
The Closest Substring problem with small distances∗

Dániel Marx
Department of Computer Science and Information Theory,

Budapest University of Technology and Economics
Budapest H-1521, Hungary
dmarx@cs.bme.hu

Abstract

In the CLOSEST SUBSTRING problem k strings s1, . . . ,
sk are given, and the task is to find a string s of length L such
that each string si has a consecutive substring of length L
whose distance is at most d from s. The problem is moti-
vated by applications in computational biology. We present
two algorithms that can be efficient for small fixed values of
d and k: for some functions f and g, the algorithms have
running time f(d) ·nO(logd) and g(d,k) ·nO(loglogk), respec-
tively. The second algorithm is based on connections with
the extremal combinatorics of hypergraphs. TheCLOSEST

SUBSTRING problem is also investigated from the parame-
terized complexity point of view. Answering an open ques-
tion from [6, 7, 11, 12], we show that the problem isW[1]-
hard even if both d and k are parameters. It follows as
a consequence of this hardness result that our algorithms
are optimal in the sense that the exponent of n in the run-
ning time cannot be improved to o(logd) or to o(log logk)
(modulo some complexity-theoretic assumptions). Another
consequence is that the running time nO(1/ε4) of the approxi-
mation scheme forCLOSESTSUBSTRINGpresented in [13]
cannot be improved to f(ε) ·nc, i.e., theε has to appear in
the exponent of n.

1 Introduction

In this paper we are investigating a pattern matching
problem that received considerable attention lately. Given
k stringss1, . . . , sk over an alphabetΣ, and two integersL,
d, the CLOSESTSUBSTRINGproblem asks whether there is
a lengthL string s such that every stringsi has a lengthL
substrings′i whose Hamming-distance is at mostd from s.
The problem is motivated by applications in computational
biology. Finding similar regions in multiple DNA, RNA, or

∗Research is supported in part by grants OTKA 44733, 42559 and
42706 of the Hungarian National Science Fund.

protein sequences plays an important role in many applica-
tions, for example, in locating binding sites and in finding
conserved regions in unaligned sequences.

The CLOSESTSUBSTRING problem is NP-hard even in
the special case whenΣ = {0,1} and every stringsi has
length L (cf. [9]). Li et. al [13] studied the optimization
version of CLOSESTSUBSTRING, where we have to find the
smallestd that makes the problem feasible. They presented
a polynomial-time approximation scheme: for everyε > 0,
there is annO(1/ε4) time algorithm that produces a solution
that is at most(1+ ε)-times worse than the optimum.

Parameterized complexity deals with NP-hard problems
where every instance has a distinguished partk, which will
be called the parameter. We expect that for an NP-hard
problem every algorithm has exponential running time. In
parameterized complexity the goal is to develop algorithms
that run inuniformly polynomial time: the running time is
f (k) ·nc, wherec is a constant andf is a (possibly exponen-
tial) function depending only onk. We call a parameterized
problemfixed-parameter tractableif such an algorithm ex-
ists. This means that the exponential increase of the running
time can be restricted to the parameterk. It turns out that
several NP-hard problems are fixed-parameter tractable, for
example MINIMUM VERTEX COVER, LONGEST PATH,
and DISJOINT TRIANGLES. Therefore, for small values of
k, the f (k) term is just a constant factor in the running time,
and the algorithms for these problems can be efficient even
for large values ofn. This has to be contrasted with algo-
rithms that have running time such asnk: in this case the
algorithm becomes practically useless for large values ofn
even if k is as small as 10. The theory of W[1]-hardness
can be used to show that a problem is unlikely to be fixed-
parameter tractable, for every algorithm the parameter has
to appear in the exponent ofn. For example, for MAXI -
MUM CLIQUE and MINIMUM DOMINATING SET the run-
ning time of the best known algorithms isnO(k), and the
W[1]-hardness of these problems tells us that it is unlikely
that an algorithm with running time, say,O(2k · n) can be
found. For more details, see [5].

1

CLOSEST SUBSTRING was investigated in the frame-
work of parameterized complexity by several authors. For-
mally, the problem is the following:

CLOSESTSUBSTRING

Input:
k stringss1, . . . , sk over an alphabetΣ, integers
d andL.

Parameters:
k, |Σ|, d, L

Task:
Find a strings of lengthL such that for every
1≤ i ≤ k, the stringsi has a lengthL consecutive
substrings′i with d(s,s′i) ≤ d.

The strings is called thecenter string. The Hamming-
distance of two stringsw1 andw2 (i.e., the number of po-
sitions where they differ) is denoted byd(w1,w2). For a
given center strings, it is easy to check in polynomial time
whether the substringss′i exist: we have to try every length
L substring of the stringssi .

In [8] and [6] it is shown that the problem is W[1]-hard
even if all three ofk, d, andL are parameters. Therefore,
if the size of the alphabetΣ is not bounded in the input,
then we cannot hope for an efficient exact algorithm for the
problem. However, in the computational biology applica-
tions the strings are typically DNA or protein sequences,
hence the number of different symbols is a small constant.
Therefore, we will focus on the case when the size ofΣ
is a parameter. Restricting|Σ| does not make the problem
tractable, since CLOSEST SUBSTRING is NP-hard even if
the alphabet is binary. On the other hand, if|Σ| andL are
both parameters, then the problem becomes fixed-parameter
tractable: we can enumerate and check all the|Σ|L possible
center strings. However, in practical applications the strings
are usually very long, hence it makes much more sense to
restrict the number of stringsk or the distance parameter
d. In [7] it is shown that CLOSEST SUBSTRING is W[1]-
hard with parameterk, even if the alphabet is binary. How-
ever, the complexity of the problem with parameterd or
with combined parametersd, k remained an open question.

Our results. We show that CLOSEST SUBSTRING is
W[1]-hard with combined parametersk andd, even if the
alphabet is binary. This resolves an open question raised in
[6, 7, 11, 12]. Therefore, there is nof (k,d) · nc algorithm
for CLOSESTSUBSTRING (unless FPT= W[1]); the expo-
nential increase cannot be restricted to the parametersk and
d. The first step in the reduction is to introduce a technical
problem called SET BALANCING , and prove W[1]-hardness
for this problem. This part of the proof contains most of the
new combinatorial ideas. The SET BALANCING problem is
reduced to CLOSESTSUBSTRING by a reduction very sim-
ilar to the one presented in [7].

We present two exact algorithms for the CLOSESTSUB-
STRING problem. These algorithms can be efficient ifd, or
bothd andk are small (less than logn). The first algorithm
runs in|Σ|d(logd+2)nO(logd) time. Notice that this algorithm
is not uniformly polynomial, but only the logarithm of the
parameter appears in the exponent ofn. Therefore, the al-
gorithm might be efficient for small values ofd. The second
algorithm has running time(|Σ|d)O(kd) ·nO(loglogk). Here the
parameterk appears in the exponent ofn, but loglogk is a
very slowly growing function. This algorithm is based on
defining certain hypergraphs and enumerating all the places
where one hypergraph appears in the other. Using some re-
sults from extremal combinatorics, we develop techniques
that can speed up the search for hypergraphs. It turns out
that if hypergraphH has bounded fractional edge cover
number, then we can enumerate in uniformly polynomial
time all the places whereH appears in some larger hyper-
graphG. This result might be of independent interest.

Notice that the running times of our two algorithms are
incomparable. Assume that|Σ| = 2. If d = O(logn) and
k = nO(1), then the running time of the first algorithm is
nO(loglogn) · nO(loglogn) = nO(loglogn), while the second al-
gorithm needs(logn)nO(1) logn · nO(log logn) steps, which can
be much larger. On the other hand, ifd = O(log logn)
and k = O(log logn), then the first algorithm runs in
something likenO(loglog logn) time, while the second algo-
rithm needs only(log logn)O(log2 logn) · nO(loglogloglogn) =
nO(logloglog logn) steps.

Our W[1]-hardness proof combined with some recent re-
sults on subexponential algorithms shows that the two exact
algorithms are in some sense best possible. The exponents
are optimal: we show that if there is anf1(k,d, |Σ|) ·no(logd)

or an f2(k,d, |Σ|) ·no(log logk) algorithm for CLOSESTSUB-
STRING, then 3-SAT can be solved in subexponential time.

If a PTAS has running time such asO(n1/ε2
), then it be-

comes practically useless for largen, even if we ask for an
error bound of 20%. Anefficient PTAS (EPTAS)is an ap-
proximation scheme that produces a(1+ ε)-approximation
in f (ε) · nc time for some constantc. If f (ε) is e.g., 21/ε ,
then such an approximation scheme can be practical even
for ε = 0.1 and largen. A standard consequence of W[1]-
hardness is that there is no EPTAS for the optimization ver-
sion of the problem. Hence our hardness result shows that
thenO(1/ε4) time approximation scheme of [13] for CLOS-
EST SUBSTRING cannot be improved to an EPTAS.

The paper is organized as follows. The first algorithm
is presented in Section 2. In Section 3 we discuss tech-
niques for finding one hypergraph in another. In Section 4
we present the second algorithm. This section introduces a
new hypergraph property called half-covering, which plays
an important role in the algorithm. We define in Section 5
the SET BALANCING problem, and prove that it is W[1]-
hard. In Section 6 the SET BALANCING problem is used to

2

show that CLOSEST SUBSTRING is W[1]-hard with com-
bined parametersd andk. We conclude the paper with a
summary in Section 7.

2 Finding generators

In this section we present an algorithm with running time
proportional to roughlynlogd. The algorithm is based on
the following observation: if all the stringss′1, . . . , s′k agree
at some positionp in the solution, then we can safely as-
sume that the same symbol appears at thep-th position of
the center strings. However, if we look at only a subset of
the stringss′1, . . . , s′k, then it is possible that they all agree
at some position, but the center string contains a different
symbol at this position. We will be interested in sets of
strings that do not have this problem:

Definition 2.1. Let G= {g1,g2, . . . ,gℓ} be a set of length L
strings. We say that G is ageneratorof the length L string
s if whenever every gi has the same character at some po-
sition p, then string s has this character at position p. The
sizeof the generator isℓ, the number of strings in G. The
conflict of the generator is the set of those positions where
not all of the strings gi have the same character.

As we have argued above, it can be assumed that the
stringss′1, . . . , s′k of a solution form a generator of the center
strings. Furthermore, these strings have a subset of size at
most logd+2 that is also a generator:

Lemma 2.2. If an instance ofCLOSEST SUBSTRING is
solvable, then there is a solution s that has a generator G
having the following properties:

• each string in G is a substring of some si ,

• G has size at mostlogd+2,

• the conflict of G is at most d(logd+2).

Proof. Let s, s′1, . . . , s′k be a solution such that∑k
i=1d(s,s′i)

is minimal. We prove by induction that for everyj we can
select a setG j of j strings froms′1, . . . , s′k such that there
are less than(d + 1)/2 j−1 bad positionswhere the strings
in G j all agree, but this common character is different from
the character ins at this position. The lemma follows from
j = ⌈log(d + 1)⌉+ 1 ≤ logd + 2: the setG j has no bad
positions, hence it is a generator ofs. Furthermore, each
string inG j is at distance at mostd from s, thus the conflict
of G j can be at mostd(logd+2).

For the casej = 1 we can setG1 = {s′1}, sinces′1 differs
from s at not more thand positions. Now assume that the
statement is true for somej. Let P be the set of bad posi-
tions, where thej strings inG j agree, but they differ from
s. We claim that there is some strings′t in the solution and
a subsetP′ ⊆ P with |P′| > |P|/2 such thats′t differs from

all the strings inG j at every position ofP′. If this is true,
then we adds′t to the setG j to obtainG j+1. Only the posi-
tions inP\P′ are bad for the setG j+1: for every positionp
in P′, the strings cannot all agree atp, sinces′t do not agree
with the other strings at this position. Thus there are at most
|P\P′| < |P|/2 < (d+1)/2 j bad positions, completing the
induction.

Assume that there is no such strings′t . In this case we
modify the center strings the following way: for every po-
sition p ∈ P, let the character at positionp be the same
as in strings′1. Denote bys∗ the new string. We show
that d(s∗,s′i) ≤ d(s,s′i) ≤ d for every 1≤ i ≤ k, hences∗

is also a solution. By assumption, every strings′i in the
solution agrees withs′1 on at least|P|/2 positions ofP.
Therefore, if we replaces with s∗, the distance ofs′i from
the center string decreases on at least|P|/2 positions, and
the distance can increase only on the remaining at most
|P|/2 positions. Therefore,d(s∗,s′i) ≤ d(s,s′i) follows. Fur-
thermore,d(s∗,s′1) = d(s,s′1)− |P| implies∑k

i=1d(s∗,s′i) <

∑k
i=1d(s,s′i), which contradicts the minimality ofs.

Our algorithm first creates a setS containing all the
lengthL substrings ofs1, . . . , sk. For every subsetG ⊆ S
of logd + 2 strings, we check whetherG generates a cen-
ter strings that solves the problem. Since|S| ≤ n, there
are at mostnlogd+2 possibilities to try. By Lemma 2.2 we
have to consider only those generators whose conflict is at
mostd(logd+2), hence at most|Σ|d(logd+2) possible center
strings have to be tested for eachG.

Theorem 2.3. CLOSEST SUBSTRING can be solved in
|Σ|d(logd+2)nlogd+O(1) time.

3 Finding hypergraphs

Let us recall some standard definitions concerning hy-
pergraphs. Ahypergraph H(VH ,EH) consists of a set of
vertices VH and a collection ofedges EH , where each edge
is a subset ofVH . Let H(VH ,EH) and G(VG,EG) be two
hypergraphs. We say thatH appears at V′ ⊆VG as partial
hypergraphif there is a bijectionπ between the elements
of VH andV ′ such that for every edgeE ∈ EH we have that
π(E) is an edge ofG (where the mappingπ is extended to
the edges the obvious way). For example, ifH has the edges
{1,2}, {2,3}, andG has the edges{a,b}, {b,c}, {c,d},
thenH appears as a partial hypergraph at{a,b,c} and at
{b,c,d}. We say thatH appears at V′ ⊆ VG as subhyper-
graphif there is such a bijectionπ where for everyE ∈ EH ,
there is an edgeE′ ∈ EG with π(E) = E′∩V ′. For example,
let the edges ofH be{1,2}, {2,3}, and let the edges ofG
be{a,c,d}, {b,c,d}. Now H does not appear inG as par-
tial hypergraph, butH appears as subhypergraph at{a,b,c}
and at{a,b,d}. If H appears at someV ′ ⊆ VG as partial
hypergraph, then it appears there as subhypergraph as well.

3

A stable setin H(VH ,EH) is a subsetS⊆ VH such that
every edge ofH contains at most one element fromS. The
stable numberα(H) is the size of the largest stable set inH.
A fractional stable setis an assignmentφ : VH → [0,1] such
that ∑v∈E φ(v) ≤ 1 for every edgeE of H. The fractional
stable numberα∗(H) is the maximum of∑v∈VH

φ(v) taken
over all fractional stable setsφ . The incidence vector of a
stable set is a fractional stable set, henceα∗(H) ≥ α(H).
An edge coverof H is a subsetE′ ⊆ EH such that each ver-
tex ofVH is contained in at least one edge ofE′. Theedge
cover numberρ(H) is the size of the smallest edge cover
in H. (The hypergraphs considered here do not have iso-
lated vertices, hence every hypergraph has an edge cover.)
A fractional edge coveris an assignmentψ : EH → [0,1]
such that∑E∋vψ(E) ≥ 1 for every vertexv. Thefractional
cover numberρ∗(H) is the minimum of∑E∈EH

ψ(E) taken
over all fractional edge coversψ , clearly ρ∗(H) ≤ ρ(H).
It follows from the duality theorem of linear programming
thatα∗(H) = ρ∗(H) for every hypergraphH.

Friedgut and Kahn [10] determined the maximum num-
ber of times a hypergraphH(VH ,EH) can appear as partial
hypergraph in a hypergraphG with m edges. That is, we
are interested in the maximum number of different subsets
V ′ ⊆VG whereH can appear inG. A trivial upper bound is
m|EH |: if we fix π(E) ∈ EG for each edgeE ∈ EH , then this
uniquely determinesπ(VH). This bound can be improved to
mρ(H): if edgesE1, E2, . . . , Eρ(H) cover every vertex ofVH ,
then by fixingπ(E1), π(E2), . . . , π(Eρ(H)) the setπ(VH)
is determined. The result of Friedgut and Kahn says thatρ
can be replaced with the (possibly smaller)ρ∗:

Theorem 3.1 ([10]). Let H be a hypergraph with fractional
cover numberρ∗(H), and let G be a hypergraph with m
edges. The maximum number of times H can appear in G
as partial hypergraph is|VH |

|VH | ·mρ∗(H). Furthermore, for
every H and sufficiently large m, there is a hypergraph with
m edges where H appears mρ∗(H) times.

Theorem 3.1 does not remain valid if we replace “par-
tial hypergraph” with “subhypergraph.” For example, letH
contain only one edge{1,2}, and letG have one edgeE of
sizeℓ. Now H appears at each of the

(ℓ
2

)

two element sub-
sets ofE as subhypergraph. However, if we bound the size
of the edges inG, then we can state a subhypergraph analog
of Theorem 3.1:

Corollary 3.2. Let H be a hypergraph with fractional
cover numberρ∗(H), and let G be a hypergraph with m
edges, each of size at mostℓ. Hypergraph H can appear
in G as subhypergraph at most|VH |

|VH | · ℓ|VH |ρ∗(H) ·mρ∗(H)

times.

Given hypergraphsH(VH ,EH) andG(VG,EG), we would
like to find all the placesV ′ ⊆ VG in G whereH appears
as subhypergraph. By Corollary 3.2, there can be at most

t = |VH |
|VH | · ℓ|VH |ρ∗

·mρ∗
such places, which means that we

cannot enumerate all of them in less thanΘ(t) steps. There-
fore, our aim is to find an algorithm with running time poly-
nomial int. The proof of Theorem 3.1 is not algorithmic (it
is based on Shearer’s Lemma [4], which is proved by en-
tropy arguments), hence it does not directly imply an effi-
cient way of enumerating all the places whereH appears.
However, in Theorem 3.3, we show that there is a very
simple algorithm for enumerating all these places. Corol-
lary 3.2 is used to bound the running time of the algorithm.
This result might be useful in other applications as well.

Theorem 3.3. Let H(VH ,EH) be a hypergraph with frac-
tional cover numberρ∗(H), and let G(VH ,EH) be a hyper-
graph with m edges where each edge has size at mostℓ.
There is an algorithm that enumerates in|VH |! · |VH |

|VH | ·
ℓ|VH |ρ∗(H) ·mρ∗(H)+O(1) time every subset V′ ⊆VG where H
appears in G as subhypergraph.

Proof. LetVH = {1,2, . . . , r}. For each 1≤ i ≤ r, letHi be a
hypergraph onVi = {1,2, . . . , i} such that ifE is an edge of
H, thenE∩Vi is an edge ofHi . For eachi = 1,2, . . . , r, we
find all the places whereHi appears inG as subhypergraph.
SinceH = Hr this method will solve the problem.

For i = 1 the problem is trivial, sinceVi has only one
vertex. Assume now that we have a listLi of all the i el-
ement subsets ofVG whereHi appears as subhypergraph.
The important observation is that ifHi+1 appears as subhy-
pergraph at someV ′ ⊆ VG, thenV ′ has ani element subset
V ′′ whereHi appears as subhypergraph. For each setX ∈ Li ,
we try all the|VG \X| different ways of extendingX to an
i +1 element setX′, and check whetherHi+1 appears atX′

as subhypergraph. This can be checked by trying all the
(i + 1)! possible bijectionsπ betweenVi+1 andX′, and by
checking for each edgeE of Hi+1 whether there is an edge
E′ in G with π(E) = E′∩X′.

Let us estimate the running time of the algorithm. The
algorithm consists of|VH | iterations. Notice first that
ρ∗(Hi) ≤ ρ∗(H), since a fractional edge cover ofH can
be used to obtain a fractional edge cover ofHi . There-
fore, by Corollary 3.2, each listLi has size at most|VH |

|VH | ·
ℓ|VH |ρ∗(H) ·mρ∗(H). When we determine the listLi+1, we
have to check for at most|Li | · |VG| different sizei + 1 sets
X′ whetherHi+1 appears atX′ as subhypergraph. Check-
ing oneX′ requires us to test(i +1)! different bijectionsπ ,
and for eachπ we have to go through all them edges ofG.
Suppressing the polynomial factors, the total running time
is |VH |! · |VH|

|VH | · ℓ|VH |ρ∗(H) ·mρ∗(H)+O(1).

4 Half-covering and the CLOSEST SUB-
STRING problem

The following hypergraph property plays a crucial role
in our second algorithm for CLOSESTSUSBTRING:

4

Definition 4.1. We say that a hypergraph H(V,E) has the
half-coveringproperty if for every non-empty subset Y⊆V
there is an edge X∈ E with |X∩Y| > |Y|/2.

Theorem 3.3 says that finding a hypergraphH is easy
if H has small fractional cover number. In our algorithm
for the CLOSEST SUBSTRING problem (described later in
this section), we have to find hypergraphs satisfying the
half-covering property. The following combinatorial lemma
shows that such hypergraphs have small fractional cover
number, hence they are easy to find:

Lemma 4.2. If H (V,E) is a hypergraph with m edges sat-
isfying the half-covering property, then the fractional cover
numberρ∗ of H is O(log logm).

Proof. The fractional cover number equals the fractional
stable number, thus there is a functionφ : V → [0,1]
such that∑v∈X φ(v) ≤ 1 holds for every edgeX ∈ E, and
∑v∈V φ(v) = ρ∗. Let v1, v2, . . . , v|V| be an ordering of the
vertices by decreasing value ofφ(vi). First we give a bound
on the sum of the largestφ(vi)’s:

Proposition 4.3. For every 1 ≤ i ≤ |V|, we have
∑i

j=1φ(v j) ≤−4log2 φ(vi)+4.

Proof. The proof is by induction oni. Sinceφ(v1) ≤ 1, the
claim is trivial for i = 1. For an arbitraryi > 1, let i′ ≤ i
be the smallest value such thatφ(vi′)≤ 2φ(vi). By assump-
tion, there is an edgeX of H that covers more than half
of the setS= {vi′ , . . . ,vi}. Every weight inS is at least
φ(vi), henceX can cover at most 1/φ(vi) elements ofS.
Thus |S| ≤ 2/φ(vi), and∑i

j=i′ φ(v j) ≤ 4 follows from the
fact thatφ(v j) ≤ 2φ(vi) for i′ ≤ j ≤ i. If i′ = 1, then we

are done. Otherwise∑i′−1
j=1 φ(v j) ≤ −4log2 φ(vi′−1)+ 4 <

−4(log2 φ(vi)+ 1)+ 4 follows from the induction hypoth-
esis and fromφ(vi′−1) > 2φ(vi). Therefore,∑i

j=1 φ(v j) =

∑i′−1
j=1 φ(v j)+ ∑i

j=i′ φ(v j) ≤ −4log2 φ(vi)+4, what we had
to show.

In the rest of the proof we assume thatρ∗ is sufficiently
large, sayρ∗ ≥ 100. Let i be the largest value such that

∑|V|
j=i ≥ ρ∗/2. By the definition ofi, ∑|V|

j=i+1 φ(v j) < ρ∗/2,

hence∑i
j=1φ(v j) ≥ ρ∗/2. Thus by Prop. 4.3, the weight

of vi (and everyv j with j ≥ i) is at most 2−(ρ∗/2−4)/4 ≤

2−ρ∗/10 (assuming thatρ∗ is sufficiently large). Define
T := {vi , . . . ,v|V|}, and let us select a random subsetY ⊆ T:
independently each vertexv j ∈ T is selected intoY with
probability p(v j) := 2ρ∗/10 ·φ(v j) ≤ 1. We show that ifH

does not have 22
Ω(ρ∗)

edges, then with nonzero probability
every edge ofH covers at most half ofY, contradicting the
assumption thatH satisfies the half-covering property.

The size ofY is the sum of|T| independent 0-1 ran-
dom variables. The expected value of this sum isµ =

∑|V|
j=i p(v j) = 2ρ∗/10 ·∑|V|

j=i φ(v j) ≥ 2ρ∗/10 · ρ∗/2. We show
that with nonzero probability|Y| > µ/2, but|X∩Y| < µ/4
for every edgeX. To bound the probability of the bad
events, we use the following form of the Chernoff Bound:

Theorem 4.4 ([1]). Let X1, X2, . . . , Xn be independent0-1
random variables withPr[Xi = 1] = pi. Denote X= ∑n

i=1Xi

andµ = E[X]. Then

Pr[X ≤ (1−β)µ]≤ exp(−β 2µ/2) for 0 < β ≤ 1,

Pr[X ≥ (1+ β)µ]≤

{

exp(−β 2µ/3) for 0 < β ≤ 1,
exp(−β 2µ/(2+ β)) for β > 1.

Thus by settingβ = 1
2, the probability thatY is too small

can be bounded as

Pr[|Y| ≤ µ/2]≤ exp(−1/8µ).

For each edgeX, the random variable|X ∩Y| is the sum
of |X ∩ T| independent 0-1 random variables. The ex-
pected value of this sum isµX = ∑v∈X∩T p(v) = 2ρ∗/10 ·

∑v∈X∩T φ(v) ≤ 2ρ∗/10≤ µ/(ρ∗/2), where the first inequal-
ity follows from the fact thatφ is a fractional stable set,
hence the total weightX can cover is at most 1. Notice that
if ρ∗ is sufficiently large, than the expected size ofX ∩Y
is much smaller than the expected size ofY. We want to
bound the probability that|X ∩Y| is at leastµ/4. Setting
β = (µ/4)/µX −1≥ ρ∗/8−1, the Chernoff Bound gives

Pr
[

|X∩Y| ≥ µ/4
]

= Pr
[

|X∩Y| ≥ (1+ β)µX
]

≤ exp(−β 2µX/(2+ β))≤ exp(−β 2µX/(2β)) =

exp(−µ/8+ µX/2) ≤ exp(−µ/16).

Here we assumed thatρ∗ is sufficiently large thatβ ≥ 2
(second inequality) andµX/2 ≤ µ/16 (third inequality)
hold. If H hasm edges, then the probability that|Y| ≤ µ/2
holds or an edgeX covers at leastµ/4 vertices ofY is at
most

exp(−µ/8)+m·exp(−µ/16)

≤ (m+1)exp(−2ρ∗/10 ·ρ∗/32)≤ m·2−2Ω(ρ∗)
. (1)

If H satisfies the half-covering property, then for everyY
there has to be at least one edge that covers more than half
of Y. Therefore, the upper bound (1) has to be at least 1.

This is only possible ifm is 22Ω(ρ∗)
, and it follows thatρ∗ =

O(loglogm), what we had to show.

We remark that theO(loglogm) bound in Lemma 4.2 is
tight: one can construct a hypergraph satisfying the half-
covering property that has fractional cover numberk and
22k

edges.
Now we are ready to prove the main result of this section:

5

Theorem 4.5. CLOSEST SUBSTRING can be solved in
(|Σ|d)O(kd) ·nO(loglogk) time.

Proof. Let us fix the first substrings′1 ∈ s1 of the solution.
We will repeat the following algorithm for each possible
choice ofs′1. Since there are at mostn possibilities for
choosings′1, the running time of the algorithm presented
below has to be multiplied by a factor ofn, which is domi-
nated by thenO(loglogk) term.

The center stringscan differ on at mostd positions from
s′1. Therefore, if we can find the setP of these positions,
then the problem can be solved by trying all the|Σ||P| ≤ |Σ|d
possible assignments to the positions inP. We show how to
enumerate efficiently all the possible setsP.

We construct a hypergraphG over the vertex set
{1, . . . ,L}. The edges of the hypergraph describe the pos-
sible substrings in the solution. Ifw is a lengthL substring
of some stringsi , then we add an edgeE to G such that
p∈ E if and only if thep-th character ofw differs from the
p-th character ofs′1. If (s,s′1, . . . ,s

′
k) is a solution, then letH

be the partial hypergraph ofG that contains only thek−1
edges corresponding to thek−1 substringss′2, . . . , s′k. (H
can have less thank−1 edges if the same edge corresponds
to two different substrings.) Denote byP the set of at most
d positions wheres ands′1 differ. Let H0 be the subhyper-
graph ofH induced byP: the vertex set ofH0 is P, and for
each edgeE of H there is an edgeE∩P in H0. Hypergraph
H0 is subhypergraph ofH andH is partial hypergraph ofG,
thusH0 appears inG atP as subhypergraph.

We say that a solution isminimal if ∑k
i=1d(s,s′i) is mini-

mal. In Prop. 4.6, we show that if the solution(s,s′1, . . . ,s
′
k)

is minimal, thenH0 has the half-covering property. There-
fore, we can enumerate all the possibleP’s by consider-
ing every hypergraphH0 on at mostd vertices that has the
half-covering property (there are only a constant number of
them), and for each suchH0, we enumerate all the places
in G whereH0 appears as subhypergraph. Lemma 4.2 en-
sures that everyH0 considered has small fractional cover
number. By Lemma 3.3, this means that we can enumerate
efficiently all the placesP whereH0 appears inG as sub-
hypergraph. As discussed above, for each suchP we can
check whether there is a solution where the center string
s differs from s′1 only on P. By repeating this method for
every hypergraphH0 having the half-covering property, we
eventually find a solution, if exists.

Proposition 4.6. For every minimal solution(s,s′1, . . . ,s
′
k),

the corresponding hypergraph H0 has the half-covering
property.

Proof. To see thatH0 has the half-covering property, as-
sume that for someY ⊆ P, every edge ofH0 covers at most
half of Y. We show that in this case the solution is not
minimal. Modify s such that it is the same ass′1 on ev-
ery position ofY, let s∗ be the new center string. Clearly,

d(s∗,s′1) = d(s,s′1)− |Y|. Furthermore, we show that this
modification does not increase the distance for anyi, that is,
d(s∗,s′i) ≤ d(s,s′i) for every i. This means thats∗ is also a
good center string, contradicting the minimality of the solu-
tion.

Let Ei be the edge ofH0 corresponding to the substring
s′i . This means thats′1 ands′i differ onY∩Ei , and they are
the same onY \ Ei . Therefore,d(s∗,s′i) ≤ d(s,s′i) + |Y ∩
Ei |− |Y \Ei |. By assumption,Ei can cover at most half of
Y, henced(s∗,s′i) ≤ d(s,s′i), as required.

The most important factor of the running time comes
from using Theorem 3.3 to find all the places whereH0 ap-
pears inG as subhypergraph. SinceH0 satisfies the half-
covering property and has less thank edges, by Lemma 4.2
its fractional covering number isO(log logk). Therefore,
the algorithm of Theorem 3.3 runs in roughlynO(loglogk)

time. The other factors of the running time (trying every
possibleH0, checking everys corresponding to a givenP,
etc.) depends only onk, d, andΣ.

5 Set Balancing

In this section we introduce a new problem called SET

BALANCING . The problem is somewhat technical, it is not
motivated by practical applications. However, as we will
see it in Section 6, the problem is useful in proving the
W[1]-hardness of CLOSESTSUBSTRING.

SET BALANCING

Input:
A collection of m set systems Si =
{Si,1, . . . ,Si,|Si |} (1 ≤ i ≤ m) over the same
ground setA and a positive integerd. The size
of each setSi, j is at mostℓ, and there is an
integer weightwi, j associated to each setSi, j .

Parameters:
m, d, ℓ

Task:
Find a setX ⊆ A of size at mostd and select a
setSi,ai ∈ Si for every 1≤ i ≤ m in such a way
that

|X △Si,ai | ≤ wi,ai (2)

holds for every 1≤ i ≤ m.

Here X △ Si,ai denotes the symmetric difference|(X \
Si,ai)∪ (Si,ai \X)|. We have to select a setX and a set from
each set system in such a way that the balancing require-
ment (2) is satisfied: every selected set is close toX. The
weightwi, j of each setSi, j prescribes the maximum distance

6

of X from this set. The smaller the weight, the more restric-
tive the requirement. The distance is measured by symmet-
ric difference; therefore, adding toX an element outsideSi, j

can be compensated by adding toX an element fromSi, j . If
(2) holds for some setSi,ai , then we say thatSi,ai isbalanced,
or X balances Si,ai .

It can be assumed that the weight of each set is at most
ℓ + d, otherwise the requirement would be automatically
satisfied for every possibleX. If a set appears in multiple
set systems, then it can have different weights in the differ-
ent systems.

Theorem 5.1. SET BALANCING is W[1]-hard with param-
eters m, d, andℓ.

Proof. The proof is by reduction from the MAXIMUM

CLIQUE problem. Assume that a graphG(V,E) is given
with n vertices ande edges, the task is to find a clique of
sizet. It can be assumed thatn = 22C

for some integerC:
we can ensure that the number of vertices has this form by
adding at most|V|2 isolated vertices. Furthermore, we can
assume thatC ≥ t (i.e., n ≥ 22t

): if n < 22t
, then MAXI -

MUM CLIQUE can be solved directly in time(22t
)t · n by

enumerating every set of sizet.
The ground setA of the SET BALANCING problem is

partitioned intot groupsA0, . . . , At−1. The groupAi is fur-
ther partitioned into 2i blocksAi,1, . . . , Ai,2i ; the total num-

ber of blocks is 2t −1. The blockAi, j containsn1/2i
= 22C−i

elements. Setd := 2t −1. Later we will argue that it is suf-
ficient to restrict our attention to solutions whereX contains
exactly one element from each blockAi, j . Let us call such
a solution astandard solution. We construct the set sys-
tems in such a way that there is one-to-one correspondence
between the standard solutions and the sizet cliques ofG.
In a standard solutionX contains exactly 2i elements from
groupAi , and there are(n1/2i

)2i
= n different possibilities

for selecting these 2i elements from the blocks ofAi . Let
the set systemXi = {Xi,1, . . . ,Xi,n} contain thesen different
2i element sets. Thesen possibilities will correspond to the
choice of thei-th vertex of the clique.

The set systems are of two types: the verifier systems
and the enforcer systems. The role of the verifier systems
is to ensure that every standard solution corresponds to a
clique of sizet, while the enforcer systems ensure that there
are only standard solutions.

For each 0≤ i1 < i2 ≤ t − 1 the verifier systemSi1,i2
ensures that thei1-th and thei2-th vertices of the clique are
adjacent. The set systemSi1,i2 contains 2esets of size 2i1 +
2i2 each. If verticesu andv are adjacent inG, thenXi1,u∪
Xi2,v is in Si1,i2. The weight of every set inSi1,i2 is (2t −
1)− (2i1 +2i2).

Proposition 5.2. There is a standard solution if and only if
G has a k-clique.

Proof. Assume thatv0, . . . , vt−1 is a clique inG. Let

X =
t−1
⋃

i=0

Xi,vi .

The size ofX is ∑t−1
i=0 2i = 2t − 1. Select the setXi1,vi1

∪
Xi2,vi2

from the verifier systemSi1,i2. This set is balanced:

it is a size 2i1 + 2i2 subset ofX having weight(2t − 1)−
(2i1 +2i2).

To prove the other direction, assume now that there is a
standard solutionX. In a standard solutionX ∩Ai is a 2i

element set fromXi , assume thatX∩Ai = Xi,vi for somevi .
We claim that thevi ’s form a sizet clique inG.

Suppose that for somei1 < i2 verticesvi1 andvi2 are not
connected by an edge. Consider the setS∈ Si1,i2 selected
in the solution. The size ofX is 2t −1 in a standard solution,
thus the setX contains at least 2t −1− (2i1 +2i2) elements
outside the setS. Therefore,S can be balanced only if all
the 2i1 + 2i2 elements ofS are inX. Assume that the setS
selected fromSi1,i2 is Xi1,u ∪Xi2,v. Now Xi1,u ∪Xi2,v ⊆ X,
which means thatu = vi1 andv = vi2. By construction, if
Xi1,u∪Xi2,v is in Si1,i2, thenu andv are adjacent, hencevi1
andvi2 are indeed neighbors.

The job of the enforcer systems is to ensure that every
solution of weight at mostd = 2t −1 is standard. The 2t −1
blocksAi, j are indexed by two indicesi and j. It will be
more convenient to index the blocks by a single variable: let
B1, . . . , B2t−1 be an ordering of the blocks such thatB1 is
the only block of groupA0, the blocksB2, B3 are the blocks
of A1, the next four blocks are the blocks ofA2, etc.

A naive way of constructing the enforcer set systems
would be to have a set systemSi for each blockBi such
that for each element ofBi , there is a corresponding one-
element set inSi with weight 2t − 2. This ensures that if
a solution contains at least one element from every block
other thanBi , then it has to contain an element ofBi as well.
The problem is that every set ofSi is balanced by the so-
lution X = /0, hence such systems cannot ensure that every
solution is standard.

There are 22
t−1 −1 enforcer set systems: there is a set

systemSF corresponding to each nonempty subsetF of
{1,2, . . . ,2t −1}. The job ofSF is to rule out the possibil-
ity that a solutionX contains no elements from the blocks
indexed byF , butX contains at least one element from ev-
ery other block. Clearly, these systems will ensure that no
block is empty in a solution, hence every solutions of weight
2t −1 is standard. One possible way of constructing the sys-
temSF is to have one set of size|F | and weight 2t −1−|F|
for each possible way of selecting one element from each
block indexed byF. Now the problem is that the size ofSF

can be too large, in particular whenF = {1,2, . . . ,2t −1}.
We use a somewhat more complicated construction to keep
the size of the systems small.

7

Given a finite setF of positive integers, define up(F)
to be the largest⌈(|F |+ 1)/2⌉ elements of this set. The
enforcer system corresponding toF is defined as

SF = ∏
p∈up(F)

Bp. (3)

That is, we consider the blocks indexed by the upper half of
F, and put intoSF all the possible combinations of select-
ing one element from each block. Let the weight of each
set in SF be 2t − 1− |up(F)|. Notice that it is possible
that up(F1) = up(F2) for someF1 6= F2, which means that
for suchF1 andF2 the systemsSF1 andSF2 are in fact the
same. However, we do not care about that.

We have to verify that these set systems are not too large,
they can be constructed in uniformly polynomial time:

Proposition 5.3. For every nonempty F⊆{1,2, . . . ,2t −1},
the enforcer systemSF contains at most n2 sets.

Proof. Let x be the smallest element of up(F), assume that
2p ≤ x < 2p+1 for some integerp. There is one block with
size n, there are 2 blocks with sizen1/2, . . . , there are 2i

blocks with sizen1/2i
, hence the size ofB2p is n1/2p

. The
size of the blocks are decreasing, thus all the sets in the
product (3) are of size at mostn1/2p

. If the smallest element
of up(F) is x, then it can contain at mostx+ 1 elements.
This means that we take the direct product of at mostx+1
sets of size at mostn1/2p

each. Therefore, the total number
of sets inSF is at most(n1/2p

)x+1 ≤ (n1/2p
)2p+1

= n2.

The following proposition completes the proof of the
first direction: if the solution is standard, then we can select
a set from each enforcer system. Together with Prop. 5.2,
it follows that if there is a clique of sizet, then there is a
(standard) solution for the constructed instance of CLOS-
EST SUBSTRING.

Proposition 5.4. If X is a standard solution, then eachSF

contains a set that is balanced by X.

Proof. For the enforcer systemSF , let us select the set

SF = X∩
⋃

p∈up(F)

Bp.

That is,SF contains those vertices ofX that belong to the
blocks indexed by up(F). The setSF is a size|up(F)| sub-
set of X. Therefore,|X △ SF | = 2t − 1− |up(F)|, which
is exactly the weight of the selected set. ThusSF is bal-
anced.

On the other hand, if there is a solution for the con-
structed instance of SET BALANCING with |X| ≤ d = 2t −1,
then this solution has to be standard, and by Prop. 5.2 there
is a clique of sizet in G. This completes the proof of the
second direction.

Proposition 5.5. If |X| ≤ 2t −1, then|X∩Bi |= 1 for every
block Bi .

Proof. Assume first thatX does not contain elements from
some of the blocks. LetF contain the indices of those
blocks that are disjoint fromX. This means thatX con-
tains at least one element from each block not inF , hence
|X| ≥ 2t −1−|F|. Assume that some setS is selected from
SF in the solution. This set contains elements only from
blocks indexed by up(F) ⊆ F , henceS is disjoint from
X. Thus |X △ S| = |X|+ |S| ≥ 2t − 1− |F| + |up(F)| >
2t −1− |up(F)|, which means thatS is not balanced (here
we used|F| − |up(F)| < |up(F)|). Therefore, each block
contains at least one element ofX. Since there are 2t − 1
blocks, this is only possible if each block contains exactly
one element ofX.

The distanced = 2t − 1 and the numberm =
(t

2

)

+

22t−1 −1 of the constructed set systems are functions oft
only. Each set in the constructed systems has size at most
ℓ := 2t −1. The size of each set system is polynomial inn,
thus the reduction is a correct parameterized reduction.

6 Hardness ofCLOSEST SUBSTRING

In this section we show that CLOSEST SUBSTRING is
W[1]-hard with combined parametersk andd. The reduc-
tion is very similar to the reduction presented in [7]. As in
that reduction, the main technical trick is that the stringsi is
divided into blocks and we ensure that the strings′i in every
solution is one of these blocks.

Theorem 6.1. CLOSEST SUBSTRING is W[1]-hard with
parameters d and k, even ifΣ = {0,1}.

Proof. The reduction is from the SET BALANCING prob-
lem, whose W[1]-hardness was shown in Section 5. As-
sume thatm set systemsSi = {Si,1, . . . ,Si,|Si |} and an in-
tegerd are given. Let 0≤ wi, j ≤ d + ℓ be the weight of
Si, j in Si , and assume that each set has size at mostℓ. We
construct an instance of CLOSESTSUBSTRING whered+1
stringssi,1, si,2, . . . , si,d+1 correspond to each set system
Si , and there is one additional strings0 called thetemplate
string. Thus there arek := (d+1)m+1 strings in total.

Setd′ := d + ℓ andL := 6d′ + 3d′(3d′ + 1)+ |A|+ d′−
d+2d′m(d+1), whereA is the common ground set of the
set systems. The template strings0 has lengthL, hence
s′0 = s0 in every solution. The stringsi, j is the concatena-
tion of blocks Bi, j ,1, . . . , Bi, j ,|Si | of the same lengthL, each
block corresponds to a set inSi . We will ensure that in a
solution the substrings′i, j is one complete block fromsi, j .
Therefore, selectings′i, j from si, j in the constructed CLOS-
EST SUBSTRING instance plays the same role as selecting a
setSi from Si in SET BALANCING .

8

Each block of the stringSi, j is the concatenation of
four parts: the front tag, the core, the complete tag, and
the back tag. Thefront tag is the same in every block:
13d′(103d′)3d′13d′ . Thecore corresponds to the ground set
A in the SET BALANCING problem. The length of the core
is |A|, and thep-th character of the core in blockBi, j ,k is 1
if and only if the setSi,k ∈ Si contains thep-th element of
A. Thecomplete tagis 1d′−d in every block. Theback tag
is the concatenation ofm(d + 1) segmentsCi, j (1≤ i ≤ m,
1≤ j ≤ d+1) (the order in which these segments are con-
catenated will not be important). The length of each seg-
ment is 2d′. In blockBi, j ,k of stringsi, j the back tag contains
1’s only in segmentCi, j : there is 1 on the firstd′−wi,k ≥ 0
positions ofCi, j , the rest ofCi, j is 0. This completes the
description of the stringssi, j . Notice that the blocksBi, j1,k

andBi, j2,k differ only in the back tag. The lengthL template
string s0 is similar to the blocks defined above: it has the
same front tag as all the other blocks, but its core, complete
tag, and back tag contains only 0’s.

The first direction of the proof is shown in the following
proposition:

Proposition 6.2. If the SET BALANCING instance has a
solution, then the constructed instance ofCLOSEST SUB-
STRING also has a solution.

Proof. Let X ⊆ A andS1,a1 ∈ S1, . . . , Sm,am ∈ Sm be a so-
lution of SET BALANCING . Let the center strings be the
concatenation of the front tag, the incidence vector ofX,
the string 1d

′−d, and the string 02d′m(d+1). The distance of
s ands0 is |X|+d′−d ≤ d′: the distance is|X| on the core
andd′−d on the complete tag. Furthermore, we claim that
the blockBi, j ,ai in string si, j is at distance at mostd′ from
s. If we can show this, then it follows that CLOSESTSUB-
STRING has a solution.

The front tag ofBi, j ,ai is the same as the front tag ofs. In
the core the distance is the symmetric difference ofX and
Si,ai . The complete tag is the same insandBi, j ,ai . The back
tag ofs is all 0, while the back tag ofBi, j ,ai containsd′−wi,k

characters 1 (in the segmentCi, j). Therefore,

d(s,Bi, j ,ai) = |X △Si,ai |+d′−wi,k ≤ d′,

where the inequality follows from the fact thatX balances
the setSi,ai , that is,|X △Si,ai | ≤ wi,k.

To prove the reverse direction, we have to show that a
solution for the CLOSEST SUBSTRING problem implies a
solution of SET BALANCING . We show that it can be as-
sumed that the solution for CLOSESTSUBSTRING is “nice,”
as defined by the following four propositions (proofs omit-
ted):

Proposition 6.3. In every solution, the substring s′
i, j of si, j

is a block Bi, j ,b for some value b.

Proposition 6.4. If there is a solution for the constructed
instance ofCLOSESTSUBSTRING, then there is such a so-
lution where the front tag of the center string s is the same
as the front tag of s0.

Proposition 6.5. If there is a solution for the constructed
instance ofCLOSESTSUBSTRING, then there is a solution
where the back tag of the center string s contains only0’s.

Proposition 6.6. If there is a solution for the constructed
instance ofCLOSESTSUBSTRING, then there is such a so-
lution where the complete tag of the center string s contains
only 1’s.

Assuming thats is of this form, it is not difficult to prove
the converse of Prop. 6.2:

Proposition 6.7. If there is a solution for the constructed
instance ofCLOSESTSUBSTRING, then there is a solution
for theSET BALANCING problem.

Proof. Consider a solution where the complete tag ofscon-
tains only 1’s, and the back tag ofs contains only 0’s. De-
fine the setX ⊆ A based on the core ofs: let an element of
A be inX if and only if the corresponding character is 1 in
the core ofs. The strings differs from the template string
s0 at |X| positions in the core and atd′−d positions in the
complete tag. Sinced(s,s0) ≤ d′, it follows that|X| ≤ d.

We claim that for every 1≤ i ≤ s, a setSi can be selected
from Si that is balanced byX. Assume thats′i,1 is the block
Bi,1,t for somet. We show thatSi,t ∈ Si is balanced by
X. Let us determine the distanced(Bi,1,t ,s), which is by
assumption at mostd′. In the core, the two strings differ on
the symmetric difference ofSi,t andX. The strings do not
differ on the complete tag, but they differ on every position
of the back tag whereBi,1,t is 1. There are exactlyd′−wi,t

such positions, hence

d(s,s′i, j) = |X △Si,k|+d′−wi,t ≤ d′,

which means that|X △Si,t | ≤ wi,t and Si,t is balanced.

Prop. 6.2 and 6.7 together prove the correctness of the
reduction.

Putting together Theorem 5.1 and 6.1 gives a two-step
reduction from MAXIMUM CLIQUE to CLOSEST SUB-
STRING. Given an instance of MAXIMUM CLIQUE with
parametert, this two-step reduction constructs an instance
of CLOSEST SUBSTRING with parametersd = 2O(t) and

k = 22O(t)
. It is unlikely that MAXIMUM CLIQUE can be

solved in f (t) · no(t) time: that would imply that 3-SAT

could be solved in subexponential time [3]. Using our re-
duction, we can transfer this lower bound on MAXIMUM

CLIQUE to the CLOSESTSUBSTRING problem:

9

Corollary 6.8. There is no f1(k,d) · no(logd) or f2(k,d) ·
no(loglogk) time algorithm forCLOSESTSUBSTRING, unless
3-SAT can be solved in subexponential time.

Cesati and Trevisan [2] have shown (by an easy argu-
ment) that if a problem is W[1]-hard, then the correspond-
ing optimization problem cannot have an EPTAS (i.e., a
PTAS with running timef (ε) · nc), unless FPT= W[1].
Hence thenO(1/ε4) time PTAS of [13] for CLOSEST SUB-
STRING cannot be improved to an EPTAS. Furthermore,
the connection with subexponential algorithms allows us to
give a lower bound on the exponent ofn:

Corollary 6.9. There is no f(ε) · no(log1/ε) time PTAS for
CLOSEST SUBSTRING, unless3-SAT can be solved in
subexponential time.

7 Conclusions

We have proved that the CLOSEST SUBSTRING prob-
lem parameterized by the distance parameterd and by the
number of stringsk is W[1]-hard, even if the alphabet is bi-
nary. This improves the previous result of [7], where it is
proved that the problem is W[1]-hard with parameterk only
(and binary alphabet). Our hardness result also improves
[11], where it is proved that DISTINGUISHING SUBSTRING

SELECTION (a generalization of CLOSESTSUBSTRING) is
W[1]-hard with parametersk andd (again with binary al-
phabet). In our reduction we used some of the techniques
from these results, but new ideas were also required.

The W[1]-hardness of a problem is usually interpreted as
evidence that the problem is unlikely to be fixed-parameter
tractable, that is, the parameter has to appear in the exponent
of n. Furthermore, using recent connections with subex-
ponential algorithms, we can even give a lower bound on
the exponent ofn. Our reduction is “weak” in the sense
that the parameters are significantly increased (exponen-
tially and double exponentially). Therefore, we obtain only
weak lower bounds on the exponent ofn: all we can show is
that the exponent cannot beo(logd) or o(loglogk). How-
ever, it turned out that these bounds are tight: we presented
two algorithms where the exponent ofn is O(logd) and
O(loglogk), respectively. The second algorithm is based
on some surprising connections with the extremal combina-
torics of hypergraphs. We have introduced and investigated
the half-covering property, which played an important role
in the algorithm. Furthermore, we have shown that all the
copies of hypergraphH in hypergraphG can be efficiently
found if H has small fractional cover number. This result
might be useful in some other applications as well.

Our results present an example where parameterized
complexity and subexponential algorithms are closely con-
nected. First, a weak parameterized reduction might be the
sign that some kind of subexponential algorithm is possible

for the problem. On the other hand, a parameterized reduc-
tion can be used to show the optimality of a subexponential
algorithm. It is possible that this interplay between param-
eterized complexity and subexponential algorithms appears
in the case of some other problems as well.

The W[1]-hardness of CLOSEST SUBSTRING implies
that there is no EPTAS for the optimization version of the
problem. More precisely, we can show that there is no
PTAS with running timef (ε) · no(log1/ε), unless there are
subexponential algorithms for 3-SAT. However, it does not
rule out the possibility that thenO(1/ε4) time PTAS of [13]
can be improved tonO(log1/ε). It is an intriguing open ques-
tion to determine whether such an improvement is possible.

References

[1] D. Angluin and L. G. Valiant. Fast probabilistic algorithms
for Hamiltonian circuits and matchings.J. Comput. System
Sci., 18(2):155–193, 1979.

[2] M. Cesati and L. Trevisan. On the efficiency of polyno-
mial time approximation schemes.Inform. Process. Lett.,
64(4):165–171, 1997.

[3] J. Chen, B. Chor, M. Fellows, X. Huang, D. Juedes, I. Kanj,
and G. Xia. Tight lower bounds for certain parameterized
NP-hard problems. InProceedings of 19th Annual IEEE
Conference on Computational Complexity, pages 150–160,
2004.

[4] F. R. K. Chung, R. L. Graham, P. Frankl, and J. B. Shearer.
Some intersection theorems for ordered sets and graphs.J.
Combin. Theory Ser. A, 43(1):23–37, 1986.

[5] R. G. Downey and M. R. Fellows.Parameterized com-
plexity. Monographs in Computer Science. Springer-Verlag,
New York, 1999.

[6] P. A. Evans, A. D. Smith, and H. T. Wareham. On the com-
plexity of finding common approximate substrings.Theoret.
Comput. Sci., 306(1-3):407–430, 2003.

[7] M. R. Fellows, J. Gramm, and R. Niedermeier. On the pa-
rameterized intractability of motif search problems. To ap-
pear in Combinatorica.

[8] M. R. Fellows, J. Gramm, and R. Niedermeier. On the pa-
rameterized intractability of Closest Substring and related
problems. InSTACS 2002, volume 2285 ofLecture Notes in
Comput. Sci., pages 262–273. Springer, Berlin, 2002.

[9] M. Frances and A. Litman. On covering problems of codes.
Theory Comput. Syst., 30(2):113–119, 1997.

[10] E. Friedgut and J. Kahn. On the number of copies of one
hypergraph in another.Israel J. Math., 105:251–256, 1998.

[11] J. Gramm, J. Guo, and R. Niedermeier. On exact and ap-
proximation algorithms for distinguishing substring selec-
tion. In Fundamentals of computation theory, volume 2751
of Lecture Notes in Comput. Sci., pages 195–209. Springer,
Berlin, 2003.

[12] J. Gramm, R. Niedermeier, and P. Rossmanith. Fixed-
parameter algorithms for closest string and related problems.
Algorithmica, 37(1):25–42, 2003.

[13] M. Li, B. Ma, and L. Wang. On the closest string and sub-
string problems.J. ACM, 49(2):157–171, 2002.

10

