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The Closest Substring problem

CLOSEST SUBSTRING

Input: Binary strings s1, . . . , sk , integers L and d

Find: — string s of length L (center string),

— a length L substring s′

i of si for every i

such that d(s, s′

i) ≤ d for every i

Applications: finding common genetic patterns, drug design.

Problem is NP-hard even in the special case |si| = L.
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Small parameters

Problem can be solved in. . .

2L · O(n) time,

nO(d) time,

nO(k) time.
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Small parameters

Problem can be solved in. . .

2L · O(n) time,

nO(d) time,

nO(k) time.

Main question: Is there are an nO(1) algorithm for fixed d and/or k?

Can be studied in the framework of parameterized complexity.
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Parameterized complexity

Goal: restrict the exponential growth of the running time to one parameter of

the input.

Finding a path of length k:

Can be done in O(2k · n2)
vs. Finding a clique of size k:

No no(k) algorithm is known
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Parameterized complexity

Goal: restrict the exponential growth of the running time to one parameter of

the input.

Finding a path of length k:

Can be done in O(2k · n2)
vs. Finding a clique of size k:

No no(k) algorithm is known

In a parameterized problem , every instance has a special part k called the
parameter.

Definition: A parameterized problem is fixed-parameter tractable (FPT) with

parameter k if there is an algorithm with running time f(k) · nc where c is a

fixed constant not depending on k.
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Parameterized intractability

We expect that MAXIMUM INDEPENDENT SET is not fixed-parameter tractable,

no no(k) algorithm is known.

W[1]-complete ≈ “as hard as MAXIMUM INDEPENDENT SET”
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Parameterized intractability

We expect that MAXIMUM INDEPENDENT SET is not fixed-parameter tractable,

no no(k) algorithm is known.

W[1]-complete ≈ “as hard as MAXIMUM INDEPENDENT SET”

Parameterized reductions:
L1 is reducible to L2, if there is a function f : (x, k) 7→ (x′, k′) such that

(x, k) ∈ L1 ⇐⇒ (x′, k′) ∈ L2,

f can be computed in f(k) · |x|c time,

k′ depends only on k

If L1 is reducible to L2, and L2 is in FPT, then L1 is in FPT as well.
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Closest Substring—Results

Fact: [Fellows et al. 2002] Problem is W[1]-hard with parameter k

⇒ no f(k) · nO(1) algorithm (unless W[1]=FPT).

The Closest Substring problem with small distances – p.6/14



Closest Substring—Results

Fact: [Fellows et al. 2002] Problem is W[1]-hard with parameter k

⇒ no f(k) · nO(1) algorithm (unless W[1]=FPT).

New results:

Problem is W[1]-hard with combined parameters d and k

⇒ no f(k, d) · nO(1) time algorithm (unless W[1]=FPT).

No f(k, d) · no(log d) or f(k, d) · no(log log k) algorithm
(unless n-variable 3-SAT can be solved in 2o(n) time).

Problem can be solved in f(k, d) · nO(log d) time.

Problem can be solved in f(k, d) · nO(log log k) time.
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Hardness of Closest Substring

Theorem: CLOSEST SUBTRING is W[1]-hard with combined parameters k, d.

Proof by parameterized reduction from MAXIMUM INDEPENDENT SET.

MAXIMUM INDEPENDENT SET

(G, t)
⇒

CLOSEST SUBSTRING

k = 22O(t)

d = 2O(t)

Corollary: No f(k, d) · nO(1) algorithm for CLOSEST SUBSTRING unless
FPT=W[1].
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Hardness of Closest Substring

Theorem: CLOSEST SUBTRING is W[1]-hard with combined parameters k, d.

Proof by parameterized reduction from MAXIMUM INDEPENDENT SET.

MAXIMUM INDEPENDENT SET

(G, t)
⇒

CLOSEST SUBSTRING

k = 22O(t)

d = 2O(t)

Corollary: No f(k, d) · nO(1) algorithm for CLOSEST SUBSTRING unless
FPT=W[1].

Corollary: No f(k, d) · no(log d) or f(k, d) · no(log log k) algorithm unless
MAXIMUM INDEPENDENT SET has an f(t) · no(t) algorithm.

⇒ No such algorithm unless n-variable 3-SAT can be solved in 2o(n) time.
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(Fractional) edge covering

Hypergraph: each edge is an arbitrary set of vertices.

An edge cover is a subset of the edges such that every vertex is covered by at
least one edge.

̺(H): size of the smallest edge cover.

A fractional edge cover is a weight assignment to the edges such that every
vertex is covered by total weight at least 1.

̺∗(H): smallest total weight of a fractional edge cover.

̺(H) = 2

1
2

1
2 1

2

̺∗(H) = 1.5
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Finding subhypergraphs

Subhypergraph: removing edges and vertices.

C

D

BA
A B

D

C
is a subhypergraph of
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Finding subhypergraphs

Subhypergraph: removing edges and vertices.

C

D

BA
A B

D

C
is a subhypergraph of

We would like to enumerate all the places where H1 appears in H2.

Assuming that H2 has m edges and each has size at most ℓ:

Lemma: [follows from Friedgut and Kahn 1998] H1 can appear in H2 at max.

f(ℓ, ̺∗(H1)) · m̺∗(H1) places.

Lemma: We can enumerate in f(ℓ, ̺∗(H1)) · mO(̺∗(H1)) time all the places

where H1 appears in H2.
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Half-covering

Defintion: A hypergraph has the half-covering property if for every non-empty

set X of vertices there is an edge Y with |X ∩ Y | > |X |/2.

Lemma: If a hypergraph H with m edges has the half-covering property, then

̺∗(H) = O(log log m).

Proof: by probabilistic arguments.

(The O(log log m) is best possible.)
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Reminder

CLOSEST SUBSTRING

Input: Binary strings s1, . . . , sk , integers L and d

Find: — string s of length L (center string),

— a length L substring s′

i of si for every i

such that d(s, s′

i) ≤ d for every i
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The f(k, d) · nO(log log k) algorithm

First step: guess the correct s′

1 (≤ n possibilities).

Consider the set S of all length L substrings of s1, . . . , sk . We turn S into a

hypergraph H on vertices {1, 2, . . . , L}: if a string in S differs from s′

1 on
positions P ⊆ {1, 2, . . . , L}, then let P be an edge of H .
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The f(k, d) · nO(log log k) algorithm

First step: guess the correct s′

1 (≤ n possibilities).

Consider the set S of all length L substrings of s1, . . . , sk . We turn S into a

hypergraph H on vertices {1, 2, . . . , L}: if a string in S differs from s′

1 on
positions P ⊆ {1, 2, . . . , L}, then let P be an edge of H .

Lemma: Assume that in a solution s differs from s′

1 on positions P , and
d(s, s′

1) is as small as possible.

Then there is a hypergraph H0 with at most d vertices and k edges having the
half-covering property such that H0 appears at P in H .

Algorithm: Consider every hypergraph H0 as above and enumerate all the

places where H0 appears in H .
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The f(k, d) · nO(log log k) algorithm (cont.)

Algorithm:

Guess s′

1.

Construct the hypergraph H .

Enumerate every hypergraph H0 with at most d vertices and k edges

(constant number).

Check if H0 has the half-covering property.

If so, then enumerate every place P where H0 appears in H .
(max. ≈ nO(̺∗(H0)) = nO(log log k) places).

For each place P , check if there is a good center string that differs from s′

1

only at P .

Running time: f(k, d) · nO(log log k).
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Conclusions

Parameterized analysis of CLOSEST SUBSTRING.

Tight bounds on the exponent of n.

Other applications of finding hypergraphs with small fractional edge cover
number?
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