set of odd cycles.



The setting

Let F be a set of connected (not necessarily disjoint!) subgraphs,
each intersecting a set T of vertices.

t1 t2 t3 t4

S

shadow

The shadow of an F-transversal S is the set of vertices not
reachable from T in G \ S .
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The random sampling (undirected edge version)

Shadow: Set of vertices not reachable in G \ S .

Condition: every F ∈ F is connected and intersects T .

Theorem
In 2O(k) · nO(1) time, we can compute a set Z with the following
property. If there exists an F -transversal of at most k edges, then
with probability 2−O(k) there is a minimum F-transversal S with

the shadow of S is covered by Z and
no edge of S is contained in Z .

Note: The algorithm does not have to know F !

What is this good for?



Clustering

We want to partition objects into clusters subject to certain
requirements (typically: related objects are clustered together,
bounds on the number or size of the clusters etc.)

(p, q)-clustering

Input: A graph G , integers p, q.
Find: A partition (V1, . . . ,Vm) of V (G ) such that for every i

|Vi | ≤ p and
d(Vi ) ≤ q.

d(Vi ): number of edges leaving Vi .

Theorem [Lokshtanov and M. 2011]

(p, q)-clustering can be solved in time 2O(q) · nO(1).



A sufficient and necessary condition

Good cluster: size at most p and at most q edges leaving it.

Necessary condition:
Every vertex is contained in a good cluster.

But surprisingly, this is also a sufficient condition!

Lemma
Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.
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A sufficient and necessary condition

Lemma
Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

Proof: Find a collection of good clusters covering every vertex and
having minimum total size. Suppose two clusters intersect.

X Y

d(X ) + d(Y ) ≥ d(X \ Y ) + d(Y \ X )

⇒ either d(X ) ≥ d(X \ Y ) or d(Y ) ≥ d(Y \ X ) holds.



A sufficient and necessary condition

Lemma
Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

Proof: Find a collection of good clusters covering every vertex and
having minimum total size. Suppose two clusters intersect.

X \ Y Y

d(X ) + d(Y ) ≥ d(X \ Y ) + d(Y \ X )

If d(X ) ≥ d(X \ Y ), replace X with X \ Y ,
strictly decreasing the total size of the clusters.



A sufficient and necessary condition

Lemma
Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

Proof: Find a collection of good clusters covering every vertex and
having minimum total size. Suppose two clusters intersect.

X Y \ X

d(X ) + d(Y ) ≥ d(X \ Y ) + d(Y \ X )

If d(Y ) ≥ d(Y \ X ), replace Y with Y \ X ,
strictly decreasing the total size of the clusters. QED �



Finding a good cluster

We have seen:

Lemma
Graph G has a (p, q)-clustering if and only if every vertex is in a
good cluster.

All we have to do is to check if a given vertex v is in a good
cluster. Trivial to do in time nO(q).

We prove next:

Lemma
We can check in time 2O(q) · nO(1) if v is in a good cluster.

This is a transversal problem: we want to hit with q edges every
tree going through v and having more than p vertices.
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good cluster.

All we have to do is to check if a given vertex v is in a good
cluster. Trivial to do in time nO(q).
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Random sampling (repeated)

Shadow: Set of vertices not reachable in G \ S .

Condition: every F ∈ F is connected and intersects T .

Theorem
In 2O(k) · nO(1) time, we can compute a set Z with the following
property. If there exists an F -transversal of at most k edges, then
with probability at least 2−O(k) there is a minimum F-transversal S
with

the shadow of S is covered by Z and
no edge of S is contained in Z .

Now:
T = {v}
F contains every tree going through v having > p vertices



Finding good clusters

v

Z

G \ Z

the shadow of S is covered by Z and
no edge of S is contained in Z .

Where are the edges of S? Where is the good cluster?

Observe: Components of Z are either fully in the cluster or fully
outside the cluster. What is this problem?

KNAPSACK!
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v

Z
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(p, q)-clustering

(p, q)-
CLUSTERING

Random set Z
success probability:

2−O(k)

KNAPSACK

Polynomial time



Multiway cut

(Directed) Multiway Cut

Input: Graph G , set of vertices T , integer k
Find: A set S of at most k vertices such that G \ S has no

(directed) t1 − t2 path for any t1, t2 ∈ T

The undirected version is fairly well understood: best known
algorithm solves it in time 2k · nO(1) [Cygan et al. IPEC 2011]

Theorem [Chitnis, Hajiaghayi, Marx 2012]
Directed Multiway Cut is FPT.

Can be formulated as minimum F-transversal, where F is the set
of directed paths between vertices of T .



Directed Multiway Cut

Shadow: those vertices of G \ S that cannot be reached from T
AND those vertices of G \ S from which T cannot be reached.

S

t1t2t3t1



The random sampling (directed vertex version)

Shadow: those vertices of G \ S that cannot be reached from T
AND those vertices of G \ S from which T cannot be reached.
Condition: for every F ∈ F and every vertex v ∈ F , there is a
T → v and a v → T path in F .

Theorem
In f (k) · nO(1) time, we can compute a set Z with the following
property. If there exists an F -transversal of at most k vertices, then
with probability 2−O(k2) there is a minimum F-transversal S with

the shadow of S is covered by Z and
S ∩ Z = ∅.

Now:
T : terminals
F contains every directed path between two distinct terminals



Shadow removal

We can assume that Z is disjoint from the solution, so we want to
get rid of Z .

Deleting Z is not a good idea: can make the problem easier.
To compensate deleting Z , if there is an a→ b path with
internal vertices in Z , add a direct a→ b edge.

t4t3t2t1

Z

Crucial observation:
S remains a solution (since Z is disjoint from S) and
S is a shadowless solution (since Z covers the shadow of S).
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Shadowless solutions

How does a shadowless solution look like?

S

t1t2t3t1

It is an undirected multiway cut in the underlying undirected graph!
⇒ Problem can be reduced to undirected multiway cut.
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Directed Multiway Cut

DIRECTED
MULTIWAY

CUT

Random set Z
success probability:

2−O(k2)

UNDIRECTED
MULTIWAY

CUT

2k · nO(1) time



Cut and count

A very powerful technique for many problems on graphs of
bounded-treewidth.

Classical result:

Theorem
Given a tree decomposition of width k , Hamiltonian Cycle can
be solved in time kO(k) · nO(1) = 2O(k log k) · nO(1).

Very recently:

Theorem [Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij,
Wojtaszczyk 2011]

Given a tree decomposition of width k , Hamiltonian Cycle can
be solved in time 4k · nO(1).



Isolation Lemma

Isolation Lemma [Mulmuley, Vazirani, Vazirani 1987]
Let F be a nonempty family of subsets of U and assign a weight
w(u) ∈ [N] to each u ∈ U uniformly and independently at random.
The probability that there is a unique S ∈ F having minimum
weight is at least

1− |U|
N

.

Let U = E (G ) and F be the set of all Hamiltonian cycles.
By setting N := |V (G )|O(1), we can assume that there is a
unique minimum weight Hamiltonian cycle.
If N is polynomial in the input size, we can guess this
minimum weight.
So we are looking for a Hamiltonian cycle of weight exactly
C , under the assumption that there is a unique such cycle.
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Cycle covers

Cycle cover: A subgraph having degree exactly two at each
vertex.

A Hamiltonian cycle is a cycle cover, but a cycle cover can
have more than one component.
Colored cycle cover: each component is colored black or
white.
A cycle cover with k components gives rise to 2k colored cycle
covers.

If there is no weight-C Hamiltonian cycle: the number of
weight-C colored cycle covers is 0 mod 4.
If there is a unique weight-C Hamiltonian cycle: the number of
weight-C colored cycle covers is 2 mod 4.
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Cut and Count

Assign random weights ≤ 2|E (G )| to the edges.
If there is a Hamiltonian cycle, then with probability 1/2, there
is a C such that there is a unique weight-C Hamiltionian
cycle.
Try all possible C .
Count the number of weight-C colored cycle covers: can be
done in time 4k · nO(1) if a tree decomposition of width k is
given.
Answer YES if this number is 2 mod 4.



Cut and Count

HAMILTONIAN
CYCLE

Random weights
success probability:

1/2 Counting
weighted

colored cycle
covers

4k · nO(1) time



Conclusions

Randomization gives elegant solution to many problems.
Derandomization is sometimes possible (but less elegant).
Small (but f (k)) success probability is good for us.
Reducing the problem we want to solve to a problem that is
easier to solve.


