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Abstract

In the CLOSEST SUBSTRING problem k strings s ...,
s are given, and the task is to find a string s of length L such
that each string jshas a consecutive substring of length L

whose distance is at most d from s. The problem is moti-

bme. hu

protein sequences plays an important role in many applica-
tions, for example, in locating binding sites and in finding
conserved regions in unaligned sequences.

The QLOSESTSUBSTRING problem is NP-hard even in
the special case whed = {0,1} and every strings has
lengthL (cf. [9]). Li et. al [13] studied the optimization

vated by applications in computational biology. We present version of G 0SESTSUBSTRING, where we have to find the

two algorithms that can be efficient for small fixed values of
d and k: for some functions f and g, the algorithms have
running time {d) - n®(°99) and gd, k) - n®(°9'°%k)  respec-

smallestd that makes the problem feasible. They presented
a polynomial-time approximation scheme: for every 0,
there is amP/¢*) time algorithm that produces a solution

tively. The second algorithm is based on connections Withthat is at most1+ £)-times worse than the optimum.

the extremal combinatorics of hypergraphs. TiedSEST
SUBSTRING problem is also investigated from the parame-

terized complexity point of view. Answering an open ques-

tion from [6, 7, 11, 12], we show that the problem/ig1]-
hard even if both d and k are parameters. It follows as

Parameterized complexity deals with NP-hard problems
where every instance has a distinguished ganthich will
be called the parameter. We expect that for an NP-hard
problem every algorithm has exponential running time. In
parameterized complexity the goal is to develop algorithms

a consequence of this hardness result that our algorithmspat run inuniformly polynomial timethe running time is

are optimal in the sense that the exponent of n in the run-

ning time cannot be improved td¢logd) or to o(loglogk)

f (k) -n®, wherecis a constant anél is a (possibly exponen-
tial) function depending only ok We call a parameterized

(modulo some complexity-theoretic assumptions). AnOtherproblemfixed—parameter tractabld such an algorithm ex-

consequence is that the running tinfé¥¢*) of the approxi-
mation scheme faCLOSESTSUBSTRING presented in [13]
cannot be improved to(£) - n%, i.e., thes has to appear in
the exponent of n.

1 Introduction

In this paper we are investigating a pattern matching
problem that received considerable attention lately. Give
k stringss,, ..., & over an alphabeX, and two integers,

d, the Q. OSESTSUBSTRING problem asks whether there is
a lengthL string s such that every string has a length.
substrings whose Hamming-distance is at makfrom s.
The problem is motivated by applications in computational
biology. Finding similar regions in multiple DNA, RNA, or

*Research is supported in part by grants OTKA 44733, 42559 and
42706 of the Hungarian National Science Fund.

ists. This means that the exponential increase of the rgnnin
time can be restricted to the paramdterit turns out that
several NP-hard problems are fixed-parameter tractable, fo
example MNIMUM VERTEX COVER, LONGEST PATH,

and DSJOINT TRIANGLES. Therefore, for small values of

k, the f (k) termis just a constant factor in the running time,
and the algorithms for these problems can be efficient even
for large values oh. This has to be contrasted with algo-
rithms that have running time such 8§ in this case the
algorithm becomes practically useless for large valuas of
even ifk is as small as 10. The theory of W[1]-hardness
can be used to show that a problem is unlikely to be fixed-
parameter tractable, for every algorithm the parameter has
to appear in the exponent af For example, for MxI -

MUM CLIQUE and MINIMUM DOMINATING SET the run-
ning time of the best known algorithms i®®, and the
WI[1]-hardness of these problems tells us that it is unlikely
that an algorithm with running time, sa(2-n) can be
found. For more detalils, see [5].



CLOSEST SUBSTRING was investigated in the frame- We present two exact algorithms for the @&SESTSuB-
work of parameterized complexity by several authors. For- STRING problem. These algorithms can be efficierdjifor

mally, the problem is the following: bothd andk are small (less than log. The first algorithm
runs in|z|d(109d+2)n0ogd) time. Notice that this algorithm
CLOSESTSUBSTRING is not uniformly polynomial, but only the logarithm of the
Input; parameter appears in the exponennofTherefore, the al-
k stringssy, ..., S over an alphabeX, integers gorithm might be efficient for small values df The second
d andL. algorithm has running timgx|d)Okd . nOloglogk) " Here the
Parameters: parametek appears in thg expongnt of byt Iog logk is a
k [2], d, L ' very slowly growing function. This algorithm is based on
e defining certain hypergraphs and enumerating all the places
T‘?‘Sk: . where one hypergraph appears in the other. Using some re-
Find a strings of lengthL such that for every sults from extremal combinatorics, we develop techniques
1<i<k thestrings has alength consecutive that can speed up the search for hypergraphs. It turns out
substrings with d(s,5) < d. that if hypergraphH has bounded fractional edge cover

number, then we can enumerate in uniformly polynomial

time all the places wherd appears in some larger hyper-

graphG. This result might be of independent interest.
Notice that the running times of our two algorithms are

The strings is called thecenter string The Hamming-
distance of two strings;, andw; (i.e., the number of po-
sitions where they differ) is denoted lajfw;,w,). For a

given center string, it is easy to check in polynomial time incomparable. Assume thi| — 2. If d = O(logn) and
whetbher the sfuﬁstring$ exist: we have to try every length | _ 101) " then the running time of the first algorithm is
L substring of the strings. (o) Ioglogn’ . nO(loglogn) _ ~O(loglogn ; .
In [8] and [6] it is shown that the problem is W[1]-hard fogloan) . pxiogloan) — nX%ales, while the second al
even if all three ok, d, andL are parameters. Therefore,
if the size of the alphabeX is not bounded in the input,
then we cannot hope for an efficient exact algorithm for the
problem. However, in the computational biology applica-
tions the strings are typically DNA or protein sequences,

! ) nO(loglogloglogn) steps
hence the number of different symbols is a small constant. ' . .
Therefore, we will focus on the case when the size& of Our W[1]-hardness proof combined with some recent re-

is a parameter. Restricting| does not make the problem sults on subexponential algorithms shows that the two exact
tractable. since COSEST SUBSTRING is NP-hard even if  &lgorithms are in some sense best possible. The exponents

the alphabet is binary. On the other hand3if andL are ~ are optimal: we sh0\|/v tlhakt if there is dp(k,d, [2]) - n°(°9%

both parameters, then the problem becomes fixed-paramete?” @n f2(k.d, [2[) - L algorithm for Q.OSESTSUB-

tractable: we can enumerate and check al|Efepossible ~ STRING, then 3-3\T can be solved in subexzponentlal time.

center strings. However, in practical applications thegs If a PTAS has running time such &n®'¢), then it be-

are usually very long, hence it makes much more sense tocomes practically useless for largeeven if we ask for an

restrict the number of strings or the distance parameter error bound of 20%. Arefficient PTAS (EPTAS§ an ap-

d. In [7] it is shown that COSEST SUBSTRING is W[1]- proximation scheme that produceglat- £)-approximation

hard with parametek, even if the alphabet is binary. How- in f(g)-nC time for some constant If f(¢) is e.g., 2/¢,

ever, the complexity of the problem with parameteor then such an approximation scheme can be practical even

with combined parametets k remained an open question. for € = 0.1 and largen. A standard consequence of W[1]-
Our results. We show that COSEST SUBSTRING is hardness is that there is no EPTAS for the optimization ver-

WI[1]-hard with combined parameteksandd, even if the sion of the problem. Hence our hardness result shows that

alphabet is binary. This resolves an open question raised irthe n®/¢) time approximation scheme of [13] for.@s-

[6, 7, 11, 12]. Therefore, there is gk, d) - n® algorithm EST SUBSTRING cannot be improved to an EPTAS.

for CLOSESTSUBSTRING (unless FPE WI1]); the expo- The paper is organized as follows. The first algorithm

nential increase cannot be restricted to the paramletard is presented in Section 2. In Section 3 we discuss tech-

d. The first step in the reduction is to introduce a technical niques for finding one hypergraph in another. In Section 4

problem called 8T BALANCING, and prove W[1]-hardness we present the second algorithm. This section introduces a

for this problem. This part of the proof contains most of the new hypergraph property called half-covering, which plays

new combinatorial ideas. Thee$ BALANCING problem is an important role in the algorithm. We define in Section 5

reduced to COSESTSUBSTRING by a reduction very sim-  the ST BALANCING problem, and prove that it is W[1]-

ilar to the one presented in [7]. hard. In Section 6 theeS BALANCING problem is used to

gorithm needglogn)"®*109n . nOllogloan) steps which can
be much larger. On the other hand,df= O(loglogn)

and k = O(loglogn), then the first algorithm runs in
something liken®(°9'0glog" time  while the second algo-

rithm needs only(loglogn)©(eglogn) . nO(loglogloglogn) —



show that COSEST SUBSTRING is W[1]-hard with com-
bined parameterd andk. We conclude the paper with a
summary in Section 7.

2 Finding generators

In this section we present an algorithm with running time
proportional to roughlyn?d. The algorithm is based on
the following observation: if all the strings, ..., s, agree
at some positiorp in the solution, then we can safely as-
sume that the same symbol appears atpttle position of
the center string. However, if we look at only a subset of
the stringss), ..., s,, then it is possible that they all agree

at some position, but the center string contains a different

symbol at this position. We will be interested in sets of
strings that do not have this problem:

Definition 2.1. Let G= {01,02,...,9¢} be a set of length L
strings. We say that G is generatoof the length L string

s if whenever every; dnas the same character at some po-
sition p, then string s has this character at position p. The
sizeof the generator i€, the number of strings in G. The
conflict of the generator is the set of those positions where
not all of the strings ghave the same character.

all the strings inG; at every position of’. If this is true,
then we addy to the selG; to obtainG;,1. Only the posi-
tions inP\ P’ are bad for the se®;.,1: for every positionp

in P/, the strings cannot all agree gtsinceg do not agree
with the other strings at this position. Thus there are atmos
IP\P'| < |P|/2 < (d+1)/2} bad positions, completing the
induction.

Assume that there is no such strigg In this case we
modify the center string the following way: for every po-
sition p € P, let the character at positiop be the same
as in strings;. Denote bys" the new string. We show
thatd(s",s) < d(s,§) < d for every 1< i <k, hences*
is also a solution. By assumption, every strigign the
solution agrees witts; on at least|P|/2 positions ofP.
Therefore, if we replace with s, the distance of from
the center string decreases on at [éB&t2 positions, and
the distance can increase only on the remaining at most
|P|/2 positions. Thereforel(s*,s) < d(s,s) follows. Fur-
thermored(s', ;) = d(s,s)) — |P| implies Tk, d(s*,5) <
sk ,d(s €), which contradicts the minimality cf O

Our algorithm first creates a s& containing all the
lengthL substrings of;, ..., sk. For every subse C S
of logd + 2 strings, we check wheth& generates a cen-
ter strings that solves the problem. Sin¢§ < n, there

As we have argued above, it can be assumed that theare at mosnl°99+2 possibilities to try. By Lemma 2.2 we
stringss], ..., . of a solution form a generator of the center have to consider only those generators whose conflict is at
strings. Furthermore, these strings have a subset of size atmostd(logd + 2), hence at mog&|4(°99+2) possible center

most logd + 2 that is also a generator:

Lemma 2.2. If an instance of CLOSEST SUBSTRING iS
solvable, then there is a solution s that has a generator G
having the following properties:

e each string in G is a substring of some s
e G has size at mosvgd + 2,
e the conflict of G is at most(tbgd + 2).

Proof. Lets, &, ..., s, be a solution such thgt®_;d(s,§)

is minimal. We prove by induction that for evejywe can
select a seG; of j strings froms,, ..., s such that there
are less tharid 4 1)/2/~1 bad positionswvhere the strings
in G; all agree, but this common character is different from
the character i at this position. The lemma follows from

j =[log(d+1)] +1 < logd+ 2: the setG; has no bad
positions, hence it is a generator ®f Furthermore, each
string inG; is at distance at mostfrom s, thus the conflict

of Gj can be at modd(logd + 2).

For the casg = 1 we can se6; = {s; }, sinces] differs
from s at not more thaml positions. Now assume that the
statement is true for somie Let P be the set of bad posi-
tions, where the strings inG; agree, but they differ from
s. We claim that there is some striggin the solution and
a subseP’ C P with |P/| > |P|/2 such thag differs from

strings have to be tested for ea@h

Theorem 2.3. CLOSEST SUBSTRING can be solved in
|Z|d(logd+2) nIogd+O(1) time. O

3 Finding hypergraphs

Let us recall some standard definitions concerning hy-
pergraphs. Ahypergraph HV4,En) consists of a set of
vertices Y, and a collection oédges g, where each edge
is a subset oMy. Let H(V4,En) and G(Vg, Eg) be two
hypergraphs. We say thet appears at V C Vg as partial
hypergraphif there is a bijectionrt between the elements
of Vy andV’ such that for every eddge € E4 we have that
n(E) is an edge of5 (where the mapping is extended to
the edges the obvious way). For examplé] iias the edges
{1,2}, {2,3}, andG has the edge$a,b}, {b,c}, {c,d},
thenH appears as a partial hypergraph{atb,c} and at
{b,c,d}. We say thaH appears at V C Vg as subhyper-
graphif there is such a bijectiorr where for eveng € E,
there is an edgE’ € Eg with (E) = E'NV’. For example,
let the edges of be {1,2}, {2,3}, and let the edges @
be{a,c,d}, {b,c,d}. NowH does not appear i6 as par-
tial hypergraph, butl appears as subhypergrapHatb, c}
and at{a,b,d}. If H appears at som¢’ C Vs as partial
hypergraph, then it appears there as subhypergraph as well.



A stable sein H(Vu,En) is a subseB C Wy such that
every edge oH contains at most one element fré&nThe
stable numbeo (H) is the size of the largest stable seHn
A fractional stable seis an assignmeng: Viy — [0,1] such
that 5, @(v) < 1 for every edgde of H. Thefractional
stable numbeor*(H) is the maximum ofy ., @(v) taken
over all fractional stable setg. The incidence vector of a
stable set is a fractional stable set, hen¢¢H) > a(H).

An edge covebpf H is a subseE’ C Ey such that each ver-
tex of Vy is contained in at least one edgelf Theedge
cover numbep(H) is the size of the smallest edge cover
in H. (The hypergraphs considered here do not have iso-
lated vertices, hence every hypergraph has an edge cover
A fractional edge coveis an assignmeny: Ey — [0,1]
such thats g, Y(E) > 1 for every vertew. Thefractional
cover numbep*(H) is the minimum ofy g, Y(E) taken
over all fractional edge coveng, clearly p*(H) < p(H).

It follows from the duality theorem of linear programming
thata*(H) = p*(H) for every hypergrapHl.

Friedgut and Kahn [10] determined the maximum num-
ber of times a hypergrapgf (Vi4,En) can appear as partial
hypergraph in a hypergraph with m edges. That is, we
are interested in the maximum number of different subsets
V'’ C Vg whereH can appear ifG. A trivial upper bound is
m/El: if we fix 71(E) € Eg for each edg& < Ey, then this
uniquely determines(Vy). This bound can be improved to
mP(H): if edgesEy, Ez, ..., Epn) COVer every vertex of,
then by fixingm(Ey), m(Ez), ..., M(Epn)) the setrt(Vi)

t = |y |l ¢VHlP™ P such places, which means that we
cannot enumerate all of them in less ti@(t) steps. There-
fore, our aim s to find an algorithm with running time poly-
nomial int. The proof of Theorem 3.1 is not algorithmic (it
is based on Shearer's Lemma [4], which is proved by en-
tropy arguments), hence it does not directly imply an effi-
cient way of enumerating all the places whéteappears.
However, in Theorem 3.3, we show that there is a very
simple algorithm for enumerating all these places. Corol-
lary 3.2 is used to bound the running time of the algorithm.
This result might be useful in other applications as well.

heorem 3.3. Let H(V4,En) be a hypergraph with frac-

onal cover numbep*(H), and let GV, En) be a hyper-
graph with m edges where each edge has size at most
There is an algorithm that enumerates [W|! - [Viy|MH! -
¢VHIPT(H) P (H)+0(1) time every subset\C Vg where H
appears in G as subhypergraph.

Proof. LetVy ={1,2,...,r}. Foreach Ki <r, letH; be a
hypergraph oV, = {1,2,...,i} such that ifE is an edge of
H, thenENV; is an edge oH;. Foreach =1,2,... r, we
find all the places wherHd; appears irG as subhypergraph.
SinceH = H; this method will solve the problem.

Fori = 1 the problem is trivial, sinc®; has only one
vertex. Assume now that we have a listof all thei el-
ement subsets ofc whereH; appears as subhypergraph.
The important observation is thathf . ; appears as subhy-
pergraph at some’ C Vg, thenV’ has an element subset

is determined. The result of Friedgut and Kahn saysphat V" whereH; appears as subhypergraph. For eaciset,,

can be replaced with the (possibly smallet)

Theorem 3.1 ([10]). Let H be a hypergraph with fractional
cover numbemp*(H), and let G be a hypergraph with m
edges. The maximum number of times H can appear in G
as partial hypergraph igvy| Y4l - mP" (1) Furthermore, for
every H and sufficiently large m, there is a hypergraph with
m edges where H appear®rt! times.

Theorem 3.1 does not remain valid if we replace “par-
tial hypergraph” with “subhypergraph.” For example, et
contain only one edggl, 2}, and letG have one edgE of
size/. Now H appears at each of tHg) two element sub-
sets ofE as subhypergraph. However, if we bound the size
of the edges i3, then we can state a subhypergraph analog
of Theorem 3.1:

Corollary 3.2. Let H be a hypergraph with fractional
cover numbemp*(H), and let G be a hypergraph with m
edges, each of size at mdst Hypergraph H can appear
in G as subhypergraph at moity VA . 7VulP*(H) . mp" (H)
times.

Given hypergraphd (V4,En) andG(Vg, Eg), we would
like to find all the place®/’ C Vg in G whereH appears

we try all the|Vg \ X| different ways of extendini to an

i +1 element seX’, and check whethet;, ; appears ax’

as subhypergraph. This can be checked by trying all the
(i+1)! possible bijectionst betweenV; ;1 and X', and by
checking for each edde of H;. 1 whether there is an edge
E’in Gwith m(E) =E'NnX'.

Let us estimate the running time of the algorithm. The
algorithm consists of\Vy| iterations. Notice first that
p*(Hi) < p*(H), since a fractional edge cover bf can
be used to obtain a fractional edge covertpf There-
fore, by Corollary 3.2, each list; has size at mog¥y || -
¢MVRIPT(H) " (H) - When we determine the lidti 1, we
have to check for at most;| - |Vg| different sizei + 1 sets
X" whetherH;_ ; appears aK’ as subhypergraph. Check-
ing oneX'’ requires us to tegi + 1)! different bijectionsrr,
and for eachr we have to go through all th edges ofG.
Suppressing the polynomial factors, the total running time
is [V |1+ V| VH1 - gIVRIp™(H) L (H)+0(1) O

4 Half-covering and the CLOSEST SuUB-
STRING problem

The following hypergraph property plays a crucial role

as subhypergraph. By Corollary 3.2, there can be at mostin our second algorithm for @ SESTSUSBTRING:



Definition 4.1. We say that a hypergraph (M, E) has the
half-coveringproperty if for every non-empty subset-'’/
there is an edge X E with [ XNY| > |Y|/2.

Theorem 3.3 says that finding a hypergraphs easy
if H has small fractional cover number. In our algorithm
for the OLOSEST SUBSTRING problem (described later in

5V p(vj) = 207719 5N g(v;) > 20110 p* /2. We show

that with nonzero probabilitfy| > u/2, but|XNY| < u/4
for every edgeX. To bound the probability of the bad
events, we use the following form of the Chernoff Bound:

Theorem 4.4 ([1]). Let X, Xo, ..., Xy be independer@-1
random variables witlPr[X; = 1] = p;. Denote X= 3" ; X;

this section), we have to find hypergraphs satisfying the andu = E[X]. Then

half-covering property. The following combinatorial leram

shows that such hypergraphs have small fractional cover PriX < (1—pB)u] <exp(—B2u/2) foro<p <1,

number, hence they are easy to find:

Lemma 4.2. If H(V,E) is a hypergraph with m edges sat-
isfying the half-covering property, then the fractional/eo
numberp* of H is O(loglogm).

Proof. The fractional cover number equals the fractional
stable number, thus there is a functign V — [0,1]
such thaty,cx ¢(v) < 1 holds for every edgX € E, and
Svev @(V) = p*. Letvy, v, ..., vy be an ordering of the
vertices by decreasing value @fv;). First we give a bound
on the sum of the largesgt(v;)’s:

Proposition 4.3. For every 1 < i < |V|, we have
Yi—10(vj) < —4log @(vi) +4.

Proof. The proof is by induction on Sinceg(v1) < 1, the
claim is trivial fori = 1. For an arbitrary > 1, leti’ <i
be the smallest value such thgvi/) < 2¢(v;). By assump-
tion, there is an edgX of H that covers more than half
of the setS= {vy,...,vi}. Every weight inSis at least
@(vi), henceX can cover at most /p(v;) elements ofS.
Thus|§ < 2/¢(vi), and3;_; ¢(vj) < 4 follows from the
fact thatg(v)) < 2¢(v;) for i’ < j <i. If i’ =1, then we
are done. Otherwisgij'j(p(vj) < —4log (Vi) +4<
—4(log, @(vi) + 1) + 4 follows from the induction hypoth-
esis and fromp(vi_1) > 2¢(vi). Therefore,y|_; ¢(vj) =
Zij/;ll @(vj)+ 3y 9(vj) < —4log, @(vi) +4, what we had
to show. O

In the rest of the proof we assume tlmtis sufficiently
large, sayp* > 100. Leti be the largest value such that

Z‘jv:‘i > p*/2. By the definition ofi, Z‘j\/:‘i+l<p(vj) < p*/2,
hencey'_; @(vj) > p*/2. Thus by Prop. 4.3, the weight
of vi (and everyvj with j > i) is at most 2(P"/2-4)/4 <
2-P"/10 (assuming thap* is sufficiently large). Define
T:={Vi,...,Vy|}, and let us select a random subget T:
independently each vertex € T is selected intof with
probability p(vj) := 2°"/10. g(vj) < 1. We show that iH
does not have 3" edges, then with nonzero probability
every edge of covers at most half of, contradicting the
assumption that satisfies the half-covering property.
The size ofY is the sum of|T| independent 0-1 ran-
dom variables. The expected value of this sumuis=

exp(—B?%u/3)for0< B <1,

PrIX= (A4 BIHI <\ exg—B2u/(2+ B)) for B > 1.

IN

Thus by setting3 = % the probability thaY is too small
can be bounded as

PIIY| < /2] < exp(~1/8p).

For each edg, the random variabl&X NY]| is the sum

of [XNT| independent 0-1 random variables. The ex-
pected value of this sum ix = Syexqr P(V) = 2°7/10.
Svext (V) < 27710 < 1/ (p*/2), where the first inequal-
ity follows from the fact thatp is a fractional stable set,
hence the total weighX can cover is at most 1. Notice that
if p* is sufficiently large, than the expected sizeXohY

is much smaller than the expected sizeYof We want to
bound the probability thaiX NY]| is at leastu /4. Setting
B=(u/4)/ux —1> p*/8—1, the Chernoff Bound gives

PIIXNY| > p/4] = PrlIXNY| = (1+B)kx]

< exp(—B2ux/(2+ B)) < exp(—B2ux/(2B)) =
exp(—H/8+ Ux/2) < exp(—H/16).

Here we assumed that" is sufficiently large tha3 > 2
(second inequality) andix/2 < p/16 (third inequality)
hold. If H hasm edges, then the probability thit| < /2
holds or an edg& covers at leasti /4 vertices ofY is at
most

exp(—H/8) +m-expg—u/16)
< (m+1)exp(—2°7/10. p*/32) <m- 272" (1)

If H satisfies the half-covering property, then for ev¥ry
there has to be at least one edge that covers more than half
of Y. Therefore, the upper bound (1) has to be at least 1.

This is only possible ifnis 22°°”, and it follows thap* =
O(loglogm), what we had to show. O

We remark that th€©(loglogm) bound in Lemma 4.2 is
tight: one can construct a hypergraph satisfying the half-
covering property that has fractional cover numkeand
2% edges.

Now we are ready to prove the main result of this section:



Theorem 4.5. CLOSEST SUBSTRING can be solved in  d(s*,s]) = d(s,s}) — |Y|. Furthermore, we show that this
(|=|d)Okd) . nO(loglogk) time, modification does not increase the distance foriathat is,
d(s",§) < d(s§) for everyi. This means tha* is also a

Proof. Let us fix the first substring, € s; of the solution. | - o
g €85 e good center string, contradicting the minimality of theusol

We will repeat the following algorithm for each possibl
choice ofs). Since there are at most possibilities for
choosings), the running time of the algorithm presented
below has to be multiplied by a factor of which is domi-

Let E; be the edge oflp corresponding to the substring
§. This means tha#) andg differ onY NE;, and they are

nated by then®(109/00K) term. the same oY \ E;. Therefore,d(s",5) < d(s,5) +|YN
The center string can differ on at most positions from  Eil = [Y'\ Eil. By assumptionE; can cover at most half of
Y, henced(s*, ) < d(s,§), as required. O

s;. Therefore, if we can find the sétof these positions,
then the problem can be solved by trying all tBg"! < ||
possible assignments to the position®inMe show how to
enumerate efficiently all the possible sBts

We construct a hypergrapks over the vertex set
{1,...,L}. The edges of the hypergraph describe the pos-
sible substrings in the solution. W is a lengthL substring

of some strings, then we add an edgg to G such that 1€ @lgorithm of Theorem 3.3 runs in rought§?('°9'°9k)
p € E if and only if the p-th character ofv differs from the time. The other factors of the running time (trying every

p-th character of;. If (s.S,,...,,) is a solution, then lefd possibleHp, checking everys corresponding to a giveR,
be the partial hypergraph @ that contains only the— 1 €tC:) depends only ok d, andz. =
edges corresponding to the- 1 substringss,, ..., s.. (H

can have less thdn— 1 edges if the same edge corresponds 5§  Set Balancing

to two different substrings.) Denote Bythe set of at most
d positions wheres ands, differ. Let Hp be the subhyper-
graph ofH induced byP: the vertex set oHg is P, and for
each edg& of H there is an edge NP in Hy. Hypergraph
Ho is subhypergraph dfi andH is partial hypergraph dB,
thusHg appears irG atP as subhypergraph.

We say that a solution iinimalif YK ; d(s,§) is mini-
mal. InProp. 4.6, we show that if the solutit®s,...,s,)
is minimal, thenHy has the half-covering property. There- SET BALANCING
fore, we can enumerate all the possiPle by consider-
ing every hypergraphly on at mostd vertices that has the
half-covering property (there are only a constant number of
them), and for each sudHy, we enumerate all the places
in G whereHg appears as subhypergraph. Lemma 4.2 en-
sures that everyp considered has small fractional cover
number. By Lemma 3.3, this means that we can enumerate

The most important factor of the running time comes
from using Theorem 3.3 to find all the places whigeap-
pears inG as subhypergraph. Sint# satisfies the half-
covering property and has less tHaedges, by Lemma 4.2
its fractional covering number i©(loglogk). Therefore,

In this section we introduce a new problem callegrS
BALANCING. The problem is somewhat technical, it is not
motivated by practical applications. However, as we will
see it in Section 6, the problem is useful in proving the
WI[1]-hardness of COSESTSUBSTRING.

Input:

A collection of m set systems.¥ =
{S1,--,5,%} (L <i < m) over the sam
ground sefA and a positive integet. The size
of each setS j is at most/, and there is a
integer weightv j associated to each s&f;.

D

=)

efficiently all the place® whereHg appears irG as sub- Parameters:

hypergraph. As discussed above, for each dRiehe can m, d, ¢

check whether there is a solution where the center string Task:

s differs froms; only onP. By repeating this method for Find a setX C A of size at mostl and select a
every hypergraphly having the half-covering property, we setS 4 € .7 for every 1< i < min such a way
eventually find a solution, if exists. that

Proposition 4.6. For every minimal solutiorts,s), ..., s,), XASal <Wa 2)

the corresponding hypergraphgthas the half-covering holds for every I<i <m.

property.

Proof. To see thatHy has the half-covering property, as- Here X A S5 denotes the symmetric differen¢éx \

sume that for som¥ C P, every edge oHp coversat most S 5)U (S5 \ X)|. We have to select a sitand a set from
half of Y. We show that in this case the solution is not each set system in such a way that the balancing require-
minimal. Modify s such that it is the same & on ev- ment (2) is satisfied: every selected set is closk¥.torhe

ery position ofY, lets* be the new center string. Clearly, weightw; j of each se§ j prescribes the maximum distance



of X from this set. The smaller the weight, the more restric- Proof. Assume thaty, ..., v_1 is a clique inG. Let
tive the requirement. The distance is measured by symmet- 1
ric difference,; therefore, adding ¥an element outsid§ j X — U N
can be compensated by adding¢@n element fron§ ;. If i '
(2) holds for some s€§ 5, then we say théf 5 is balanced _
or X balances 7&' The size ofX is ZE;(])' 2 = 2t — 1. Select the Serl’vil U

It can be assumed that the weight of each set is at most<,.vi, from the verifier systeni, ;,. This set is balanced:
¢ +d, otherwise the requirement would be automatically it is a size 2 + 2'2 subset ofX having weight(2! — 1) —
satisfied for every possiblé. If a set appears in multiple (21 + 2'2),
set systems, then it can have different weights in the differ ~ To prove the other direction, assume now that there is a
ent systems. standard solutiorX. In a standard solutioX N A; is a 2
element set fron#j, assume thaX NA; = X, for somey;.
We claim that they's form a sizet clique inG.

Suppose that for sonig < i, verticesv;, andv;, are not
Proof. The proof is by reduction from the MKIMUM connected by an edge. Consider theSet.%, ;, selected

CLIQUE problem. Assume that a grag®(V,E) is given in the solution. The size of is 2 — 1 in a standard solution,

with n vertices anck edges, the task is to find a clique of thus the seK contains at least'2-1— (2 +22) elements
sizet. It can be assumed that= 2% for some intege€: outside the se®. Therefore,S can be balanced only if all

)1 i2 i
we can ensure that the number of vertices has this form bythe 2t + 22 elements oS are inX. Assume that the s&

adding at mos}V|? isolated vertices. Furthermore, we can selected fromi, i, IS Xjy.uU Xip,v. NOW Xiy uUXipy € X,
assume tha€ > t (i.e.,n > 22): if n< 22, then Maxi- which means thatl = v;; andv = v;,. By construction, if

: A XiuUX,yvisin.#, i,, thenu andv are adjacent, henag
MUM CL|Q_UE can be solvgd directly in timé&2<)' - n by andv,, are indeed neighbors. 0
enumerating every set of size

The ground seA of the SET BALANCING problem is The job of the enforcer systems is to ensure that every
partitioned intat groupsAy, ..., A._1. The groupA is fur- solution of weight at mosd = 2! — 1 is standard. The'2- 1
ther partitioned into 2blocksA; 1, ..., A 5i; the total num-  blocksA; j are indexed by two indicesandj. It will be
ber of blocks is 2— 1. The blockA; ; containant/? = 2" more convenient to index the blocks by a single variable: let
elements. Sed := 2! — 1. Later we will argue that itis suf- B, ..., Ba_1 be an ordering of the blocks such it is
ficient to restrict our attention to solutions wheteontains  the only block of grouho, the blocksB;, Bs are the blocks
exactly one element from each bloak;. Let us call such  Of Ay, the next four blocks are the blocks A4, etc.

Theorem 5.1. SET BALANCING is W[1]-hard with param-
eters m, d, and.

a solution astandard solution We construct the set sys- A naive way of constructing the enforcer set systems
tems in such a way that there is one-to-one correspondencié/ould be to have a set system for each blockB; such
between the standard solutions and the sigques ofG.  that for each element d3;, there is a corresponding one-

In a standard solutioX contains exactly 2elements from  €lement set in7; with weight 2 —2. This ensures that if
groupA;, and there arénl/zi)zi — n different possibilites & solution contains at least one element from every block
for selecting these' Zlements from the blocks d. Let  OthertharB;, thenithas to contain an elementifas well.

the set systen®; = {X; 1,...,X.n} contain these different The problem is that every set of; is balanced by the so-

2 element sets. Thesepossibilities will correspond to the  1Ution X = 0, hence such systems cannot ensure that every
choice of the-th vertex of the clique. solution is stand?rd. _

The set systems are of two types: the verifier systems | N€re are 21-1 enforcer set systems: there is a set
and the enforcer systems. The role of the verifier systemsSYSt€m-4 F corresponding to each nonempty subseof
is to ensure that every standard solution corresponds to al2:---»2 — 1}. The job of.7& is to rule out the possibil-
clique of sizet, while the enforcer systems ensure that there ' that a solutionX contains no elements from the blocks

are only standard solutions. indexed byF, butX contains at least one element from ev-
For each X iy < ip <t —1 the verifier system”, i,

ery other block. Clearly, these systems will ensure that no
ensures that thig-th and the-th vertices of the clique are bt|°°k is empty in a solution, hence every solutions of weight
adjacent. The set systes, , contains 2 sets of size D 2—1is _standard. One possm_le way of cqnstructmg the sys-
212 each. If verticess andv are adjacent if§, thenX;, ,U €M7k is to have one set of siZE | and weight 2—1—|F|
X, IS in .7, i,. The weight of every set i/, j, is (2! — for eaF:h possible way of selecting one eIemenF from each
1) — (2i1 + 2i2>_ block indexed byF . Now t_he problem is that the size of:

can be too large, in particular whén= {1,2,...,2' —1}.
Proposition 5.2. There is a standard solution if and onIy if We use a somewhat more Comp"cated construction to keep
G has a k-clique. the size of the systems small.



Given a finite sefr of positive integers, define (p)
to be the largesf(|F|+ 1)/2] elements of this set. The
enforcer system correspondingfds defined as

S = Bp.
peup(F)

3)

That is, we consider the blocks indexed by the upper half of
F, and put intas all the possible combinations of select-
ing one element from each block. Let the weight of each
set in.%= be 2 —1— |up(F)|. Notice that it is possible
that ugF;) = up(F,) for someF; # F,, which means that
for suchF; andF; the systems7, and.#%, are in fact the
same. However, we do not care about that.

We have to verify that these set systems are not too large
they can be constructed in uniformly polynomial time:

Proposition 5.3. For every nonempty E {1,2,...,2' — 1},
the enforcer system¥r contains at mostsets.

Proof. Letx be the smallest element of (i), assume that
2P < x < 2P*+1 for some integep. There is one block with
sizen, there are 2 blocks with size/2, ..., there are 2
blocks with sizen}/2 | hence the size ®,p is n/2". The
size of the blocks are decreasing, thus all the sets in th
product (3) are of size at most/2”. If the smallest element
of up(F) is x, then it can contain at most+ 1 elements.
This means that we take the direct product of at nxastl.
sets of size at most'/2” each. Therefore, the total number
of sets in.7 is at most(nt/2° 1 < (n1/2°)2"* — 2,

The following proposition completes the proof of the
first direction: if the solution is standard, then we canaele
a set from each enforcer system. Together with Prop. 5.2,
it follows that if there is a clique of sizg then there is a
(standard) solution for the constructed instance 0b&
EST SUBSTRING.

Proposition 5.4. If X is a standard solution, then eact
contains a set that is balanced by X.

Proof. For the enforcer systerrt, let us select the set

S=xn |J Bp
peup(F)

That is, S contains those vertices of that belong to the
blocks indexed by uf). The setS: is a sizelup(F)| sub-
set of X. Therefore,[X A S| = 2! — 1 — |up(F)|, which
is exactly the weight of the selected set. TIgsis bal-
anced. O

On the other hand, if there is a solution for the con-
structed instance ofe8 BALANCING with [X| <d=2!—1,

Proposition 5.5. If [X| < 2! — 1, then|X N B;| = 1 for every
block B.

Proof. Assume first thaK does not contain elements from
some of the blocks. LeF contain the indices of those
blocks that are disjoint fronX. This means thaX con-
tains at least one element from each block ndtjrhence
IX| >2' —1— |F|. Assume that some s8is selected from
¢ in the solution. This set contains elements only from
blocks indexed by u@=) C F, henceS is disjoint from

X. Thus|XaS = [X|+|9>2"—1—|F|+ |up(F)| >

2! —1— |up(F)|, which means tha® is not balanced (here
we used|F| — [up(F)| < |up(F)|). Therefore, each block
contains at least one elementXf Since there are'2- 1
blocks, this is only possible if each block contains exactly
one element oX. O

The distanced = 2! — 1 and the numbem = (}) +

22-1_ 1 of the constructed set systems are functions of
only. Each set in the constructed systems has size at most
¢:= 2" — 1. The size of each set system is polynomiat,n
thus the reduction is a correct parameterized reductian.

® Hardness ofCLOSEST SUBSTRING

In this section we show that (@SEST SUBSTRING is
WI[1]-hard with combined parameteksandd. The reduc-
tion is very similar to the reduction presented in [7]. As in
that reduction, the main technical trick is that the stisnig
divided into blocks and we ensure that the strshi every
solution is one of these blocks.

Theorem 6.1. CLOSEST SUBSTRING is W[1]-hard with
parameters d and k, even3f= {0,1}.

Proof. The reduction is from the 55r BALANCING prob-
lem, whose W[1]-hardness was shown in Section 5. As-
sume thaim set systems”{ = {S1,...,§ %} and an in-
tegerd are given. Let O< w;j < d+ ¢ be the weight of

S j in .7, and assume that each set has size at fhoate
construct an instance ofl@SESTSUBSTRINGWhered + 1
stringss 1, S2, ..., S.d+1 correspond to each set system
A, and there is one additional strisg called thetemplate
string. Thus there ar&:= (d+ 1)m+ 1 strings in total.

Setd :=d+/andL :=6d +3d'(3d"' +1) + |A| +d'—
d+2d'm(d + 1), whereA is the common ground set of the
set systems. The template striggghas lengthL, hence
S = So in every solution. The string j is the concatena-
tion of blocks Bj 1, ..., Bij | of the same length, each
block corresponds to a set ifff. We will ensure that in a
solution the substring ; is one complete block frorg ;.

then this solution has to be standard, and by Prop. 5.2 theréTherefore, selecting ; from s ; in the constructed Cs-

is a clique of sizd in G. This completes the proof of the
second direction.

EST SUBSTRING instance plays the same role as selecting a
setS from . in SET BALANCING.



Each block of the string5 j is the concatenation of
four parts: the front tag, the core, the complete tag, and
the back tag. Thdront tagis the same in every block:
137 (103¢")3d"13d" Thecore corresponds to the ground set
Ain the SET BALANCING problem. The length of the core
is |A[, and thep-th character of the core in blod j  is 1
if and only if the selS \ € .} contains thep-th element of
A. Thecomplete tags 199 in every block. Theback tag
is the concatenation af(d + 1) segment€; j (1 <i <m,
1< j <d+1) (the order in which these segments are con-
catenated will not be important). The length of each seg-
mentis 2" In blockB; j « of strings; j the back tag contains
1's only in segmen€; ;: there is 1 on the firsd’ — w; x > 0
positions ofG; j, the rest ofC; j is 0. This completes the
description of the strings j. Notice that the blocks; j, «
andB; j, k differ only in the back tag. The lengthtemplate
string s is similar to the blocks defined above: it has the

Proposition 6.4. If there is a solution for the constructed
instance of CLOSESTSUBSTRING, then there is such a so-
lution where the front tag of the center string s is the same
as the front tag of &

Proposition 6.5. If there is a solution for the constructed
instance of CLOSESTSUBSTRING, then there is a solution
where the back tag of the center string s contains Gy

Proposition 6.6. If there is a solution for the constructed
instance of CLOSESTSUBSTRING, then there is such a so-
lution where the complete tag of the center string s contains
only 1's.

Assuming thasis of this form, it is not difficult to prove
the converse of Prop. 6.2:

Proposition 6.7. If there is a solution for the constructed

same front tag as all the other blocks, but its core, completeinStance ofCLOSESTSUBSTRING, then there is a solution

tag, and back tag contains only O’s.
The first direction of the proof is shown in the following
proposition:

Proposition 6.2. If the SET BALANCING instance has a
solution, then the constructed instance @fOSEST SUB-
STRING also has a solution.

Proof. LetX C AandSy 5, € 7, ..., Snan € “m be a so-
lution of SET BALANCING. Let the center string be the
concatenation of the front tag, the incidence vectoXopf
the string £-9, and the string 8 ™d+1) The distance of
sandsy is |X|+d' —d < d’: the distance i$X| on the core
andd’ — d on the complete tag. Furthermore, we claim that
the blockB; j 4 in strings j is at distance at most’ from

s. If we can show this, then it follows thatl@SEST SuB-
STRING has a solution.

The front tag ofB; j 5 is the same as the front tag®fin
the core the distance is the symmetric differenc&X afnd
S5 The complete tag is the samesandB; j o,. The back
tag ofsis all 0, while the back tag d; j o, containgd’ —w; x
characters 1 (in the segmeny;). Therefore,

d(S, BI,],&) - |XAS7a||+d,7W|7k § dl,

where the inequality follows from the fact thAtbalances
the setS 5, thatis,|X A S 5] < Wi. O

To prove the reverse direction, we have to show that a
solution for the COSEST SUBSTRING problem implies a
solution of T BALANCING. We show that it can be as-
sumed that the solution forl®SESTSUBSTRINGIS “nice,”
as defined by the following four propositions (proofs omit-
ted):

Proposition 6.3. In every solution, the substringjsof S,
is a block B j , for some value b.

for the SET BALANCING problem.

Proof. Consider a solution where the complete tag odn-
tains only 1's, and the back tag stontains only 0's. De-
fine the seiX C A based on the core of let an element of
A be inX if and only if the corresponding character is 1 in
the core ofs. The strings differs from the template string
50 at|X| positions in the core and dt — d positions in the
complete tag. Since(s,sp) < d’, it follows that|X| < d.

We claim that for every X i <'s, a set§ can be selected
from .7 that is balanced b). Assume thas ; is the block
Bi1: for somet. We show thatS; € .7 is balanced by
X. Let us determine the distanc¥B; 1¢,S), which is by
assumption at most. In the core, the two strings differ on
the symmetric difference d; andX. The strings do not
differ on the complete tag, but they differ on every position
of the back tag wherB; 11 is 1. There are exactly —w;
such positions, hence

d(s;§j) =IXASk+d —w <d,
which means thaiX A S| <wit and S; is balanced. O

Prop. 6.2 and 6.7 together prove the correctness of the
reduction. O

Putting together Theorem 5.1 and 6.1 gives a two-step
reduction from MAXIMUM CLIQUE to CLOSEST SuUB-
STRING. Given an instance of kXxIMUM CLIQUE with
parametet, this two-step reduction constructs an instance
of CLOSEST SUBSTRING with parametersi = 2°0 and
k=22 Itis unlikely that MAXIMUM CLIQUE can be
solved in f(t) -n°® time: that would imply that 3-8r
could be solved in subexponential time [3]. Using our re-
duction, we can transfer this lower bound omkMum
CLIQUE to the Q. OSESTSUBSTRING problem:



Corollary 6.8. There is no f(k,d) - n°1°9% or f,(k,d) - for the problem. On the other hand, a parameterized reduc-
neoglogk) time algorithm forCLOSESTSUBSTRING, unless  tion can be used to show the optimality of a subexponential
3-SaT can be solved in subexponential time. O algorithm. It is possible that this interplay between param
eterized complexity and subexponential algorithms apgpear
in the case of some other problems as well.

The W[1]-hardness of BOSEST SUBSTRING implies
that there is no EPTAS for the optimization version of the

Cesati and Trevisan [2] have shown (by an easy argu-
ment) that if a problem is W[1]-hard, then the correspond-
ing optimization problem cannot have an EPTAS (i.e., a
PTAS with “”"1'”9 timef(€) - n%), unless FPT= W[1]. problem. More precisely, we can show that there is no
Hence then®"/*) time PTAS of [13] for QOSESTSUB-  pTAS with running timef (g) - n°1°9%/¢) | unless there are
STRING cannot be improved to an EPTAS. Furthermore, g,pexponential algorithms for 3a8. However, it does not
the connection with subexponential algorithms allows us to rule out the possibility that theP /s time PTAS of [13]
give a lower bound on the exponentrof can be improved ta®(°9%/¢) |t is an intriguing open ques-
Corollary 6.9. There is no fe) .nelegl/e) time PTAS for  tion to determine whether such an improvementis possible.
CLOSEST SUBSTRING, unless3-SaT can be solved in
subexponential time. O References
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