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Square root phenomenon

NP-hard problems become easier on planar graphs,
and usually exactly by a square root factor.

The running time is still exponential, but significantly smaller:

2O(n) ⇒ 2O(
√
n)

nO(k) ⇒ nO(
√
k)

2O(k) · nO(1) ⇒ 2O(
√
k) · nO(1)

Several known examples known where such improvement is
possible, and (assuming the ETH)

O(k) is best possible for general graphs and
O(
√
k) is best possible for planar graphs.
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Two standard techniques
1 Using treewidth:

Works for e.g. 3-Coloring or Hamiltonian Cycle:

Planar graphs have
treewidth O(

√
n)

+
2O(w) · nO(1)

algorithm
for treewidth w

⇒ 2O(
√
n)

algorithm

2 Bidimensionality:
Works for e.g. k-Path or Vertex Cover:

Trivial answer if
treewidth is Ω(

√
k).

+
2O(w) · nO(1)

algorithm for
treewidth w

⇒ 2O(
√
k) · nO(1)

algorithm
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Other results

Many other result were obtained using problem-specific techniques:
Strongly Connected Steiner Subgraph
[Chitnis et al. 2014]

Multiway Cut [Klein and M. 2012], [Colin de Verdière 2017]

Subgraph Isomorphism
for connected bounded-degree patterns [Fomin et al. 2016]

Subset TSP [Klein and M. 2014]

Facility Location [M. and Pilipczuk 2015]

Odd Cycle Transversal [Lokshtanov et al. 2012]

4



Two main results

1 A positive result:

Directed Subset TSP with k terminals can be solved

in time 2O(k) · nO(1) in general graphs,
[Held-Karp 1962]

in time 2O(
√
k log k) · nO(1) in planar graphs.

[new result #1]

2 A negative result:

Steiner Tree with k terminals

can be solved in time 2O(k) · nO(1) in general graphs,
[Dreyfus and Wagner 1971]

cannot be solved in time 2o(k) · nO(1) in planar undirected graphs
(assuming the ETH). [new result #2]
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TSP
TSP

Input: A set T of cities and a distance function d(., .) on T
Output: A tour on T with minimum total distance

Theorem [Held and Karp 1962]

TSP with n cities can be solved in time O(2n · n2).

Dynamic programming:
Let x(v ,T ′) be the minimum length of path from vstart to v
visiting all the cities T ′ ⊆ T .
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Subset TSP on planar graphs
Assume that the cities correspond to a subset T of vertices of a
planar graph and distance is measured in this planar graph.

7



Subset TSP on planar graphs
Assume that the cities correspond to a subset T of vertices of a
planar graph and distance is measured in this planar graph.

Can be solved in time nO(
√
n).

Can be solved in time 2k · nO(1).

Question: Can we restrict the exponential dependence to k and
exploit planarity?
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Subset TSP on planar graphs
Assume that the cities correspond to a subset T of vertices of a
planar graph and distance is measured in this planar graph.

Theorem [Klein and M. 2014]

Subset TSP for k cities in a unit-weight undirected planar graph
can be solved in time 2O(

√
k log k) · nO(1).
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Subset TSP on planar graphs
Assume that the cities correspond to a subset T of vertices of a
planar graph and distance is measured in this planar graph.

Theorem [new result #1]
Subset TSP for k cities in a directed planar graph can be solved
in time 2O(

√
k log k) · nO(1).
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Partial solutions
General idea: build larger and larger partial solutions.

Held-Karp algorithm: the partial solutions are vstart − v paths
visiting a subset T ′ of cities.

1

2

3

4

5

6

Generalization: a partial solution is a set of at most d pairwise
disjoint paths with specified cities as endpoints.
The type of a partial solution can be described by

the set of endpoints of the paths,
a matching between the endpoints, and
the subset T ′ of visited cities.

8



Partial solutions
General idea: build larger and larger partial solutions.

Held-Karp algorithm: the partial solutions are vstart − v paths
visiting a subset T ′ of cities.

1

2

3

4

5

6

Generalization: a partial solution is a set of at most d pairwise
disjoint paths with specified cities as endpoints.
The type of a partial solution can be described by

the set of endpoints of the paths,
a matching between the endpoints, and
the subset T ′ of visited cities.

8



Merging partial solutions
Two partial solutions can be merged in an obvious way if a
matching is given between the endpoints:

1

2

3

4

5

6

7

8

9

10

11

12

⇒

7

4

5

12

Algorithm
Start with an initial set of trivial partial solutions.
Combine two partial solutions as long as possible.
Keep at most one partial solution from each type: the best
one encountered so far.
Return the best partial solution that consists of a single path
(cycle) visiting all vertices.
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Running time
Algorithm

Start with an initial set of trivial partial solutions.
Combine two partial solutions as long as possible.
Keep at most one partial solution from each type: the best
one encountered so far.
Return the best partial solution that consists of a single path
(cycle) visiting all vertices.
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For d = O(
√
k), the number of types (≈ running time) is

kO(
√
k) · 2k

endpoints of O(
√
k) paths subset T ′ ⊆ T of visited cities

We need to reduce somehow the number of possible subsets of
cities partial solutions can visit!
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Running time
Algorithm

Start with an initial set of trivial partial solutions.
Combine two partial solutions as long as possible.
Keep at most one partial solution from each type: the best
one encountered so far.
Return the best partial solution that consists of a single path
(cycle) visiting all vertices.

Basic idea
We restrict attention to a collection T of subsets of cities and
consider only partial solutions that visit a subset in T .

We need: a collection T of size kO(
√
k) that guarantees finding an

optimum solution.
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Bounding the treewidth . . . of what?

The following principle can be deduced from earlier work:

Exploit that the union of the unknown solution + a known
something has treewidth O(

√
k).
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Bounding treewidth
Take an arbitrary Steiner tree T and assume first that it intersects
OPT O(k) times.

OPT + T has O(k) branch vertices
⇒ treewidth O(

√
k)

⇒ exists a sphere-cut decomposition of width O(
√
k)

12



Sphere-cut decompositions
Noose: a closed curve intersecting the graph only at vertices.

Sphere-cut decomposition of width O(
√
k): a recursive

decomposition where the boundary of each part is a noose
intersecting O(

√
k) vertices.

13



Sphere-cut decompositions
Noose: a closed curve intersecting the graph only at vertices.

Sphere-cut decomposition of width O(
√
k): a recursive

decomposition where the boundary of each part is a noose
intersecting O(

√
k) vertices.

13



Sphere-cut decompositions
Noose: a closed curve intersecting the graph only at vertices.

Sphere-cut decomposition of width O(
√
k): a recursive

decomposition where the boundary of each part is a noose
intersecting O(

√
k) vertices.

13



Sphere-cut decompositions
Noose: a closed curve intersecting the graph only at vertices.

Sphere-cut decomposition of width O(
√
k): a recursive

decomposition where the boundary of each part is a noose
intersecting O(

√
k) vertices.

13



Sphere-cut decompositions
Noose: a closed curve intersecting the graph only at vertices.

Sphere-cut decomposition of width O(
√
k): a recursive

decomposition where the boundary of each part is a noose
intersecting O(

√
k) vertices.

13



Sphere-cut decompositions
Noose: a closed curve intersecting the graph only at vertices.

Sphere-cut decomposition of width O(
√
k): a recursive

decomposition where the boundary of each part is a noose
intersecting O(

√
k) vertices.

13



Partial solutions

Each noose cuts out a partial solution with O(
√
k) subpaths of OPT .

What can be the set of terminals visited by this partial solution?
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Cutting terminals from a tree
Lemma

We can compute a collection T of kO(
√
k) subsets of terminals such

that if C is a cycle intersecting the tree T at most O(
√
k) times,

then the set of terminals enclosed by C is in T .

We can restrict attention only to partial solutions restricted to T !
15



Algorithm

Algorithm
Compute the collection T (possible sets of terminals enclosed
by a cycle intersecting tree T at most O(

√
k) times).

Start with an initial set of trivial partial solutions.
Combine two partial solutions as long as possible and keep it
only if it visits a subset in T .
Keep at most one partial solution from each type: the best
one encountered so far.
Return the best partial solution that consists of a single path
(cycle) visiting all vertices.

Only kO(k) subproblems are considered
⇓

Running time is kO(k)nO(1).
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Algorithm

Algorithm
Compute the collection T (possible sets of terminals enclosed
by a cycle intersecting tree T at most O(

√
k) times).

Start with an initial set of trivial partial solutions.
Combine two partial solutions as long as possible and keep it
only if it visits a subset in T .
Keep at most one partial solution from each type: the best
one encountered so far.
Return the best partial solution that consists of a single path
(cycle) visiting all vertices.

Existence of the sphere-cut decomposition implies
that the algorithm finds an optimum solution!
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Many intersections
What happens if OPT + T has more than O(k) intersections?

Let us contract the subpaths of OPT between consecutive
terminals (each such path is a shortest path).
Each noose goes through O(

√
k) contracted vertices

⇒ we can guess the contractions that produced these vertices.
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Self-crossing solutions

It is not possible to bound the number of self-crossings by a
function of k , but we can show that there is a solution that is a
“cactus.” 18



Lower bound for Steiner Tree

Theorem [new result #2]
Assuming the ETH, Steiner Tree on planar undirected graphs
with k terminals cannot be solved in time 2o(k) · nO(1).

Standard techniques show that Steiner Tree (and many other
problems) do not have 2o(

√
k) · nO(1) time algorithms assuming the

ETH, but a lower bound ruling out 2o(k) · nO(1) is quite unusual!
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Standard lower bounds for planar problems

ETH + Sparsification Lemma

There is no 2o(n+m)-time algorithm for m-clause 3SAT.

Typical reduction from 3SAT creates O(n + m) gadgets and
O((n + m)2) crossings in the plane.
A crossing typically increases the size by O(1).

3SAT formula φ
n variables
m clauses

⇒
Planar graph G ′

O((n + m)2) vertices
O((n + m)2) edges

Corollary

Assuming the ETH, there is no 2o(
√
n) algorithm for Steiner

Tree on an n-vertex planar graph.
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Corollary

Assuming the ETH, there is no 2o(
√
k) · nO(1) algorithm for

Steiner Tree on an n-vertex planar graph with k terminals.
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Standard lower bounds for planar problems

ETH + Sparsification Lemma

There is no 2o(n+m)-time algorithm for m-clause 3SAT.

Typical reduction from 3SAT creates O(n + m) gadgets and
O((n + m)2) crossings in the plane.
A crossing typically increases the size by O(1).

3SAT formula φ
n variables
m clauses

⇒
Planar graph G ′

O((n + m)2) vertices
O((n + m)2) edges

No way such reductions could give a bound stronger
than 2o(

√
k)!

20



Stronger lower bound

We get around this issue by crossing gadgets where a stream of
many bits cross a stream of one bit and has only O(1) terminals.

one bit

one bit
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y
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m
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y
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Reduction from 3SAT
Partition the variables into g groups of size n/g each.

Horizontal flow: assignment in group i (2n/g possibilities)
Vertical flow: checking satisfiability of each clause Cj .

Graph size: N = 2O(n/g) with k = O(m · g) terminals.

C1 C2 Cm

Group 1

Group 2

Group g
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Reduction from 3SAT
Graph size: N = 2O(n/g) with k = O(m · g) terminals.

Running time 2O(k/g2) · NO(1) for Steiner Tree
⇓

Running time 2O(m/g) · 2O(n/g) = 2o(n+m) for 3SAT

C1 C2 Cm

Group 1

Group 2

Group g
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Summary

1 Main positive result
Subset TSP for k cities in a directed planar graph can be
solved in time 2O(

√
k log k) · nO(1).

Exploit that the union of the unknown solution + a known
something has treewidth O(

√
k).

2 Main negative result
Assuming the ETH, Steiner Tree on planar undirected
graphs with k terminals cannot be solved in time 2o(k) · nO(1).

The square root phenomenon does not appear for every
problem, making the previous positive results even more
interesting!
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