
On subexponential parameterized algorithms for
Steiner Tree and Directed Subset TSP on planar

graphs

Dániel Marx1 Marcin Pilipczuk2 Michał Pilipczuk2

1Institute for Computer Science and Control,
Hungarian Academy of Sciences (MTA SZTAKI)

Budapest, Hungary

2Institute of Informatics,
University of Warsaw, Poland

FOCS 2018
Paris, France

October 9, 2018

1



Square root phenomenon

NP-hard problems become easier on planar graphs,
and usually exactly by a square root factor.

The running time is still exponential, but significantly smaller:

2O(n) ⇒ 2O(
√
n)

nO(k) ⇒ nO(
√
k)

2O(k) · nO(1) ⇒ 2O(
√
k) · nO(1)

Several known examples known where such improvement is
possible, and (assuming the ETH)

O(k) is best possible for general graphs and
O(
√
k) is best possible for planar graphs.

2



Square root phenomenon

NP-hard problems become easier on planar graphs,
and usually exactly by a square root factor.

The running time is still exponential, but significantly smaller:

2O(n) ⇒ 2O(
√
n)

nO(k) ⇒ nO(
√
k)

2O(k) · nO(1) ⇒ 2O(
√
k) · nO(1)

Several known examples known where such improvement is
possible, and (assuming the ETH)

O(k) is best possible for general graphs and
O(
√
k) is best possible for planar graphs.

2



Square root phenomenon

NP-hard problems become easier on planar graphs,
and usually exactly by a square root factor.

The running time is still exponential, but significantly smaller:

2O(n) ⇒ 2O(
√
n)

nO(k) ⇒ nO(
√
k)

2O(k) · nO(1) ⇒ 2O(
√
k) · nO(1)

Several known examples known where such improvement is
possible, and (assuming the ETH)

O(k) is best possible for general graphs and
O(
√
k) is best possible for planar graphs.

2



Two standard techniques
1 Using treewidth:

Works for e.g. 3-Coloring or Hamiltonian Cycle:

Planar graphs have
treewidth O(

√
n)

+
2O(w) · nO(1)

algorithm
for treewidth w

⇒ 2O(
√
n)

algorithm

2 Bidimensionality:
Works for e.g. k-Path or Vertex Cover:

Trivial answer if
treewidth is Ω(

√
k).

+
2O(w) · nO(1)

algorithm for
treewidth w

⇒ 2O(
√
k) · nO(1)

algorithm

3



Two standard techniques
1 Using treewidth:

Works for e.g. 3-Coloring or Hamiltonian Cycle:

Planar graphs have
treewidth O(

√
n)

+
2O(w) · nO(1)

algorithm
for treewidth w

⇒ 2O(
√
n)

algorithm

2 Bidimensionality:
Works for e.g. k-Path or Vertex Cover:

Trivial answer if
treewidth is Ω(

√
k).

+
2O(w) · nO(1)

algorithm for
treewidth w

⇒ 2O(
√
k) · nO(1)

algorithm

3



Other results

Many other result were obtained using problem-specific techniques:
Strongly Connected Steiner Subgraph
[Chitnis et al. 2014]

Multiway Cut [Klein and M. 2012], [Colin de Verdière 2017]

Subgraph Isomorphism
for connected bounded-degree patterns [Fomin et al. 2016]

Subset TSP [Klein and M. 2014]

Facility Location [M. and Pilipczuk 2015]

Odd Cycle Transversal [Lokshtanov et al. 2012]

4



Two main results

1 A positive result:

Directed Subset TSP with k terminals can be solved

in time 2O(k) · nO(1) in general graphs,
[Held-Karp 1962]

in time 2O(
√
k log k) · nO(1) in planar graphs.

[new result #1]

2 A negative result:

Steiner Tree with k terminals

can be solved in time 2O(k) · nO(1) in general graphs,
[Dreyfus and Wagner 1971]

cannot be solved in time 2o(k) · nO(1) in planar undirected graphs
(assuming the ETH). [new result #2]

5



Two main results

1 A positive result:

Directed Subset TSP with k terminals can be solved

in time 2O(k) · nO(1) in general graphs,
[Held-Karp 1962]

in time 2O(
√
k log k) · nO(1) in planar graphs.

[new result #1]

2 A negative result:

Steiner Tree with k terminals

can be solved in time 2O(k) · nO(1) in general graphs,
[Dreyfus and Wagner 1971]

cannot be solved in time 2o(k) · nO(1) in planar undirected graphs
(assuming the ETH). [new result #2]

5



TSP
TSP

Input: A set T of cities and a distance function d(., .) on T
Output: A tour on T with minimum total distance

Theorem [Held and Karp 1962]

TSP with n cities can be solved in time O(2n · n2).

Dynamic programming:
Let x(v ,T ′) be the minimum length of path from vstart to v
visiting all the cities T ′ ⊆ T .

6



Subset TSP on planar graphs
Assume that the cities correspond to a subset T of vertices of a
planar graph and distance is measured in this planar graph.

7



Subset TSP on planar graphs
Assume that the cities correspond to a subset T of vertices of a
planar graph and distance is measured in this planar graph.

Can be solved in time nO(
√
n).

Can be solved in time 2k · nO(1).

Question: Can we restrict the exponential dependence to k and
exploit planarity?

7



Subset TSP on planar graphs
Assume that the cities correspond to a subset T of vertices of a
planar graph and distance is measured in this planar graph.

Theorem [Klein and M. 2014]

Subset TSP for k cities in a unit-weight undirected planar graph
can be solved in time 2O(

√
k log k) · nO(1).

7



Subset TSP on planar graphs
Assume that the cities correspond to a subset T of vertices of a
planar graph and distance is measured in this planar graph.

Theorem [new result #1]
Subset TSP for k cities in a directed planar graph can be solved
in time 2O(

√
k log k) · nO(1).

7



Partial solutions
General idea: build larger and larger partial solutions.

Held-Karp algorithm: the partial solutions are vstart − v paths
visiting a subset T ′ of cities.

1

2

3

4

5

6

Generalization: a partial solution is a set of at most d pairwise
disjoint paths with specified cities as endpoints.
The type of a partial solution can be described by

the set of endpoints of the paths,
a matching between the endpoints, and
the subset T ′ of visited cities.

8



Partial solutions
General idea: build larger and larger partial solutions.

Held-Karp algorithm: the partial solutions are vstart − v paths
visiting a subset T ′ of cities.

1

2

3

4

5

6

Generalization: a partial solution is a set of at most d pairwise
disjoint paths with specified cities as endpoints.
The type of a partial solution can be described by

the set of endpoints of the paths,
a matching between the endpoints, and
the subset T ′ of visited cities.

8



Merging partial solutions
Two partial solutions can be merged in an obvious way if a
matching is given between the endpoints:

1

2

3

4

5

6

7

8

9

10

11

12

⇒

7

4

5

12

Algorithm
Start with an initial set of trivial partial solutions.
Combine two partial solutions as long as possible.
Keep at most one partial solution from each type: the best
one encountered so far.
Return the best partial solution that consists of a single path
(cycle) visiting all vertices.

9



Merging partial solutions
Two partial solutions can be merged in an obvious way if a
matching is given between the endpoints:

1

2

3

4

5

6

7

8

9

10

11

12

⇒

7

4

5

12

Algorithm
Start with an initial set of trivial partial solutions.
Combine two partial solutions as long as possible.
Keep at most one partial solution from each type: the best
one encountered so far.
Return the best partial solution that consists of a single path
(cycle) visiting all vertices.

9



Merging partial solutions
Two partial solutions can be merged in an obvious way if a
matching is given between the endpoints:

1

2

3

4

5

6

7

8

9

10

11

12

⇒

7

4

5

12

Algorithm
Start with an initial set of trivial partial solutions.
Combine two partial solutions as long as possible.
Keep at most one partial solution from each type: the best
one encountered so far.
Return the best partial solution that consists of a single path
(cycle) visiting all vertices.

9



Merging partial solutions
Two partial solutions can be merged in an obvious way if a
matching is given between the endpoints:

1

2

3

4

5

6

7

8

9

10

11

12

⇒

7

4

5

12

Algorithm
Start with an initial set of trivial partial solutions.
Combine two partial solutions as long as possible.
Keep at most one partial solution from each type: the best
one encountered so far.
Return the best partial solution that consists of a single path
(cycle) visiting all vertices.

9



Running time
Algorithm

Start with an initial set of trivial partial solutions.
Combine two partial solutions as long as possible.
Keep at most one partial solution from each type: the best
one encountered so far.
Return the best partial solution that consists of a single path
(cycle) visiting all vertices.

10



Running time
Algorithm

Start with an initial set of trivial partial solutions.
Combine two partial solutions as long as possible.
Keep at most one partial solution from each type: the best
one encountered so far.
Return the best partial solution that consists of a single path
(cycle) visiting all vertices.

For d = O(
√
k), the number of types (≈ running time) is

kO(
√
k) · 2k

endpoints of O(
√
k) paths subset T ′ ⊆ T of visited cities

10



Running time
Algorithm

Start with an initial set of trivial partial solutions.
Combine two partial solutions as long as possible.
Keep at most one partial solution from each type: the best
one encountered so far.
Return the best partial solution that consists of a single path
(cycle) visiting all vertices.

For d = O(
√
k), the number of types (≈ running time) is

kO(
√
k) · 2k

endpoints of O(
√
k) paths subset T ′ ⊆ T of visited cities

We need to reduce somehow the number of possible subsets of
cities partial solutions can visit!

10



Running time
Algorithm

Start with an initial set of trivial partial solutions.
Combine two partial solutions as long as possible.
Keep at most one partial solution from each type: the best
one encountered so far.
Return the best partial solution that consists of a single path
(cycle) visiting all vertices.

Basic idea
We restrict attention to a collection T of subsets of cities and
consider only partial solutions that visit a subset in T .

We need: a collection T of size kO(
√
k) that guarantees finding an

optimum solution.

10



Bounding the treewidth . . . of what?

The following principle can be deduced from earlier work:

Exploit that the union of the unknown solution + a known
something has treewidth O(

√
k).

11



Bounding the treewidth . . . of what?

The following principle can be deduced from earlier work:

Exploit that the union of the unknown solution + a known
something has treewidth O(

√
k).

11



Bounding the treewidth . . . of what?

The following principle can be deduced from earlier work:

Exploit that the union of the unknown solution + a known
something has treewidth O(

√
k).

11



Bounding treewidth
Take an arbitrary Steiner tree T and assume first that it intersects
OPT O(k) times.

OPT + T has O(k) branch vertices
⇒ treewidth O(

√
k)

⇒ exists a sphere-cut decomposition of width O(
√
k)

12



Sphere-cut decompositions
Noose: a closed curve intersecting the graph only at vertices.

Sphere-cut decomposition of width O(
√
k): a recursive

decomposition where the boundary of each part is a noose
intersecting O(

√
k) vertices.

13



Sphere-cut decompositions
Noose: a closed curve intersecting the graph only at vertices.

Sphere-cut decomposition of width O(
√
k): a recursive

decomposition where the boundary of each part is a noose
intersecting O(

√
k) vertices.

13



Sphere-cut decompositions
Noose: a closed curve intersecting the graph only at vertices.

Sphere-cut decomposition of width O(
√
k): a recursive

decomposition where the boundary of each part is a noose
intersecting O(

√
k) vertices.

13



Sphere-cut decompositions
Noose: a closed curve intersecting the graph only at vertices.

Sphere-cut decomposition of width O(
√
k): a recursive

decomposition where the boundary of each part is a noose
intersecting O(

√
k) vertices.

13



Sphere-cut decompositions
Noose: a closed curve intersecting the graph only at vertices.

Sphere-cut decomposition of width O(
√
k): a recursive

decomposition where the boundary of each part is a noose
intersecting O(

√
k) vertices.

13



Sphere-cut decompositions
Noose: a closed curve intersecting the graph only at vertices.

Sphere-cut decomposition of width O(
√
k): a recursive

decomposition where the boundary of each part is a noose
intersecting O(

√
k) vertices.

13



Partial solutions

Each noose cuts out a partial solution with O(
√
k) subpaths of OPT .

What can be the set of terminals visited by this partial solution?

14



Partial solutions

Each noose cuts out a partial solution with O(
√
k) subpaths of OPT .

What can be the set of terminals visited by this partial solution?

14



Partial solutions

Each noose cuts out a partial solution with O(
√
k) subpaths of OPT .

What can be the set of terminals visited by this partial solution?

14



Cutting terminals from a tree
Lemma

We can compute a collection T of kO(
√
k) subsets of terminals such

that if C is a cycle intersecting the tree T at most O(
√
k) times,

then the set of terminals enclosed by C is in T .

We can restrict attention only to partial solutions restricted to T !
15



Algorithm

Algorithm
Compute the collection T (possible sets of terminals enclosed
by a cycle intersecting tree T at most O(

√
k) times).

Start with an initial set of trivial partial solutions.
Combine two partial solutions as long as possible and keep it
only if it visits a subset in T .
Keep at most one partial solution from each type: the best
one encountered so far.
Return the best partial solution that consists of a single path
(cycle) visiting all vertices.

Only kO(k) subproblems are considered
⇓

Running time is kO(k)nO(1).

16



Algorithm

Algorithm
Compute the collection T (possible sets of terminals enclosed
by a cycle intersecting tree T at most O(

√
k) times).

Start with an initial set of trivial partial solutions.
Combine two partial solutions as long as possible and keep it
only if it visits a subset in T .
Keep at most one partial solution from each type: the best
one encountered so far.
Return the best partial solution that consists of a single path
(cycle) visiting all vertices.

Existence of the sphere-cut decomposition implies
that the algorithm finds an optimum solution!

16



Many intersections
What happens if OPT + T has more than O(k) intersections?

Let us contract the subpaths of OPT between consecutive
terminals (each such path is a shortest path).
Each noose goes through O(

√
k) contracted vertices

⇒ we can guess the contractions that produced these vertices.

17



Many intersections
What happens if OPT + T has more than O(k) intersections?

Let us contract the subpaths of OPT between consecutive
terminals (each such path is a shortest path).
Each noose goes through O(

√
k) contracted vertices

⇒ we can guess the contractions that produced these vertices.

17



Many intersections
What happens if OPT + T has more than O(k) intersections?

Let us contract the subpaths of OPT between consecutive
terminals (each such path is a shortest path).
Each noose goes through O(

√
k) contracted vertices

⇒ we can guess the contractions that produced these vertices.

17



Many intersections
What happens if OPT + T has more than O(k) intersections?

Let us contract the subpaths of OPT between consecutive
terminals (each such path is a shortest path).
Each noose goes through O(

√
k) contracted vertices

⇒ we can guess the contractions that produced these vertices.

17



Many intersections
What happens if OPT + T has more than O(k) intersections?

Let us contract the subpaths of OPT between consecutive
terminals (each such path is a shortest path).
Each noose goes through O(

√
k) contracted vertices

⇒ we can guess the contractions that produced these vertices.
17



Many intersections
What happens if OPT + T has more than O(k) intersections?

Let us contract the subpaths of OPT between consecutive
terminals (each such path is a shortest path).
Each noose goes through O(

√
k) contracted vertices

⇒ we can guess the contractions that produced these vertices.
17



Self-crossing solutions

It is not possible to bound the number of self-crossings by a
function of k , but we can show that there is a solution that is a
“cactus.” 18



Lower bound for Steiner Tree

Theorem [new result #2]
Assuming the ETH, Steiner Tree on planar undirected graphs
with k terminals cannot be solved in time 2o(k) · nO(1).

Standard techniques show that Steiner Tree (and many other
problems) do not have 2o(

√
k) · nO(1) time algorithms assuming the

ETH, but a lower bound ruling out 2o(k) · nO(1) is quite unusual!

19



Standard lower bounds for planar problems

ETH + Sparsification Lemma

There is no 2o(n+m)-time algorithm for m-clause 3SAT.

Typical reduction from 3SAT creates O(n + m) gadgets and
O((n + m)2) crossings in the plane.
A crossing typically increases the size by O(1).

3SAT formula φ
n variables
m clauses

⇒
Planar graph G ′

O((n + m)2) vertices
O((n + m)2) edges

Corollary

Assuming the ETH, there is no 2o(
√
n) algorithm for Steiner

Tree on an n-vertex planar graph.

20



Standard lower bounds for planar problems

ETH + Sparsification Lemma

There is no 2o(n+m)-time algorithm for m-clause 3SAT.

Typical reduction from 3SAT creates O(n + m) gadgets and
O((n + m)2) crossings in the plane.
A crossing typically increases the size by O(1).

3SAT formula φ
n variables
m clauses

⇒
Planar graph G ′

O((n + m)2) vertices
O((n + m)2) edges

Corollary

Assuming the ETH, there is no 2o(
√
k) · nO(1) algorithm for

Steiner Tree on an n-vertex planar graph with k terminals.
20



Standard lower bounds for planar problems

ETH + Sparsification Lemma

There is no 2o(n+m)-time algorithm for m-clause 3SAT.

Typical reduction from 3SAT creates O(n + m) gadgets and
O((n + m)2) crossings in the plane.
A crossing typically increases the size by O(1).

3SAT formula φ
n variables
m clauses

⇒
Planar graph G ′

O((n + m)2) vertices
O((n + m)2) edges

No way such reductions could give a bound stronger
than 2o(

√
k)!

20



Stronger lower bound

We get around this issue by crossing gadgets where a stream of
many bits cross a stream of one bit and has only O(1) terminals.

one bit

one bit

m
an

y
bi

ts

m
an

y
bi

ts
21



Stronger lower bound

We get around this issue by crossing gadgets where a stream of
many bits cross a stream of one bit and has only O(1) terminals.

one bit

one bit

m
an

y
bi

ts

m
an

y
bi

ts
21



Stronger lower bound

We get around this issue by crossing gadgets where a stream of
many bits cross a stream of one bit and has only O(1) terminals.

one bit

one bit

m
an

y
bi

ts

m
an

y
bi

ts
21



Stronger lower bound

We get around this issue by crossing gadgets where a stream of
many bits cross a stream of one bit and has only O(1) terminals.

one bit

one bit

m
an

y
bi

ts

m
an

y
bi

ts
21



Stronger lower bound

We get around this issue by crossing gadgets where a stream of
many bits cross a stream of one bit and has only O(1) terminals.

one bit

one bit

m
an

y
bi

ts

m
an

y
bi

ts
21



Stronger lower bound

We get around this issue by crossing gadgets where a stream of
many bits cross a stream of one bit and has only O(1) terminals.

one bit

one bit

m
an

y
bi

ts

m
an

y
bi

ts
21



Stronger lower bound

We get around this issue by crossing gadgets where a stream of
many bits cross a stream of one bit and has only O(1) terminals.

one bit

one bit

m
an

y
bi

ts

m
an

y
bi

ts
21



Reduction from 3SAT
Partition the variables into g groups of size n/g each.

Horizontal flow: assignment in group i (2n/g possibilities)
Vertical flow: checking satisfiability of each clause Cj .

Graph size: N = 2O(n/g) with k = O(m · g) terminals.

C1 C2 Cm

Group 1

Group 2

Group g

22



Reduction from 3SAT
Partition the variables into g groups of size n/g each.

Horizontal flow: assignment in group i (2n/g possibilities)
Vertical flow: checking satisfiability of each clause Cj .

Graph size: N = 2O(n/g) with k = O(m · g) terminals.

C1 C2 Cm

Group 1

Group 2

Group g

22



Reduction from 3SAT
Partition the variables into g groups of size n/g each.

Horizontal flow: assignment in group i (2n/g possibilities)
Vertical flow: checking satisfiability of each clause Cj .

Graph size: N = 2O(n/g) with k = O(m · g) terminals.

C1 C2 Cm

Group 1

Group 2

Group g

22



Reduction from 3SAT
Partition the variables into g groups of size n/g each.

Horizontal flow: assignment in group i (2n/g possibilities)
Vertical flow: checking satisfiability of each clause Cj .

Graph size: N = 2O(n/g) with k = O(m · g) terminals.

C1 C2 Cm

Group 1

Group 2

Group g

22



Reduction from 3SAT
Graph size: N = 2O(n/g) with k = O(m · g) terminals.

Running time 2O(k/g2) · NO(1) for Steiner Tree
⇓

Running time 2O(m/g) · 2O(n/g) = 2o(n+m) for 3SAT

C1 C2 Cm

Group 1

Group 2

Group g

22



Summary

1 Main positive result
Subset TSP for k cities in a directed planar graph can be
solved in time 2O(

√
k log k) · nO(1).

Exploit that the union of the unknown solution + a known
something has treewidth O(

√
k).

2 Main negative result
Assuming the ETH, Steiner Tree on planar undirected
graphs with k terminals cannot be solved in time 2o(k) · nO(1).

The square root phenomenon does not appear for every
problem, making the previous positive results even more
interesting!

23


