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TSP
TSP

Input: A set T of cities and a distance function d on T
Output: A tour on T with minimum total distance

Theorem [Held and Karp 1962]

TSP with n cities can be solved in time 2n · n2 · logD, where D is
the maximum (integer) distance.

Dynamic programming:
Let x(v ,T ′) be the minimum length of path from vstart to v
visiting all the cities T ′ ⊆ T .
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Obligatory cartoon

http://xkcd.com/399/
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c-change TSP

c-change operation: removing c steps of the tour and
connecting the resulting c paths in some other way.
A solution is c-OPT if no c-change can improve it.
We can find a c-OPT solution in nO(c) · D time, where D is
the maximum (integer) distance.
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c-change TSP

Finding a 2-OPT or 3-OPT tour is a popular starting point for
heuristics.
Supposedly, finding a k-OPT tour for larger k is better (less
likely to get stuck in a local optimum), but more time
consuming.

Unlikely that there is a fast algorithm for finding a k-OPT
tour:

Theorem [M. 2008]

Finding a better tour in the k-change neighborhood is W[1]-hard.
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TSP on planar graphs
Assume that the cities correspond to the set of all vertices of a
(weighted) planar graph and distance is measured in this
(weighted) planar graph.

6



TSP on planar graphs
Assume that the cities correspond to the set of all vertices of a
(weighted) planar graph and distance is measured in this
(weighted) planar graph.

Can be solved in time nO(
√

n).
Admits a PTAS.
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Subset TSP on planar graphs
Assume that the cities correspond to a subset T of vertices of a
planar graph and distance is measured in this planar graph.
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Subset TSP on planar graphs
Assume that the cities correspond to a subset T of vertices of a
planar graph and distance is measured in this planar graph.

Can be solved in time nO(
√

n).
Can be solved in time 2k · nO(1).
Question: Can we solve it in time 2O(

√
k) · nO(1)?
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Subset TSP on planar graphs
Assume that the cities correspond to a subset T of vertices of a
planar graph and distance is measured in this planar graph.

Theorem
Subset TSP for k cities in a unit-weight planar graph can be
solved in time 2O(

√
k log k) · nO(1).
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Subset TSP on planar graphs
Assume that the cities correspond to a subset T of vertices of a
planar graph and distance is measured in this planar graph.

Theorem
Subset TSP for k cities in a weighted planar graph can be solved
in time (2O(

√
k log k) + W ) · nO(1) if the weights are integers not

more than W .
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Two interpretations

Two possible interpretations for a solution of Subset TSP:

a cyclic ordering of the cities closed walk in the graph
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We can get the second from the first by concatenating shortest
paths between adjacent cities in the ordering.
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Technicalities
The closed walk can be degenerate in several ways:

can touch itself,
can cross itself,
can use an edge up to twice,
can visit a city more than once.

We mostly ignore these technicalities in this talk.
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Non-self-crossing

Definition: Non-self-crossing closed walk.
Definition: A tour is non-self-crossing if there is a
non-self-crossing closed walk realizing it.

Fact
Given a tour T , one can find a non-self-crossing tour T ′ in
polynomial time that has not larger cost.
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Partial solutions
General idea: build larger and larger partial solutions.

Held-Karp algorithm: the partial solutions are vstart − v paths
visiting a subset T ′ of cities.
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6

Generalization: a partial solution is a set of at most d pairwise
disjoint paths with specified endpoints.
The type of a partial solution can be described by

the set of endpoints of the paths,
a matching between the endpoints, and
the subset T ′ of visited cities.
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Merging partial solutions
Two compatible partial solutions can be merged in an obvious way:
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Algorithm
Start with an initial set of trivial partial solutions.
Combine two partial solutions as long as possible.
Keep at most one partial solution from each type: the best
one encountered so far.
Return the best partial solution that consists of a single path
(cycle) visiting all vertices.
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Running time
Algorithm

Start with an initial set of trivial partial solutions.
Combine two partial solutions as long as possible.
Keep at most one partial solution from each type: the best
one encountered so far.
Return the best partial solution that consists of a single path
(cycle) visiting all vertices.

With careful implementation, the running time is dominated by the
number of types, whose number has two factors:

endpoints described by at most d pairs of vertices
⇒ k2d possibilities,
describing the subset T ′ of visited cities
⇒ 2k possibilities.

We can increase d up to O(
√

k), but we need to reduce somehow
the number of possible subsets of cities!
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Restricting the subset of cities
We restrict attention to a collection T of subsets of cities and
consider only partial solutions that visit a subset in T .
We need: a collection T of size kO(

√
k) that guarantees finding an

optimum solution.

Definition of T :
Find a non-self-crossing 4-OPT tour.

A subset is in T if and only if it induces O(
√

k) consecutive
intervals on the non-self-crossing 4-OPT tour.
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Main result

Definition of T :
Find a non-self-crossing 4-OPT tour.
A subset is in T if and only if it induces O(

√
k) consecutive

intervals on the non-self-crossing 4-OPT tour.

Theorem

After setting T as above and d = O(
√

k), the Algorithm finds an
optimum solution for Subset TSP on planar graphs.

Corollary
Subset TSP for k cities in a planar graph can be solved in time
(2O(

√
k log k) + W ) · nO(1) if the weights are integers at most W .
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The treewidth bound
Consider the union of an optimum solution and a 4-OPT solution
as a graph on k vertices:

Lemma
For every non-self-crossing 4-OPT solution, there is an optimum
solution such that their union has treewidth O(

√
k).
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Treewidth
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.
Width of the decomposition: largest bag size −1.

treewidth: width of the best decomposition.

dcb

a

e f g h

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f
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The treewidth bound

Lemma
For every non-self-crossing 4-OPT solution, there is an optimum
solution such that their union has treewidth O(

√
k).

The union has separators of size O(
√

k).
In each component, the set of cities visited by the optimum
solution is nice: it is the same as what O(

√
k) segments of the

4-OPT tour visited.
We can use this tree decomposition to prove that the
Algorithm finds an optimum solution.
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Proof of the treewidth bound
Consider the closed walk corresponding to the 4-OPT solution and
pick an optimum solution and a closed walk representing that.

The union is a planar graph:

Select the optimum solution and the closed walk such that the two
tours cross each other the minimum number of times.
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We give an O(
√

k) bound on the treewidth of this planar graph
⇓

A O(
√

k) bound follows for the k-vertex graph, as it is a minor of
this graph after duplicating the vertices.

19



Proof of the treewidth bound
Consider the closed walk corresponding to the 4-OPT solution and
pick an optimum solution and a closed walk representing that.

The union is a planar graph:

We give an O(
√

k) bound on the treewidth of this planar graph
⇓

A O(
√

k) bound follows for the k-vertex graph, as it is a minor of
this graph after duplicating the vertices.

19



Proof of the treewidth bound
Consider the closed walk corresponding to the 4-OPT solution and
pick an optimum solution and a closed walk representing that.

The union is a planar graph:

We prove that every 3-connected component of the planar graph
has O(k) vertices

⇓
O(
√

k) treewidth bound on the 3-connected components
⇓

same bound for the whole graph.
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Representations
The union of of the 4-OPT solution and the optimum solution can
be degenerate in several ways (two tours share edges, touch each
other, revisit vertices etc.).

We work with a representation of the union, which is a 4-regular
planar graph where every vertex (except the cities) is a crossing.
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Grids
A grid is a 16-vertex subgraph of the representation of the union of
the 4-OPT solution and the optimum solution:

Lemma
If a 3-connected component of the representation has size Ω(k),
then there is a grid.

Proof idea: 4-regular and O(k) faces have length < 4
⇒ Euler’s formula implies that most of the faces have length 4
⇒ a 4-face surrounded by 4-faces should be a grid.
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Grids
Suppose that the grid is used like this by two tours:

Let us exchange these two sets of edges between the two tours.
The 4-OPT tour cannot improve.
The optimum tour cannot improve.
We get another optimum tour such that the representation has
fewer crossings.
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Grids — other cases:

C type + S type:
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Grids — other cases:
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Grids — other cases:
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Grids — other cases:

S type + S type:
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Grids — other cases:

S type + inverted S type:
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Grids — other cases:

S type + inverted S type:
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Grids — other cases:

S type + inverted S type:
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Overview

Algorithm:
Find a 4-OPT tour.
Partial solutions: O(

√
k) disjoint paths, visiting O(

√
k)

consecutive intervals on the 4-OPT tour.
Merge partial solutions until the optimum solution is found.

Treewidth bound: the union of the 4-OPT tour and some
optimum tour is a k-vertex graph with treewidth O(

√
k).

Study the union in the planar graph.
Every 3-connected component has O(k) vertices, otherwise
there is a grid and an exchange argument could be used.
Union in the planar graph has treewidth O(

√
k) ⇒ the

k-vertex graph has treewidth O(
√

k).
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