Randomized techniques for parameterized algorithms

Dániel Marx¹

¹Computer and Automation Research Institute, Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary

> IPEC 2012 September 13, 2012 Ljubljana, Slovenia

- A guaranteed error probability of 10⁻¹⁰⁰ is as good as a deterministic algorithm. (Probability of hardware failure is larger!)
- Randomized algorithms can be more efficient and/or conceptually simpler.
- Can be the first step towards a deterministic algorithm.

Polynomial time vs. FPT

FPT

A parameterized problem is fixed-parameter tractable if it can be solved in time $f(k) \cdot n^{O(1)}$ for some computable function f.

Polynomial time vs. FPT

FPT

A parameterized problem is fixed-parameter tractable if it can be solved in time $f(k) \cdot n^{O(1)}$ for some computable function f.

Polynomial-time randomized algorithms

- Randomized selection to pick a typical, unproblematic, average element/subset.
- Error probability is constant or at most polynomially small.

Randomized FPT algorithms

- Randomized selection to satisfy a bounded number of (unknown) constraints.
- Error probability might be exponentially small.

Randomization

There are two main ways randomization appears:

• Algebraic techniques (Schwartz-Zippel Lemma) See Andreas Björklund's talk, Friday 13:30.

• Combinatorial techniques. This talk.

Randomization as reduction

k-Path

Input: A graph G, integer k. **Find:** A simple path of length k.

Note: The problem is clearly NP-hard, as it contains the HAMILTONIAN PATH problem.

Theorem [Alon, Yuster, Zwick 1994]

k-PATH can be solved in time $2^{O(k)} \cdot n^{O(1)}$.

• Assign colors from [k] to vertices V(G) uniformly and independently at random.

• Assign colors from [k] to vertices V(G) uniformly and independently at random.

• Assign colors from [k] to vertices V(G) uniformly and independently at random.

- Check if there is a path colored 1 2 · · · k; output "YES" or "NO".
 - If there is no k-path: no path colored $1 2 \dots k$ exists \Rightarrow "NO".
 - If there is a k-path: the probability that such a path is colored $1-2-\cdots-k$ is k^{-k} thus the algorithm outputs "YES" with at least that probability.

Error probability

Useful fact

If the probability of success is at least p, then the probability that the algorithm **does not** say "YES" after 1/p repetitions is at most

$$(1-p)^{1/p} < (e^{-p})^{1/p} = 1/e \approx 0.38$$

Error probability

Useful fact

If the probability of success is at least p, then the probability that the algorithm **does not** say "YES" after 1/p repetitions is at most

$$(1-p)^{1/p} < (e^{-p})^{1/p} = 1/e \approx 0.38$$

- Thus if $p > k^{-k}$, then error probability is at most 1/e after k^k repetitions.
- Repeating the whole algorithm a constant number of times can make the error probability an arbitrary small constant.
- For example, by trying $100 \cdot k^k$ random colorings, the probability of a wrong answer is at most $1/e^{100}$.

- Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check if there is a directed path from class 1 to class *k*.

- Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check if there is a directed path from class 1 to class *k*.

- Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check if there is a directed path from class 1 to class *k*.

- Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check if there is a directed path from class 1 to class *k*.

- Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check if there is a directed path from class 1 to class *k*.

• Assign colors from [k] to vertices V(G) uniformly and independently at random.

• Check if there is a colorful path where each color appears exactly once on the vertices; output "YES" or "NO".

• Assign colors from [k] to vertices V(G) uniformly and independently at random.

- Check if there is a colorful path where each color appears exactly once on the vertices; output "YES" or "NO".
 - If there is no k-path: no colorful path exists \Rightarrow "NO".
 - If there is a k-path: the probability that it is colorful is

$$\frac{k!}{k^k} > \frac{\left(\frac{k}{e}\right)^k}{k^k} = e^{-k},$$

thus the algorithm outputs "YES" with at least that probability.

• Assign colors from [k] to vertices V(G) uniformly and independently at random.

• Repeating the algorithm $100e^k$ times decreases the error probability to e^{-100} .

How to find a colorful path?

- Try all permutations $(k! \cdot n^{O(1)} \text{ time})$
- Dynamic programming $(2^k \cdot n^{O(1)} \text{ time})$

Finding a colorful path

Subproblems:

We introduce $2^k \cdot |V(G)|$ Boolean variables:

 $x(v, C) = \text{TRUE for some } v \in V(G) \text{ and } C \subseteq [k]$ \uparrow There is a *P* path ending at *v* such that each color in *C* appears on *P* exactly once and no other color appears.

Answer:

There is a colorful path $\iff x(v, [k]) = \text{TRUE}$ for some vertex v.

Initialization & Recurrence: Exercise.

Derandomization

Definition

A family \mathcal{H} of functions $[n] \to [k]$ is a *k*-perfect family of hash functions if for every $S \subseteq [n]$ with |S| = k, there is an $h \in \mathcal{H}$ such that $h(x) \neq h(y)$ for any $x, y \in S$, $x \neq y$.

Theorem

There is a *k*-perfect family of functions $[n] \rightarrow [k]$ having size $2^{O(k)} \log n$ (and can be constructed in time polynomial in the size of the family).

Derandomization

Definition

A family \mathcal{H} of functions $[n] \to [k]$ is a *k*-perfect family of hash functions if for every $S \subseteq [n]$ with |S| = k, there is an $h \in \mathcal{H}$ such that $h(x) \neq h(y)$ for any $x, y \in S$, $x \neq y$.

Theorem

There is a *k*-perfect family of functions $[n] \rightarrow [k]$ having size $2^{O(k)} \log n$ (and can be constructed in time polynomial in the size of the family).

Instead of trying $O(e^k)$ random colorings, we go through a *k*-perfect family \mathcal{H} of functions $V(G) \rightarrow [k]$.

If there is a solution S

- \Rightarrow The vertices of *S* are colorful for at least one $h \in \mathcal{H}$
- \Rightarrow Algorithm outputs "YES".
- \Rightarrow *k*-PATH can be solved in **deterministic** time $2^{O(k)} \cdot n^{O(1)}$.

Derandomized Color Coding

Bounded-degree graphs

Meta theorems exist for bounded-degree graphs, but randomization is usually simpler.

DENSE *k*-VERTEX SUBGRAPH

Input: A graph G, integers k, m. **Find:** A set of k vertices inducing $\geq m$ edges.

Note: on general graphs, the problem is W[1]-hard parameterized by k, as it contains k-CLIQUE.

Theorem [Cai, Chan, Chan 2006]

DENSE *k*-VERTEX SUBGRAPH can be solved in randomized time $2^{k(d+1)} \cdot n^{O(1)}$ on graphs with maximum degree *d*.

- With probability 2^{-k} no vertex of the solution is removed.
- With probability 2^{-kd} every neighbor of the solution is removed.
- \Rightarrow We have to find a solution that is the union of connected components!

- With probability 2^{-k} no vertex of the solution is removed.
- With probability 2^{-kd} every neighbor of the solution is removed.
- \Rightarrow We have to find a solution that is the union of connected components!

• Remove each vertex with probability 1/2 independently.

Select connected components with

- at most k vertices and
- at least *m* edges.

What problem is this?

Select connected components with

- at most k vertices and
- at least *m* edges.
- This is exactly KNAPSACK!
- (I.e., pick objects of total weight at most S and value at least V.)

We can interpret

- number of vertices = weight of the items
- number of edges = value of the items

If the weights are integers, then DP solves the problem in time polynomial in the number of objects and the maximum weight.

Polynomial time

BALANCED SEPARATION

Useful problem for recursion:

BALANCED SEPARATION

Input: A graph G, integers k, q.

Find: A set *S* of at most *k* vertices such that $G \setminus S$ has **two** components of size at least *q*.

Theorem [Chitnis et al. 2012]

BALANCED SEPARATION can be solved in randomized time $2^{O(q+k)} \cdot n^{O(1)}$.

BALANCED SEPARATION

BALANCED SEPARATION

• Remove each vertex with probability 1/2 independently.
BALANCED SEPARATION

- Remove each vertex with probability 1/2 independently.
- With probability 2^{-k} every vertex of the solution is removed.
- With probability 2^{-q} no vertex of T_1 is removed.
- With probability 2^{-q} no vertex of T_2 is removed.

BALANCED SEPARATION

- Remove each vertex with probability 1/2 independently.
- With probability 2^{-k} every vertex of the solution is removed.
- With probability 2^{-q} no vertex of T_1 is removed.
- With probability 2^{-q} no vertex of T_2 is removed.
- ⇒ The reduced graph G' has two components of size ≥ q that can be separated in the original graph G by k vertices.
- For any pair of large components of G', we find a minimum s t cut in G.

BALANCED SEPARATION

Polynomial time

Randomized sampling of important separators

A new technique used by several results:

- MULTICUT [M. and Razgon STOC 2011]
- Clustering problems [Lokshtanov and M. ICALP 2011]
- DIRECTED MULTIWAY CUT [Chitnis, Hajiaghayi, M. SODA 2012]
- DIRECTED MULTICUT in DAGs [Kratsch, Pilipczuk, Pilipczuk, Wahlström ICALP 2012]
- DIRECTED SUBSET FEEDBACK VERTEX SET [Chitnis, Cygan, Hajiaghayi, M. ICALP 2012]
- PARITY MULTIWAY CUT [Lokshtanov, Ramanujan ICALP 2012]
- ... more work in progress.

Transversal problems

Let G be a graph and let \mathcal{F} be a set of subgraphs in G.

Definition

 \mathcal{F} -transversal: a set of edges of vertices intersecting each subgraph in \mathcal{F} (i.e., "hitting" or "killing" every object in \mathcal{F}).

Classical problems formulated as finding a minimum transversal:

- *s t* Cut:
 - \mathcal{F} is the set of s t paths.
- Multiway Cut:
 - ${\mathcal F}$ is the set of paths between terminals.
- (DIRECTED) FEEDBACK VERTEX SET: *F* is the set of (directed) cycles.
- Delete edges/vertices to make the graph bipartite: ${\cal F}$ is the set of odd cycles.

The setting

Let \mathcal{F} be a set of connected (not necessarily disjoint!) subgraphs, each intersecting a set \mathcal{T} of vertices.

The **shadow** of an \mathcal{F} -transversal S is the set of vertices not reachable from \mathcal{T} in $G \setminus S$.

The setting

Let \mathcal{F} be a set of connected (not necessarily disjoint!) subgraphs, each intersecting a set \mathcal{T} of vertices.

The **shadow** of an \mathcal{F} -transversal S is the set of vertices not reachable from \mathcal{T} in $G \setminus S$.

The random sampling (undirected edge version)

Shadow: Set of vertices not reachable in $G \setminus S$.

Condition: every $F \in \mathcal{F}$ is connected and intersects \mathcal{T} .

Theorem

In $2^{O(k)} \cdot n^{O(1)}$ time, we can compute a set Z with the following property. If there exists an \mathcal{F} -transversal of at most k edges, then with probability $2^{-O(k)}$ there is a minimum \mathcal{F} -transversal S with

- the shadow of S is covered by Z and
- no edge of *S* is contained in *Z*.

Note: The algorithm does not have to know \mathcal{F} ! What is this good for?

Clustering

We want to partition objects into clusters subject to certain requirements (typically: related objects are clustered together, bounds on the number or size of the clusters etc.)

(p, q)-CLUSTERING

Input:	A graph G , integers p, q .
Find:	A partition (V_1, \ldots, V_m) of $V(G)$ such that for every <i>i</i>
	• $ V_i \leq p$ and
	• $d(V_i) \leq q$.

 $d(V_i)$: number of edges leaving V_i .

Theorem [Lokshtanov and M. 2011] (p, q)-CLUSTERING can be solved in time $2^{O(q)} \cdot n^{O(1)}$.

Good cluster: size at most p and at most q edges leaving it.

Necessary condition:

Every vertex is contained in a good cluster.

Good cluster: size at most p and at most q edges leaving it.

Necessary condition:

Every vertex is contained in a good cluster.

But surprisingly, this is also a sufficient condition!

Lemma

Graph G has a (p, q)-clustering if and only if every vertex is in a good cluster.

Lemma

Graph G has a (p, q)-clustering if and only if every vertex is in a good cluster.

Proof: Find a collection of good clusters covering every vertex and having minimum total size. Suppose two clusters intersect.

Lemma

Graph G has a (p, q)-clustering if and only if every vertex is in a good cluster.

Proof: Find a collection of good clusters covering every vertex and having minimum total size. Suppose two clusters intersect.

 $d(X) + d(Y) \ge d(X \setminus Y) + d(Y \setminus X)$ $\Rightarrow \text{ either } d(X) \ge d(X \setminus Y) \text{ or } d(Y) \ge d(Y \setminus X) \text{ holds.}$

Lemma

Graph G has a (p, q)-clustering if and only if every vertex is in a good cluster.

Proof: Find a collection of good clusters covering every vertex and having minimum total size. Suppose two clusters intersect.

 $d(X) + d(Y) \ge d(X \setminus Y) + d(Y \setminus X)$

If $d(X) \ge d(X \setminus Y)$, replace X with $X \setminus Y$, strictly decreasing the total size of the clusters.

Lemma

Graph G has a (p, q)-clustering if and only if every vertex is in a good cluster.

Proof: Find a collection of good clusters covering every vertex and having minimum total size. Suppose two clusters intersect.

 $d(X) + d(Y) \ge d(X \setminus Y) + d(Y \setminus X)$

If $d(Y) \ge d(Y \setminus X)$, replace Y with $Y \setminus X$, strictly decreasing the total size of the clusters.

Finding a good cluster

We have seen:

Lemma

Graph G has a (p, q)-clustering if and only if every vertex is in a good cluster.

All we have to do is to check if a given vertex v is in a good cluster. Trivial to do in time $n^{O(q)}$.

Finding a good cluster

We have seen:

Lemma

Graph G has a (p, q)-clustering if and only if every vertex is in a good cluster.

All we have to do is to check if a given vertex v is in a good cluster. Trivial to do in time $n^{O(q)}$.

We prove next:

Lemma

We can check in time $2^{O(q)} \cdot n^{O(1)}$ if v is in a good cluster.

This is a transversal problem: we want to hit with q edges every tree going through v and having more than p vertices.

Random sampling (repeated)

Shadow: Set of vertices not reachable in $G \setminus S$.

Condition: every $F \in \mathcal{F}$ is connected and intersects T.

Theorem

In $2^{O(k)} \cdot n^{O(1)}$ time, we can compute a set Z with the following property. If there exists an \mathcal{F} -transversal of at most k edges, then with probability at least $2^{-O(k)}$ there is a minimum \mathcal{F} -transversal S with

- the shadow of S is covered by Z and
- no edge of S is contained in Z.

Now:

- $T = \{v\}$
- \mathcal{F} contains every tree going through v having > p vertices

Finding good clusters

- the shadow of S is covered by Z and
- no edge of *S* is contained in *Z*.

Where are the edges of S? Where is the good cluster?

Finding good clusters

- the shadow of S is covered by Z and
- no edge of *S* is contained in *Z*.

Where are the edges of S? Where is the good cluster?

Observe: Components of Z are either fully in the cluster or fully outside the cluster. What is this problem?

Finding good clusters

- the shadow of S is covered by Z and
- no edge of *S* is contained in *Z*.

Where are the edges of S? Where is the good cluster?

Observe: Components of Z are either fully in the cluster or fully outside the cluster. What is this problem?

KNAPSACK!

(p, q)-CLUSTERING

Multiway cut

(Directed) Multiway Cut

Input: Graph *G*, set of vertices *T*, integer *k* **Find:** A set *S* of at most *k* vertices such that $G \setminus S$ has no (directed) $t_1 - t_2$ path for any $t_1, t_2 \in T$

The undirected version is fairly well understood: best known algorithm solves it in time $2^k \cdot n^{O(1)}$ [Cygan et al. IPEC 2011]

Theorem [Chitnis, Hajiaghayi, Marx 2012] DIRECTED MULTIWAY CUT is FPT.

Can be formulated as minimum \mathcal{F} -transversal, where \mathcal{F} is the set of directed paths between vertices of \mathcal{T} .

Directed Multiway Cut

Shadow: those vertices of $G \setminus S$ that cannot be reached from T AND those vertices of $G \setminus S$ from which T cannot be reached.

The random sampling (directed vertex version)

Shadow: those vertices of $G \setminus S$ that cannot be reached from TAND those vertices of $G \setminus S$ from which T cannot be reached. **Condition:** for every $F \in \mathcal{F}$ and every vertex $v \in F$, there is a $T \rightarrow v$ and a $v \rightarrow T$ path in F.

Theorem

In $f(k) \cdot n^{O(1)}$ time, we can compute a set Z with the following property. If there exists an \mathcal{F} -transversal of at most k vertices, then with probability $2^{-O(k^2)}$ there is a minimum \mathcal{F} -transversal S with

- the shadow of S is covered by Z and
- $S \cap Z = \emptyset$.

Now:

- T: terminals
- $\bullet \ \mathcal{F}$ contains every directed path between two distinct terminals

We can assume that Z is disjoint from the solution, so we want to get rid of Z.

- Deleting Z is not a good idea: can make the problem easier.
- To compensate deleting Z, if there is an a → b path with internal vertices in Z, add a direct a → b edge.

We can assume that Z is disjoint from the solution, so we want to get rid of Z.

- Deleting Z is not a good idea: can make the problem easier.
- To compensate deleting Z, if there is an a → b path with internal vertices in Z, add a direct a → b edge.

We can assume that Z is disjoint from the solution, so we want to get rid of Z.

- Deleting Z is not a good idea: can make the problem easier.
- To compensate deleting Z, if there is an a → b path with internal vertices in Z, add a direct a → b edge.

We can assume that Z is disjoint from the solution, so we want to get rid of Z.

- Deleting Z is not a good idea: can make the problem easier.
- To compensate deleting Z, if there is an a → b path with internal vertices in Z, add a direct a → b edge.

Crucial observation:

- S remains a solution (since Z is disjoint from S) and
- S is a shadowless solution (since Z covers the shadow of S).

Shadowless solutions

How does a shadowless solution look like?

Shadowless solutions

How does a shadowless solution look like?

Shadowless solutions

How does a shadowless solution look like?

It is an undirected multiway cut in the underlying undirected graph! \Rightarrow Problem can be reduced to undirected multiway cut.

DIRECTED MULTIWAY CUT

Cut and count

A very powerful technique for many problems on graphs of bounded-treewidth.

Classical result:

Theorem

Given a tree decomposition of width k, HAMILTONIAN CYCLE can be solved in time $k^{O(k)} \cdot n^{O(1)} = 2^{O(k \log k)} \cdot n^{O(1)}$.

Very recently:

Theorem [Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk 2011]

Given a tree decomposition of width k, HAMILTONIAN CYCLE can be solved in time $4^k \cdot n^{O(1)}$.

Isolation Lemma

Isolation Lemma [Mulmuley, Vazirani, Vazirani 1987]

Let \mathcal{F} be a nonempty family of subsets of U and assign a weight $w(u) \in [N]$ to each $u \in U$ uniformly and independently at random. The probability that there is a **unique** $S \in \mathcal{F}$ having minimum weight is at least

$$1-\frac{|U|}{N}.$$

Isolation Lemma

Isolation Lemma [Mulmuley, Vazirani, Vazirani 1987]

Let \mathcal{F} be a nonempty family of subsets of U and assign a weight $w(u) \in [N]$ to each $u \in U$ uniformly and independently at random. The probability that there is a **unique** $S \in \mathcal{F}$ having minimum weight is at least

 $1-\frac{|U|}{N}$.

Let U = E(G) and \mathcal{F} be the set of all Hamiltonian cycles.

- By setting N := |V(G)|^{O(1)}, we can assume that there is a unique minimum weight Hamiltonian cycle.
- If *N* is polynomial in the input size, we can guess this minimum weight.
- So we are looking for a Hamiltonian cycle of weight **exactly** *C*, under the assumption that there is a **unique** such cycle.

• Cycle cover: A subgraph having degree exactly two at each vertex.

• A Hamiltonian cycle is a cycle cover, but a cycle cover can have more than one component.

- A Hamiltonian cycle is a cycle cover, but a cycle cover can have more than one component.
- Colored cycle cover: each component is colored black or white.

- A Hamiltonian cycle is a cycle cover, but a cycle cover can have more than one component.
- Colored cycle cover: each component is colored black or white.

- A Hamiltonian cycle is a cycle cover, but a cycle cover can have more than one component.
- Colored cycle cover: each component is colored black or white.
- A cycle cover with *k* components gives rise to 2^{*k*} colored cycle covers.
 - If there is no weight-*C* Hamiltonian cycle: the number of weight-*C* colored cycle covers is 0 mod 4.
 - If there is a unique weight-*C* Hamiltonian cycle: the number of weight-*C* colored cycle covers is 2 mod 4.

- A Hamiltonian cycle is a cycle cover, but a cycle cover can have more than one component.
- Colored cycle cover: each component is colored black or white.
- A cycle cover with *k* components gives rise to 2^{*k*} colored cycle covers.
 - If there is no weight-*C* Hamiltonian cycle: the number of weight-*C* colored cycle covers is 0 mod 4.
 - If there is a unique weight-*C* Hamiltonian cycle: the number of weight-*C* colored cycle covers is 2 mod 4.

- A Hamiltonian cycle is a cycle cover, but a cycle cover can have more than one component.
- Colored cycle cover: each component is colored black or white.
- A cycle cover with *k* components gives rise to 2^{*k*} colored cycle covers.
 - If there is no weight-*C* Hamiltonian cycle: the number of weight-*C* colored cycle covers is 0 mod 4.
 - If there is a unique weight-*C* Hamiltonian cycle: the number of weight-*C* colored cycle covers is 2 mod 4.

Cut and Count

- Assign random weights $\leq 2|E(G)|$ to the edges.
- If there is a Hamiltonian cycle, then with probability 1/2, there is a *C* such that there is a **unique** weight-*C* Hamiltionian cycle.
- Try all possible C.
- Count the number of weight-C colored cycle covers: can be done in time 4^k · n^{O(1)} if a tree decomposition of width k is given.
- Answer YES if this number is 2 mod 4.

Cut and Count

 $4^k \cdot n^{O(1)}$ time

Conclusions

- Randomization gives elegant solution to many problems.
- Derandomization is sometimes possible (but less elegant).
- Small (but f(k)) success probability is good for us.
- Reducing the problem we want to solve to a problem that is easier to solve.