
Approximating fra
tional hypertree widthDÁNIEL MARXBudapest University of Te
hnology and E
onomi
sFra
tional hypertree width is a hypergraph measure similar to tree width and hypertree width. Itsalgorithmi
 importan
e 
omes from the fa
t that, as shown in previous work, 
onstraint satisfa
tionproblems (CSP) and various problems in database theory are polynomial-time solvable if the input
ontains a bounded-width fra
tional hypertree de
omposition of the hypergraph of the 
onstraints.In this paper, we show that for every �xed w ≥ 1, there is a polynomial-time algorithm that,given a hypergraph H with fra
tional hypertree width at most w, 
omputes a fra
tional hypertreede
omposition of width O(w3) for H. This means that polynomial-time algorithms relying onbounded-width fra
tional hypertree de
ompositions no longer need to be given a de
ompositionexpli
itly in the input, sin
e an appropriate de
omposition 
an be 
omputed in polynomial time.Therefore, if H is a 
lass of hypergraphs with bounded fra
tional hypertree width, then CSPrestri
ted to instan
es whose stru
ture is in H is polynomial-time solvable. This makes boundedfra
tional hypertree width the most general known hypergraph property that makes CSP, BooleanConjun
tive Queries, and Conjun
tive Query Containment polynomial-time solvable.Categories and Subje
t Des
riptors: G.2.2 [Dis
rete Mathemati
s℄: Graph Theory�GraphAlgorithms; F.2.2 [Analysis of Algorithms and Problem Complexity℄: Nonnumeri
al Algo-rithms and ProblemsGeneral Terms: Algorithms, TheoryAdditional Key Words and Phrases: treewidth, fra
tional hypertree width, 
onstraint satisfa
tion1. INTRODUCTIONConstraint satisfa
tion is a general framework that in
ludes many standard algo-rithmi
 problems su
h as satis�ability, graph 
oloring, database queries, et
. A
onstraint satisfa
tion problem (CSP) 
onsists of a set V of variables, a domain D,and a set C of 
onstraints, where ea
h 
onstraint is a relation on a subset of thevariables. The task is to assign a value from D to ea
h variable su
h that every
onstraint is satis�ed. For example, 3SAT 
an be interpreted as a CSP problemwhere the domain is D = {0, 1} and the 
onstraints in C 
orrespond to the 
lauses(thus the arity of ea
h 
onstraint is 3). Certain fundamental problems in databasetheory, su
h as Boolean Conjun
tive Queries and Conjun
tive Query Containment,are equivalent to CSP. For more ba
kground, see e.g., [Grohe 2006; Feder and Vardi1999; Gottlob and Szeider 2008; Kolaitis and Vardi 2000℄.Author's address: Department of Computer S
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112 · Dániel MarxIn general, solving 
onstraint satisfa
tion problems is NP-hard if there are noadditional restri
tions on the instan
es. The main goal of the resear
h on CSP isto identify tra
table spe
ial 
ases of the general problem. The theoreti
al literatureon CSP investigates two main types of restri
tions. The �rst type is to restri
t the
onstraint language, that is, the type of 
onstraints that is allowed. This dire
tionin
ludes the 
lassi
al work of S
haefer [S
haefer 1978℄ and its many generalizations(e.g., [Bulatov 2002; 2003; Bulatov et al. 2001; Feder and Vardi 1999; Jeavons et al.1997℄). The se
ond type is to restri
t the stru
ture indu
ed by the 
onstraints onthe variables. The hypergraph of a CSP instan
e is de�ned to be a hypergraphon the variables of the instan
e su
h that for ea
h 
onstraint c ∈ C there is ahyperedge ec that 
ontains all the variables that appear in c. If the hypergraph ofthe CSP instan
e has a very simple stru
ture, then the instan
e is easy to solve.For example, it is well-known that a CSP instan
e I with hypergraph H 
an besolved in time ‖I‖O(tw(H)) [Freuder 1990℄, where tw(H) denotes the tree width of
H and ‖I‖ is the size of the representation of I in the input. Thus if we restri
tthe problem to instan
es where the tree width of the hypergraph is bounded bysome 
onstant w, then the problem is polynomial-time solvable. It is the goal ofongoing resear
h to �nd other properties (besides bounded tree width) that makethe problem polynomial-time tra
table. Formally, for a 
lass H of hypergraphs, letCSP(H) be the restri
tion of CSP where the hypergraph of the instan
e is assumedto be in H. Our goal is to �nd and 
ategorize 
lasses H su
h that CSP(H) 
an besolved in polynomial time.If the 
onstraints have bounded arity (i.e., edge size in H is bounded by a 
on-stant), then the 
omplexity of CSP(H) is well understood:Theorem 1.1 [Grohe 2007; Grohe et al. 2001℄. Let CSP(H) be CSP re-stri
ted to instan
es whose underlying hypergraph is in H. If H is a re
ursively enu-merable 
lass of hypergraphs with bounded edge size, then (assuming FPT 6= W[1℄)CSP(H) is polynomial-time solvable

m
H has bounded tree width.The assumption FPT 6= W[1℄ is a standard hypothesis of parameterized 
omplexity.Thus in the bounded-arity 
ase bounded tree width is the only property of thehypergraph that 
an make the problem polynomial-time solvable. A sharpening ofTheorem 1.1 was proved in [Marx 2007℄, where almost tight lower bounds are givenon the time required to solve CSP(H) if H has unbound tree width.The situation is mu
h less understood in the unbounded arity 
ase, i.e., whenthere is no bound on the maximum edge size in H. First, the 
omplexity inthe unbounded-arity 
ase depends on how the 
onstraints are represented. In thebounded-arity 
ase, if ea
h 
onstraint 
ontains at most r variables (r being a �xed
onstant), then every reasonable representation of a 
onstraint has size |D|O(r).Therefore, the size of di�erent representations 
an di�er only by a polynomial fa
-tor. On the other hand, if there is no bound on the arity, then there 
an be expo-nential di�eren
e between the size of su

in
t representations (e.g., formulas [Chenand Grohe 2006℄) and verbose representations (e.g., truth tables [Marx 2009℄). Therunning time of an algorithm is expressed as a fun
tion of the input size, hen
eACM Journal Name, Vol. 2, No. 3, 09 2001.



Approximating fra
tional hypertree width · 113the 
omplexity of the problem 
an depend on how the input is represented: Longerrepresentation means that it is potentially easier to obtain a polynomial-time algo-rithm.The most well-studied representation of 
onstraints is listing all the tuples thatsatisfy the 
onstraint. In this 
ase, the size of the representation of a 
onstraintrelation is proportional to the number of satisfying tuples. This representation isvery natural in problems involving relational databases, where the 
onstraints aredatabase relations that are a
tually stored as a sequen
e of tuples. If we want touse results on CSP in a database-theoreti
 setting, then we have to 
onsider thisrepresentation.Unlike in the bounded-arity 
ase, if there is no bound on the number of variablesin a 
onstraint, then bounded tree width is not the right stru
tural 
riterion forthe tra
tability of the problem. It remains true that an instan
e with hypergraph
H 
an be solved in time ‖I‖O(tw(H)). However, there are 
lasses H of hypergraphswith unbounded tree width su
h that CSP(H) is polynomial-time solvable. A verysimple example is the 
lass that 
ontains those hypergraphs where one of the edges
over all the verti
es. If the hypergraph H of a CSP instan
e belongs to this 
lass,then it is easy to solve: There is a 
onstraint that 
ontains every variable, thus allwe have to do is enumerating the satisfying tuples of this 
onstraint and 
he
kingwhether there is a tuple among them that satis�es every other 
onstraint. This idea
an be generalized: If we restri
t the problem to hypergraphs that 
an be 
overedby k edges (for some �xed 
onstant k), then CSP 
an be solved by enumeratingall the possible 
ombinations of satisfying tuples for k 
onstraints that 
over allthe variables. This observation motivated the de�nition of (generalized) hypertreewidth [Gottlob et al. 2002; Adler et al. 2007; Gottlob et al. 2005℄, whi
h is de�nedsimilarly to tree width, but instead of the requirement that ea
h bag 
ontains abounded number of verti
es, we require that ea
h bag 
an be 
overed by a boundednumber of edges (see Se
tion 2 for the pre
ise de�nition). As shown in [Gottlobet al. 2002℄, CSP(H) is polynomial-time solvable if H has bounded (generalized)hypertree width.In [Grohe and Marx 2006℄, new tra
table 
lasses H with unbounded hypertreewidth were identi�ed. It was shown, using Shearer's Lemma [Chung et al. 1986℄,that a CSP instan
e has only a polynomial number of solutions and they 
an beenumerated e�
iently if the hypergraph of the instan
e has bounded fra
tionaledge 
over number. Thus CSP(H) is polynomial-time solvable if H has boundedfra
tional edge 
over number. Fra
tional hypertree width is de�ned analogously togeneralized hypertree width, but now we only require that ea
h bag has boundedfra
tional edge 
over number. As shown in [Grohe and Marx 2006℄, if H is a 
lass ofhypergraphs with bounded fra
tional hypertree width, then CSP(H) 
an be solvedin polynomial time, if the input 
ontains a tree de
omposition of the hypergraphof the instan
e with bounded fra
tional hypertree width. However, it remained anopen question whether it is possible to �nd su
h a tree de
omposition in polynomialtime and whether CSP(H) (without any extra input) is polynomial-time solvablefor su
h H.Our results. The main result of the paper is an algorithm that 
omputes ap-proximately optimal fra
tional hypertree de
ompositions. More pre
isely, we showACM Journal Name, Vol. 2, No. 3, 09 2001.
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Fig. 1. Hypergraph properties that make CSP polynomial-time solvable.that for every �xed w ≥ 1, there is a polynomial-time algorithm that, given ahypergraph H with fra
tional hypertree width at most w, 
omputes a tree de
om-position of H with fra
tional hypertree width O(w3) (Theorem 4.1). Therefore, ifevery hypergraph in H has fra
tional hypertree width at most w, then CSP(H) ispolynomial-time solvable: For every instan
e, we 
an 
ompute a tree de
omposi-tion with fra
tional hypertree width O(w3) and then use the algorithm of [Groheand Marx 2006℄. Thus our result makes bounded fra
tional hypertree width thestri
tly most general known hypergraph property that allows CSP to be solved inpolynomial time. Figure 1 shows some of the known tra
table hypergraph prop-erties (note that the elements of this Venn diagram are sets of hypergraphs; e.g.,the set �bounded tree width� 
ontains every set H of hypergraphs with boundedtree width). All the in
lusions in the �gure are proper. The tra
table 
lasses forCSP translate to tra
table 
lasses for Boolean Conjun
tive Queries and Conjun
tiveQuery Containment [Kolaitis and Vardi 2000℄, thus bounded fra
tional hypertreewidth is the most general known tra
tability 
riterion for those problems as well.Algorithms for �nding tree de
ompositions and 
hara
terization theorems for(generalizations of) tree width often follow a 
ertain pattern. For example, thesame high-level idea is used for tree width [Flum and Grohe 2006, Se
tion 11.2℄,rank width [Oum and Seymour 2006; Oum 2005℄, hypertree width [Adler et al.2007℄, and bran
h width of matroids and submodular fun
tions [Oum and Seymour2007℄. Simplifying somewhat, this general pattern 
an be summarized the followingway: We de
ompose the problem into two parts by �nding a small balan
ed sepa-ration, then a tree de
omposition for ea
h part is 
onstru
ted using the algorithmre
ursively, and �nally the tree de
ompositions for the parts are joined in an ap-propriate way to obtain a tree de
omposition for the original problem. A balan
edseparation of a subsetW is a partition (A,B) ofW and a set S separating A and B,su
h that A and B are both �small� 
ompared to W (the exa
t de�nition of smalldepends on the a
tual type of tree de
omposition we are looking for). Dependingon the approximation ratio and the running time we are trying to a
hieve, the prob-lem of �nding a balan
ed separation is either redu
ed to a sparsest 
ut problem or(using brute for
e) it is redu
ed to the problem of �nding a small (A,B)-separator,i.e., a set whose deletion dis
onne
ts A and B.ACM Journal Name, Vol. 2, No. 3, 09 2001.



Approximating fra
tional hypertree width · 115Can we use a similar approa
h for 
onstru
ting fra
tional hypertree de
ompo-sitions? With appropriate modi�
ations, the re
ursive algorithm works for su
hde
ompositions as well (Se
tion 4). The 
ru
ial question is how to �nd a balan
edseparation where S has small fra
tion edge 
over number. Using brute for
e in anot 
ompletely trivial way, the sear
h for a balan
ed separation 
an be redu
ed to�nding an (A,B)-separator with small fra
tional edge 
over number (Lemma 3.5).The main te
hni
al 
ontribution of the paper is an approximation algorithm for�nding su
h separators: If there is an (A,B)-separator with fra
tional edge 
overnumber at most w, then the algorithm �nds an (A,B)-separator with fra
tionaledge 
over number O(w3) (Se
tion 3). The running time is polynomial for every�xed w.For other types of tree de
ompositions, the 
orresponding (A,B)-separation prob-lem 
an be solved using �ow te
hniques, brute for
e, or submodularity. None ofthese te
hniques seem to be relevant when the goal is to minimize the fra
tionaledge 
over number of the separator; we need 
ompletely di�erent te
hniques. Themain idea is the following. Suppose we are looking for an (A,B)-separator S withfra
tional edge 
over number w < 2. As the fra
tional edge 
over number is anupper bound on maximum independent set size, any two verti
es in S are adja
ent,i.e., S indu
es a 
lique. The stru
ture of separating 
liques is well understood:Every graph has a unique de
omposition by 
lique separators [Tarjan 1985℄. Ouralgorithm for �nding a separator with small fra
tional edge 
over number 
an bethought of as a generalization of �nding 
lique separators. A tempting way ofgeneralizing this idea for larger w would be to suppose that every separator withfra
tional edge 
over number at most w 
an be 
overed by f(w) 
liques for somefun
tion f . However, this is not true: We might need an unbounded number of
liques (see Example 2.1). Nevertheless, we manage to transform the instan
e insu
h a way that it 
an be assumed that the separator we are looking for 
an be
overed by w 
liques. Then we lo
ate these 
liques using a 
ombination of brutefor
e, 
lique separator de
ompositions, and linear programming.We �nish the paper by proving that it is NP-hard to de
ide whether the fra
tionalhypertree width of a hypergraph is at most w (Se
tion 5). The hardness resultassumes that w is a value given in the input; the mu
h more interesting questionof whether the problem is NP-hard for some �xed w ≥ 1 remains open.2. PRELIMINARIESA hypergraph is a pair H = (V (H), E(H)), 
onsisting of a set V (H) of verti
esand a set E(H) of subsets of V (H), the hyperedges of H . We always assume thathypergraphs have no isolated verti
es, that is, for every v ∈ V (H) there exists atleast one e ∈ E(H) su
h that v ∈ e. Let ‖H‖ := |V (H)| + |E(H)|, we will expressthe running time of the algorithms as a fun
tion of ‖H‖.For a hypergraph H and a set X ⊆ V (H), the subhypergraph of H indu
ed by Xis the hypergraph H [X ] = (X, {e∩X | e ∈ E(H)}). We let H \X = H [V (H) \X ].The primal graph of a hypergraph H is the graph
H = (V (H),{{v, u} | v 6= u, there exists an

e ∈ E(H) su
h that {v, u} ⊆ e}).ACM Journal Name, Vol. 2, No. 3, 09 2001.



116 · Dániel MarxA hypergraph H is 
onne
ted if H is 
onne
ted. A set C ⊆ V (H) is 
onne
ted (in
H) if the indu
ed subhypergraph H [C] is 
onne
ted, and a 
onne
ted 
omponentof H is a maximal 
onne
ted subset of V (H). A sequen
e of verti
es of H is a pathof H if it is a path of H. A subset K ⊆ V (H) is a 
lique of H if K indu
es a 
liquein H .An edge 
over of a set S ⊆ V (H) is a set F ⊆ E(H) su
h that for every v ∈ S,there is an e ∈ F with v ∈ e. The size of the smallest edge 
over of S, denoted by
ρH(S), is the edge 
over number of S. A fra
tional edge 
over of S ⊆ V (H) is amapping γ : E(H) → [0, 1] su
h that for every v ∈ S, we have∑

e∈E(H):v∈e γ(e) ≥ 1.The weight of the assignment γ is weight(γ) :=
∑

e∈E(H) γ(e). The fra
tionaledge 
over number of S, denoted by ρ∗H(S), is the minimum of weight(γ) takenover every fra
tional edge 
over of S. It is well known that ρ∗H(S) ≤ ρH(S) ≤
ρ∗H(S)(1 + ln |V (H)|); in fa
t, a simple greedy algorithm 
an be used to �nd anedge 
over of S with size at most ρ∗H(S)(1 + ln |V (H)|) (
f. [Vazirani 2004℄). Notethat determining ρH(S) is NP-hard, while ρ∗H(S) 
an be determined in polynomialtime using linear programming. We de�ne ρ(H) and ρ∗(H) to be ρH(V (H)) and
ρ∗H(V (H)), respe
tively. If I is an independent set in S, then ea
h edge of afra
tional edge 
over 
an 
ontribute to the 
overing of at most one vertex of I, thuswe have |I| ≤ ρ∗H(S).Example 2.1. For n ≥ 1, let Hn be the following hypergraph: Hn has a vertex
vS for every subset S of {1, . . . , 3n} of 
ardinality n. Furthermore, for every i ∈
{1, . . . , 3n} the hypergraph Hn has a hyperedge ei = {vS | i ∈ S}. Observe thatthe fra
tional edge 
over number ρ∗(Hn) is at most 3, be
ause the mapping ψ thatassigns 1/n to every hyperedge ei is a fra
tional edge 
over of weight 3. A
tually, itis easy to see that ρ∗(Hn) = 3. On the other hand, the edge 
over number 
annotbe bounded by a 
onstant. Every edge 
over has size at least 2n + 1: If ei1 , . . . ,
ein

are n edges not present in the edge 
over, then the vertex 
orresponding to theset {i1, . . . , in} is not 
overed by any edges of the 
over. The primal graph of Hn isthe 
omplement of the Kneser graph KG3n,n. The 
hromati
 number of KG3n,n isknown to be 3n− 2n+ 2 = n+ 2 [Lovász 1978; Matou²ek 2004℄. Thus the primalgraph of Hn 
annot be 
overed by less than n + 2 
liques. This shows that thereis no fun
tion f(w) su
h that every hypergraph H with ρ∗(H) ≤ w 
an be 
overedby at most f(w) 
liques.A tree de
omposition T of a hypergraph H is a tuple (T, (Bt)t∈V (T )), where Tis a tree and (Bt)t∈V (T ) a family of subsets of V (H) su
h that for ea
h e ∈ E(H)there is a node t ∈ V (T ) su
h that e ⊆ Bt, and for ea
h v ∈ V (H) the set
{t ∈ V (T ) | v ∈ Bt} is 
onne
ted in T . The sets Bt are 
alled the bags of thede
omposition. We denote by |T| := |V (T )| the number of bags in T. The width ofa tree de
omposition (T, (Bt)t∈V (T )) is max

{

|Bt|
∣

∣ t ∈ V (t)} − 1. The tree widthtw(H) of a hypergraph H is the minimum of the widths of all tree de
ompositionsof H . It is easy to see that tw(H) = tw(H) for all H .The generalized hypertree width of a de
omposition (T, (Bt)t∈V (T )) is de�ned as
max

{

ρH(Bt)
∣

∣ t ∈ V (t)} and the generalized hypertree width of a hypergraph H ,denoted by ghw(H), is the minimum of the generalized hypertree widths of all treede
ompositions of H . Fra
tional hypertree width of a tree de
omposition and ofACM Journal Name, Vol. 2, No. 3, 09 2001.



Approximating fra
tional hypertree width · 117a hypergraph is de�ned analogously, by having ρ∗H(Bt) instead of ρH(Bt) in thede�nition. We denote by fhw(H) the fra
tional hypertree width of H .3. FINDING APPROXIMATE SEPARATORSLet A,B ⊆ V (H) be two sets of verti
es. An (A,B)-separator is a set S ⊆ V (H)su
h that there is no path 
onne
ting a vertex of A\S with a vertex of B \S in thehypergraph H \ S. In parti
ular, su
h an S has to 
ontain every vertex of A ∩ B.The aim of this se
tion is to give an approximation algorithm for the problem of�nding an (A,B)-separator with minimum fra
tional edge 
over number.We say that two nonadja
ent verti
es u, v of H are w-atta
hed for some w ≥ 1if ρ∗H(N(v) ∩ N(u)) > w (here N(v) is the set of neighbors of v, not in
luding
v itself). If u, v are w-atta
hed and S is an (A,B)-separator with ρ∗H(S) ≤ w
overing neither u nor v, then u and v are in the same 
onne
ted 
omponent of
H \ S. This means that S remains an (A,B)-separator even if we add an edgebetween u and v. Thus adding edges between w-atta
hed verti
es does not 
hangethe problem signi�
antly. More pre
isely, the following lemma shows that we 
anredu
e the problem to a situation where nonadja
ent verti
es are not w-atta
hed.This property of the hypergraph will play an important role in the algorithm.Lemma 3.1. Let H be a hypergraph, A,B ⊆ V (H) sets of verti
es, and w ≥ 1a rational number. We 
an 
onstru
t in time polynomial in ‖H‖ a hypergraph H+on the same set of verti
es su
h that(1 ) If verti
es u and v are not adja
ent in H+, then they are not w-atta
hed.(2 ) If S is an (A,B)-separator in H with ρ∗H(S) ≤ w, then S is an (A,B)-separatorin H+ with ρ∗

H+(S) ≤ w.(3 ) If S is an (A,B)-separator in H+, then S is an (A,B)-separator in H with
ρ∗H(S) ≤ 2ρ∗

H+(S).Proof. We 
onstru
t a sequen
e of hypergraphs. Let H0 = H . Let (u, v) bean arbitrary pair of nonadja
ent verti
es that are w-atta
hed in Hi−1. Hypergraph
Hi is the same as Hi−1 with an extra edge {u, v}. If there is no su
h pair (u, v) in
Hi−1, then we stop the 
onstru
tion of the sequen
e. It is 
lear that the sequen
ehas polynomial length (as at most O(|V (H)|2) new edges 
an be added) and 
on-stru
ting Hi from Hi−1 
an be done in polynomial time. Let H+ = Hk be the lasthypergraph in the sequen
e. Statement 1 is immediate from the way the sequen
eis 
onstru
ted.To prove Statement 2, suppose that S is an (A,B)-separator in H = H0. Sin
ethe edges of H are a subset of the edges of H+, we have ρ∗

H+(S) ≤ ρ∗H(S) ≤ w. Weprove by indu
tion that S is an (A,B)-separator in every Hi. Suppose that this istrue for Hi−1, but there is a path P from a vertex of A to a vertex of B in Hi \ S.Let ei = uivi be the edge that was added to Hi−1 to obtain Hi. If P does not use
ei, then P is also a path in Hi−1, 
ontradi
ting the indu
tion hypothesis that S isan (A,B)-separator in Hi−1. Thus P = P1uiviP2 for some subpaths P1 and P2 (byswapping ui and vi if ne
essary, we may assume that P rea
hes ui before vi). Bythe de�nition of ei,

ρ∗H(N(vi) ∩N(ui)) ≥ ρ∗Hi−1
(N(vi) ∩N(ui)) > w ≥ ρ∗H(S),ACM Journal Name, Vol. 2, No. 3, 09 2001.



118 · Dániel Marxwhi
h means that there is a vertex q ∈ (N(vi) ∩ N(ui)) \ S. The walk P1uiqviP2
onne
ts a vertex of A and a vertex of B in Hi−1 \ S, 
ontradi
ting the indu
tionhypothesis.To prove Statement 3, observe �rst that the edges of H are a subset of the edgesof H+, thus if S is an (A,B)-separator in H+, then it is an (A,B)-separator in
H as well. Consider a fra
tional edge 
over γ of S in H+ with weight(γ) = w′.Suppose that γ(e) = x for an edge e = {u, v} not present in H . In this 
ase, weset the weight of this edge to 0, and in
rease by x the weight of two edges: anarbitrary edge eu ∈ E(H) that 
ontains u and an arbitrary edge ev ∈ E(H) that
ontains v (su
h edges exist, sin
e we assumed that there are no isolated verti
es inthe hypergraph). It is 
lear that the resulting weight assignment is also a fra
tionaledge 
over. We repeat this step until the weight assignment is 0 on every edge notpresent in H . It is easy to see that the weight of the assignment in
reases to atmost 2w′, thus ρ∗H(S) ≤ 2ρ∗

H+(S).The following result follows from the fa
t that a de
omposition of a graph byseparating 
liques 
an be found in polynomial time [Whitesides 1981; Tarjan 1985℄(
lique K is a separating 
lique of H if H \ K has not 
onne
ted). For the 
on-venien
e of the reader, we give here a self-
ontained proof of the main idea in theform we use.Lemma 3.2. Given a graph G, it is possible to 
onstru
t in time polynomial in
‖G‖ a set C of at most |V (G)| 
onne
ted subsets su
h that(1 ) if K is a 
lique of G, then K ⊆ C for some C ∈ C, and(2 ) if K is a 
lique of G and C ∈ C, then C \ K is 
ontained in a 
onne
ted
omponent of G \K.Proof. We 
onstru
t a sequen
e of graphs as follows. Let G0 = G. Supposethat Gi−1 has an indu
ed 
y
le H of length at least 4; let vi, ui be two nonadja
entverti
es of H . We de�ne Gi to be the same as Gi−1, with an extra edge ei = viui.If Gi−1 has no su
h 
y
le H (i.e., Gi−1 is a 
hordal graph), then we stop the
onstru
tion of the sequen
e. Let Gk be the last graph in the sequen
e. Let C bethe set of in
lusionwise maximal 
liques of Gk. It is well known that 
hordal graph
Gk has at most |V (Gk)| = |V (G)| maximal 
liques (
f. [Golumbi
 1980℄).Every 
lique of G is a 
lique of Gk, thus Statement 1 is 
lear from the de�nitionof C. To prove Statement 2, for every C ∈ C and 
lique K of G, we show that C \Kis 
ontained in a 
onne
ted 
omponent of Gi \K for every 1 ≤ i ≤ k. This is 
learfor Gk, as C is a 
lique in Gk. Suppose that C \K is in a 
onne
ted 
omponent of
Gi \K but a, b ∈ C \K are in di�erent 
onne
ted 
omponents of Gi−1 \K. Let Pbe a path from a to b in Gi \K. Path P has to go through the edge ei = uivi usedin the de�nition of Gi, otherwise it would be a path in Gi−1 \K as well. Thus thepath P 
an be written as P = aP1uiviP2b (assuming without loss of generality that
P rea
hes ui before vi). There is an indu
ed 
y
le H in Gi−1 that 
ontains ui and
vi. Sin
e ui, vi 6∈ K and H \K is 
onne
ted (as K is a 
lique and H is an indu
ed
y
le), there is a path R in Gi−1 \K that 
onne
ts ui and vi. Now aP1uiRviP2b isa walk from a to b in Gi−1 \K, a 
ontradi
tion.For illustrative purposes, we show how Lemma 3.2 implies that all the minimalACM Journal Name, Vol. 2, No. 3, 09 2001.
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tional hypertree width · 119separating 
liques 
an be enumerated in polynomial time (although we do not usethis result here).Corollary 3.3. Given a graph G, it is possible to enumerate all the in
lusion-wise minimal separating 
liques of G in time polynomial in ‖G‖.Proof. Constru
t the sets C of Lemma 3.2 and 
onsider the 
hordal graph Gk.We 
laim that every minimal separating 
lique of G is a minimal separating 
lique of
Gk. Suppose that a 
lique K separates a and b in G, but there is a path P between
a and b in Gk \K. Ea
h edge e of P is a 
lique of size 2 in Gk, hen
e the endpointsof e are 
ontained in some set Ci ∈ C. This means that the two endpoints are in thesame 
onne
ted 
omponent of G \ K and it follows that every vertex of the path
P (in
luding a and b) are in the same 
omponent, a 
ontradi
tion. Thus if K is aminimal separating 
lique in G, then it is a separating 
lique in Gk. Furthermore,as Gk is a supergraph of G, minimality of K in G implies its minimality in Gk aswell. In a 
hordal graph, every minimal separating 
lique is the interse
tion of twomaximal 
liques. Thus all the minimal separating 
liques 
an be enumerated bytaking the interse
tion of every pair Ci, Cj ∈ C and 
he
king whether it is really aminimal separating 
lique.Lemma 3.4. Let H be a hypergraph, A,B ⊆ V (H) two sets of verti
es, and
w ≥ 1 a rational number. There is an algorithm that, in time ‖H‖O(w), either�
orre
tly 
on
ludes that there is no (A,B)-separator S with ρ∗H(S) ≤ w, or�produ
es an (A,B)-separator S′ with ρ∗H(S′) ≤ w3 + 4w.Proof. The algorithm �rst 
onstru
ts the hypergraph H+ of Lemma 3.1 andthen tries to �nd an (A,B)-separator in H+. By Lemma 3.1(2), if H has an
(A,B)-separator S with ρ∗H(S) ≤ w, then S is an (A,B)-separator in H+ as welland ρ∗

H+(S) ≤ w. In this 
ase, our algorithm detailed below will be able to �nd an
(A,B)-separator S′ in H+ with ρ∗

H+(S′) ≤ w3/2 + 2w. By Lemma 3.1(3), su
h an
S′ is an (A,B)-separator in H with ρ∗H(S′) ≤ w3 + 4w.Suppose that there is an (A,B)-separator S in H+ with ρ∗

H+(S) ≤ w. In the restof the proof, we show how to �nd the required separator S′ if we know a maximumindependent set IS of S. Sin
e the fra
tional edge 
over number of S is at most w,the size of IS is also at most w. Thus trying all possible sets IS adds a fa
tor of
‖H+‖O(w) = ‖H‖O(w) to the running time.Denote by N(v) the neighbors of vertex v in H+. Suppose that IS = {v1, . . . , vk}(for some k ≤ w) is a maximum independent set of S. By the de�nition of H+, wehave ρ∗

H+(N(vi)∩N(vj)) ≤ w for every 1 ≤ i < j ≤ k. ThusX =
⋃

1≤i<j≤k(N(vi)∩

N(vj)) has fra
tional edge 
over number at most (

k
2

)

w ≤ w3/2. In the rest of thealgorithm, we try to �nd a set Y with ρ∗
H+(Y ) ≤ 2w su
h that S′ := X ∪ Y is an

(A,B)-separator in H+.Let Ni = (N(vi) ∪ {vi}) \X for i = 1, . . . , k. Let us note �rst that Ni ∩Nj = ∅if i 6= j: Verti
es vi and vj are not adja
ent and every vertex of N(vi) ∩ N(vj) isin X . Sin
e v1, . . . , vk is a maximum independent set of S, ea
h vertex of S \X isin one of the Ni's. Observe that Ni ∩ S is not empty, sin
e it 
ontains vi (here weuse that vi 
annot be in X , sin
e it is not adja
ent to any other vj). Furthermore,for every 1 ≤ i ≤ k, Ni ∩ S is a 
lique of Ni (this is a 
ru
ial point of the proof).ACM Journal Name, Vol. 2, No. 3, 09 2001.



120 · Dániel MarxTo see this, suppose that v′i, v′′i ∈ Ni ∩ S are nonadja
ent verti
es; 
learly, it is notpossible that v′i = vi or v′′i = vi. Verti
es v′i and v′′i 
annot be adja
ent to any vjwith i 6= j: that would imply that they are in N(vi) ∩N(vj) ⊆ X . Thus repla
ing
vi in IS with v′i and v′′i would give a stri
tly larger independent set, 
ontradi
tingthe maximality of IS .Let H be the primal graph of H+. For every 1 ≤ i ≤ k, let Ci,1, . . . , Ci,ci

be the
onne
ted sets given by Lemma 3.2 for the graph H[Ni]. By the de�nition of thesesets, for every 1 ≤ i ≤ k there is a value 1 ≤ di ≤ ci su
h that the 
lique Ni ∩ S isfully 
ontained in Ci,di
. Furthermore, the 
onne
ted set Ci,di

\ (Ni ∩ S) = Ci,di
\ Sis 
ontained in a 
onne
ted 
omponent of H[Ni \ (Ni ∩ S)] = H[Ni \ S], whi
himplies that Ci,di

\ S is 
ontained in a 
onne
ted 
omponent of H \ S. Thus eitherevery vertex of Ci,di
\ S is rea
hable from A in H \ S, or none of these verti
es arerea
hable. Let us de�ne ai = 1 in the �rst 
ase and ai = 0 in the se
ond 
ase (if

Ci,di
⊆ S, then de�ne arbitrarily).We show that if the values di, ai (1 ≤ i ≤ k) 
orresponding to S are known, thenthe required separator S′ 
an be found. Thus we have to try all possibilities forthese values, whi
h adds a fa
tor of |V (H)|O(w) · 2O(w) to the running time.Suppose that the values of di, ai are given. Let Z := X ∪

⋃k

i=1 Ci,di
; note that

S ⊆ Z. We say that a vertex u ∈ Ci,di
is a bad vertex if�ai = 0 and there is a path Pa from A to u with Pa ∩ Z = {u}, or�ai = 1 and there is a path Pb from B to u with Pb ∩ Z = {u}.(It is possible that Pa or Pb 
onsists of only the vertex u; in parti
ular, if u ∈ A∩B,then u is always a bad vertex.) Observe that S 
ontains every bad vertex u. Indeed,if u 6∈ S and there is a path Pa as above, then S ∩ Pa = ∅ (sin
e S ⊆ Z), thus u isrea
hable from A, 
ontradi
ting ai = 0. On the other hand, if u 6∈ S and there isa path Pb, then u is rea
hable from B, but ai = 1 implies that it is also rea
hablefrom A, 
ontradi
ting the fa
t that S is an (A,B)-separator.A pair u ∈ Ci,di

and v ∈ Cj,dj
is a bad pair if�there is a path P from u to v with P ∩ Z = {u, v} and ai 6= aj .In this 
ase, S has to 
ontain at least one of u and v: Otherwise P ∩ S = ∅ wouldmean that u and v are in the same 
onne
ted 
omponent of H+ \ S, implying

ai = aj . Thus every fra
tional edge 
over of S is a solution of the following linearprogram:
min

∑

e∈E(H+)

xe

∑

e∈E(H+)
v∈e

xe ≥ 1 for every bad vertex v ∈ Z

∑

e∈E(H+)
u∈e

xe +
∑

e∈E(H+)
v∈e

xe ≥ 1 for every bad pair u, v ∈ Z

xe ≥ 0 for every e ∈ E(H+)Therefore, the optimum of the linear program is at most w. Let (xe)e∈E(H+) be asolution of the linear program with 
ost at most w. Let Y 
ontain those verti
es vACM Journal Name, Vol. 2, No. 3, 09 2001.



Approximating fra
tional hypertree width · 121for whi
h ∑

e∈E(H+):v∈e xe ≥ 1/2; 
learly, ρ∗
H+(Y ) ≤ 2w. Thus de�ning S′ := X∪Ygives a set with ρ∗

H+(Y ) ≤ w3/2 + 2w. Observe that the linear program ensuresthat Y (and hen
e S′) 
ontains every bad vertex and at least one vertex from ea
hbad pair.We 
laim that S′ is an (A,B)-separator in H+. Suppose that there is a path Pfrom a ∈ A to b ∈ B in H+ \ S′. This path 
ontains at least one vertex of S (sin
e
S is an (A,B)-separator), hen
e it 
ontains at least one vertex of Z. Let p1, . . . ,
pr be the verti
es of P ∩ Z, ordered as the path is traversed from a to b. Sin
ethese verti
es 
annot be in X ⊆ S′, they are in ⋃k

i=1 Ci,di
. Suppose �rst that p1 isnot rea
hable from A in H+ \ S. This means that if Ni is the set that 
ontains p1,then ai = 0. It follows that p1 is a bad vertex (be
ause of the subpath of P that
onne
ts a with p1), hen
e p1 ∈ S′, a 
ontradi
tion. Let 1 ≤ ℓ ≤ r be the largestvalue su
h that pℓ is rea
hable from A in H+ \ S and suppose that pℓ is in Ni. If

ℓ = r, then pℓ is a bad vertex (be
ause of ai = 1 and the subpath of P 
onne
ting pℓand b), again a 
ontradi
tion. Finally, if ℓ < r, then let Nj be the set that 
ontains
pℓ+1. The maximality of ℓ implies ai = 1 and aj = 0. Therefore, pℓ, pℓ+1 is a badpair (be
ause of the subpath of P 
onne
ting these two verti
es), and S′ 
ontainsat least one of these verti
es, a 
ontradi
tion. Thus S′ is an (A,B)-separator in
H+ with ρ∗

H+(S′) ≤ w3/2 + 2w.In summary, the algorithm 
onsists of the following steps:(1) Constru
t the hypergraph H+ (Lemma 3.1).(2) Guess the independent set IS .(3) Constru
t the set X and de�ne the sets Ni.(4) Constru
t the sets Ci,j (Lemma 3.2).(5) Guess the values di, ai.(6) Constru
t Y using an optimum solution of the linear program.(7) Che
k if S′ := X ∪ Y is an (A,B)-separator in H .As dis
ussed above, if there is an (A,B)-separator S in H with ρ∗H(S) ≤ w, then itis possible to 
hoose IS and the values di, ai su
h that the separator S′ 
omputedby the algorithm is an (A,B)-separator in H with ρ∗H(S′) ≤ w3 + 4w. Thus if wetry all possible ‖H‖O(w) ·‖H‖O(w) ·2O(w) guesses, then we will �nd su
h a separator
S′ in this 
ase. On the other hand, if none of the guesses results in the requiredseparator S′, then we 
an 
orre
tly 
on
lude that there is a no (A,B)-separator
S in H with ρ∗H(S) ≤ w. The running time of ea
h step (ex
ept the guesses) ispolynomial, thus the total running time is ‖H‖O(w).In the tree de
omposition algorithm of Se
tion 4, we have to �nd a balan
edseparation of a set W : We need a partition (A,B) of W su
h that (1) ρ∗H(A),
ρ∗H(B) are not too large and (2) there is an (A,B)-separator S su
h that ρ∗H(S) isnot too large. As we shall see, it follows from the results of [Grohe and Marx 2006℄that su
h a balan
ed separation always exists if H has bounded fra
tional hypertreewidth. If we want to �nd su
h a separation algorithmi
ally, then the main problemis how to �nd the partition (A,B) of W : If (A,B) is given, then Lemma 3.4 
an beused to �nd an (A,B)-separator whose fra
tional edge 
over number is bounded.Trying all possible partitions of W is not feasible. Fortunately, for the appli
ationACM Journal Name, Vol. 2, No. 3, 09 2001.



122 · Dániel Marxin Lemma 3.5, we 
an assume that ρ∗H(W ) is bounded. Instead of trying all possiblepartitions of W (the number of su
h partitions 
an be exponential in the numberof verti
es), it turns out that it is su�
ient to try all possible partitions of an edge
over F of W (the number of su
h partitions is exponential only in the size of F ).Lemma 3.5. Let H be a hypergraph with fra
tional hypertree width at most wand let W ⊆ V (H) be a subset of verti
es with ρ∗H(W ) ≤ k. It is possible to�nd in time ‖H‖O(w+k) a partition (A,B) of W and an (A,B)-separator S with
ρ∗H(S) ≤ w3 + 4w su
h that ρ∗H(A), ρ∗H(B) ≤ 2

3k + w.Proof. Sin
e the fra
tional edge 
over number of W is at most k, the greedyalgorithm �nds an edge 
over F ⊆ E(H) ofW with |F | = O(k log |V (H)|) [Vazirani2004℄. Our algorithm tries every partition (FA, FB) of F , de�nes A := W ∩
⋃

FAand B := W \ A, and 
he
ks whether the algorithm of Lemma 3.4 produ
es an
(A,B)-separator S with ρ∗H(S) ≤ w3 + 4w. We show that if H has fra
tionalhypertree width at most w, then at least one partition (FA, FB) results in a partition
(A,B) and a separator S satisfying the 
onditions. Trying every possible partition
(FA, FB) means trying 2O(k log |V (H)|) = ‖H‖O(k) possibilities and the algorithm ofLemma 3.4 needs ‖H‖O(w) time. Thus the total running time of the algorithm is
‖H‖O(k+w).By [Grohe and Marx 2006, Theorem 11, Lemma 12℄, there is a set S0 with
ρ∗H(S0) ≤ w su
h that ρ∗H(C ∩ W ) ≤ k/2 for every 
onne
ted 
omponent C of
H \ S0; let C1, . . . , Cd be these 
onne
ted 
omponents. (If d = 0, then we aretrivially done.) De�ne Wi := W ∩ Ci and suppose that the 
onne
ted 
omponentsare ordered su
h that ρ∗H(Wi) ≥ ρ∗H(Wj) if i < j. Sin
e ea
h edge 
an interse
tat most one Wi, the fra
tional edge 
over number of the union of some Wi's isexa
tly the sum of the 
orresponding fra
tional edge 
over numbers. Let ℓ be thelargest integer (not greater than d) su
h that ρ∗H(

⋃ℓ

i=1Wi) ≤ 2
3k. We show that

ρ∗H(
⋃d

i=ℓ+1Wi) ≤ 2
3k. Suppose that ℓ < d, otherwise there is nothing to show.Sin
e ρ∗H(W1) ≤ k/2, we have ℓ ≥ 1. We show that ρ∗H(

⋃ℓ
i=1Wi) ≥ k/3. This istrivially true if ρ∗(W1) ≥ k/3. If ρ∗(W1) < k/3, then we argue as follows. Thede�nition of ℓ implies that ρ∗H(

⋃ℓ+1
i=1 Wi) >

2
3k. Sin
e ρ∗H(Wℓ+1) ≤ ρ∗H(W1) ≤ k/3,it follows that ρ∗H(

⋃ℓ

i=1Wi) ≥ k/3. Sin
e there is no edge that interse
ts morethan one Wi, we have ρ∗H(
⋃d

i=1Wi) = ρ∗H(
⋃ℓ

i=1Wi) + ρ∗H(
⋃d

ℓ+1Wi). Therefore,
ρ∗H(

⋃d

i=1Wi) ≤ ρ∗H(W ) ≤ k implies ρ∗H(
⋃d

i=ℓ+1Wi) ≤
2
3k.Let FA be the edges of F fully 
ontained in S0 ∪

⋃ℓ

i=1 Ci and let FB := F \ FA;observe that the edges of FB interse
t ⋃d
i=ℓ+1 Ci. Let A := W ∩

⋃

FA and B :=

W \ A be de�ned as in the algorithm. Sin
e A ⊆ S0 ∪ (W ∩
⋃ℓ

i=1 Ci), we have
ρ∗H(A) ≤ ρ∗H(S0) + ρ∗H(

⋃ℓ

i=1Wi) ≤ w + 2
3k. Similarly, ρ∗H(B) ≤ w + 2

3k. Observethat S0 is an (A,B)-separator with ρ∗H(S0) ≤ w, thus the algorithm of Lemma 3.4produ
es an (A,B)-separator S with ρ∗H(S) ≤ w3 + 4w. Therefore, when thealgorithm 
onsiders this parti
ular partition (FA, FB), then it �nds the requiredpartition (A,B) and separator S.ACM Journal Name, Vol. 2, No. 3, 09 2001.



Approximating fra
tional hypertree width · 1234. FINDING APPROXIMATE TREE DECOMPOSITIONSWe prove the main result of the paper in this se
tion: It is possible to approximatefra
tional hypertree width in a sense that is suitable for the appli
ations. That is,if a 
lass H of hypergraphs has bounded fra
tional hypertree width, then there isa polynomial time algorithm produ
ing a tree de
omposition with bounded fra
-tional hypertree width for any hypergraph in H. The algorithm uses the balan
edseparation algorithm of Lemma 3.5.Theorem 4.1. Given a hypergraph H and a rational number w ≥ 1, it is possiblein time ‖H‖O(w3) to either�
ompute a fra
tional hypertree de
omposition of H with width at most 7w3 +
31w + 7, or�
orre
tly 
on
lude that fhw(H) > w.Proof. We present an algorithm for a more general problem:Given a hypergraph H with fhw(H) ≤ w and a set W with ρ∗H(W ) ≤

6w3 + 27w + 6, �nd a fra
tional hypertree de
omposition T of width atmost 7w3 + 31w + 7 su
h that some bag B of T 
ontains the set W .Note that this algorithm implies the existen
e of the algorithm required by thetheorem: If this algorithm is applied to a hypergraph H and W = ∅, then eitherit produ
es a fra
tional hypertree de
omposition of H with the required width orif the output is something else, then we 
an 
orre
tly 
on
lude that fhw(H) > w.The values 6w3 + 27w + 6 and 7w3 + 31w+ 7 might look somewhat arbitrary, butthese are the smallest values ensuring that inequalities (1) and (2) below are true.If ρ∗(H) ≤ 7w3 + 31w + 7, then we are done, as a tree de
omposition 
onsistingof a single bag B = V (H) is su�
ient. Thus we 
an assume that ρ∗(H) ≥ 7w3 +
31w+7. By adding arbitrary verti
es toW one by one, we 
an extendW su
h that
6w3 + 27w+ 6 ≤ ρ∗H(W ) < 6w3 + 27w+ 7. Let us use the algorithm of Lemma 3.5to �nd a partition (A,B) of (the nonempty set) W and an (A,B)-separator S with
ρ∗H(S) ≤ w3 + 4w. A 
onne
ted 
omponent of H \ S 
annot interse
t both A and
B. Let V1 be the union of S and all the 
onne
ted 
omponents interse
ting A; let
V2 be the union of S and the 
onne
ted 
omponents not interse
ting A. Let H1(resp., H2) be the subhypergraph of H indu
ed by V1 (resp., V2).First we verify that H1 and H2 are proper subhypergraphs of H ; in fa
t, theirfra
tional edge 
over number is stri
tly less than ρ∗(H). Sin
e ρ∗H(W ) ≤ ρ∗H(W ∩
V1) + ρ∗H(W \ V1) and ρ∗H(W ∩ V1) ≤ ρ∗H(A) + ρ∗H(S), we have
ρ∗H(W \ V1) ≥ ρ∗H(W ) − (ρ∗H(A) + ρ∗H(S))

≥ ρ∗H(W ) −
2

3
ρ∗H(W ) − w − ρ∗H(S) ≥ w3 + 4w + 2. (1)Consider a fra
tional edge 
over γ of H with weight ρ∗(H). Let γS be a fra
tionaledge 
over of S with weight ρ∗H(S). Let us de�ne

γ′(e) =

{

γ(e) if e ∩ (W \ V1) = ∅,
0 otherwise.ACM Journal Name, Vol. 2, No. 3, 09 2001.



124 · Dániel MarxObserve that weight(γ′) ≤ weight(γ)− (w3 + 4w+ 2), sin
e by (1), γ has to assignweight at least w3 + 4w + 2 to the edges interse
ting W \ V1. Now γ′ + γS is anedge 
over of V1 (sin
e edges interse
ting W \ V1 
annot interse
t V1 \ S), thus
ρ∗(H1) ≤ weight(γ′) + weight(γS) ≤ ρ∗(H) − (w3 + 4w + 2) + ρ∗H(S) ≤ ρ∗(H) − 2.A similar argument shows ρ∗(H2) ≤ ρ∗(H) − 2.Let W1 := A ∪ S and W2 := B ∪ S; we have ρ∗H(W1), ρ

∗
H(W2) ≤ 2

3ρ
∗
H(W ) +

w + ρ∗H(S) < 6w3 + 27w + 6. Sin
e H1 and H2 are stri
tly smaller than H , we
an use the algorithm re
ursively to obtain a tree de
omposition T1 of H1 where
W1 is 
ontained in some bag B1, and a tree de
omposition T2 of H2 where W2 is
ontained in some bag B2. We 
onne
t these two tree de
omposition by introdu
inga new bag B0 := W ∪ S that is 
onne
ted to B1 and B2; note that

ρ∗H(B0) ≤ ρ∗H(W ) + ρ∗H(S) ≤ 7w3 + 31w + 7. (2)It is easy to see that the resulting tree de
omposition T is a proper tree de
ompo-sition of H and the bag B0 fully 
ontains W .Let us estimate the running time of the algorithm. If ρ∗(H) ≤ 7w3 + 31w + 7,then the algorithm 
onstru
ts only a single bag and does not re
urse. We proveby indu
tion that if ρ∗(H) > 7w3 + 31w + 7, then the algorithm 
onstru
ts atree de
omposition with at most ρ∗(H) − 2w3 − 8w − 1 bags. As the time spent
onstru
ting a bag is ‖H‖O(w3), this proves that the running time is ‖H‖O(w3).First we show that
ρ∗H(V1) + ρ∗H(V2) ≤ ρ∗(H) + 2w3 + 8w. (3)To see this, 
onsider a fra
tional edge 
over γ of H with weight ρ∗(H) and let γSbe a fra
tional edge 
over of S with weight at most w3 + 4w. Let us de�ne

γ1(e) =

{

γ(e) if e 6⊆ V2

0 otherwise and γ2(e) =

{

γ(e) if e 6⊆ V1

0 otherwise.Sin
e every edge is fully 
ontained in either V1 or V2, we have weight(γ1)+weight(γ2) ≤weight(γ). Furthermore, γ1+γS is a fra
tional edge 
over of V1, and γ2+γS is a fra
-tional edge 
over of V2. Now (3) follows from weight(γS) ≤ w3 + 4w. Subtra
ting
4w3 + 16w + 2 from both sides of (3), we get

(ρ∗(H1)−2w3−8w−1)+(ρ∗(H2)−2w3−8w−1) ≤ (ρ∗(H)−2w3−8w−1)−1(4)Suppose that hypergraph H with ρ∗(H) > 7w3 + 31w + 7 is de
omposed into
H1 and H2. The algorithm 
onstru
ts a tree de
omposition T that is obtained byjoining the tree de
ompositions T1 and T2 with a new bag. Thus |T| = |T1|+|T2|+1.We have to 
onsider di�erent 
ases depending on how ρ∗(H1), ρ∗(H2) 
ompare with
7w3 + 31w + 7. If ρ∗(H1), ρ

∗(H2) > 7w3 + 31w + 7, then the indu
tion hypothesisand (4) shows |T| ≤ ρ∗(H)−2w3−8w−1. If ρ∗(H1), ρ
∗(H2) ≤ 7w3+31w+7, then T
onsists of only 3 bags. Sin
e ρ∗(H)−2w3−8w−1 ≥ 5w3+23w+6 > 3, the indu
tionstatement holds in this 
ase as well. Suppose now that ρ∗(H1) > 7w3 +31w+7 and

ρ∗(H2) ≤ 7w3+31w+7. In this 
ase, |T| = |T1|+2. Now |T| ≤ ρ∗(H)−2w3−8w−1follows from the indu
tion hypothesis on H1 and ρ∗(H1) ≤ ρ∗(H)−2 proved earlier.ACM Journal Name, Vol. 2, No. 3, 09 2001.



Approximating fra
tional hypertree width · 125The 
ase when ρ∗(H1) ≤ 7w3 +31w+7 and ρ∗(H2) > 7w3 +31w+7 
an be provedsimilarly.Given a CSP instan
e I with hypergraph H su
h that fhw(H) ≤ w, Theorem 4.1produ
es a fra
tional hypertree de
omposition of width O(w3). By [Grohe andMarx 2006, Theorem 15℄, now the instan
e 
an be solved in time ‖I‖O(w3). Thusfor every �xed w ≥ 1, there is a polynomial-time algorithm for solving instan
eswith fhw(H) ≤ w.Corollary 4.2. If H has bounded fra
tional hypertree width, then CSP(H) 
anbe solved in polynomial time.5. HARDNESS RESULTGottlob et al. [2005℄ have shown that, given a hypergraph H and an integer k, it isNP-hard to de
ide if ghw(H) ≤ k. The proof is a very simple redu
tion from SetCover. This proof 
annot be adapted to prove hardness for fra
tional hypertreewidth, sin
e the fra
tional version of Set Cover is polynomial-time solvable. Herewe prove the hardness of fra
tional hypertree width using the fa
t that given agraph G and an integer k, it is NP-hard to de
ide if the tree width of G is at most
k [Bodlaender et al. 1995℄ (the same hardness result was obtained independentlyby Fomin et al. [2009℄). Note that for every �xed k, it 
an be 
he
ked in lineartime whether the tree width is at most k [Bodlaender 1996℄, thus tree width ishard only if k is part of the input. Consequently, our hardness result for fra
tionalhypertree width assumes that the bound w is given in the input. This means thatthe hardness result does not rule out the possibility that for every �xed w ≥ 1, thereis a polynomial-time algorithm for de
iding fhw(H) ≤ w (and for 
onstru
ting the
orresponding de
omposition). It remains an interesting open question whetherthe approximation algorithm presented in this paper 
an be repla
ed by an optimalpolynomial-time algorithm or the problem is NP-hard already for some �xed w ≥ 1.Note that for generalized hypertree with, Gottlob et al. [2007℄ gave a (mu
h moreinvolved) proof that de
iding ghw(H) ≤ 3 is NP-hard.Theorem 5.1. Given a hypergraph H and rational number w ≥ 1, it is NP-hardto de
ide whether fhw(H) ≤ w.Proof. Given a graph G and an integer k, we 
onstru
t a hypergraph H su
hthat tw(G) ≤ k if and only if fhw(H) ≤ k + 1. Let v1, . . . , vn be the verti
es of
G. The hypergraph H is obtained by adding new verti
es and edges to G. Let ai,j(1 ≤ i ≤ k + 1, 1 ≤ j ≤ 3) be new verti
es and let A be the set of these 3(k + 1)verti
es. For every 1 ≤ x ≤ n, we add k + 1 new edges ex,i = {vx, ai,1, ai,2, ai,3}.Finally, for every pair a′, a′′ ∈ A, we add an edge {a′, a′′}. This 
ompletes thedes
ription of H .Suppose that (T, (Bt)t∈V (T )) is a width k tree de
omposition of G. For every t ∈
V (T ), let B′

t = Bt∪A. It is easy to see that (T, (B′
t)t∈V (T )) is a tree de
ompositionof H . Furthermore, ρ∗H(B′

t) ≤ k + 1 for every t ∈ V (T ): If Bt = {vx1, . . . , vxk+1
},then the edges ex1,1, ex2,2, . . . , exk+1,k+1 form an edge 
over of Bt ∪A.Suppose now that (T, (B′

t)t∈V (T )) is a tree de
omposition of H with fra
tionalhypertree width at most k+1. First we show that it 
an be assumed that every B′
t
ontains A. It is well known that every 
lique is fully 
ontained in some bag of theACM Journal Name, Vol. 2, No. 3, 09 2001.



126 · Dániel Marxde
omposition. Sin
e A is a 
lique, there is at least one bag 
ontaining A and, bythe properties of the tree de
omposition, the bags 
ontaining A form a 
onne
tedsubtree T0 of T . We show that if we repla
e T with T0, then it remains a treede
omposition of H . To see that every vertex v 6∈ A of H appears in a bag of T0,observe that A ∪ {v} is a 
lique, thus there is a bag of T (and hen
e of T0) thatfully 
ontains A ∪ {v}. Similarly, if u, v 6∈ A are neighbors, then A ∪ {u, v} is a
lique, and it follows that T0 has a bag 
ontaining both u and v.Therefore, we 
an assume that A ⊆ B′
t for every t ∈ V (T ). Let Bt := B′

t \ A.It is 
lear that (T, (Bt)t∈V (T )) is a tree de
omposition of G. Let us show thatthe tree width of this de
omposition is at most k, i.e., |Bt| ≤ k + 1 for every
t ∈ V (T ). Let γ be a fra
tional edge 
over of B′

t with weight(γ) ≤ k + 1. Denoteby γ(ai,j) :=
∑

e∈E(H):ai,j∈e γ(e) the weight assigned to the edges 
ontaining ai,j .As γ is a fra
tional edge 
over of A, the sum ∑k+1
i=1

∑3
j=1 γ(ai,j) is at least 3(k+1).Ea
h edge ex,i 
ontributes to 3 terms of this sum, while every other edge 
ontributesto at most 2 terms. Sin
e the total weight of the edges is k+1, this is only possibleif γ is nonzero only on the edges of the form ex,i. Sin
e ea
h su
h edge 
overs onlyone vertex outside A, the bag B′

t 
an 
ontain at most k + 1 verti
es outside A,proving |Bt| ≤ k + 1.6. CONCLUSIONSThe algorithm presented in the paper shows that if H is a 
lass of hypergraphswith bounded fra
tional hypertree width, then there is a polynomial-time algo-rithm that 
an produ
e a tree de
omposition with bounded fra
tional hypertreewidth for ea
h member of H. It follows that CSP instan
es where the 
onstraintstru
ture has bounded fra
tional hypertree width are polynomial-time solvable; infa
t, this 
ondition is the stri
tly most general known tra
tability 
riterion. It re-mains an important open question whether there are further tra
table 
ases not
overed by bounded fra
tional hypertree width. As our algorithm 
omputes onlyan approximately optimal tree de
omposition, another open question is whether it
an be made an exa
t algorithm, i.e., 7w3 +31w+7 in Theorem 4.1 
an be repla
edwith w. We expe
t that this turns out to be NP-hard, similarly as in the 
ase ofgeneralized hypertree width [Gottlob et al. 2007℄.ACKNOWLEDGMENTI'm grateful to Martin Grohe for many stimulating dis
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