

Dániel Marx

Budapest University of Technology and Economics

dmarx@cs.bme.hu

Presented at University of Freiburg, Germany June 7, 2004

Outline of the talk

- 6 Parameterized complexity
- Schaefer's Dichotomy Theorem
- 6 A parameterized dichotomy theorem
- Sketch of proof
- Planar formulae

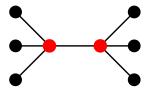
Parameterized complexity

Problem: MINIMUM VERTEX COVER

Graph G, integer kInput:

Question: Is it possible to cover

the edges with k vertices?

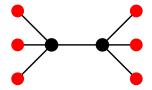


Complexity: NP-complete MAXIMUM INDEPENDENT SET

Graph G, integer k

Is it possible to find

 $m{k}$ independent vertices?



NP-complete

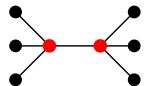
Parameterized complexity

Problem: MINIMUM VERTEX COVER

Graph G, integer k

Question: Is it possible to cover

the edges with k vertices?



Complexity: NP-complete

Complete enumeration:

Input:

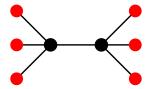
 $O(n^k)$ possibilities

MAXIMUM INDEPENDENT SET

Graph G, integer k

Is it possible to find

 $oldsymbol{k}$ independent vertices?



NP-complete

 $O(n^k)$ possibilities

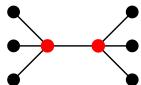
Parameterized complexity

Problem: MINIMUM VERTEX COVER

Input: Graph G, integer k

Question: Is it possible to cover

the edges with k vertices?



Complexity: NP-complete

Complete $O(n^k)$ possibilities enumeration:

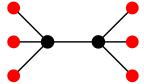
 $O(2^k n^2)$ algorithm exists

MAXIMUM INDEPENDENT SET

Graph G, integer k

Is it possible to find

 $oldsymbol{k}$ independent vertices?

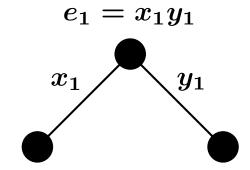


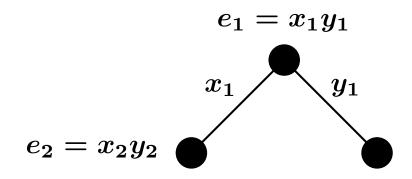
NP-complete

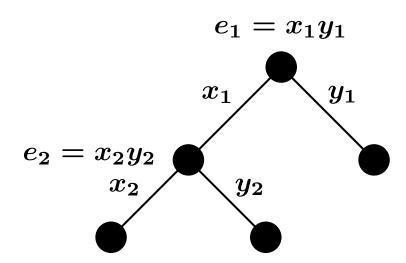
 $O(n^k)$ possibilities

No $n^{o(k)}$ algorithm known

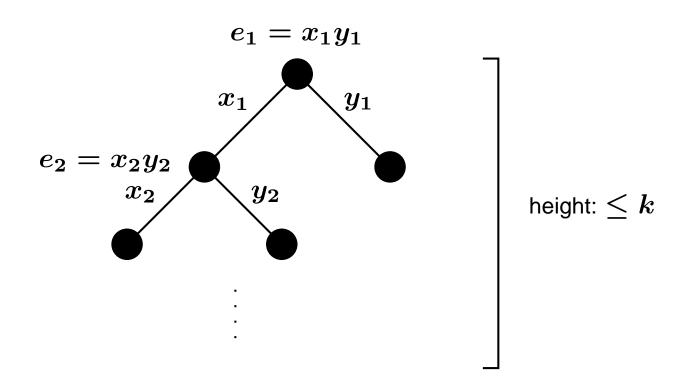
$$e_1 = x_1 y_1$$







Algorithm for MINIMUM VERTEX COVER:



Height of the search tree is $\leq k \Rightarrow$ number of nodes is $O(2^k) \Rightarrow$ complete search requires $2^k \cdot$ poly steps.

Fixed-parameter tractability

Definition: a parameterized problem is fixed-parameter tractable (FPT) if there is an $f(k)n^c$ time algorithm for some constant c.

We have seen that MINIMUM VERTEX COVER is in FPT. Best known algorithm:

 $O(1.2832^k k + k |V|)$ [Niedermeier, Rossmanith, 2003]

Main goal of parameterized complexity: to find fixed-parameter tractable problems.

Fixed-parameter tractability

Definition: a parameterized problem is fixed-parameter tractable (FPT) if there is an $f(k)n^c$ time algorithm for some constant c.

We have seen that MINIMUM VERTEX COVER is in FPT. Best known algorithm:

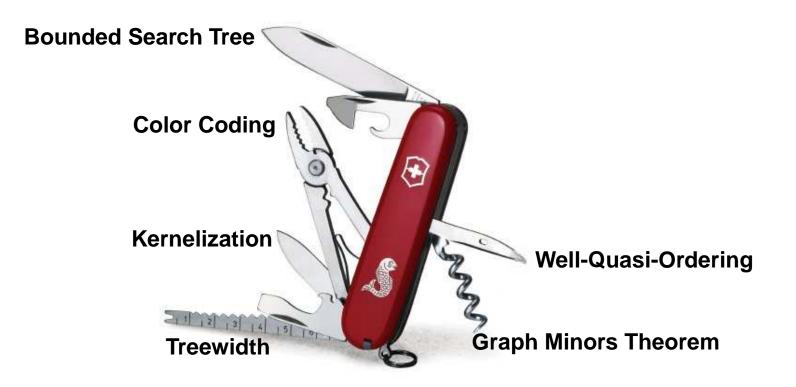
 $O(1.2832^k k + k |V|)$ [Niedermeier, Rossmanith, 2003]

Main goal of parameterized complexity: to find fixed-parameter tractable problems. Examples of **NP**-hard problems that are in FPT:

- 6 LONGEST PATH
- O DISJOINT TRIANGLES
- FEEDBACK VERTEX SET
- GRAPH GENUS
- etc.

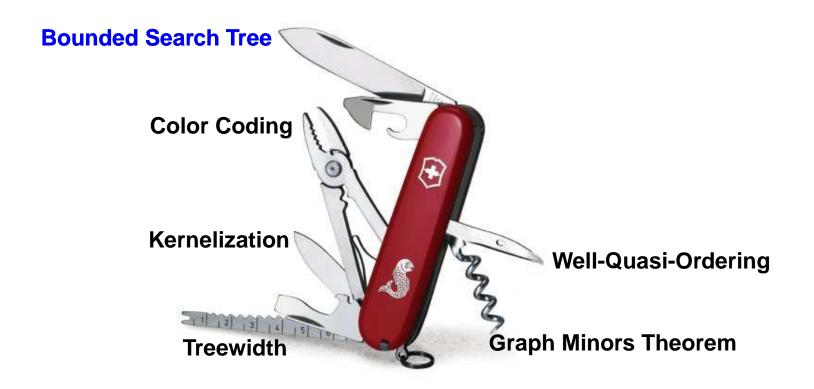
Fixed-parameter tractability (cont.)

- ullet Practical importance: efficient algorithms for small values of $oldsymbol{k}$.
- Powerful toolbox for designing FPT algorithms:



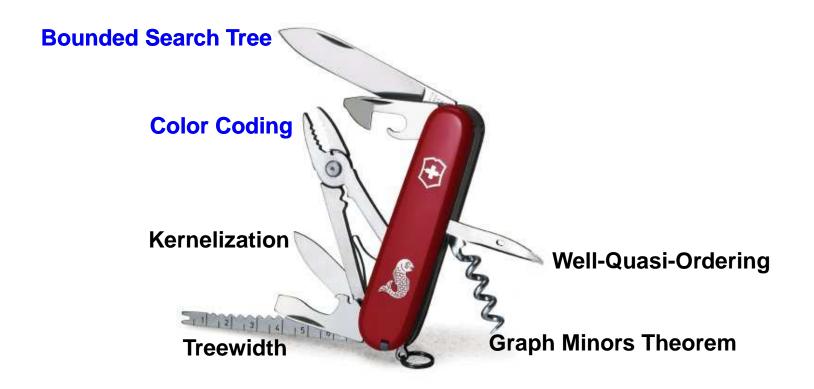
Fixed-parameter tractability (cont.)

- ullet Practical importance: efficient algorithms for small values of $oldsymbol{k}$.
- Powerful toolbox for designing FPT algorithms:



Fixed-parameter tractability (cont.)

- ullet Practical importance: efficient algorithms for small values of $oldsymbol{k}$.
- Opening Powerful toolbox for designing FPT algorithms:



Color Coding: Disjoint Triangles

Task: Find k vertex disjoint triangles in a graph G.

Method:

- 6 Assign random labels $1, 2, \ldots, 3k$ to the vertices.
- 6 Are there $oldsymbol{k}$ triangles such that

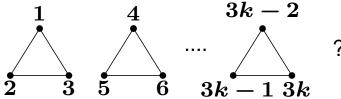
The existence of such triangles is easy to check.

Color Coding: Disjoint Triangles

Task: Find k vertex disjoint triangles in a graph G.

Method:

- 6 Assign random labels $1, 2, \ldots, 3k$ to the vertices.
- 6 Are there $oldsymbol{k}$ triangles such that



The existence of such triangles is easy to check.

If there are $oldsymbol{k}$ disjoint triangles

- \Rightarrow with probability $1/(3k)^{3k}$ they are labeled as on the figure
- \Rightarrow we need on average $(3k)^{3k}$ random assignments to find the k triangles!

Color coding: useful if we want to select a **small** number of disjoint **small** objects from a **large** list.

Method can be derandomized using families of k-perfect hash functions.

Parameterized intractability

We expect that Maximum Independent Set is not fixed-parameter tractable, no $n^{o(k)}$ algorithm is known.

W[1]-complete ≈ "as hard as MAXIMUM INDEPENDENT SET"

Parameterized intractability

We expect that Maximum Independent Set is not fixed-parameter tractable, no $n^{o(k)}$ algorithm is known.

W[1]-complete ≈ "as hard as Maximum Independent Set"

Parameterized reductions: L_1 is reducible to L_2 , if there is a function f that transforms (x,k) to (x',k') such that

- $(x,k)\in L_1$ if and only if $(x',k')\in L_2$,
- f can be computed in $f(k)|x|^c$ time,
- ${}^{lacktrlack 6} \;\; k'$ depends only on k

If L_1 is reducible to L_2 , and L_2 is in FPT, then L_1 is in FPT as well.

Most **NP**-completeness proofs are not good for parameterized reductions.

Parameterized Complexity: Summary

Two key concepts:

- 6 A parameterized problem is **fixed-parameter tractable** if it has an $f(k)n^c$ time algorithm.
- To show that a problem $m{L}$ is hard, we have to give a parameterized reduction from a known W[1]-complete problem to $m{L}$.

Constraint satisfaction problems

Let $\mathcal R$ be a set Boolean of relations. An $\mathcal R$ -formula is a conjunction of relations in $\mathcal R$:

$$R_1(x_1, x_4, x_5) \wedge R_2(x_2, x_1) \wedge R_1(x_3, x_3, x_3) \wedge R_3(x_5, x_1, x_4, x_1)$$

\mathcal{R} -SAT

- 6 Given: an ${\cal R}$ -formula arphi
- $^{f 6}$ Find: a variable assignment satisfying $oldsymbol{arphi}$

Constraint satisfaction problems

Let \mathcal{R} be a set Boolean of relations. An \mathcal{R} -formula is a conjunction of relations in \mathcal{R} :

$$R_1(x_1,x_4,x_5) \wedge R_2(x_2,x_1) \wedge R_1(x_3,x_3,x_3) \wedge R_3(x_5,x_1,x_4,x_1)$$

\mathcal{R} -SAT

- $^{f 6}$ Given: an ${\cal R}$ -formula arphi
- $^{f 6}$ Find: a variable assignment satisfying $oldsymbol{arphi}$

$$\mathcal{R} = \{a
eq b\} \Rightarrow \mathcal{R}$$
-SAT = 2 -coloring of a graph

$$\mathcal{R} = \{a \lor b, \ a \lor \overline{b}, \ \overline{a} \lor \overline{b}\} \Rightarrow \mathcal{R}$$
-SAT = 2SAT

$$\mathcal{R} = \{a \lor b \lor c, a \lor b \lor \bar{c}, a \lor \bar{b} \lor \bar{c}, \bar{a} \lor \bar{b} \lor \bar{c}\} \Rightarrow \mathcal{R}$$
-SAT = 3SAT

Question: \mathcal{R} -SAT is polynomial time solvable for which \mathcal{R} ?

It is **NP**-complete for which \mathcal{R} ?

Schaefer's Dichotomy Theorem (1978)

For every \mathcal{R} , the \mathcal{R} -SAT problem is polynomial time solvable if one of the following holds, and **NP**-complete otherwise:

- Every relation is satisfied by the all 0 assignment
- Every relation is satisfied by the all 1 assignment
- Every relation can be expressed by a 2SAT formula
- 6 Every relation can be expressed by a Horn formula
- Every relation can be expressed by an anti-Horn formula
- 6 Every relation is an affine subspace over GF(2)

Schaefer's Dichotomy Theorem (1978)

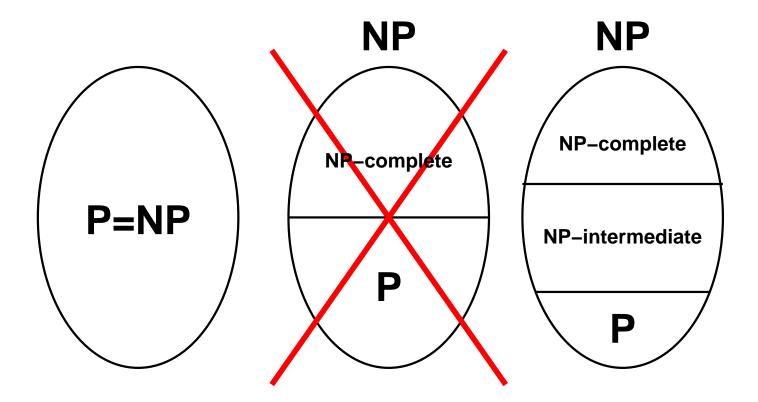
For every \mathcal{R} , the \mathcal{R} -SAT problem is polynomial time solvable if one of the following holds, and **NP**-complete otherwise:

- Every relation is satisfied by the all 0 assignment
- Every relation is satisfied by the all 1 assignment
- Every relation can be expressed by a 2SAT formula
- Every relation can be expressed by a Horn formula
- Every relation can be expressed by an anti-Horn formula
- 6 Every relation is an affine subspace over GF(2)

Why is it surprising?

Ladner's Theorem (1975)

If $\mathbf{P}
eq \mathbf{NP}$, then there is a language $L \in \mathbf{NP} \setminus \mathbf{P}$ that is not \mathbf{NP} -complete.



Other dichotomy results

- Approximability of MAX-SAT, MIN-UNSAT [Khanna et al., 2001]
- Approximability of MAX-ONES, MIN-ONES [Khanna et al., 2001]
- Generalization to 3 valued variables [Bulatov, 2002]
- Inverse satisfiability [Kavvadias and Sideri, 1999]
- etc.

Other dichotomy results

- Approximability of MAX-SAT, MIN-UNSAT [Khanna et al., 2001]
- Approximability of MAX-ONES, MIN-ONES [Khanna et al., 2001]
- Generalization to 3 valued variables [Bulatov, 2002]
- Inverse satisfiability [Kavvadias and Sideri, 1999]
- etc.

Our contribution: parameterized analogue of Schaefer's dichotomy theorem.

Parameterized version

Parameterized \mathcal{R} -SAT

ullet Input: an ${\mathcal R}$ -formula ${oldsymbol arphi}$, an integer k

ullet Parameter: k

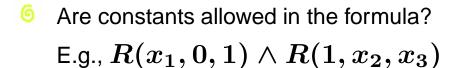
6 Question: Does φ have a satisfying assignment of weight exactly k?

For which ${\mathcal R}$ is there an $f(k) \cdot n^c$ algorithm for ${\mathcal R}$ -SAT?

Main theorem: For every constraint family \mathcal{R} , the parameterized \mathcal{R} -SAT problem is either fixed-parameter tractable or W[1]-complete.

(+ simple characterization of FPT cases)

Technical notes



- Can a variable appear multiple times in a constraint? E.g., $R(x_1,x_1,x_2) \wedge R(x_3,x_3,x_3)$
- Constraints that are not satisfied by the all f 0 assignment can be handled easily (bounded search tree).

Weak separability

Definition: $oldsymbol{R}$ is weakly separable if

- 1. the union of two disjoint satisfying assignments is also satisfying, and
- 2. if a satisfying assignment contains a smaller satisfying assignment, then their difference is also satisfying.

Example of 1: Example of 2:
$$R(1,1,1,1,0,0,0,0,0) = 1 \qquad R(1,1,1,1,1,1,0,0) = 1$$

$$R(0,0,0,0,1,1,0,0,0) = 1 \qquad R(0,0,1,1,1,1,0,0) = 1$$

$$\downarrow \downarrow \qquad \qquad \downarrow \downarrow$$

$$R(1,1,1,1,1,1,0,0,0) = 1 \qquad R(1,1,0,0,0,0,0,0,0) = 1$$

Main theorem: \mathcal{R} -SAT is FPT if and only if every constraint is weakly separable, and W[1]-complete otherwise.

Weak separability: examples

The constraint EVEN is weakly separable:

Property 1: Property 2: even
$$R(1,1,1,1,0,0,0,0,0,0)=1$$
 $R(1,1,1,1,1,1,0,0)=1$ $R(0,0,0,0,0,1,1,0,0,0)=1$ $R(0,0,1,1,1,1,0,0)=1$ $R(1,1,1,1,1,1,0,0)=1$ $R(1,1,1,1,1,1,0,0,0,0,0,0)=1$

More generally: every affine constraint is weakly separable.

Weak separability: examples (cont.)

The following constraint is trivially weakly separable:

$$R(0,0,0,0,0)=1$$

$$R(1,1,1,0,0) = 1$$

$$R(0,1,1,1,0)=1$$

$$R(0,0,1,1,1)=1$$

 $R(x_1, x_2, x_3, x_4, x_5) = 0$ otherwise.

Reason: Property 1 and 2 vacuously hold, no disjoint sets, no subsets.

More generally: if the non-zero satisfying assignments are intersecting and form a clutter, then it is weakly separable.

Example: $R(x_1,\dots,x_n)=1$ if and only if 0 or exactly t out of n variables are 1 (t>n/2)

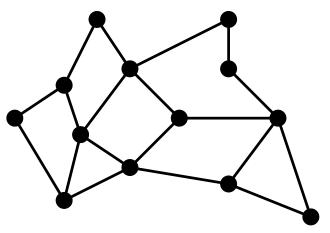
Parameterized vs. classical

The easy and hard cases are different in the classical and the parameterized version:

Constraint	Classical	Parameterized
x ee y	in P	FPT (VERTEX COVER)
$\bar{x}\vee\bar{y}$	in P	W[1]-complete (MAXIMUM INDEPENDENT SET)
affine	in P	FPT
2-in-3	NP-complete	FPT

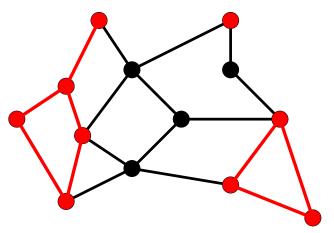
Bounded number of occurrences

Primal graph: Vertices are the variables, two variables are connected if they appear in some clause together.



Bounded number of occurrences

Primal graph: Vertices are the variables, two variables are connected if they appear in some clause together.



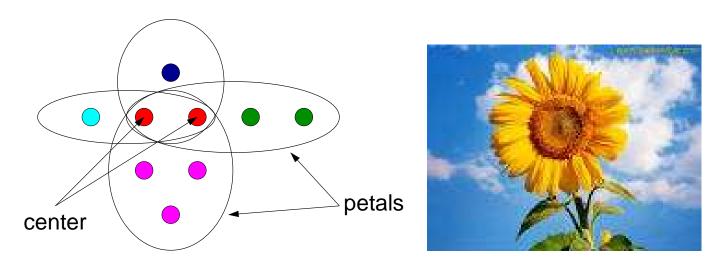
Every satisfying assignment is composed of **connected satisfying assignments**.

Lemma: There are at most $(rd)^{k^2} \cdot n$ connected satisfying assignments of size at most k. (r is the maximum arity, d is the maximum no. of occurrences)

Algorithm: Use color coding to put together the connected assignments to obtain a size $m{k}$ assignment.

The sunflower lemma

Definition: Sets S_1, S_2, \ldots, S_k form a **sunflower** if the sets $S_i \setminus (S_1 \cap S_2 \cap \cdots \cap S_k)$ are disjoint.



Lemma (Erdős and Rado, 1960): If the size of a set system is greater than $(p-1)^{\ell} \cdot \ell!$ and it contains only sets of size at most ℓ , then the system contains a sunflower with p petals.

Sunflower of clauses

Definition: A **sunflower** is a set of k clauses such that for every i

- ullet either the same variable appears at position $oldsymbol{i}$ in every clause,
- 6 or every clause "owns" its ith variable.

$$R(oldsymbol{x_1}, oldsymbol{x_2}, oldsymbol{x_3}, oldsymbol{x_4}, oldsymbol{x_5}, oldsymbol{x_6}) \ R(oldsymbol{x_1}, oldsymbol{x_2}, oldsymbol{x_3}, oldsymbol{x_7}, oldsymbol{x_8}, oldsymbol{x_9}) \ R(oldsymbol{x_1}, oldsymbol{x_2}, oldsymbol{x_3}, oldsymbol{x_{10}}, oldsymbol{x_{11}}, oldsymbol{x_{12}}) \ R(oldsymbol{x_1}, oldsymbol{x_2}, oldsymbol{x_3}, oldsymbol{x_{13}}, oldsymbol{x_{14}}, oldsymbol{x_{15}})$$

Lemma: If a variable occurs more than $c_{\mathcal{R}}(k)$ times in an \mathcal{R} -formula, then the formula contains a sunflower of clauses with more than k petals.

$$k+1 \left\{ \begin{array}{l} \text{EVEN}(\pmb{x_1}, \pmb{x_2}, \pmb{x_3}, \pmb{x_4}, \pmb{x_5}, \pmb{x_6}) \\ \text{EVEN}(\pmb{x_1}, \pmb{x_2}, \pmb{x_3}, \pmb{x_7}, \pmb{x_8}, \pmb{x_9}) \\ \text{EVEN}(\pmb{x_1}, \pmb{x_2}, \pmb{x_3}, \pmb{x_{10}}, \pmb{x_{11}}, \pmb{x_{12}}) \\ \text{EVEN}(\pmb{x_1}, \pmb{x_2}, \pmb{x_3}, \pmb{x_{13}}, \pmb{x_{14}}, \pmb{x_{15}}) \end{array} \right.$$

$$k+1 \left\{ \begin{array}{l} \text{EVEN}(\pmb{x_1}, \pmb{x_2}, \pmb{x_3}, \pmb{x_4}, \pmb{x_5}, \pmb{x_6}) \\ \text{EVEN}(\pmb{x_1}, \pmb{x_2}, \pmb{x_3}, \pmb{x_7}, \pmb{x_8}, \pmb{x_9}) \\ \text{EVEN}(\pmb{x_1}, \pmb{x_2}, \pmb{x_3}, 0, 0, 0) \\ \text{EVEN}(\pmb{x_1}, \pmb{x_2}, \pmb{x_3}, \pmb{x_{13}}, \pmb{x_{14}}, \pmb{x_{15}}) \end{array} \right.$$

$$k+1 \left\{ egin{array}{ll} {\sf EVEN}(\pmb{x_1},\pmb{x_2},\pmb{x_3},\pmb{x_4},\pmb{x_5},\pmb{x_6}) \ {\sf EVEN}(\pmb{x_1},\pmb{x_2},\pmb{x_3},\pmb{x_7},\pmb{x_8},\pmb{x_9}) \ {\sf EVEN}(\pmb{x_1},\pmb{x_2},\pmb{x_3},0,0,0) \ {\sf EVEN}(\pmb{x_1},\pmb{x_2},\pmb{x_3},\pmb{x_{13}},\pmb{x_{14}},\pmb{x_{15}}) \ & \downarrow \downarrow \ {\sf EVEN}(\pmb{x_1},\pmb{x_2},\pmb{x_3}) \end{array}
ight.$$

$$k+1 \begin{cases} & \text{EVEN}(x_1, x_2, x_3, x_4, x_5, x_6) \\ & \text{EVEN}(x_1, x_2, x_3, x_7, x_8, x_9) \\ & \text{EVEN}(x_1, x_2, x_3, 0, 0, 0) \\ & \text{EVEN}(x_1, x_2, x_3, x_{13}, x_{14}, x_{15}) \end{cases}$$

$$\downarrow \downarrow$$

$$\text{EVEN}(x_1, x_2, x_3)$$

$$\text{EVEN}(x_1, x_2, x_3)$$

$$\text{EVEN}(x_4, x_5, x_6)$$

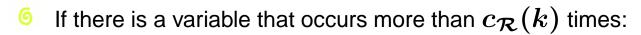
$$\text{EVEN}(x_4, x_5, x_6)$$

$$\text{EVEN}(x_7, x_8, x_9)$$

$$\text{EVEN}(x_{10}, x_{11}, x_{12})$$

$$\text{EVEN}(x_{13}, x_{14}, x_{15})$$

The algorithm



- lacktriangle Find a sunflower with k+1 petals
- Arr Pluck the sunflower \Rightarrow shorter formula
- 6 If every variable occurs at most $c_{\mathcal{R}}(k)$ times:
 - Apply the bounded occurrence algorithm

Running time: $2^{k^{r+2}\cdot 2^{2^{O(r)}}}\cdot n\log n$, where r is the maximum arity in the constraint family \mathcal{R} .

Definition: $oldsymbol{R}$ is weakly separable if

- 1. the union of two disjoint satisfying assignments is also satisfying, and
- 2. if a satisfying assignment contains a smaller satisfying assignment, then their difference is also satisfying.

Definition: $oldsymbol{R}$ is weakly separable if

- 1. the union of two disjoint satisfying assignments is also satisfying, and
- 2. if a satisfying assignment contains a smaller satisfying assignment, then their difference is also satisfying.

If property 1 is violated:

$$egin{aligned} R(0,0,0,0,0,0,0,0) &= 1 \ R(1,1,1,0,0,0,0,0,0) &= 1 \ R(0,0,0,1,1,0,0,0) &= 1 \ R(1,1,1,1,1,0,0,0) &= 0 \end{aligned}$$

Definition: $oldsymbol{R}$ is weakly separable if

- 1. the union of two disjoint satisfying assignments is also satisfying, and
- 2. if a satisfying assignment contains a smaller satisfying assignment, then their difference is also satisfying.

If property 1 is violated:

$$R(0,0,0,0,0,0,0,0) = 1$$
 $R(1,1,1,0,0,0,0,0) = 1$
 $R(0,0,0,1,1,0,0,0) = 1$
 $R(1,1,1,1,1,0,0,0) = 0$

 $R(x,x,x,y,y,0,0,0)=1\iff \bar{x}\vee\bar{y}$

Definition: $oldsymbol{R}$ is weakly separable if

- 1. the union of two disjoint satisfying assignments is also satisfying, and
- 2. if a satisfying assignment contains a smaller satisfying assignment, then their difference is also satisfying.

If property 1 is violated:

$$R(0,0,0,0,0,0,0,0) = 1$$
 $R(1,1,1,0,0,0,0,0) = 1$
 $R(0,0,0,1,1,0,0,0) = 1$
 $R(1,1,1,1,1,0,0,0) = 0$

MAXIMUM INDEPENDENT SET

 \Rightarrow can be expressed!

Definition: $oldsymbol{R}$ is weakly separable if

- 1. the union of two disjoint satisfying assignments is also satisfying, and
- 2. if a satisfying assignment contains a smaller satisfying assignment, then their difference is also satisfying.

If property 2 is violated:

$$R(0,0,0,0,0,0,0,0) = 1$$
 $R(1,1,1,1,1,0,0,0) = 1$
 $R(0,0,0,1,1,0,0,0) = 1$
 $R(1,1,1,0,0,0,0,0) = 0$

Definition: $oldsymbol{R}$ is weakly separable if

- 1. the union of two disjoint satisfying assignments is also satisfying, and
- 2. if a satisfying assignment contains a smaller satisfying assignment, then their difference is also satisfying.

If property 2 is violated:

$$egin{aligned} R(0,0,0,0,0,0,0,0) &= 1 \ R(1,1,1,1,1,0,0,0) &= 1 \ R(0,0,0,1,1,0,0,0) &= 1 \ R(1,1,1,0,0,0,0,0) &= 0 \ &\downarrow\downarrow \ R(x,x,x,y,y,0,0,0) &= 1 \iff x o y \end{aligned}$$

Definition: $oldsymbol{R}$ is weakly separable if

- 1. the union of two disjoint satisfying assignments is also satisfying, and
- 2. if a satisfying assignment contains a smaller satisfying assignment, then their difference is also satisfying.

If property 2 is violated:

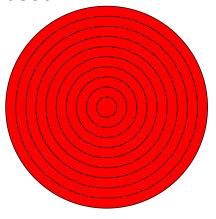
$$R(0,0,0,0,0,0,0,0) = 1$$
 $R(1,1,1,1,1,0,0,0) = 1$
 $R(0,0,0,1,1,0,0,0) = 1$
 $R(1,1,1,0,0,0,0,0) = 0$
 $\downarrow \downarrow$

 $R(x, x, x, y, y, 0, 0, 0) = 1 \iff x \to y$

Lemma: The problem is W[1]-complete for the constraint \rightarrow .

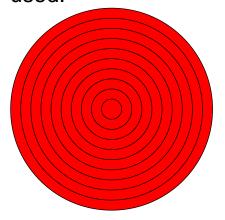
Planar formulae

If the primal graph of the formula is **planar**, then the layering method of Baker can be used.



Planar formulae

If the primal graph of the formula is **planar**, then the layering method of Baker can be used.

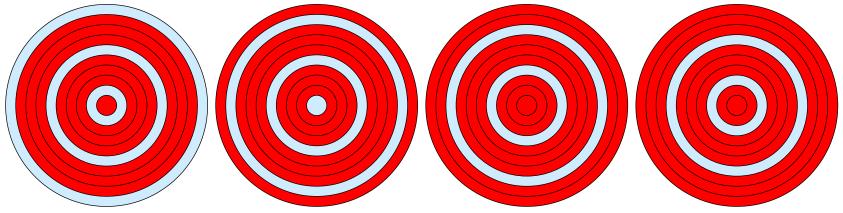


Set to 0 the variables in every (k+1)th layer.

There are k+1 ways of doing this.

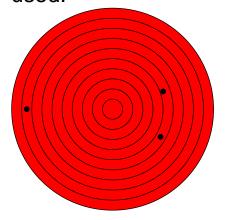
One of them will not hurt the solution.

Example with k=3:



Planar formulae

If the primal graph of the formula is **planar**, then the layering method of Baker can be used.

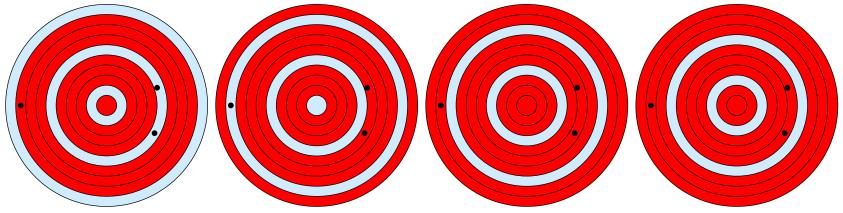


Set to 0 the variables in every (k+1)th layer.

There are k+1 ways of doing this.

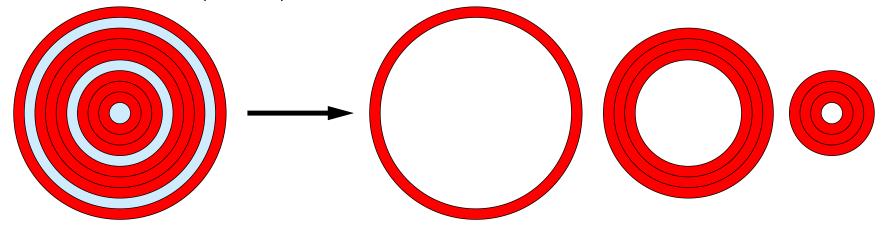
One of them will not hurt the solution.

Example with k=3:



Planar formulae (cont.)

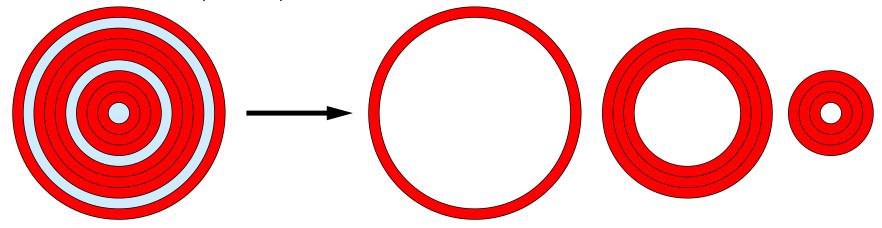
If we delete every (k+1)th layer, then the remaining formula has only k layers:



Lemma (Bodlaender): The treewidth of a k-layered graph is at most 3k-1. If the primal graph has bounded treewidth, then the problem can be solved in linear time using standard techniques.

Planar formulae (cont.)

If we delete every (k+1)th layer, then the remaining formula has only k layers:



Lemma (Bodlaender): The treewidth of a k-layered graph is at most 3k-1. If the primal graph has bounded treewidth, then the problem can be solved in linear time using standard techniques.

Incidence graph: bipartite graph, vertices are the clauses and the variables, edge means "appears in".

Theorem: Linear time alg. if the incidence graph of the formula is planar.

Summary

- 6 Parameterized version of ${\cal R}$ -SAT
- FPT or W[1]-complete depending on weak separability
- 6 Bounded occurences: color coding using connected solutions
- 6 Reduction using the sunflower lemma
- 6 Linear time solvable for planar and bounded treewidth formulae

Summary

- 6 Parameterized version of ${\cal R}$ -SAT
- FPT or W[1]-complete depending on weak separability
- Sounded occurences: color coding using connected solutions
- 6 Reduction using the sunflower lemma
- Linear time solvable for planar and bounded treewidth formulae

Thank you for your attention! Questions?