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A classical problem

s − t Cut
Input: A graph G , an integer p, vertices s and t

Output: A set S of at most p edges such that removing S sep-
arates s and t.

Fact
A minimum s − t cut can be found in polynomial time.

What about separating more than two terminals?



More than two terminals

Multiway Cut

Input: A graph G , an integer p, and a set T of terminals
Output: A set S of at most p edges such that removing S sep-

arates any two vertices of T

Note: Also called Multiterminal Cut or k-Terminal Cut.

Theorem [Dalhaus et al. 1994]
NP-hard already for |T | = 3.



Planar graphs

Theorem [Dalhaus et al. 1994] [Hartvigsen 1998] [Bentz 2012]

k-Terminal Cut can be solved in time nO(k) on planar graphs.

Can we improve the dependence on the number k of terminals?
Is there a ck · nO(1) algorithm?
(Asked by [Dalhaus et al. 1994])
Is the problem fixed-parameter tractable?
(Appears in the open problem list of [Downey-Fellows 1999])

[A problem is fixed-parameter tractable (FPT) parameterized by k if it
can be solved in time f (k) · nO(1) for some computable function f (k)
depending only on k.]



Results

Main result 1
k-Terminal Cut on planar graphs is W[1]-hard parameterized by the
number k of terminals.

Lower bound on the exponent:

Main result 2
Assuming ETH, k-Terminal Cut on planar graphs cannot be solved
in time f (k) · no(

√
k) for any computable function f (k).

[Exponential Time Hypothesis (ETH): n-variable 3-Sat cannot be
solved in time 2o(n).]

Bound on the exponent is tight:

Next talk [Klein and M.]

k-Terminal Cut on planar graphs can be solved in time ck · nO(
√

k).
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W[1]-hardness

Definition
A parameterized reduction from problem A to B maps an
instance (x , k) of A to instance (x ′, k ′) of B such that

(x , k) ∈ A ⇐⇒ (x ′, k ′) ∈ B ,
k ′ ≤ g(k) for some computable function g .
(x ′, k ′) can be computed in time f (k) · |x |O(1).

Easy: If there is a parameterized reduction from problem A to
problem B and B is FPT, then A is FPT as well.

Definition
A problem P is W[1]-hard if there is a parameterized reduction
from k-Clique to P .
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W[1]-hardness vs. NP-hardness

W[1]-hardness proofs are more delicate than NP-hardness proofs:
we need to control the new parameter.

Example: k-Independent Set can be reduced to k ′-Vertex Cover
with k ′ := n − k . But this is not a parameterized reduction.

NP-hardness proof
Reduction from some graph problem. We build n vertex gadgets of
constant size and m edge gadgets of constant size.

W[1]-hardness proof
Reduction from k-Clique. We build k large vertex gadgets, each
having n states (and/or

(k
2

)
large edge gadgets with m states).



Planar problems

Another difference: Most problems remain NP-hard on planar
graphs, but become FPT.

Algorithmic techniques for planar problems:
Baker’s shifting technique + treewidth
Bidimensionality
Protrusions

Very few W[1]-hardness results so far for planar problems.



Tight bounds

Theorem [Chen et al. 2004]

Assuming ETH, there is no f (k) · no(k) algorithm for k-Clique for
any computable function f .

Transfering to other problems:
If there is a parameterized reduction from k-Clique to problem A
mapping (x , k) to (x ′, g(k)), then an f (k) · no(g−1(k)) algorithm for
problem A gives an f (k) · no(k) algorithm for k-Clique,
contradicting ETH.

Bottom line:
To rule out f (k) · no(

√
k) algorithms, we need a parameterized

reduction that blows up the parameter at most quadratically.
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Grid Tiling
Grid Tiling

Input: A k × k matrix and a set of pairs Si ,j ⊆ [D] × [D] for
each cell.

Find: A pair si ,j ∈ Si ,j for each cell such that
Horizontal neighbors agree in the first component.
Vertical neighbors agree in the second component.

(1,1)
(1,3)
(4,2)

(1,5)
(4,1)
(3,5)
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(3,1)

(3,2)
(3,5)

k = 3, D = 5
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Grid Tiling is W[1]-hard

Reduction from k-Clique

Definition of the sets:

For i = j : (x , y) ∈ Si ,j ⇐⇒ x = y
For i 6= j : (x , y) ∈ Si ,j ⇐⇒ x and y are adjacent.

(vi , vi )

Each diagonal cell defines a value vi . . .
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The gadget
For every set Si ,j , we construct a gadget such that

for every (x , y) ∈ Si ,j , there is a minimum multiway cut that
represents (x , y).
every minimum cut represents some (x , y) ∈ Si ,j .

Main part of the proof: constructing these gadgets.
UL u1 u2 u3 u4 u5 UR

r1
r2
r3
r4
r5

DL d1 d2 d3 d4 d5 DR

`1

`2

`3

`4

`5

The gadget.
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Putting together the gadgets
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Constructing the gadget

This is what we would like to have:
u1 u2 u3 u4 u5

r1
r2
r3
r4
r5

d1 d2 d3 d4 d5

`1
`2
`3
`4
`5

We set up the weight of the grid edges such that every cheap
cut is like this.
Furthermore, we add something in the cells that ensures that
the intersection of the horizontal and the vertical cut has to be
a special cell.
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Special cells

Two different type of cells
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Special cells

They behave similarly with respect to horizontal cuts. . .
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Special cells

They behave similarly with respect to vertical cuts. . .
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Special cells

. . . but they differ on 3-way cuts.
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Conclusions

Main result: assuming ETH, there is no f (k) · no(
√

k) time
algorithm for planar k-terminal Multiway cut.

(Almost) matches the ck · nO(
√

k) time algorithm (next talk).
Reduction from Grid Tiling (should be useful for other planar
W[1]-hardness proofs).
Main part: constructing the gadgets.


