Approximating fractional hypertree width

DANIEL MARX
Budapest University of Technology and Economics

Fractional hypertree width is a hypergraph measure similar to tree width and hypertree width. Its
algorithmic importance comes from the fact that, as shown in previous work, constraint satisfaction
problems (CSP) and various problems in database theory are polynomial-time solvable if the input
contains a bounded-width fractional hypertree decomposition of the hypergraph of the constraints.
In this paper, we show that for every fixed w > 1, there is a polynomial-time algorithm that,
given a hypergraph H with fractional hypertree width at most w, computes a fractional hypertree
decomposition of width O(w?3) for H. This means that polynomial-time algorithms relying on
bounded-width fractional hypertree decompositions no longer need to be given a decomposition
explicitly in the input, since an appropriate decomposition can be computed in polynomial time.
Therefore, if 3 is a class of hypergraphs with bounded fractional hypertree width, then CSP
restricted to instances whose structure is in 3 is polynomial-time solvable. This makes bounded
fractional hypertree width the most general known hypergraph property that makes CSP, Boolean
Conjunctive Queries, and Conjunctive Query Containment polynomial-time solvable.

Categories and Subject Descriptors: G.2.2 [Discrete Mathematics|: Graph Theory—Graph
Algorithms; F.2.2 [Analysis of Algorithms and Problem Complexity|: Nonnumerical Algo-
rithms and Problems

General Terms: Algorithms, Theory

Additional Key Words and Phrases: treewidth, fractional hypertree width, constraint satisfaction

1. INTRODUCTION

Constraint satisfaction is a general framework that includes many standard algo-
rithmic problems such as satisfiability, graph coloring, database queries, etc. A
constraint satisfaction problem (CSP) consists of a set V' of variables, a domain D,
and a set C' of constraints, where each constraint is a relation on a subset of the
variables. The task is to assign a value from D to each variable such that every
constraint is satisfied. For example, 3SAT can be interpreted as a CSP problem
where the domain is D = {0,1} and the constraints in C' correspond to the clauses
(thus the arity of each constraint is 3). Certain fundamental problems in database
theory, such as Boolean Conjunctive Queries and Conjunctive Query Containment,
are equivalent to CSP. For more background, see e.g., [Grohe 2006; Feder and Vardi
1999; Gottlob and Szeider 2008; Kolaitis and Vardi 2000].

Author’s address: Department of Computer Science and Information Theory, Budapest Univer-
sity of Technology and Economics, Budapest H-1521, Hungary (dmarxQcs.bme.hu). Research
supported by the Magyary Zoltan Postdoc Fellowship and the Hungarian National Research Fund
(Grant Number OTKA 67651).

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 2001 ACM 0000-0000/2001/0000-0111 $5.00

ACM Journal Name, Vol. 2, No. 3, 09 2001, Pages 111-077.

112 . Daniel Marx

In general, solving constraint satisfaction problems is NP-hard if there are no
additional restrictions on the instances. The main goal of the research on CSP is
to identify tractable special cases of the general problem. The theoretical literature
on CSP investigates two main types of restrictions. The first type is to restrict the
constraint language, that is, the type of constraints that is allowed. This direction
includes the classical work of Schaefer [Schaefer 1978] and its many generalizations
(e.g., [Bulatov 2002; 2003; Bulatov et al. 2001; Feder and Vardi 1999; Jeavons et al.
1997]). The second type is to restrict the structure induced by the constraints on
the variables. The hypergraph of a CSP instance is defined to be a hypergraph
on the variables of the instance such that for each constraint ¢ € C there is a
hyperedge e. that contains all the variables that appear in c. If the hypergraph of
the CSP instance has a very simple structure, then the instance is easy to solve.
For example, it is well-known that a CSP instance I with hypergraph H can be
solved in time ||]9 () [Freuder 1990], where tw(H) denotes the tree width of
H and ||I|| is the size of the representation of I in the input. Thus if we restrict
the problem to instances where the tree width of the hypergraph is bounded by
some constant w, then the problem is polynomial-time solvable. It is the goal of
ongoing research to find other properties (besides bounded tree width) that make
the problem polynomial-time tractable. Formally, for a class H of hypergraphs, let
CSP(H) be the restriction of CSP where the hypergraph of the instance is assumed
to be in H. Our goal is to find and categorize classes H such that CSP(H) can be
solved in polynomial time.

If the constraints have bounded arity (i.e., edge size in H is bounded by a con-
stant), then the complexity of CSP(H) is well understood:

THEOREM 1.1 [GROHE 2007; GROHE ET AL. 2001]. Let CSP(H) be CSP re-
stricted to instances whose underlying hypergraph is in H. If H is a recursively enu-
merable class of hypergraphs with bounded edge size, then (assuming FPT # W][1])

CSP(H) is polynomial-time solvable

H has bounded tree width.

The assumption FPT # W[1] is a standard hypothesis of parameterized complexity.
Thus in the bounded-arity case bounded tree width is the only property of the
hypergraph that can make the problem polynomial-time solvable. A sharpening of
Theorem 1.1 was proved in [Marx 2007], where almost tight lower bounds are given
on the time required to solve CSP(XH) if H has unbound tree width.

The situation is much less understood in the unbounded arity case, i.e., when
there is no bound on the maximum edge size in H. First, the complexity in
the unbounded-arity case depends on how the constraints are represented. In the
bounded-arity case, if each constraint contains at most r variables (r being a fixed
constant), then every reasonable representation of a constraint has size |D|O("),
Therefore, the size of different representations can differ only by a polynomial fac-
tor. On the other hand, if there is no bound on the arity, then there can be expo-
nential difference between the size of succinct representations (e.g., formulas [Chen
and Grohe 2006]) and verbose representations (e.g., truth tables [Marx 2009]). The
running time of an algorithm is expressed as a function of the input size, hence

ACM Journal Name, Vol. 2, No. 3, 09 2001.

Approximating fractional hypertree width . 113

the complexity of the problem can depend on how the input is represented: Longer
representation means that it is potentially easier to obtain a polynomial-time algo-
rithm.

The most well-studied representation of constraints is listing all the tuples that
satisfy the constraint. In this case, the size of the representation of a constraint
relation is proportional to the number of satisfying tuples. This representation is
very natural in problems involving relational databases, where the constraints are
database relations that are actually stored as a sequence of tuples. If we want to
use results on CSP in a database-theoretic setting, then we have to consider this
representation.

Unlike in the bounded-arity case, if there is no bound on the number of variables
in a constraint, then bounded tree width is not the right structural criterion for
the tractability of the problem. It remains true that an instance with hypergraph
H can be solved in time || I]|°®¥(7)) However, there are classes 3 of hypergraphs
with unbounded tree width such that CSP(X) is polynomial-time solvable. A very
simple example is the class that contains those hypergraphs where one of the edges
cover all the vertices. If the hypergraph H of a CSP instance belongs to this class,
then it is easy to solve: There is a constraint that contains every variable, thus all
we have to do is enumerating the satisfying tuples of this constraint and checking
whether there is a tuple among them that satisfies every other constraint. This idea
can be generalized: If we restrict the problem to hypergraphs that can be covered
by k edges (for some fixed constant k), then CSP can be solved by enumerating
all the possible combinations of satisfying tuples for k constraints that cover all
the variables. This observation motivated the definition of (generalized) hypertree
width [Gottlob et al. 2002; Adler et al. 2007; Gottlob et al. 2005], which is defined
similarly to tree width, but instead of the requirement that each bag contains a
bounded number of vertices, we require that each bag can be covered by a bounded
number of edges (see Section 2 for the precise definition). As shown in [Gottlob
et al. 2002], CSP(H) is polynomial-time solvable if { has bounded (generalized)
hypertree width.

In [Grohe and Marx 2006], new tractable classes H with unbounded hypertree
width were identified. It was shown, using Shearer’s Lemma [Chung et al. 1986],
that a CSP instance has only a polynomial number of solutions and they can be
enumerated efficiently if the hypergraph of the instance has bounded fractional
edge cover number. Thus CSP(XH) is polynomial-time solvable if 3 has bounded
fractional edge cover number. Fractional hypertree width is defined analogously to
generalized hypertree width, but now we only require that each bag has bounded
fractional edge cover number. As shown in [Grohe and Marx 2006], if K is a class of
hypergraphs with bounded fractional hypertree width, then CSP(X) can be solved
in polynomial time, if the input contains a tree decomposition of the hypergraph
of the instance with bounded fractional hypertree width. However, it remained an
open question whether it is possible to find such a tree decomposition in polynomial
time and whether CSP(JH) (without any extra input) is polynomial-time solvable
for such H.

Our results. The main result of the paper is an algorithm that computes ap-
proximately optimal fractional hypertree decompositions. More precisely, we show

ACM Journal Name, Vol. 2, No. 3, 09 2001.

114 . Daniel Marx

Bounded fractional hypertree width

Bounded Bounded fractional

hypertree width edge cover number

Bounded
tree width

Fig. 1. Hypergraph properties that make CSP polynomial-time solvable.

that for every fixed w > 1, there is a polynomial-time algorithm that, given a
hypergraph H with fractional hypertree width at most w, computes a tree decom-
position of H with fractional hypertree width O(w?®) (Theorem 4.1). Therefore, if
every hypergraph in J has fractional hypertree width at most w, then CSP(K) is
polynomial-time solvable: For every instance, we can compute a tree decomposi-
tion with fractional hypertree width O(w?) and then use the algorithm of [Grohe
and Marx 2006]. Thus our result makes bounded fractional hypertree width the
strictly most general known hypergraph property that allows CSP to be solved in
polynomial time. Figure 1 shows some of the known tractable hypergraph prop-
erties (note that the elements of this Venn diagram are sets of hypergraphs; e.g.,
the set “bounded tree width” contains every set H of hypergraphs with bounded
tree width). All the inclusions in the figure are proper. The tractable classes for
CSP translate to tractable classes for Boolean Conjunctive Queries and Conjunctive
Query Containment [Kolaitis and Vardi 2000], thus bounded fractional hypertree
width is the most general known tractability criterion for those problems as well.

Algorithms for finding tree decompositions and characterization theorems for
(generalizations of) tree width often follow a certain pattern. For example, the
same high-level idea is used for tree width [Flum and Grohe 2006, Section 11.2],
rank width [Oum and Seymour 2006; Oum 2005], hypertree width [Adler et al.
2007], and branch width of matroids and submodular functions [Oum and Seymour
2007]. Simplifying somewhat, this general pattern can be summarized the following
way: We decompose the problem into two parts by finding a small balanced sepa-
ration, then a tree decomposition for each part is constructed using the algorithm
recursively, and finally the tree decompositions for the parts are joined in an ap-
propriate way to obtain a tree decomposition for the original problem. A balanced
separation of a subset W is a partition (A4, B) of W and a set S separating A and B,
such that A and B are both “small” compared to W (the exact definition of small
depends on the actual type of tree decomposition we are looking for). Depending
on the approximation ratio and the running time we are trying to achieve, the prob-
lem of finding a balanced separation is either reduced to a sparsest cut problem or
(using brute force) it is reduced to the problem of finding a small (A, B)-separator,
i.e., a set whose deletion disconnects A and B.

ACM Journal Name, Vol. 2, No. 3, 09 2001.

Approximating fractional hypertree width . 115

Can we use a similar approach for constructing fractional hypertree decompo-
sitions? With appropriate modifications, the recursive algorithm works for such
decompositions as well (Section 4). The crucial question is how to find a balanced
separation where S has small fraction edge cover number. Using brute force in a
not completely trivial way, the search for a balanced separation can be reduced to
finding an (A, B)-separator with small fractional edge cover number (Lemma 3.5).
The main technical contribution of the paper is an approximation algorithm for
finding such separators: If there is an (A, B)-separator with fractional edge cover
number at most w, then the algorithm finds an (A, B)-separator with fractional
edge cover number O(w?) (Section 3). The running time is polynomial for every
fixed w.

For other types of tree decompositions, the corresponding (A, B)-separation prob-
lem can be solved using flow techniques, brute force, or submodularity. None of
these techniques seem to be relevant when the goal is to minimize the fractional
edge cover number of the separator; we need completely different techniques. The
main idea is the following. Suppose we are looking for an (A, B)-separator S with
fractional edge cover number w < 2. As the fractional edge cover number is an
upper bound on maximum independent set size, any two vertices in S are adjacent,
i.e., S induces a clique. The structure of separating cliques is well understood:
Every graph has a unique decomposition by clique separators [Tarjan 1985]. Our
algorithm for finding a separator with small fractional edge cover number can be
thought of as a generalization of finding clique separators. A tempting way of
generalizing this idea for larger w would be to suppose that every separator with
fractional edge cover number at most w can be covered by f(w) cliques for some
function f. However, this is not true: We might need an unbounded number of
cliques (see Example 2.1). Nevertheless, we manage to transform the instance in
such a way that it can be assumed that the separator we are looking for can be
covered by w cliques. Then we locate these cliques using a combination of brute
force, clique separator decompositions, and linear programming,.

We finish the paper by proving that it is NP-hard to decide whether the fractional
hypertree width of a hypergraph is at most w (Section 5). The hardness result
assumes that w is a value given in the input; the much more interesting question
of whether the problem is NP-hard for some fixed w > 1 remains open.

2. PRELIMINARIES

A hypergraph is a pair H = (V(H), E(H)), consisting of a set V(H) of vertices
and a set E(H) of subsets of V(H), the hyperedges of H. We always assume that
hypergraphs have no isolated vertices, that is, for every v € V(H) there exists at
least one e € E(H) such that v € e. Let | H|| := |V(H)| + |E(H)|, we will express
the running time of the algorithms as a function of ||H]|.

For a hypergraph H and a set X C V(H), the subhypergraph of H induced by X
is the hypergraph H[X] = (X,{eNX |e € E(H)}). Welet H\ X = H[V(H) \ X].
The primal graph of a hypergraph H is the graph

H = (V(H),{{v,u} | v # u, there exists an
e € E(H) such that {v,u} Ce}).

ACM Journal Name, Vol. 2, No. 3, 09 2001.

116 . Daniel Marx

A hypergraph H is connected if H is connected. A set C C V(H) is connected (in
H) if the induced subhypergraph H[C] is connected, and a connected component
of H is a maximal connected subset of V(H). A sequence of vertices of H is a path
of H if it is a path of H. A subset K C V(H) is a clique of H if K induces a clique
in H.

An edge cover of a set S C V(H) is a set F' C E(H) such that for every v € S,
there is an e € F' with v € e. The size of the smallest edge cover of S, denoted by
pu(S), is the edge cover number of S. A fractional edge cover of S C V(H) is a
mapping y : E(H) — [0, 1] such that for every v € S, wehave 3 ¢ r).pe. V(€) 2 1.
The weight of the assignment ~ is weight(y) := ZeeE(H) v(e). The fractional
edge cover number of S, denoted by p3;(S), is the minimum of weight(y) taken
over every fractional edge cover of S. It is well known that p§;(S) < pu(S) <
5 (S)(1 +1n|V(H)|); in fact, a simple greedy algorithm can be used to find an
edge cover of S with size at most p};(S)(1 + In|V(H)|) (cf. [Vazirani 2004]). Note
that determining pg (S) is NP-hard, while p3;(S) can be determined in polynomial
time using linear programming. We define p(H) and p*(H) to be py(V(H)) and
p5(V(H)), respectively. If I is an independent set in S, then each edge of a
fractional edge cover can contribute to the covering of at most one vertex of I, thus
we have |I| < p3,(9).

Example 2.1. For n > 1, let H,, be the following hypergraph: H,, has a vertex
vg for every subset S of {1,...,3n} of cardinality n. Furthermore, for every i €
{1,...,3n} the hypergraph H,, has a hyperedge e; = {vg | i € S}. Observe that
the fractional edge cover number p*(H,,) is at most 3, because the mapping ¢ that
assigns 1/n to every hyperedge e; is a fractional edge cover of weight 3. Actually, it
is easy to see that p*(H,) = 3. On the other hand, the edge cover number cannot
be bounded by a constant. Every edge cover has size at least 2n + 1: If ¢;, ...,
e;, are n edges not present in the edge cover, then the vertex corresponding to the
set {i1,...,%,} is not covered by any edges of the cover. The primal graph of H,, is
the complement of the Kneser graph K Gs,, . The chromatic number of KGs, ,, is
known to be 3n — 2n + 2 = n + 2 [Lovasz 1978; Matousek 2004]. Thus the primal
graph of H,, cannot be covered by less than n + 2 cliques. This shows that there
is no function f(w) such that every hypergraph H with p*(H) < w can be covered
by at most f(w) cliques.

A tree decomposition T of a hypergraph H is a tuple (T, (B¢)icv (1)), where T
is a tree and (By)¢cy (1) a family of subsets of V(H) such that for each e € E(H)
there is a node t € V(T) such that e C By, and for each v € V(H) the set
{t € V(T) | v € B:} is connected in T. The sets B; are called the bags of the
decomposition. We denote by |T| := |V (T')| the number of bags in . The width of
a tree decomposition (T, (By)iev (1)) is max {|By| | t € V(t)} — 1. The tree width
tw(H) of a hypergraph H is the minimum of the widths of all tree decompositions
of H. It is easy to see that tw(H) = tw(H) for all H.

The generalized hypertree width of a decomposition (T, (By)¢cv (7)) is defined as
max {pr (By) | t € V(t)} and the generalized hypertree width of a hypergraph H,
denoted by ghw(H), is the minimum of the generalized hypertree widths of all tree
decompositions of H. Fractional hypertree width of a tree decomposition and of

ACM Journal Name, Vol. 2, No. 3, 09 2001.

Approximating fractional hypertree width . 117

a hypergraph is defined analogously, by having p%,(B;) instead of pg(B;) in the
definition. We denote by thw(H) the fractional hypertree width of H.

3. FINDING APPROXIMATE SEPARATORS

Let A,B C V(H) be two sets of vertices. An (A, B)-separator is a set S C V(H)
such that there is no path connecting a vertex of A\ S with a vertex of B\ S in the
hypergraph H \ S. In particular, such an S has to contain every vertex of AN B.
The aim of this section is to give an approximation algorithm for the problem of
finding an (A, B)-separator with minimum fractional edge cover number.

We say that two nonadjacent vertices u,v of H are w-attached for some w > 1
if p3;(N(v) N N(u)) > w (here N(v) is the set of neighbors of v, not including
v itself). If u,v are w-attached and S is an (A, B)-separator with p};(S) < w
covering neither v nor v, then u and v are in the same connected component of
H \ S. This means that S remains an (A, B)-separator even if we add an edge
between v and v. Thus adding edges between w-attached vertices does not change
the problem significantly. More precisely, the following lemma shows that we can
reduce the problem to a situation where nonadjacent vertices are not w-attached.
This property of the hypergraph will play an important role in the algorithm.

LeEmMA 3.1. Let H be a hypergraph, A,B C V(H) sets of vertices, and w > 1
a rational number. We can construct in time polynomial in |H|| a hypergraph H™*
on the same set of vertices such that

(1) If vertices u and v are not adjacent in H', then they are not w-attached.

(2) If S is an (A, B)-separator in H with p5;(S) < w, then S is an (A, B)-separator
in Ht with pt, (S) < w.

(8) If S is an (A, B)-separator in HT, then S is an (A, B)-separator in H with
pia(S) < 20, (9).

PROOF. We construct a sequence of hypergraphs. Let Hy = H. Let (u,v) be
an arbitrary pair of nonadjacent vertices that are w-attached in H;_;. Hypergraph
H; is the same as H;_; with an extra edge {u,v}. If there is no such pair (u,v) in
H,_ 1, then we stop the construction of the sequence. It is clear that the sequence
has polynomial length (as at most O(|V (H)|?) new edges can be added) and con-
structing H; from H;_; can be done in polynomial time. Let Ht = H}, be the last
hypergraph in the sequence. Statement 1 is immediate from the way the sequence
is constructed.

To prove Statement 2, suppose that S is an (A, B)-separator in H = Hy. Since
the edges of H are a subset of the edges of H™, we have p%,, (S) < p};(S) < w. We
prove by induction that S is an (A, B)-separator in every H;. Suppose that this is
true for H;_1, but there is a path P from a vertex of A to a vertex of B in H; \ S.
Let e; = u;v; be the edge that was added to H;_; to obtain H;. If P does not use
e;, then P is also a path in H;_1, contradicting the induction hypothesis that .S is
an (A, B)-separator in H;_1. Thus P = Pyu;v; P> for some subpaths P; and P, (by
swapping u; and v; if necessary, we may assume that P reaches u; before v;). By
the definition of e;,

pr(N(vi) N N(ui)) = pr,_, (N(vi) N N(ui)) > w > pp(5),

ACM Journal Name, Vol. 2, No. 3, 09 2001.

118 . Daniel Marx

which means that there is a vertex ¢ € (N(v;) N N(u;)) \ S. The walk Pyu;qu;Ps
connects a vertex of A and a vertex of B in H;_1 \ S, contradicting the induction
hypothesis.

To prove Statement 3, observe first that the edges of H are a subset of the edges
of H*, thus if S is an (A, B)-separator in H*, then it is an (A, B)-separator in
H as well. Consider a fractional edge cover v of S in HT with weight(y) = w'.
Suppose that y(e) = = for an edge e = {u,v} not present in H. In this case, we
set the weight of this edge to 0, and increase by x the weight of two edges: an
arbitrary edge e, € E(H) that contains u and an arbitrary edge e, € E(H) that
contains v (such edges exist, since we assumed that there are no isolated vertices in
the hypergraph). It is clear that the resulting weight assignment is also a fractional
edge cover. We repeat this step until the weight assignment is 0 on every edge not
present in H. It is easy to see that the weight of the assignment increases to at
most 2w’, thus p};(S) < 2p75,4(S). O

The following result follows from the fact that a decomposition of a graph by
separating cliques can be found in polynomial time [Whitesides 1981; Tarjan 1985]
(clique K is a separating clique of H if H \ K has not connected). For the con-
venience of the reader, we give here a self-contained proof of the main idea in the
form we use.

LEMMA 3.2. Given a graph G, it is possible to construct in time polynomial in
|G|l a set C of at most |V (G)| connected subsets such that

(1) if K is a clique of G, then K C C for some C € C, and

(2) if K is a clique of G and C € C, then C \ K is contained in a connected
component of G\ K.

PRrROOF. We construct a sequence of graphs as follows. Let Gy = G. Suppose
that G;_1 has an induced cycle H of length at least 4; let v;, u; be two nonadjacent
vertices of H. We define G; to be the same as G;_1, with an extra edge e; = v;u;.
If G;—1 has no such cycle H (i.e., G;,—1 is a chordal graph), then we stop the
construction of the sequence. Let Gy be the last graph in the sequence. Let C be
the set of inclusionwise maximal cliques of G. It is well known that chordal graph
Gy has at most |V (Gy)| = |V(G)| maximal cliques (cf. [Golumbic 1980]).

Every clique of G is a clique of Gy, thus Statement 1 is clear from the definition
of €. To prove Statement 2, for every C € € and clique K of G, we show that C'\ K
is contained in a connected component of G; \ K for every 1 < ¢ < k. This is clear
for Gy, as C' is a clique in Gj. Suppose that C'\ K is in a connected component of
G;\ K but a,b € C'\ K are in different connected components of G;,_; \ K. Let P
be a path from a to b in G; \ K. Path P has to go through the edge e; = u;v; used
in the definition of G;, otherwise it would be a path in G;_; \ K as well. Thus the
path P can be written as P = aPu;v; Pob (assuming without loss of generality that
P reaches u; before v;). There is an induced cycle H in G;_; that contains u; and
v;. Since u;,v; € K and H \ K is connected (as K is a clique and H is an induced
cycle), there is a path R in G;_1 \ K that connects u; and v;. Now aPyu;Rv; P2b is
a walk from a to b in G;_; \ K, a contradiction. [

For illustrative purposes, we show how Lemma 3.2 implies that all the minimal

ACM Journal Name, Vol. 2, No. 3, 09 2001.

Approximating fractional hypertree width . 119

separating cliques can be enumerated in polynomial time (although we do not use
this result here).

COROLLARY 3.3. Gliven a graph G, it is possible to enumerate all the inclusion-
wise minimal separating cliques of G in time polynomial in |G|

PrOOF. Construct the sets € of Lemma 3.2 and consider the chordal graph G.
We claim that every minimal separating clique of G is a minimal separating clique of
G.. Suppose that a clique K separates a and b in G, but there is a path P between
a and b in Gy \ K. Each edge e of P is a clique of size 2 in G}, hence the endpoints
of e are contained in some set C; € C. This means that the two endpoints are in the
same connected component of G\ K and it follows that every vertex of the path
P (including a and b) are in the same component, a contradiction. Thus if K is a
minimal separating clique in G, then it is a separating clique in Gj. Furthermore,
as Gy, is a supergraph of GG, minimality of K in G implies its minimality in Gj, as
well. In a chordal graph, every minimal separating clique is the intersection of two
maximal cliques. Thus all the minimal separating cliques can be enumerated by
taking the intersection of every pair C;, C; € C and checking whether it is really a
minimal separating clique. [

LeEmMMA 3.4. Let H be a hypergraph, A,B C V(H) two sets of vertices, and
w > 1 a rational number. There is an algorithm that, in time |H||°(), either

—correctly concludes that there is no (A, B)-separator S with p3;(S) < w, or
—produces an (A, B)-separator S" with p3;(S') < w® + 4w.

PROOF. The algorithm first constructs the hypergraph H* of Lemma 3.1 and
then tries to find an (A, B)-separator in H. By Lemma 3.1(2), if H has an
(A, B)-separator S with p}(S) < w, then S is an (A, B)-separator in H" as well
and pj;4 (S) < w. In this case, our algorithm detailed below will be able to find an
(A, B)-separator S in H' with p},; (5') < w*/2 + 2w. By Lemma 3.1(3), such an
S’ is an (A, B)-separator in H with p% (S") < w3 + 4w.

Suppose that there is an (A, B)-separator S in H™ with p%,. (S) < w. In the rest
of the proof, we show how to find the required separator S’ if we know a maximum
independent set Ig of S. Since the fractional edge cover number of S is at most w,
the size of Ig is also at most w. Thus trying all possible sets Is adds a factor of
|H+(|9W) = || H||°®) to the running time.

Denote by N(v) the neighbors of vertex v in HT. Suppose that Is = {v1,..., vk}
(for some k < w) is a maximum independent set of S. By the definition of H', we
have pjy (N (vi)NN(v;)) < wforevery 1 <i < j <k. Thus X = |J; ;< (N(v:)N
N(v;)) has fractional edge cover number at most (5)w < w?®/2. In the rest of the
algorithm, we try to find a set Y with p},, (Y) < 2w such that S’ := X UY is an
(A, B)-separator in H™.

Let N; = (N(v;) U{v;}) \ X for i =1,...,k. Let us note first that N; N N; =0
if i # j: Vertices v; and v; are not adjacent and every vertex of N(v;) N N(v;) is
in X. Since vy, ..., vg is a maximum independent set of S, each vertex of S\ X is
in one of the N;’s. Observe that N; NS is not empty, since it contains v; (here we
use that v; cannot be in X, since it is not adjacent to any other v;). Furthermore,
for every 1 <i <k, N; NS is a clique of N; (this is a crucial point of the proof).

ACM Journal Name, Vol. 2, No. 3, 09 2001.

120 . Daniel Marx

Lvl € N; NS are nonadjacent vertices; clearly, it is not

To see this, suppose that v;, v;

possible that v; = v; or v] = v;. Vertices v} and v cannot be adjacent to any v;
with ¢ # j: that would imply that they are in N(v;) N N(v;) € X. Thus replacing
v; in Is with v} and v} would give a strictly larger independent set, contradicting
the maximality of Ig.

Let H be the primal graph of H*. For every 1 <i <k, let C; 1, ..., C;, be the
connected sets given by Lemma 3.2 for the graph H[N;]. By the definition of these
sets, for every 1 <4 < k there is a value 1 < d; < ¢; such that the clique N; NS is
fully contained in C; 4,. Furthermore, the connected set C; 4, \ (N; NS) = C;.q4, \ S
is contained in a connected component of H[N; \ (IV; N S)] = H[N; \ S|, which
implies that C; 4, \ S is contained in a connected component of H \ S. Thus either
every vertex of C; g4, \ S is reachable from A in H \ S, or none of these vertices are
reachable. Let us define a; = 1 in the first case and a; = 0 in the second case (if
C;.4;, C S, then define arbitrarily).

We show that if the values d;, a; (1 < i < k) corresponding to S are known, then
the required separator S’ can be found. Thus we have to try all possibilities for
these values, which adds a factor of |V (H)|9() . 20(%) to the running time.

Suppose that the values of d;, a; are given. Let Z := X U Ule Ci,q,; note that
S C Z. We say that a vertex u € C} g4, is a bad vertez if

—a; = 0 and there is a path P, from A to u with P, N Z = {u}, or
—a; = 1 and there is a path P, from B to u with P, N Z = {u}.

(It is possible that P, or P, consists of only the vertex u; in particular, if u € AN B,
then u is always a bad vertex.) Observe that S contains every bad vertex u. Indeed,
if u ¢ S and there is a path P, as above, then SN P, = () (since S C Z), thus u is
reachable from A, contradicting a; = 0. On the other hand, if v ¢ S and there is
a path Py, then w is reachable from B, but a; = 1 implies that it is also reachable
from A, contradicting the fact that S is an (A, B)-separator.

A pair u € C; 4, and v € Cj 4, is a bad pair if

—there is a path P from v to v with PN Z = {u,v} and a; # q;.

In this case, S has to contain at least one of u and v: Otherwise P NS = () would
mean that v and v are in the same connected component of H* \ S, implying
a; = a;. Thus every fractional edge cover of S is a solution of the following linear

program:
min E Te

e€eE(HT)
Z Te >1 for every bad vertex v € Z
ecE(HT)
vee
Z Te + Z Te > 1 for every bad pair u,v € Z
ecE(HT) e€cE(HT)
uece vee
ze >0 for every e € E(H™)

Therefore, the optimum of the linear program is at most w. Let (2¢)ccp(m+) be a
solution of the linear program with cost at most w. Let Y contain those vertices v

ACM Journal Name, Vol. 2, No. 3, 09 2001.

Approximating fractional hypertree width . 121

for which 3 c p(pr+).wee Te = 1/2; clearly, pi;, (Y) < 2w. Thus defining §' := XUY
gives a set with p%, (Y) < w3/2+ 2w. Observe that the linear program ensures
that Y (and hence S’) contains every bad vertex and at least one vertex from each
bad pair.

We claim that S’ is an (A, B)-separator in H'. Suppose that there is a path P
froma € Atobe€ Bin HT\ S’. This path contains at least one vertex of S (since
S is an (A, B)-separator), hence it contains at least one vertex of Z. Let p1, ...,
pr- be the vertices of P N Z, ordered as the path is traversed from a to b. Since
these vertices cannot be in X C 5’, they are in Ule Ci.a;- Suppose first that p; is
not reachable from A in H* \ S. This means that if N; is the set that contains p1,
then a; = 0. It follows that p; is a bad vertex (because of the subpath of P that
connects a with p1), hence p; € ', a contradiction. Let 1 < ¢ < r be the largest
value such that py is reachable from A in H* \ S and suppose that py is in N;. If
¢ =r, then py is a bad vertex (because of a; = 1 and the subpath of P connecting p,
and b), again a contradiction. Finally, if £ < r, then let N; be the set that contains
pe+1. The maximality of £ implies a; = 1 and a; = 0. Therefore, p;, pe41 is a bad
pair (because of the subpath of P connecting these two vertices), and S’ contains
at least one of these vertices, a contradiction. Thus S’ is an (A, B)-separator in
HY with p3,4 (87) < w?/2 + 2w.

In summary, the algorithm consists of the following steps:

(1) Construct the hypergraph H* (Lemma 3.1).

(2) Guess the independent set Ig.

(3) Construct the set X and define the sets ;.

(4) Construct the sets C; ; (Lemma 3.2).

(5) Guess the values d;, a;.

(6) Construct Y using an optimum solution of the linear program.
(7) Check if S':= X UY is an (A, B)-separator in H.

As discussed above, if there is an (A, B)-separator S in H with p3;(S) < w, then it
is possible to choose Is and the values d;, a; such that the separator S’ computed
by the algorithm is an (A, B)-separator in H with p%;(S’) < w3 + 4w. Thus if we
try all possible || H||C) .|| H||©().20(w) guesses, then we will find such a separator
S’ in this case. On the other hand, if none of the guesses results in the required
separator S’, then we can correctly conclude that there is a no (A, B)-separator
S in H with p};(S) < w. The running time of each step (except the guesses) is
polynomial, thus the total running time is || H||°"). O

In the tree decomposition algorithm of Section 4, we have to find a balanced
separation of a set W: We need a partition (A4, B) of W such that (1) pj;(A4),
P35 (B) are not too large and (2) there is an (A, B)-separator S such that p},(S) is
not too large. As we shall see, it follows from the results of [Grohe and Marx 2006]
that such a balanced separation always exists if H has bounded fractional hypertree
width. If we want to find such a separation algorithmically, then the main problem
is how to find the partition (A, B) of W: If (4, B) is given, then Lemma 3.4 can be
used to find an (A, B)-separator whose fractional edge cover number is bounded.
Trying all possible partitions of W is not feasible. Fortunately, for the application

ACM Journal Name, Vol. 2, No. 3, 09 2001.

122 . Daniel Marx

in Lemma 3.5, we can assume that p%; (W) is bounded. Instead of trying all possible
partitions of W (the number of such partitions can be exponential in the number
of vertices), it turns out that it is sufficient to try all possible partitions of an edge
cover F' of W (the number of such partitions is exponential only in the size of F).

LEMMA 3.5. Let H be a hypergraph with fractional hypertree width at most w
and let W C V(H) be a subset of vertices with p3;(W) < k. It is possible to
find in time |H||°WH*) a partition (A, B) of W and an (A, B)-separator S with
pir(S) < w? + 4w such that pjy(A), p(B) < 2k +w.

PROOF. Since the fractional edge cover number of W is at most k, the greedy
algorithm finds an edge cover F C E(H) of W with |F| = O(klog |V (H)|) [Vazirani
2004]. Our algorithm tries every partition (Fa, Fp) of F, defines A := W nN|JFa
and B := W\ A, and checks whether the algorithm of Lemma 3.4 produces an
(A, B)-separator S with p3(S) < w? + 4w. We show that if H has fractional
hypertree width at most w, then at least one partition (F4, Fjp) results in a partition
(A, B) and a separator S satisfying the conditions. Trying every possible partition
(Fa, Fp) means trying 20*log VDD — || /7||9() possibilities and the algorithm of
Lemma 3.4 needs ||[H||°(*) time. Thus the total running time of the algorithm is
”H”O(ker)_

By [Grohe and Marx 2006, Theorem 11, Lemma 12|, there is a set Sy with
p3(So) < w such that p3;(C N W) < k/2 for every connected component C' of
H \ So; let Cy, ..., Cy be these connected components. (If d = 0, then we are
trivially done.) Define W; := W N C; and suppose that the connected components
are ordered such that pj;(W;) > p5;(W;) if ¢ < j. Since each edge can intersect
at most one W;, the fractional edge cover number of the union of some W;’s is
exactly the sum of the corresponding fractional edge cover numbers. Let ¢ be the
largest integer (not greater than d) such that p}{(Ule W;) < 2k. We show that
P*H(U?=e+1 W;) < 2k. Suppose that ¢ < d, otherwise there is nothing to show.
Since pj;(Wh) < k/2, we have £ > 1. We show that pj‘q(Ule W;) > k/3. This is
trivially true if p*(W1) > k/3. If p*(W1) < k/3, then we argue as follows. The
definition of £ implies that pj (Uit Wi) > 2k. Since ply(Wei1) < pfy(Wh) < k/3,
it follows that pj‘q(Ule W;) > k/3. Since there is no edge that intersects more
than one Wi, we have pj (UL, Wi) = pir(Uizy Wa) + pir(Uzy, Wi). Therefore,
(UL, Wi) < piy (W) < k implies pj; (U, Wi) < 2k.

Let F'4 be the edges of F' fully contained in Sy U Ule C; and let Fg := F\ Fy;
observe that the edges of Fg intersect U?:ZH C;. Let A:==WnNJFa and B :=
W\ A be defined as in the algorithm. Since A C Sy U (W N Ule C;), we have
pir(A) < pir(So) + pir(Usey W) < w + 2k. Similarly, pf;(B) < w + 2k. Observe
that Sp is an (A, B)-separator with p%;(So) < w, thus the algorithm of Lemma 3.4
produces an (A, B)-separator S with p%(S) < w® + 4w. Therefore, when the
algorithm considers this particular partition (Fa, F), then it finds the required
partition (A, B) and separator S. O

ACM Journal Name, Vol. 2, No. 3, 09 2001.

Approximating fractional hypertree width . 123

4. FINDING APPROXIMATE TREE DECOMPOSITIONS

We prove the main result of the paper in this section: It is possible to approximate
fractional hypertree width in a sense that is suitable for the applications. That is,
if a class H of hypergraphs has bounded fractional hypertree width, then there is
a polynomial time algorithm producing a tree decomposition with bounded frac-
tional hypertree width for any hypergraph in . The algorithm uses the balanced
separation algorithm of Lemma 3.5.

THEOREM 4} Given a hypergraph H and a rational number w > 1, it is possible
in time ||H|| 9" to either

—compute a fractional hypertree decomposition of H with width at most Tw® +
3lw+7, or

—correctly conclude that thw(H) > w.
PROOF. We present an algorithm for a more general problem:

Given a hypergraph H with thw(H) < w and a set W with p3, (W) <
6w3 + 27w + 6, find a fractional hypertree decomposition T of width at
most 7w + 31w + 7 such that some bag B of T contains the set W.

Note that this algorithm implies the existence of the algorithm required by the
theorem: If this algorithm is applied to a hypergraph H and W = (), then either
it produces a fractional hypertree decomposition of H with the required width or
if the output is something else, then we can correctly conclude that thw(H) > w.
The values 6w3 + 27w + 6 and 7w> + 31w + 7 might look somewhat arbitrary, but
these are the smallest values ensuring that inequalities (1) and (2) below are true.

If p*(H) < Tw?® + 31w + 7, then we are done, as a tree decomposition consisting
of a single bag B = V(H) is sufficient. Thus we can assume that p*(H) > Tw® +
3lw+7. By adding arbitrary vertices to W one by one, we can extend W such that
6w3 + 27w + 6 < pi (W) < 6w + 27w + 7. Let us use the algorithm of Lemma 3.5
to find a partition (A, B) of (the nonempty set) W and an (A, B)-separator .S with
p3(S) < w? + 4w. A connected component of H \ S cannot intersect both A and
B. Let V7 be the union of S and all the connected components intersecting A; let
V5 be the union of S and the connected components not intersecting A. Let Hj
(resp., Ha) be the subhypergraph of H induced by V; (resp., V2).

First we verify that H; and Hs are proper subhypergraphs of H; in fact, their
fractional edge cover number is strictly less than p*(H). Since p5 (W) < p5 (W N
Vi) + pr (WA Vi) and pp (W N V1) < ppy(A) + pg(5), we have

(WA TA) 2 o3 (W) — (s (A) + 031 (S))
> (W) = 205 (W) = w = pia(8) 2w + 4w+ 2. (1)

Consider a fractional edge cover v of H with weight p*(H). Let g be a fractional
edge cover of S with weight p};(S). Let us define

M{we) if en (W\ Vi) =0,

0 otherwise.

ACM Journal Name, Vol. 2, No. 3, 09 2001.

124 . Daniel Marx

Observe that weight(y') < weight(y) — (w® + 4w + 2), since by (1), v has to assign
weight at least w® + 4w + 2 to the edges intersecting W \ V;. Now 7' + vg is an
edge cover of V; (since edges intersecting W \ Vi cannot intersect Vi \ S), thus
p*(Hy) < weight(v') + weight(vs) < p*(H) — (w® + 4w + 2) + p} (S) < p*(H) — 2.
A similar argument shows p*(Hz) < p*(H) — 2.

Let Wy := AU S and W5 := B U S; we have p5;(Wh), pj;(W2) < %pE(W) +
w~+ p5(S) < 6w3 + 27w + 6. Since H; and H, are strictly smaller than H, we
can use the algorithm recursively to obtain a tree decomposition T; of H; where
W1y is contained in some bag B, and a tree decomposition Ty of Hy where Wy is
contained in some bag By. We connect these two tree decomposition by introducing
a new bag By := W U S that is connected to By and Bs; note that

pir(Bo) < pir(W) + piy(S) < Tw® + 3Lw +7. (2)

It is easy to see that the resulting tree decomposition T is a proper tree decompo-
sition of H and the bag By fully contains W.

Let us estimate the running time of the algorithm. If p*(H) < 7w® + 31w + 7,
then the algorithm constructs only a single bag and does not recurse. We prove
by induction that if p*(H) > Tw® + 31w + 7, then the algorithm constructs a
tree decomposition with at most p*(H) — 2w? — 8w — 1 bags. As the time spent
constructing a bag is ||H||O(“’3), this proves that the running time is ||H||O(w3).

First we show that

pir (Vi) + pir (Vo) < p*(H) + 2w® + 8w. (3)

To see this, consider a fractional edge cover v of H with weight p*(H) and let g
be a fractional edge cover of S with weight at most w3 + 4w. Let us define

71(e) = {’y(e) ifed Ve and y2(e) = {v(e) ifeg vy

0 otherwise 0 otherwise.

Since every edge is fully contained in either V; or V3, we have weight (v,)+weight(y2) <
weight (7). Furthermore, 1 +7s is a fractional edge cover of V7, and 2 ++¢ is a frac-
tional edge cover of V. Now (3) follows from weight(ys) < w® + 4w. Subtracting
4w3 4+ 16w + 2 from both sides of (3), we get

(p*(Hy)—2w® —8w—1)+ (p* (Ha) —2w® —8w—1) < (p*(H) —2w* —8w—1)—1
(4)

Suppose that hypergraph H with p*(H) > 7Tw® + 31w + 7 is decomposed into
H, and H,. The algorithm constructs a tree decomposition T that is obtained by
joining the tree decompositions T; and T3 with a new bag. Thus |T| = |T1|+|T2|+1.
We have to consider different cases depending on how p*(H1), p*(Hz) compare with
Tw® + 31w + 7. If p*(Hy), p*(Ha) > Tw® + 31w + 7, then the induction hypothesis
and (4) shows |T| < p*(H)—2w?—8w—1. If p*(Hy), p*(Hz2) < Tw?+31w+7, then T
consists of only 3 bags. Since p*(H)—2w3—8w—1 > 5w3+23w+6 > 3, the induction
statement holds in this case as well. Suppose now that p*(H;) > 7w? 431w+ 7 and
p*(Hz) < Tw3+31w+7. In this case, |T| = |T1|+2. Now |T| < p*(H) —2w* —8w—1
follows from the induction hypothesis on Hy and p*(H;) < p*(H)—2 proved earlier.

ACM Journal Name, Vol. 2, No. 3, 09 2001.

Approximating fractional hypertree width . 125

The case when p*(H;) < 7Tw®+ 31w+ 7 and p*(Hz) > Tw? + 31w + 7 can be proved
similarly. O

Given a CSP instance I with hypergraph H such that thw(H) < w, Theorem 4.1
produces a fractional hypertree decomposition of width O(w?). By [Grohe and
Marx 2006, Theorem 15], now the instance can be solved in time ||I||O(“’3). Thus

for every fixed w > 1, there is a polynomial-time algorithm for solving instances
with thw(H) < w.

COROLLARY 4.2. If H has bounded fractional hypertree width, then CSP(H) can
be solved in polynomial time.

5. HARDNESS RESULT

Gottlob et al. [2005] have shown that, given a hypergraph H and an integer k, it is
NP-hard to decide if ghw(H) < k. The proof is a very simple reduction from SET
CovER. This proof cannot be adapted to prove hardness for fractional hypertree
width, since the fractional version of SET COVER is polynomial-time solvable. Here
we prove the hardness of fractional hypertree width using the fact that given a
graph G and an integer k, it is NP-hard to decide if the tree width of G is at most
k [Bodlaender et al. 1995] (the same hardness result was obtained independently
by Fomin et al. [2009]). Note that for every fixed k, it can be checked in linear
time whether the tree width is at most k& [Bodlaender 1996], thus tree width is
hard only if k is part of the input. Consequently, our hardness result for fractional
hypertree width assumes that the bound w is given in the input. This means that
the hardness result does not rule out the possibility that for every fixed w > 1, there
is a polynomial-time algorithm for deciding thw(H) < w (and for constructing the
corresponding decomposition). It remains an interesting open question whether
the approximation algorithm presented in this paper can be replaced by an optimal
polynomial-time algorithm or the problem is NP-hard already for some fixed w > 1.
Note that for generalized hypertree with, Gottlob et al. [2007] gave a (much more
involved) proof that deciding ghw(H) < 3 is NP-hard.

THEOREM 5.1. Given a hypergraph H and rational number w > 1, it is NP-hard
to decide whether thw(H) < w.

PROOF. Given a graph G and an integer k, we construct a hypergraph H such
that tw(G) < k if and only if thw(H) < k + 1. Let vy, ..., v, be the vertices of
G. The hypergraph H is obtained by adding new vertices and edges to G. Let a; ;
(1 <i<k+1,1<j <3) be new vertices and let A be the set of these 3(k + 1)
vertices. For every 1 < x < n, we add k + 1 new edges ez ; = {vg,a:1,ai2,0: 3}
Finally, for every pair a’,a” € A, we add an edge {a’,a”}. This completes the
description of H.

Suppose that (7', (Bt)ev (1)) is a width k tree decomposition of G. For every t €
V(T),let B; = B;UA. It is easy to see that (T, (B{)icv (1)) is a tree decomposition
of H. Furthermore, p7;(B;) < k+ 1 for every t € V(T'): If By = {vz, .-, Vepyy)
then the edges €41, €z,,2, -+ -, €z, ,,k+1 form an edge cover of By U A.

Suppose now that (T, (Bj):cv(r)) is a tree decomposition of H with fractional
hypertree width at most k& + 1. First we show that it can be assumed that every B;
contains A. It is well known that every clique is fully contained in some bag of the

ACM Journal Name, Vol. 2, No. 3, 09 2001.

126 . Daniel Marx

decomposition. Since A is a clique, there is at least one bag containing A and, by
the properties of the tree decomposition, the bags containing A form a connected
subtree Ty of T. We show that if we replace T" with Tj, then it remains a tree
decomposition of H. To see that every vertex v € A of H appears in a bag of Ty,
observe that A U {v} is a clique, thus there is a bag of T' (and hence of Tj) that
fully contains A U {v}. Similarly, if u,v ¢ A are neighbors, then A U {u,v} is a
clique, and it follows that T has a bag containing both « and v.

Therefore, we can assume that A C Bj for every t € V(T). Let B; := B; \ A.
It is clear that (T, (Bt)iev(r)) is a tree decomposition of G. Let us show that
the tree width of this decomposition is at most k, i.e., |By] < k + 1 for every
t € V(T). Let v be a fractional edge cover of B; with weight(y) < k + 1. Denote
by v(ai ;) == ZeeE(H):aMEe ~(e) the weight assigned to the edges containing a; ;.

As v is a fractional edge cover of A, the sum Zf:ll Z?zl v(as ;) is at least 3(k+1).

Each edge e, ; contributes to 3 terms of this sum, while every other edge contributes
to at most 2 terms. Since the total weight of the edges is £+ 1, this is only possible
if v is nonzero only on the edges of the form e, ;. Since each such edge covers only
one vertex outside A, the bag B can contain at most k 4+ 1 vertices outside A,
proving |By| < k+1. O

6. CONCLUSIONS

The algorithm presented in the paper shows that if H is a class of hypergraphs
with bounded fractional hypertree width, then there is a polynomial-time algo-
rithm that can produce a tree decomposition with bounded fractional hypertree
width for each member of H. It follows that CSP instances where the constraint
structure has bounded fractional hypertree width are polynomial-time solvable; in
fact, this condition is the strictly most general known tractability criterion. It re-
mains an important open question whether there are further tractable cases not
covered by bounded fractional hypertree width. As our algorithm computes only
an approximately optimal tree decomposition, another open question is whether it
can be made an exact algorithm, i.e., 7w?® 431w+ 7 in Theorem 4.1 can be replaced
with w. We expect that this turns out to be NP-hard, similarly as in the case of
generalized hypertree width [Gottlob et al. 2007].

ACKNOWLEDGMENT
I'm grateful to Martin Grohe for many stimulating discussions.

REFERENCES

ADLER, I., GorTLOB, G., AND GROHE, M. 2007. Hypertree width and related hypergraph
invariants. Furopean J. Combin. 28, 8, 2167-2181.

BoprLaENDER, H. L. 1996. A linear-time algorithm for finding tree-decompositions of small
treewidth. STAM J. Comput. 25, 6, 1305-1317.
BoDLAENDER, H. L., GiLBERT, J. R., HAFsTEINSSON, H., aAND KLoOKs, T. 1995. Approximating
treewidth, pathwidth, frontsize, and shortest elimination tree. J. Algorithms 18, 2, 238—255.
Buratov, A. A. 2002. A dichotomy theorem for constraints on a three-element set. In Proc.
43th Symp. Foundations of Computer Science. IEEE, 649-658.

Buratov, A. A. 2003. Tractable conservative constraint satisfaction problems. In 18th Annual
IEEE Symposium on Logic in Computer Science (LICS’03). IEEE Computer Society, Los
Alamitos, CA, USA, 321.

ACM Journal Name, Vol. 2, No. 3, 09 2001.

Approximating fractional hypertree width . 127

Buratov, A. A., KrokHIN, A. A., AND JEAVONS, P. 2001. The complexity of maximal constraint
languages. In Proceedings of the 33rd ACM Symposium on Theory of Computing. 667-674.
CHEN, H. anD GROHE, M. 2006. Constraint satisfaction problems with succinctly specified
relations. Manuscript. Preliminary version in Dagstuhl Seminar Proceedings 06401: Complexity

of Constraints.

Cuung, F. R. K., Granawm, R. L., FrRaNKL, P., AND SHEARER, J. B. 1986. Some intersection
theorems for ordered sets and graphs. J. Combin. Theory Ser. A 43, 1, 23-37.

FEDER, T. AND VARDI, M. Y. 1999. The computational structure of monotone monadic SNP and
constraint satisfaction: a study through Datalog and group theory. SIAM J. Comput. 28, 1,
57-104.

Frum, J. AND GROHE, M. 2006. Parameterized Complezity Theory. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer, Berlin.

Fowmin, F. V., GorovacH, P. A., axnp THiLikOs, D. M. 2009. Approximating acyclicity pa-
rameters of sparse hypergraphs. In 26th International Symposium on Theoretical Aspects of
Computer Science (STACS 2009), S. Albers and J.-Y. Marion, Eds. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, Germany, Dagstuhl, Germany.

FrREUDER, E. C. 1990. Complexity of k-tree structured constraint satisfaction problems. In Proc.
of AAAI-90. Boston, MA, 4-9.

GovrumBic, M. C. 1980. Algorithmic graph theory and perfect graphs. Academic Press, New
York.

GortLoB, G., GROHE, M., MusLiu, N., SAMER, M., AND SCARCELLO, F. 2005. Hypertree de-
compositions: structure, algorithms, and applications. In Graph-theoretic concepts in computer
science. Lecture Notes in Comput. Sci., vol. 3787. Springer, Berlin, 1-15.

GorTLoB, G., LEONE, N., AND ScARCELLO, F. 2002. Hypertree decompositions and tractable
queries. Journal of Computer and System Sciences 64, 579-627.

GortLoB, G., MIKLOS, Z., AND SCcHWENTICK, T. 2007. Generalized hypertree decomposi-
tions: NP-hardness and tractable variants. In PODS ’07: Proceedings of the twenty-sizth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems. ACM, New York,
NY, USA, 13-22.

GorTLoB, G. AND SZEIDER, S. 2008. Fixed-parameter algorithms for artificial intelligence, con-
straint satisfaction and database problems. The Computer Journal 51, 3, 303—325.

GROHE, M. 2006. The structure of tractable constraint satisfaction problems. In MFCS 2006.
58-72.

GROHE, M. 2007. The complexity of homomorphism and constraint satisfaction problems seen
from the other side. J. ACM 5/, 1, 1.

GRrOHE, M. aAND MaRrx, D. 2006. Constraint solving via fractional edge covers. In SODA ’06:
Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms. ACM Press,
New York, NY, USA, 289-298.

GROHE, M., SCHWENTICK, T., AND SEGOUFIN, L. 2001. When is the evaluation of conjunctive
queries tractable? In STOC ’01: Proceedings of the thirty-third annual ACM symposium on
Theory of computing. ACM Press, New York, NY, USA, 657-666.

JeEAavoNs, P., CoHEN, D. A., AND GYsseENs, M. 1997. Closure properties of constraints. Journal
of the ACM 44, 4, 527—-548.

Kovartis, P. G. AND VArDI, M. Y. 2000. Conjunctive-query containment and constraint satis-
faction. J. Comput. Syst. Sci. 61, 2, 302-332.

LovAsz, L. 1978. Kneser’s conjecture, chromatic number, and homotopy. J. Combin. Theory
Ser. A 25, 3, 319-324.

Marx, D. 2007. Can you beat treewidth? In 48th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’07). 169-179.

MAaRrx, D. 2009. Tractable structures for constraint satisfaction with truth tables. In 26th Inter-
national Symposium on Theoretical Aspects of Computer Science (STACS 2009), S. Albers and
J.-Y. Marion, Eds. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, Dagstuhl,
Germany, 649-660.

MATOUSEK, J. 2004. A combinatorial proof of Kneser’s conjecture. Combinatorica 24, 1, 163-170.

ACM Journal Name, Vol. 2, No. 3, 09 2001.

128 . Daniel Marx

Ouwm, S. 2005. Approximating rank-width and clique-width quickly. In Proceedings of the 31st
International Workshop on Graph-Theoretic Concepts in Computer Science. 49-58.

Ouwm, S. AND SEYMOUR, P. 2007. Testing branch-width. J. Combin. Theory Ser. B 97, 3,
385-393.

Ouwm, S.-1. AND SEYMOUR, P. 2006. Approximating clique-width and branch-width. J. Combin.
Theory Ser. B 96, 4, 514-528.

ScHAEFER, T. J. 1978. The complexity of satisfiability problems. In Conference Record of the
Tenth Annual ACM Symposium on Theory of Computing (San Diego, Calif., 1978). ACM,
New York, 216-226.

TarJAN, R. E. 1985. Decomposition by clique separators. Discrete Math. 55, 2, 221-232.

VAzIRANI, V. 2004. Approximation algorithms. Springer-Verlag.

WHITESIDES, S. H. 1981. An algorithm for finding clique cut-sets. Inform. Process. Lett. 12, 1,
31-32.

ACM Journal Name, Vol. 2, No. 3, 09 2001.

