On subexponential parameterized algorithms for Steiner Tree and Directed Subset TSP on planar graphs

Dániel Marx¹ Marcin Pilipczuk² Michał Pilipczuk²

¹Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary

> ²Institute of Informatics, University of Warsaw, Poland

> > FOCS 2018 Paris, France October 9, 2018

Square root phenomenon

NP-hard problems become easier on planar graphs, and usually exactly by a square root factor.

Square root phenomenon

NP-hard problems become easier on planar graphs, and usually exactly by a square root factor.

The running time is still exponential, but significantly smaller:

$$\begin{array}{rcl} 2^{O(n)} & \Rightarrow & 2^{O(\sqrt{n})} \\ n^{O(k)} & \Rightarrow & n^{O(\sqrt{k})} \\ 2^{O(k)} \cdot n^{O(1)} & \Rightarrow & 2^{O(\sqrt{k})} \cdot n^{O(1)} \end{array}$$

Square root phenomenon

NP-hard problems become easier on planar graphs, and usually exactly by a square root factor.

The running time is still exponential, but significantly smaller:

$$2^{O(n)} \Rightarrow 2^{O(\sqrt{n})}$$

$$n^{O(k)} \Rightarrow n^{O(\sqrt{k})}$$

$$2^{O(k)} \cdot n^{O(1)} \Rightarrow 2^{O(\sqrt{k})} \cdot n^{O(1)}$$

Several known examples known where such improvement is possible, and (assuming the ETH)

- O(k) is best possible for general graphs and
- $O(\sqrt{k})$ is best possible for planar graphs.

Two standard techniques

1 Using treewidth:

Works for e.g. 3-COLORING or HAMILTONIAN CYCLE:

Two standard techniques

1 Using treewidth:

Works for e.g. 3-COLORING or HAMILTONIAN CYCLE:

Bidimensionality: Works for e.g. k-PATH or VERTEX COVER:

Trivial answer if treewidth is $\Omega(\sqrt{k})$. +

 $2^{O(w)} \cdot n^{O(1)}$ algorithm for treewidth *w*

 $2^{O(\sqrt{k})} \cdot n^{O(1)}$ algorithm

 \Rightarrow

Other results

Many other result were obtained using problem-specific techniques:

- STRONGLY CONNECTED STEINER SUBGRAPH [Chitnis et al. 2014]
- $\bullet~\rm MULTIWAY~\rm CUT$ [Klein and M. 2012], [Colin de Verdière 2017]
- SUBGRAPH ISOMORPHISM for connected bounded-degree patterns [Fomin et al. 2016]
- $\bullet~{\rm SUBSET}~{\rm TSP}$ [Klein and M. 2014]
- FACILITY LOCATION [M. and Pilipczuk 2015]
- ODD CYCLE TRANSVERSAL [Lokshtanov et al. 2012]

Two main results

DIRECTED SUBSET TSP with k terminals can be solved

- in time 2^{O(k)} · n^{O(1)} in general graphs, [Held-Karp 1962]
- in time 2^{O(\sqrt{k} \log k)} · n^{O(1)} in planar graphs.
 [new result #1]

Two main results

DIRECTED SUBSET TSP with k terminals can be solved

- in time 2^{O(k)} · n^{O(1)} in general graphs, [Held-Karp 1962]
- in time 2^{O(\sqrt{k} \log k)} · n^{O(1)} in planar graphs.
 [new result #1]
- A negative result:

STEINER TREE with k terminals

- can be solved in time 2^{O(k)} · n^{O(1)} in general graphs, [Dreyfus and Wagner 1971]
- cannot be solved in time 2^{o(k)} · n^{O(1)} in planar undirected graphs (assuming the ETH). [new result #2]

TSP

TSP

Input: A set T of cities and a distance function d(.,.) on T*Output:* A tour on T with minimum total distance

Theorem [Held and Karp 1962]

TSP with *n* cities can be solved in time $O(2^n \cdot n^2)$.

Dynamic programming:

Let x(v, T') be the minimum length of path from v_{start} to v visiting all the cities $T' \subseteq T$.

Assume that the cities correspond to a subset T of vertices of a planar graph and distance is measured in this planar graph.

Assume that the cities correspond to a subset T of vertices of a planar graph and distance is measured in this planar graph.

- Can be solved in time $n^{O(\sqrt{n})}$.
- Can be solved in time $2^k \cdot n^{O(1)}$.

Question: Can we restrict the exponential dependence to k and exploit planarity?

Assume that the cities correspond to a subset T of vertices of a planar graph and distance is measured in this planar graph.

Theorem [Klein and M. 2014]

SUBSET TSP for k cities in a unit-weight undirected planar graph can be solved in time $2^{O(\sqrt{k} \log k)} \cdot n^{O(1)}$.

Assume that the cities correspond to a subset T of vertices of a planar graph and distance is measured in this planar graph.

Theorem [new result #1]

SUBSET TSP for k cities in a directed planar graph can be solved in time $2^{O(\sqrt{k} \log k)} \cdot n^{O(1)}$.

General idea: build larger and larger partial solutions.

Held-Karp algorithm: the partial solutions are $v_{\text{start}} - v$ paths visiting a subset T' of cities.

General idea: build larger and larger partial solutions.

Held-Karp algorithm: the partial solutions are $v_{\text{start}} - v$ paths visiting a subset T' of cities.

Generalization: a partial solution is a set of at most *d* pairwise disjoint paths with specified cities as endpoints.

The type of a partial solution can be described by

- the set of endpoints of the paths,
- a matching between the endpoints, and
- the subset T' of visited cities.

Two partial solutions can be merged in an obvious way if a matching is given between the endpoints:

Two partial solutions can be merged in an obvious way if a matching is given between the endpoints:

Two partial solutions can be merged in an obvious way if a matching is given between the endpoints:

Two partial solutions can be merged in an obvious way if a matching is given between the endpoints:

Algorithm

- Start with an initial set of trivial partial solutions.
- Combine two partial solutions as long as possible.
- Keep at most one partial solution from each type: the best one encountered so far.
- Return the best partial solution that consists of a single path (cycle) visiting all vertices.

Algorithm

- Start with an initial set of trivial partial solutions.
- Combine two partial solutions as long as possible.
- Keep at most one partial solution from each type: the best one encountered so far.
- Return the best partial solution that consists of a single path (cycle) visiting all vertices.

Algorithm

- Start with an initial set of trivial partial solutions.
- Combine two partial solutions as long as possible.
- Keep at most one partial solution from each type: the best one encountered so far.
- Return the best partial solution that consists of a single path (cycle) visiting all vertices.

For $d = O(\sqrt{k})$, the number of types (\approx running time) is endpoints of $O(\sqrt{k})$ paths subset $T' \subseteq T$ of visited cities $k^{O(\sqrt{k})} \cdot 2^{k}$

Algorithm

- Start with an initial set of trivial partial solutions.
- Combine two partial solutions as long as possible.
- Keep at most one partial solution from each type: the best one encountered so far.
- Return the best partial solution that consists of a single path (cycle) visiting all vertices.

We need to reduce somehow the number of possible subsets of cities partial solutions can visit!

Algorithm

- Start with an initial set of trivial partial solutions.
- Combine two partial solutions as long as possible.
- Keep at most one partial solution from each type: the best one encountered so far.
- Return the best partial solution that consists of a single path (cycle) visiting all vertices.

Basic idea

We restrict attention to a collection \mathcal{T} of subsets of cities and consider only partial solutions that visit a subset in \mathcal{T} .

We need: a collection \mathcal{T} of size $k^{O(\sqrt{k})}$ that guarantees finding an optimum solution.

Bounding the treewidth ... of what?

Bounding the treewidth ... of what?

Bounding the treewidth ... of what?

The following principle can be deduced from earlier work:

Exploit that the union of the unknown solution + a known something has treewidth $O(\sqrt{k})$.

Bounding treewidth

Take an arbitrary Steiner tree T and assume first that it intersects *OPT* O(k) times.

OPT + T has O(k) branch vertices

- \Rightarrow treewidth $O(\sqrt{k})$
- \Rightarrow exists a sphere-cut decomposition of width $O(\sqrt{k})$

Noose: a closed curve intersecting the graph only at vertices.

Noose: a closed curve intersecting the graph only at vertices.

Noose: a closed curve intersecting the graph only at vertices.

Noose: a closed curve intersecting the graph only at vertices.

Noose: a closed curve intersecting the graph only at vertices.

Noose: a closed curve intersecting the graph only at vertices.

Each noose cuts out a partial solution with $O(\sqrt{k})$ subpaths of *OPT*.

What can be the set of terminals visited by this partial solution?

Each noose cuts out a partial solution with $O(\sqrt{k})$ subpaths of *OPT*.

What can be the set of terminals visited by this partial solution?

Each noose cuts out a partial solution with $O(\sqrt{k})$ subpaths of *OPT*.

What can be the set of terminals visited by this partial solution?

Cutting terminals from a tree

Lemma

We can compute a collection \mathcal{T} of $k^{O(\sqrt{k})}$ subsets of terminals such that if C is a cycle intersecting the tree \mathcal{T} at most $O(\sqrt{k})$ times, then the set of terminals enclosed by C is in \mathcal{T} .

We can restrict attention only to partial solutions restricted to \mathcal{T} !

Algorithm

Algorithm

- Compute the collection *T* (possible sets of terminals enclosed by a cycle intersecting tree *T* at most *O*(√*k*) times).
- Start with an initial set of trivial partial solutions.
- Combine two partial solutions as long as possible and keep it only if it visits a subset in \mathcal{T} .
- Keep at most one partial solution from each type: the best one encountered so far.
- Return the best partial solution that consists of a single path (cycle) visiting all vertices.

Only
$$k^{O(k)}$$
 subproblems are considered
 \downarrow
Running time is $k^{O(k)}n^{O(1)}$.

Algorithm

Algorithm

- Compute the collection *T* (possible sets of terminals enclosed by a cycle intersecting tree *T* at most *O*(√*k*) times).
- Start with an initial set of trivial partial solutions.
- Combine two partial solutions as long as possible and keep it only if it visits a subset in \mathcal{T} .
- Keep at most one partial solution from each type: the best one encountered so far.
- Return the best partial solution that consists of a single path (cycle) visiting all vertices.

Existence of the sphere-cut decomposition implies that the algorithm finds an optimum solution!

- Let us contract the subpaths of *OPT* between consecutive terminals (each such path is a shortest path).
- Each noose goes through O(√k) contracted vertices
 ⇒ we can guess the contractions that produced these vertices.

- Let us contract the subpaths of *OPT* between consecutive terminals (each such path is a shortest path).
- Each noose goes through O(√k) contracted vertices
 ⇒ we can guess the contractions that produced these vertices.

Self-crossing solutions

It is not possible to bound the number of self-crossings by a function of k, but we can show that there is a solution that is a "cactus."

Lower bound for $\ensuremath{\operatorname{STEINER}}$ $\ensuremath{\operatorname{TREE}}$

Theorem [new result #2]

Assuming the ETH, STEINER TREE on planar undirected graphs with k terminals cannot be solved in time $2^{o(k)} \cdot n^{O(1)}$.

Standard techniques show that STEINER TREE (and many other problems) do not have $2^{o(\sqrt{k})} \cdot n^{O(1)}$ time algorithms assuming the ETH, but a lower bound ruling out $2^{o(k)} \cdot n^{O(1)}$ is quite unusual!

Standard lower bounds for planar problems

ETH + Sparsification Lemma

There is no $2^{o(n+m)}$ -time algorithm for *m*-clause 3SAT.

- Typical reduction from 3SAT creates O(n + m) gadgets and $O((n + m)^2)$ crossings in the plane.
- A crossing typically increases the size by O(1).

 $\begin{array}{c|c} 3\text{SAT formula } \phi \\ n \text{ variables} \\ m \text{ clauses} \end{array} \Rightarrow \begin{array}{c} \text{Planar graph } G' \\ O((n+m)^2) \text{ vertices} \\ O((n+m)^2) \text{ edges} \end{array}$

Corollary

Assuming the ETH, there is no $2^{o(\sqrt{n})}$ algorithm for STEINER TREE on an *n*-vertex planar graph.

Standard lower bounds for planar problems

ETH + Sparsification Lemma

There is no $2^{o(n+m)}$ -time algorithm for *m*-clause 3SAT.

- Typical reduction from 3SAT creates O(n + m) gadgets and $O((n + m)^2)$ crossings in the plane.
- A crossing typically increases the size by O(1).

 $\begin{array}{c|c} 3\text{SAT formula } \phi \\ n \text{ variables} \\ m \text{ clauses} \end{array} \xrightarrow{\hspace{0.5cm}} \begin{array}{c} \text{Pl} \\ O((n + 1)) \\ O((n +$

Planar graph
$$G'$$

 $O((n + m)^2)$ vertices
 $O((n + m)^2)$ edges

Corollary

Assuming the ETH, there is no $2^{o(\sqrt{k})} \cdot n^{O(1)}$ algorithm for STEINER TREE on an *n*-vertex planar graph with *k* terminals.

Standard lower bounds for planar problems

ETH + Sparsification Lemma

There is no $2^{o(n+m)}$ -time algorithm for *m*-clause 3SAT.

- Typical reduction from 3SAT creates O(n + m) gadgets and $O((n + m)^2)$ crossings in the plane.
- A crossing typically increases the size by O(1).

No way such reductions could give a bound stronger than $2^{o(\sqrt{k})}!$

Partition the variables into g groups of size n/g each.

- Horizontal flow: assignment in group i ($2^{n/g}$ possibilities)
- Vertical flow: checking satisfiability of each clause C_i.

Partition the variables into g groups of size n/g each.

- Horizontal flow: assignment in group i ($2^{n/g}$ possibilities)
- Vertical flow: checking satisfiability of each clause C_i.

Partition the variables into g groups of size n/g each.

- Horizontal flow: assignment in group i ($2^{n/g}$ possibilities)
- Vertical flow: checking satisfiability of each clause C_i.

Partition the variables into g groups of size n/g each.

- Horizontal flow: assignment in group i ($2^{n/g}$ possibilities)
- Vertical flow: checking satisfiability of each clause C_i.

Graph size: $N = 2^{O(n/g)}$ with $k = O(m \cdot g)$ terminals.

Running time $2^{O(k/g^2)} \cdot N^{O(1)}$ for STEINER TREE $\downarrow \downarrow$ Running time $2^{O(m/g)} \cdot 2^{O(n/g)} = 2^{o(n+m)}$ for 3SAT

Summary

Main positive result

SUBSET TSP for *k* cities in a **directed** planar graph can be solved in time $2^{O(\sqrt{k} \log k)} \cdot n^{O(1)}$.

Exploit that the union of the unknown solution + a known something has treewidth $O(\sqrt{k})$.

2 Main negative result

Assuming the ETH, STEINER TREE on planar undirected graphs with k terminals cannot be solved in time $2^{o(k)} \cdot n^{O(1)}$.

The square root phenomenon does not appear for every problem, making the previous positive results even more interesting!