
Beyond fractional hypertree width

Dániel Marx

Tel Aviv University, Israel

October 26, 2009

Dagstuhl Seminar 09441

Beyond fractional hypertree width – p.1/29

Constraint Satisfaction Problems (CSP)

A CSP instance is given by describing the

variables,

domain of the variables,

constraints on the variables.

Task: Find an assignment that satisfies every constraint.

I = C1(x1, x2, x3) ∧ C2(x2, x4) ∧ C3(x1, x3, x4)

In this talk: constraints are represented by listing all the tuples.

Beyond fractional hypertree width – p.2/29

Hypergraphs ands CSP

Hypergraph: vertices are the variables, constraints are the hyperedges.

I = C1(x2, x1, x3) ∧ C2(x4, x3) ∧ C3(x1, x4, x2)

C2

C1 C3

x4

x1

x2

x3

CSP(H): The CSP problem restricted to instances where the hypergraph belongs

to the class H.

CSP(H) is polynomial-time solvable if there is a O(‖I‖c) time algorithm.

CSP(H) is fixed-parameter tractable (FPT) if there is a f(H) · ‖I‖c time

algorithm. Beyond fractional hypertree width – p.3/29

Main result

Main result: Let H be a recursively enumerable set of hypergraphs.
Assuming ETH,

CSP(H) is FPT ⇐⇒ H has bounded submodular width.

Exponential Time Hypothesis (ETH):

There is no 2o(n) time algorithm for n-variable 3SAT.

Known to be equivalent to:

There is no 2o(m) time algorithm for m-clause 3SAT.

Beyond fractional hypertree width – p.4/29

Tractable classes

tree width

edge cover number

Bounded fractional

hypertree width

Bounded fractional hypertree width

Bounded (generalized)

Bounded

Bounded submodular width
FPT

PTIME

not FPT

Beyond fractional hypertree width – p.5/29

Tree decomposition of hypergraphs

Tree decomposition: Bags of vertices are arranged in a tree structure satisfying

the following properties:

1. For every hyperedge e, there is a bag containing the vertices of e.

2. For every vertex v, the bags containing v form a connected subtree.

Standard definitions:

Width of the decomposition: size of the largest bag minus 1.

Tree width: width of the best decomposition.

Beyond fractional hypertree width – p.6/29

Tree decomposition of hypergraphs

Tree decomposition: Bags of vertices are arranged in a tree structure satisfying

the following properties:

1. For every hyperedge e, there is a bag containing the vertices of e.

2. For every vertex v, the bags containing v form a connected subtree.

Standard definitions:

Width of the decomposition: size of the largest bag minus 1.

Tree width: width of the best decomposition.

Let us introduce a more general framework that includes treewidth and many of its

generalizations.

Beyond fractional hypertree width – p.6/29

Width measures for decompositions

Definition: Let f : 2V (H) → R
+ be a function assigning values to the vertex

subsets of H .

The f -width(T) of a tree decomposition T is the maximum of f(B) over all

bags B.

The f -width(H) of hypergraph H is the minimum of f -width(T) over all tree
decompositions T of H .

Beyond fractional hypertree width – p.7/29

Width measures for decompositions

Definition: Let f : 2V (H) → R
+ be a function assigning values to the vertex

subsets of H .

The f -width(T) of a tree decomposition T is the maximum of f(B) over all

bags B.

The f -width(H) of hypergraph H is the minimum of f -width(T) over all tree
decompositions T of H .

Example: If s(B) = |B| − 1, then s-width(H) is treewidth.

Example: If ̺H (B) is the edge cover number of B, then ̺H -width(H) is

generalized hypertree width.

Example: If ̺∗

H (B) is the fractional edge cover number of B, then ̺∗

H -width(H)

is fractional hypertree width.

Note: ̺∗

H (B) ≤ ̺H (B) ≤ s(B) + 1

Beyond fractional hypertree width – p.7/29

Useful width measures

Definition: sol(B): number of solutions in the instance projected to B.

We say that f -width is useful if in every instance I and for every subset B,

sol(B) is at most ‖I‖O(f(B)).

Note: treewidth, hypertree width, fractional hypertree width are all useful.

Recall:

Fact: If we are given a tree decomposition of the primal graph of instance I such

that sol(B) ≤ C for any bag B, then I can be solved in time polynomial in ‖I‖
and C .

Thus if f -width is useful, then bounded f -width implies polynomial-time solvability
if a decomposition is available.

⇒ This immediately implies fixed-parameter tractability.

Beyond fractional hypertree width – p.8/29

Going beyond fractional hypertree width

To go beyond fractional hypertree width it is sufficient to identify a function

f(B) ≤ ̺∗

H (B) such that f -width is useful.

Beyond fractional hypertree width – p.9/29

Going beyond fractional hypertree width

To go beyond fractional hypertree width it is sufficient to identify a function

f(B) ≤ ̺∗

H (B) such that f -width is useful.

Unfortunately, there is no such function f :

Fact: There are arbitrarily large instances I with hypergraph H where the

projection to B has ‖I‖Ω(̺∗

H
(B)) solutions.

Thus if f -width is useful, it cannot be less than fractional hypertree width.

Beyond fractional hypertree width – p.9/29

F -width

Definition: Let F be a set of functions from 2V (H) to R
+. The F -width of H is

the maximum of f -width(H) over every f ∈ F .

F -width(H) ≤ w ⇐⇒
for every f ∈ F
exists a tree decomposition T of F such that
for every bag B of T , f(B) ≤ w.

Note: the tree decomposition T can be different for different functions f ∈ F .

Beyond fractional hypertree width – p.10/29

Submodular width

Definition: The submodular width of H is F -width(H), where F is the set of all

monotone, edge-dominated, submodular functions on the vertices of H .

Monotone: b(X) ≤ b(Y) for every X ⊆ Y .

Edge-dominated: b(e) ≤ 1 for every hyperedge e of H .

Submodular: For arbitrary sets X, Y

b(X) + b(Y) ≥ b(X ∩ Y) + b(X ∪ Y).

Beyond fractional hypertree width – p.11/29

Main result

Main result: Let H be a recursively enumerable set of hyper-
graphs. Assuming ETH,

CSP(H) is FPT ⇐⇒ H has bounded submodular width.

Algorithmic side: If H has bounded submodular width, then CSP(H) is FPT.

How does it help if we know that every submodular function has a good tree
decomposition?

Hardness: If H has bounded submodular width, then CSP(H) is not FPT.

To simulate 3SAT by CSP(H), we need an efficient embedding of a graph into

a hypergraph. We know that certain submodular functions do not have good
tree decompositions. How does that help in finding good embeddings?

Beyond fractional hypertree width – p.12/29

Three battlefields

Submodular

functions

Hypergraphs,
embeddings

CSP instances

In uniform CSP instances
a submodular function
describes the number
of solutions

Connection between fractional
separators and submodular
cost functions

An embedding provides
a way of simulating
3SAT with CSP

Beyond fractional hypertree width – p.13/29

A crazy idea

Let I be a CSP instance with hypergraph H . Let N := ‖I‖ and suppose that the

submodular width of H is at most w.

Let b(B) := logN sol(B), which is edge-dominated.

Crazy assumption: b is monotone and submodular.

Then by the definition of submodular width, there is a tree decomposition where

sol(B) ≤ N w for every bag
⇒ FPT algorithm!

Beyond fractional hypertree width – p.14/29

A crazy idea

Let I be a CSP instance with hypergraph H . Let N := ‖I‖ and suppose that the

submodular width of H is at most w.

Let b(B) := logN sol(B), which is edge-dominated.

Crazy assumption: b is monotone and submodular.

Then by the definition of submodular width, there is a tree decomposition where

sol(B) ≤ N w for every bag
⇒ FPT algorithm!

Problems:

b is not necessarily monotone.

b is not necessarily submodular.

we don’t even know the function b.

Beyond fractional hypertree width – p.14/29

Small sets

Let X be M -small if sol(Y) ≤ M for every Y ⊆ X .

Fact: In time f(H) · (‖I‖ · M)O(1), we can identify all M -small sets and

compute sol(X) for every such set X .

We will care about the value of b only on the N w -small sets, every other set will

be “too large.”

By introducing further constraints, we can ensure that b is monotone on N w -small
sets: if an assignment Y ⊂ X is not extendible to X , then we forbid it.

Now we know b and it is monotone on the sets we care about. But what about

submodularity?

Beyond fractional hypertree width – p.15/29

Uniformity

Definition: Instance I is c-uniform, if for every B ⊆ A, every satisfying

assignment of B has at most c · sol(A)/sol(B) extensions to a satisfying
assignment of A.

Fact: If I is 1-uniform, then b is submodular.

b(X) + b(Y) ≥ b(X ∩ Y) + b(X ∪ Y).

Beyond fractional hypertree width – p.16/29

Uniformity

Definition: Instance I is c-uniform, if for every B ⊆ A, every satisfying

assignment of B has at most c · sol(A)/sol(B) extensions to a satisfying
assignment of A.

Fact: If I is 1-uniform, then b is submodular.

b(X) + b(Y) ≥ b(X ∩ Y) + b(X ∪ Y).

If I is N ǫ-uniform on N w -small sets, then with some tweaking (adding low order
terms) we can make b submodular.

But why would be the instance N ǫ-uniform?

Beyond fractional hypertree width – p.16/29

Decomposition into uniform instances

Suppose that two N w -small sets B ⊆ A violate N ǫ-uniformity: there are

assignments on B having more than N ǫ · sol(A)/sol(B) extensions.

By adding a new constraint, we split the instance in two cases:

in Ismall every assignment on B has at most
√

N ǫ · sol(A)/sol(B) extensions,

in Ilarge every assignment has more than that many extensions.

Repeat if necessary.

We can show that the number of instances created by the procedure can be

bounded by a function of the number of variables (independent of the size of the
domain and the relations!).

Beyond fractional hypertree width – p.17/29

The algorithm

Algorithm for hypergraphs with submodular with at most w:

Locate the N w -small sets.

Decompose the instance into a bounded number of N ǫ-uniform instances

⇒ b = logN sol(B) is submodular (after some tweaking).

For each new instance, try every tree decomposition — there has to be one
where b(B) ≤ w and hence sol(B) ≤ N w for every bag b.

Solve the new instance using this tree decomposition.

This completes the algorithmic part of the main result.

Beyond fractional hypertree width – p.18/29

The algorithm

Algorithm for hypergraphs with submodular with at most w:

Locate the N w -small sets.

Decompose the instance into a bounded number of N ǫ-uniform instances

⇒ b = logN sol(B) is submodular (after some tweaking).

For each new instance, try every tree decomposition — there has to be one
where b(B) ≤ w and hence sol(B) ≤ N w for every bag b.

Solve the new instance using this tree decomposition.

This completes the algorithmic part of the main result.

Idea #1: The decomposition depends not only on the hypergraph of the
instance, but on the actual constraint relations.

Idea #2: We branch on adding further restrictions, and apply different tree

decompositions to each resulting instance.

Beyond fractional hypertree width – p.18/29

Three battlefields

Submodular
functions

Hypergraphs,

embeddings

CSP instances

An embedding provides
a way of simulating
3SAT with CSP

Connection between fractional
separators and submodular
cost functions

In uniform CSP instances
a submodular function
describes the number
of solutions

Beyond fractional hypertree width – p.19/29

Highly connected sets

For the hardness part, we want to characterize submodular width analogously to
other width measures: if submodular width is large, then there is a “large highly

connected set” in the hypergraph.

Beyond fractional hypertree width – p.20/29

Highly connected sets

For the hardness part, we want to characterize submodular width analogously to
other width measures: if submodular width is large, then there is a “large highly

connected set” in the hypergraph.

Separator-based approach:

W

Beyond fractional hypertree width – p.20/29

Highly connected sets

For the hardness part, we want to characterize submodular width analogously to
other width measures: if submodular width is large, then there is a “large highly

connected set” in the hypergraph.

Separator-based approach:

BSA

Beyond fractional hypertree width – p.20/29

Highly connected sets

For the hardness part, we want to characterize submodular width analogously to
other width measures: if submodular width is large, then there is a “large highly

connected set” in the hypergraph.

Separator-based approach:

B

B

S

S S

A

A

Beyond fractional hypertree width – p.20/29

Highly connected sets

For the hardness part, we want to characterize submodular width analogously to
other width measures: if submodular width is large, then there is a “large highly

connected set” in the hypergraph.

Separator-based approach:

A

A B

B

S

S S

Beyond fractional hypertree width – p.20/29

Highly connected set

Definition: A set W is b-connected, if for every disjoint X, Y ⊆ W , there is no

(X, Y)-separator S with b(S) < min{b(X), b(Y)}.

If b-width is at least w for some submodular function b, the separator-based

approach of finding tree decompositions almost gives us (there is one major
technical difficulty) a set b-connected set W with b(W) = Ω(w).

But we want a notion of highly connected set that is determined only by the hyper-

graph H and is not related to any submodular function.

Beyond fractional hypertree width – p.21/29

Highly connected set

Definition: A fractional independent set of H is an assignment

µ : V (H) → {0, 1} such that µ(e) ≤ 1 for every hyperedge e (we define
µ(X) =

∑
v∈X

µ(v)).

Definition: A fractional (X, Y)-separator is an assignment E(H) → {0, 1}
such that every X − Y path is covered by total weight at least 1.

Definition: Let λ > 0 be a constant (say, 0.01) and let µ be a fractional

independent set. A set W is (µ, λ)-connected if for every disjoint X, Y ⊆ W ,
there is no fractional (X, Y)-separator of weight less than

λ · min{µ(X), µ(Y)}.

We need to connect somehow the notions of “fractional (X, Y)-separator having
small weight” and “(X, Y)-separator S with b(S) small.”

Beyond fractional hypertree width – p.22/29

Result on separation

What does it mean that there is a fractional (X, Y)-separator of small weight?

Fact: If there is a fractional (X, Y)-separator of weight w, then for every

edge-dominated monotone submodular function b, there is a (X, Y)-separator S

with b(S) = O(w).

Beyond fractional hypertree width – p.23/29

Result on separation

What does it mean that there is a fractional (X, Y)-separator of small weight?

Fact: If there is a fractional (X, Y)-separator of weight w, then for every

edge-dominated monotone submodular function b, there is a (X, Y)-separator S

with b(S) = O(w).

Definition: (repeated) A set W is b-connected, if for every disjoint X, Y ⊆ W ,
there is no (X, Y)-separator S with b(S) < min{b(X), b(Y)}.

If there is no (X, Y)-separator S with b(S) < min{b(X), b(Y)}, then there is

no fractional separator of weight λ · min{b(X), b(Y)} for some λ > 0.

So we have obtained a set W that is “highly connected” in the sense that cer-

tain fractional separators do not exist, and this takes us into the domain of purely

hypergraph properties, separators, flows, etc.

Beyond fractional hypertree width – p.23/29

Three battlefields

Submodular

functions

Hypergraphs,
embeddings

CSP instances

Connection between fractional
separators and submodular
cost functions

In uniform CSP instances
a submodular function
describes the number
of solutions

An embedding provides
a way of simulating
3SAT with CSP

Beyond fractional hypertree width – p.24/29

Embeddings

Definition: A q-embedding of graph F in hypergraph H maps a subset of V (H)

to each vertex of H such that

For every v ∈ V (F), φ(v) is connected.

If u, v ∈ V (F) are adjacent in F , then φ(u) and φ(v) touch: there is a

hyperedge intersecting both of them

Every hyperedge e of H intersects the images of at most q vertices of F .

Fact: For graphs F and G, if m = |E(F)| is sufficiently large and k = tw(G),
then there is a q-embedding of F in G for q = O(m log k/k).

Beyond fractional hypertree width – p.25/29

Embeddings

Definition: A q-embedding of graph F in hypergraph H maps a subset of V (H)

to each vertex of H such that

For every v ∈ V (F), φ(v) is connected.

If u, v ∈ V (F) are adjacent in F , then φ(u) and φ(v) touch: there is a

hyperedge intersecting both of them

Every hyperedge e of H intersects the images of at most q vertices of F .

Fact: For graphs F and G, if m = |E(F)| is sufficiently large and k = tw(G),
then there is a q-embedding of F in G for q = O(m log k/k).

We show:

Fact: For a graph F and hypergraph H , if m = |E(F)| is sufficiently large and

H has submodular width w, then there is a q-embedding of F in H for
q = O(m/w

1

4).

Combinatorial optimization techniques, linear programming, etc..
Beyond fractional hypertree width – p.25/29

Hardness proof

Fact: If H is a recursively enumerable class of hypergraphs with unbounded

submodular width, then CSP(H) is not fixed-parameter tractable (assuming ETH).
Proof outline:

Given a 3SAT instance with m clauses and n variables, we turn it into a CSP

instance I1 with 3m binary constraints, and domain size 3.

We use the embedding result to find a q-embedding of the primal graph F of
I1 into some Hk ∈ H (chosen appropriately).

We simulate I1 by an instance I2 whose primal graph is Hk : each edge of I2

“sees” at most q variables of I1, thus each constraint relation has size ≤ 3q .

Now the 3SAT problem can be solved by solving I2. Calculation of the running

time shows that that an FPT algorithm for CSP(H) would give a 2o(m)

algorithm for m-clause 3SAT, violating ETH.

Beyond fractional hypertree width – p.26/29

Three battlefields

Submodular
functions

Hypergraphs,

embeddings

CSP instances

In uniform CSP instances
a submodular function
describes the number
of solutions

Connection between fractional
separators and submodular
cost functions

An embedding provides
a way of simulating
3SAT with CSP

Beyond fractional hypertree width – p.27/29

Conclusions

Characterization of CSP(H) with respect to fixed-parameter tractability.

Main new definition: submodular width.

Why fixed-parameter tractability?

What happens in the “gray zone”?

Beyond fractional hypertree width – p.28/29

Tractable classes

tree width

edge cover number

Bounded fractional

hypertree width

Bounded fractional hypertree width

Bounded (generalized)

Bounded

Bounded submodular width
FPT

PTIME

not FPT

Beyond fractional hypertree width – p.29/29

	Constraint Satisfaction Problems (CSP)
	Hypergraphs ands CSP
	Main result
	Tractable classes
	Tree decomposition of hypergraphs
	Width measures for decompositions
	Useful width measures
	Going beyond fractional hypertree width
	$F $-width
	Submodular width
	Main result
	Three battlefields
	A crazy idea
	Small sets
	Uniformity
	Decomposition into uniform instances
	The algorithm
	Three battlefields
	Highly connected sets
	Highly connected set
	Highly connected set
	Result on separation
	Three battlefields
	Embeddings
	Hardness proof
	Three battlefields
	Conclusions
	Tractable classes

