
The Closest Substring problem with small
distances

Dániel Marx

Humboldt-Universität zu Berlin

dmarx@informatik.hu-berlin.de

IEEE Symposium on Foundations of Computer Science,

October 23, 2005

The Closest Substring problem with small distances – p.1/14

The Closest Substring problem

CLOSEST SUBSTRING

Input: Binary strings s1, . . . , sk , integers L and d

Find: — string s of length L (center string),

— a length L substring s′

i of si for every i

such that d(s, s′

i) ≤ d for every i

Applications: finding common genetic patterns, drug design.

Problem is NP-hard even in the special case |si| = L.

The Closest Substring problem with small distances – p.2/14

Small parameters

Problem can be solved in. . .

2L · O(n) time,

nO(d) time,

nO(k) time.

The Closest Substring problem with small distances – p.3/14

Small parameters

Problem can be solved in. . .

2L · O(n) time,

nO(d) time,

nO(k) time.

Main question: Is there are an nO(1) algorithm for fixed d and/or k?

Can be studied in the framework of parameterized complexity.

The Closest Substring problem with small distances – p.3/14

Parameterized complexity

Goal: restrict the exponential growth of the running time to one parameter of

the input.

Finding a path of length k:

Can be done in O(2k · n2)
vs. Finding a clique of size k:

No no(k) algorithm is known

The Closest Substring problem with small distances – p.4/14

Parameterized complexity

Goal: restrict the exponential growth of the running time to one parameter of

the input.

Finding a path of length k:

Can be done in O(2k · n2)
vs. Finding a clique of size k:

No no(k) algorithm is known

In a parameterized problem , every instance has a special part k called the
parameter.

Definition: A parameterized problem is fixed-parameter tractable (FPT) with

parameter k if there is an algorithm with running time f(k) · nc where c is a

fixed constant not depending on k.

The Closest Substring problem with small distances – p.4/14

Parameterized intractability

We expect that MAXIMUM INDEPENDENT SET is not fixed-parameter tractable,

no no(k) algorithm is known.

W[1]-complete ≈ “as hard as MAXIMUM INDEPENDENT SET”

The Closest Substring problem with small distances – p.5/14

Parameterized intractability

We expect that MAXIMUM INDEPENDENT SET is not fixed-parameter tractable,

no no(k) algorithm is known.

W[1]-complete ≈ “as hard as MAXIMUM INDEPENDENT SET”

Parameterized reductions:
L1 is reducible to L2, if there is a function f : (x, k) 7→ (x′, k′) such that

(x, k) ∈ L1 ⇐⇒ (x′, k′) ∈ L2,

f can be computed in f(k) · |x|c time,

k′ depends only on k

If L1 is reducible to L2, and L2 is in FPT, then L1 is in FPT as well.

The Closest Substring problem with small distances – p.5/14

Closest Substring—Results

Fact: [Fellows et al. 2002] Problem is W[1]-hard with parameter k

⇒ no f(k) · nO(1) algorithm (unless W[1]=FPT).

The Closest Substring problem with small distances – p.6/14

Closest Substring—Results

Fact: [Fellows et al. 2002] Problem is W[1]-hard with parameter k

⇒ no f(k) · nO(1) algorithm (unless W[1]=FPT).

New results:

Problem is W[1]-hard with combined parameters d and k

⇒ no f(k, d) · nO(1) time algorithm (unless W[1]=FPT).

No f(k, d) · no(log d) or f(k, d) · no(log log k) algorithm
(unless n-variable 3-SAT can be solved in 2o(n) time).

Problem can be solved in f(k, d) · nO(log d) time.

Problem can be solved in f(k, d) · nO(log log k) time.

The Closest Substring problem with small distances – p.6/14

Hardness of Closest Substring

Theorem: CLOSEST SUBTRING is W[1]-hard with combined parameters k, d.

Proof by parameterized reduction from MAXIMUM INDEPENDENT SET.

MAXIMUM INDEPENDENT SET

(G, t)
⇒

CLOSEST SUBSTRING

k = 22O(t)

d = 2O(t)

Corollary: No f(k, d) · nO(1) algorithm for CLOSEST SUBSTRING unless
FPT=W[1].

The Closest Substring problem with small distances – p.7/14

Hardness of Closest Substring

Theorem: CLOSEST SUBTRING is W[1]-hard with combined parameters k, d.

Proof by parameterized reduction from MAXIMUM INDEPENDENT SET.

MAXIMUM INDEPENDENT SET

(G, t)
⇒

CLOSEST SUBSTRING

k = 22O(t)

d = 2O(t)

Corollary: No f(k, d) · nO(1) algorithm for CLOSEST SUBSTRING unless
FPT=W[1].

Corollary: No f(k, d) · no(log d) or f(k, d) · no(log log k) algorithm unless
MAXIMUM INDEPENDENT SET has an f(t) · no(t) algorithm.

⇒ No such algorithm unless n-variable 3-SAT can be solved in 2o(n) time.

The Closest Substring problem with small distances – p.7/14

(Fractional) edge covering

Hypergraph: each edge is an arbitrary set of vertices.

An edge cover is a subset of the edges such that every vertex is covered by at
least one edge.

̺(H): size of the smallest edge cover.

A fractional edge cover is a weight assignment to the edges such that every
vertex is covered by total weight at least 1.

̺∗(H): smallest total weight of a fractional edge cover.

̺(H) = 2

1
2

1
2 1

2

̺∗(H) = 1.5

The Closest Substring problem with small distances – p.8/14

Finding subhypergraphs

Subhypergraph: removing edges and vertices.

C

D

BA
A B

D

C
is a subhypergraph of

The Closest Substring problem with small distances – p.9/14

Finding subhypergraphs

Subhypergraph: removing edges and vertices.

C

D

BA
A B

D

C
is a subhypergraph of

We would like to enumerate all the places where H1 appears in H2.

Assuming that H2 has m edges and each has size at most ℓ:

Lemma: [follows from Friedgut and Kahn 1998] H1 can appear in H2 at max.

f(ℓ, ̺∗(H1)) · m̺∗(H1) places.

Lemma: We can enumerate in f(ℓ, ̺∗(H1)) · mO(̺∗(H1)) time all the places

where H1 appears in H2.

The Closest Substring problem with small distances – p.9/14

Half-covering

Defintion: A hypergraph has the half-covering property if for every non-empty

set X of vertices there is an edge Y with |X ∩ Y | > |X |/2.

Lemma: If a hypergraph H with m edges has the half-covering property, then

̺∗(H) = O(log log m).

Proof: by probabilistic arguments.

(The O(log log m) is best possible.)

The Closest Substring problem with small distances – p.10/14

Reminder

CLOSEST SUBSTRING

Input: Binary strings s1, . . . , sk , integers L and d

Find: — string s of length L (center string),

— a length L substring s′

i of si for every i

such that d(s, s′

i) ≤ d for every i

The Closest Substring problem with small distances – p.11/14

The f(k, d) · nO(log log k) algorithm

First step: guess the correct s′

1 (≤ n possibilities).

Consider the set S of all length L substrings of s1, . . . , sk . We turn S into a

hypergraph H on vertices {1, 2, . . . , L}: if a string in S differs from s′

1 on
positions P ⊆ {1, 2, . . . , L}, then let P be an edge of H .

The Closest Substring problem with small distances – p.12/14

The f(k, d) · nO(log log k) algorithm

First step: guess the correct s′

1 (≤ n possibilities).

Consider the set S of all length L substrings of s1, . . . , sk . We turn S into a

hypergraph H on vertices {1, 2, . . . , L}: if a string in S differs from s′

1 on
positions P ⊆ {1, 2, . . . , L}, then let P be an edge of H .

Lemma: Assume that in a solution s differs from s′

1 on positions P , and
d(s, s′

1) is as small as possible.

Then there is a hypergraph H0 with at most d vertices and k edges having the
half-covering property such that H0 appears at P in H .

Algorithm: Consider every hypergraph H0 as above and enumerate all the

places where H0 appears in H .

The Closest Substring problem with small distances – p.12/14

The f(k, d) · nO(log log k) algorithm (cont.)

Algorithm:

Guess s′

1.

Construct the hypergraph H .

Enumerate every hypergraph H0 with at most d vertices and k edges

(constant number).

Check if H0 has the half-covering property.

If so, then enumerate every place P where H0 appears in H .
(max. ≈ nO(̺∗(H0)) = nO(log log k) places).

For each place P , check if there is a good center string that differs from s′

1

only at P .

Running time: f(k, d) · nO(log log k).

The Closest Substring problem with small distances – p.13/14

Conclusions

Parameterized analysis of CLOSEST SUBSTRING.

Tight bounds on the exponent of n.

Other applications of finding hypergraphs with small fractional edge cover
number?

The Closest Substring problem with small distances – p.14/14

	The Closest Substring problem
	Small parameters
	Parameterized complexity
	Parameterized intractability
	Closest Substring---Results
	Hardness of Closest Substring
	(Fractional)
edge covering
	Finding subhypergraphs
	Half-covering
	Reminder
	The $f(k,d)cdot
n^{O(log log k)}$ algorithm
	The $f(k,d)cdot
n^{O(log log k)}$ algorithm (cont.)
	Conclusions

