
Chordal deletion is fixed-parameter tractable

Dániel Marx⋆

Department of Computer Science and Information Theory
Budapest University of Technology and Economics

Budapest H-1521 Hungary
dmarx@cs.bme.hu

Abstract. It is known to be NP-hard to decide whether a graph can be
made chordal by the deletion of k vertices or by the deletion of k edges.
Here we present a uniformly polynomial-time algorithm for both prob-
lems: the running time is f(k) ·nα for some constant α not depending on
k and some f depending only on k. For large values of n, such an algo-
rithm is much better than trying all the O(nk) possibilities. Therefore,
the chordal deletion problem parameterized by the number k of vertices
or edges to be deleted is fixed-parameter tractable. This answers an open
question of Cai [4].

1 Introduction

A graph is chordal if it does not contain an induced cycle of length greater than
3. It can be decided in linear time whether a graph is chordal [26]. However, it
is NP-complete to decide whether a graph can be made chordal by the deletion
of k vertices [19], by the deletion of k edges [23], or by the addition of k edges
[27] (if k is part of the input).

In this paper we investigate these problems from the parameterized com-
plexity point of view. Parameterized complexity deals with problems where the
input has a distinguished part k (usually an integer) called the parameter. A
parameterized problem is called fixed-parameter tractable (FPT) if there is an
algorithm with running time f(k) · nα, where f(k) is an arbitrary function and
α is a positive constant independent of k. It turns out that several NP-hard de-
cision problems, such as Minimum Vertex Cover (parameterized by the size
k of the vertex cover to be found) and Longest Path (parameterized by the
length k of the path), are fixed-parameter tractable. The function f(k) is usu-
ally exponential, thus if the parameter k can be arbitrary, then the algorithms
are not polynomial (as expected). However, for small fixed values of k, fixed-
parameter tractable problems have low-degree polynomial algorithms, which are
sometimes even practically feasible. The definition of fixed-parameter tractabil-
ity can be extended in a straightforward way to the case when the input has two
parameters k1, k2. In this case, our aim is to find an algorithm with running time

⋆ Research is supported by the Magyary Zoltán Felsőoktatási Közalaṕıtvány and the
Hungarian National Research Fund (OTKA grant 67651).

f(k1, k2) · nα. For more background, the reader is referred to the monograph of
Downey and Fellows [8] or to the recent book of Flum and Grohe [9].

If k is a fixed constant, then the three chordal deletion/completion problems
can be solved in polynomial time by exhaustive search. For example, in the edge
completion problem we can try all the nO(k) possible edge sets of size k and
check whether the addition of these edges makes the graph chordal. This trivial
nO(k) time algorithm can be improved to O(4k/(k + 1)3/2 · (n + m)) time [3]
or O(k2nm + k624k) time [16]. Therefore, chordal edge completion (which is
also called the minimum fill-in problem) is fixed-parameter tractable. The main
result of the paper is that chordal vertex deletion and chordal edge deletion
are also fixed-parameter tractable. In fact, we give an algorithm for the common
generalization of the two deletion problems: in the Chordal Deletion problem
the graph has to be made chordal by the deletion of at most k1 vertices and at
most k2 edges.

Theorem 1. Chordal Deletion is fixed-parameter tractable with combined
parameters k1 and k2, where k1 (resp., k2) is the maximum number of vertices
(resp., edges) to be deleted.

Cai [4] proposed a general class of graph modification problems analogous to
Chordal Deletion. Let G be an arbitrary class of graphs. We denote by G+ke
(resp., G − ke) the class of those graphs that can be obtained by adding (resp.,
deleting) k edges to/from a member of G. Similarly, let G + kv contain those
graphs that can be obtained from some member of G by adding k new vertices
and connecting these vertices with the original vertices and with each other in
an arbitrary way. (An equivalent definition is to say that a graph is in G+kv if it
can be made a member of G by deleting k vertices.) For every graph class G, we
can ask about the complexity of recognizing graphs in G + ke, G − ke, or G + kv.
In particular, we are interested in whether these problems are fixed-parameter
tractable parameterized by k. Our main result implies that recognizing chordal+
ke and chordal+ kv graphs are fixed-parameter tractable. This answers an open
question of Cai [4]. The only previous result for this problem is a linear-time
algorithm [15] for recognizing chordal+1e and chordal+1v graphs, which is more
efficient than deleting each edge (vertex) and checking whether the remaining
graph is chordal.

Our algorithm can actually find the k edges or k vertices whose deletion
makes the graph chordal; these edges/vertices are called the modulator of the
graph in [4]. Vertex coloring of chordal + ke graphs is fixed-parameter tractable
parameterized by k, provided that the modulator of the graph is given in the
input [21]. The result in this paper implies that the modulator of a chordal+ ke
graph can be generated in f(k)nα time, hence the vertex coloring on chordal+ke
graphs remains fixed-parameter tractable even if the modulator is not given in
the input.

The iterative compression method introduced in [24] allows us to concentrate
on an easier “solution compression” problem. This technique proved useful for
many other problems, see [7, 6, 13]. The compression problem is the following
(for brevity, we discuss only the vertex-deletion version in this paragraph): given

2

a set X of k + 1 vertices such that G \ X is chordal, find k vertices whose
deletion makes G chordal. To solve this solution compression problem, we first
determine the size of the maximum clique in the chordal graph G \ X . If the
clique size G\X is small, then G\X (and hence the slightly larger G) has small
treewidth. Using standard techniques, the problem can be solved in linear time
for graphs with bounded treewidth. On the other hand, we show that if there is
a large clique in G\X , then the clique contains “irrelevant” vertices that can be
removed from the graph without changing the solvability of the problem. The
main technical difficulty of the proof is to prove that an irrelevant vertex always
exists in a large clique. This idea of repeatedly deleting irrelevant vertices until
a bounded-treewidth instance is obtained was useful for other problems as well
[25, 12, 22].

The paper is organized as follows. Section 2 reviews some basic facts on
chordal graphs. Section 3 presents the algorithm for bounded-treewidth graphs.
In Section 4 we show how the iterative compression method of [24] can be applied
to our problem. Section 5 discusses how we can reduce the size of the cliques to
make our graph a bounded treewidth graph.

2 Chordal graphs

We recall some standard definitions from graph theory. A walk in a graph G is a
sequence of vertices v1v2 . . . vk such that vi and vi+1 are adjacent in G for every
1 ≤ i < k. The length of a walk v1v2 . . . vk is defined to be k − 1. A path is walk
where the vi’s are distinct. We say that the path v1v2 . . . vk connects vertices v1

and vk. The distance of two vertices u and v is the length of the shortest path
connecting u and v; the distance is defined to be infinity if there is no such path.
The distance of a vertex v and a set S of vertices is the minimum distance of
v and a vertex u ∈ S. Vertex v is adjacent to S if the distance of v and S is
1, i.e., there is an edge between v and some vertex u ∈ S. A cycle in G is a
walk v1v2 . . . vkvk+1 such that v1 = vk+1 and vi 6= vj for every 1 ≤ i < j ≤ k.
The length of a cycle v1v2 . . . vkvk+1 is the number of distinct vertices in the
sequence, i.e., k.

A graph is chordal if it does not contain a cycle of length greater than 3
as an induced subgraph. This is equivalent to saying that every cycle of length
greater than 3 contains at least one chord, i.e., an edge connecting two vertices
not adjacent in the cycle. A chordless cycle of length greater than 3 will be called
a hole. Chordality is a hereditary property: every induced subgraph of a chordal
graph is chordal.

Every chordal graph is a perfect graph [11]: the minimum number of colors
required to color the vertices of a chordal graph equals the size of the largest
clique. The complement of a chordal graph is also perfect, which translates to
the statement that the minimum number of cliques required to cover the vertices
of a chordal graph equals the size of the largest independent set. Furthermore,
an optimum coloring or clique covering of a chordal graph can be found in

3

a

deaef

bfgabfbc

gfed

cb

Fig. 1. A chordal graph and its clique tree decomposition.

polynomial time [11]. We will use these observations to cover certain sets of
vertices with a small number of cliques and treat the cliques separately.

Chordal graphs can be also characterized as the intersection graphs of sub-
trees of a tree (see e.g., [11]):

Theorem 2. The following two statements are equivalent:

1. G(V, E) is chordal.
2. There exists a tree T (U, F) and a subtree Tv ⊆ T for each v ∈ V such that

u, v ∈ V are neighbors in G(V, E) if and only if Tu ∩Tv 6= ∅ (i.e., Tu and Tv

have a common node).

The tree T together with the subtrees Tv is called the clique tree decom-
position of G. Figure 1 shows a chordal graph and a possible clique tree de-
composition. The vertices in a node of the tree show which subtrees contain
that particular node; for example, the leftmost node of the tree is contained in
subtrees Tb and Tc. One can find a clique tree decomposition of a given chordal
graph in polynomial time (see [11, 26]). For clarity, we will use the word “vertex”
when we refer to the graph G(V, E), and “node” when referring to T (U, F). We
say that a vertex v covers node x if Tv contains node x. For an arbitrary node
x of T , the vertices covering x induce a clique. Conversely, for every clique K,
there is a node x of T such that every v ∈ K covers this node x (cf. [11]). The
following easy observation will be used repeatedly:

Proposition 3. Let x, y, z be vertices in G(V, E) such that xy, xz ∈ E but
yz 6∈ E. If there is a walk T in G \ x from y to z such that y and z are the only
neighbors of x in T , then T ∪ x contains a hole of length at least 4.

Proof. Let P be a minimal subpath of T from y to z. Since y and z are not
neighbors, path P has length at least 2. Therefore, the length of xyPzx is at
least 4, and it is chordless, since P is a minimal path and x is not the neighbor
of the internal vertices of P . ⊓⊔

Proposition 3 can be also thought of as a characterization of chordal graphs:
if v1v2 . . . vtv1 is a hole, then choosing x = v1, y = v2, z = vt satisfies the
requirements.

If the deletion of X ⊆ V and Y ⊆ E makes the graph G(V, E) chordal, then
we say that the pair (X, Y) is a hole cover of G. We use the notation G \ (X, Y)

4

for the graph obtained by deleting the vertices X and the edges Y from G. The
size of a hole cover (X, Y) is the pair (|X |, |Y |). We say that a hole cover (X, Y)
obstructs a path P if X contains a vertex of P or Y contains an edge of P . For
a hole cover (X, Y), let ω(X, Y) contain the vertices of V and the endpoints of
the edges in E; clearly |ω(X, Y)| ≤ |X | + 2|Y |.

The problem studied in this paper is formally defined as follows:

Chordal Deletion

Input: A graph G(V, E) and integers k1, k2

Parameter: k1, k2

Task: Fine a hole cover of size (k1, k2).

It turns out that the deletion problem is very different from the edge com-
pletion problem. The algorithms in [3, 16] for chordal edge completion use the
standard method of bounded search trees. If there is a chordless cycle of length
more than k + 3, then the answer is no, as we would need more than k edges
to make this cycle chordal. If there is a chordless cycle of length ℓ ≤ k + 3,
then every solution has to contain ℓ − 3 edges that make this chordless cycle
chordal. There is a constant number of different ways of making a hole of size ℓ
chordal using ℓ − 3 edges. The algorithm tries all these possibilities: we branch
off into at most a constant (i.e., depending only on k) number of directions.
After making the cycle chordal, the problem parameter (the number of edges
that can be added) is decreased by ℓ − 3, and the algorithm continues with
the next chordless cycle. Since the problem parameter can be decreased only at
most k times, the algorithm finishes after at most k branchings. At each step,
the number of directions we branch into can be bounded by a function of k, thus
the size of the search space explored by the algorithm can be also bounded by
a function of k. In summary, the main idea is that the graph cannot contain a
large hole, otherwise the graph could not be made chordal by adding k edges.
In the deletion problem we cannot make this assumption: it is possible that the
graph can be made chordal by deleting few vertices, even if there are large holes
(for example, if the graph is a large chordless cycle, then it can be made chordal
by the deletion of a single vertex). This means that there might be many possi-
bilities to repair a long chordless cycle, thus we cannot use the bounded search
tree method. Substantially different (and more complicated) ideas are required
for the vertex deletion problem.

3 Bounded-treewidth graphs

One way to define treewidth is the following: the treewidth of a graph G is
the smallest integer k such that G is a subgraph of a chordal graph H having
clique number k + 1. Graphs with treewidth 1 are exactly the forests. For more
background on treewidth, see for example [18, 2].

The algorithmic importance of treewidth comes from the fact that a large
number of NP-hard problems can be solved in linear time if we have a bound

5

on the treewidth of the input graph. Most of these algorithms use a bottom-up
dynamic programming approach, which generalizes dynamic programming on
trees.

Courcelle’s Theorem [5] (see also [8, Section 6.5]) gives a powerful way of
quickly showing that a problem is linear-time solvable on bounded treewidth
graphs. Sentences in the Extended Monadic Second Order Logic of Graphs (EMSO)
contain quantifiers, logical connectives (¬, ∨, and ∧), vertex variables, edge vari-
ables, vertex set variables, edge set variables, and the following binary relations:
∈, =, inc(e, v) (edge variable e is incident to vertex variable v), and adj(u, v)
(vertex variables u, v are neighbors). If a graph property can be described in
this language, then this description can be turned into an algorithm:

Theorem 4 (Courcelle [5]). If a graph property can be described in the Ex-
tended Monadic Second Order Logic of Graphs, then for every w, there is a
linear-time algorithm for the recognition of this property on graphs with treewidth
at most w.

Using Prop. 3, it is not difficult to describe those graphs G(V, E) that can
be made chordal by the deletion of at most k1 vertices and at most k2 edges:

(k1, k2)-chordal-deletion(V,E) := ∃v1, . . . vk1
∈ V, ∃e1, . . . , ek2

∈ E, V0 ⊆ V, E0 ⊆ E :
[

chordal(V0, E0) ∧ (∀v ∈ V : v ∈ V0 ∨ v = v1 ∨ · · · ∨ v = vk1
)

∧ (∀e ∈ E : e ∈ E0 ∨ e = e1 ∨ · · · ∨ e = ek2
)
]

chordal(V0, E0) := ¬(∃x, y, z ∈ V0, V1 ⊆ V0, E1 ⊆ E0 : adj(x, y)∧adj(x, z)∧¬adj(y, z)

∧ (∀q ∈ V1 : q = y ∨ q = z ∨ ¬adj(q, x)) ∧ connected(y, z, V1, E1))

connected(y, z, V, E) := ∀Y, Z ⊆ V :

[(partition(V, Y, Z) ∧ y ∈ Y ∧ z ∈ Z) →

(∃y′ ∈ Y, z′ ∈ Z, e ∈ E : inc(e, y′) ∧ inc(e, z′))]

partition(V, Y, Z) := ∀v ∈ V : (v ∈ Y ∨ v ∈ Z) ∧ (v 6∈ Y ∨ v 6∈ Z)

The predicate chordal(V0, E0) expresses that the subgraph with vertex set V0

and edge set E0 is a chordal graph. To test whether the subgraph is chordal,
we check whether there are vertices x, y, and z satisfying the requirements of
Prop. 3, i.e., there is at path P with vertices V1 and edges E1 that connect y
and z in such a way that the internal vertices are not adjacent to x. To ensure
that y and z are connected by the path P , we require that for every partition
Y , Z of V1, if y ∈ Y and z ∈ Z, then there is an edge of P connecting Y and Z.

Courcelle’s Theorem together with the EMSO formulation of Chordal Dele-

tion implies:

Theorem 5. For every k1, k2, and w, Chordal Deletion can be solved in
linear time for graphs with treewidth at most w.

We note that Theorem 5 can be obtained without Courcelle’s Theorem using
standard (but very tedious and technical) dynamic programming techniques.

6

Chordal Deletion(G, k1, k2)

1. Set i := k1 and let X be the vertices of Gk1
and Y be k2 arbitrary edges.

2. Invariant condition: (X, Y) is a size-(k1, k2) hole cover of Gi.
3. If i = n, then return “(X, Y) is a size-(k1, k2) hole cover of G.”
4. Set X := X ∪ vi+1, now (X, Y) is a size-(k1 + 1, k2) hole cover of Gi+1.
5. Call Hole Cover Compression(Gi+1, k1, k2, X, Y).

– If the answer is a size-(k1, k2) hole cover (X ′, Y ′) of Gi+1, then let
(X, Y) := (X ′, Y ′), i := i + 1, and go to Step 2.

– If the answer is “no,” then return “no.”

Fig. 2. Algorithm Chordal Deletion.

4 Iterative compression

Reed, Smith and Vetta [24] have shown that the Bipartite Vertex Deletion

problem (make the graph bipartite by deleting k vertices) is fixed-parameter
tractable. They introduced the method of iterative compression, which can be
used in the case of the Chordal Deletion problem as well. The idea is that it is
sufficient to show that the following easier problem is fixed-parameter tractable:

Hole Cover Compression

Input: A graph G, integers k1, k2, and a hole cover (X, Y)
of size (k1 + 1, k2).

Parameter: k1, k2

Task: Find a hole cover (X ′, Y ′) of size (k1, k2) in G.

This problem is easier than Chordal Deletion: the extra input (X, Y)
gives us useful structural information about G. In particular, we know that
G \ (X, Y) is chordal. Our algorithm builds heavily on this fact.

Assume that we have an algorithm with running time f(k1, k2)n
α for Hole

Cover Compression, then Chordal Deletion can be solved as follows (see
Figure 2). Let v1, v2, . . . , vn be an ordering of the vertices, and let Gi be the
graph induced by v1, . . . , vi. We try to find a size-(k1, k2) hole cover for each Gi.
Graph Gk1

trivially has such a hole cover. Now assume that Gi has a size-(k1, k2)
hole cover (X, Y). Clearly, (X ∪ vi+1, Y) is a size-(k1 + 1, k2) hole cover of Gi+1.
Therefore, the compression algorithm can be used to find a size-(k1, k2) hole cover
for Gi+1. If there is such a hole cover, then we can proceed to Gi+2. Otherwise
the answer is no, we can conclude that the supergraph G of Gi+1 cannot have
a size-(k1, k2) hole cover either. The algorithm calls the compression method at
most n times, thus the total running time is f(k1, k2)n

α+1, which shows that
the problem is fixed-parameter tractable. Note that Gi+1 is obtained from Gi

by adding a new vertex (rather than an edge), thus the compression algorithm
is invoked with parameter (k1 + 1, k2) and not with (k1, k2 + 1).

7

Now let us turn our attention to the Hole Cover Compression algorithm
itself. Assume that a size-(k1 + 1, k2) hole cover (X, Y) of G is given. Let W :=
ω(X, Y), let V0 = V \W , and denote by G0 the chordal graph G \W . If the size
of the maximum clique in V0 is c, then the treewidth of the chordal graph G0

is c − 1, and the treewidth of G is at most c − 1 + |W | ≤ c − 1 + k1 + 2k2 + 1.
Therefore, if the clique size of G0 can be bounded by a constant depending on
k1 and k2, then the method described for bounded-treewidth graphs in Section 3
can be used to decide whether G has a size-(k1, k2) hole cover.

In Section 5, we present a method of reducing the clique size of G0 to a
constant depending only on k1, k2. A vertex v ∈ V is irrelevant if every size-
(k1, k2) hole cover of G \ v is also a hole cover of G. If we identify an irrelevant
vertex v, then the problem can be reduced to finding a size-(k1, k2) hole cover in
G \ v. We show that if there is a clique K in G0 whose size is greater than some
constant ck1,k2

, then the problem can be reduced to a simpler form: either we find
an irrelevant vertex or a small set of vertices/edges such that every size-(k1, k2)
hole cover contains at least one member of this set. More precisely, for a set Nv

of vertices and set Ne of edges we say that (Nv, Ne) is a necessary set if whenever
(X, Y) is a size-(k1, k2) hole cover, then either X contains a vertex of Nv or Y
contains an edge of Ne. If the set (Nv, Ne) = (∅, ∅) is a necessary set, then this
means that there is no hole cover of the required size. The necessary sets that we
find are always small, i.e., there is a constant bk1,k2

such that |Nv|+|Ne| ≤ bk1,k2
.

(In the following, when we say “a necessary set can be found,” we always mean
that the size of this set can be bounded by a function of k1 and k2.)

If the clique reduction algorithm returns a necessary set (Nv, Ne), then we
can conclude that every size-(k1, k2) hole cover contains at least one vertex of
Nv or an edge of Ne. Therefore, we branch into |Nv| + |Ne| directions: for each
vertex v of Nv, we check whether there is a size-(k1 − 1, k2) hole cover of G \ v
and for each edge of Ne, we check whether there is a size-(k1, k2 − 1) hole cover.
Thus the problem can be reduced to at most bk1,k2

subproblems with smaller
parameter values, where bk1,k2

depends only on k.
In summary, the clique reduction algorithm does one of the following:

– Identifies an irrelevant vertex v ∈ K. In this case, the deletion of v does not
change the problem. If the maximum clique size is still larger than ck1,k2

,
then the algorithm can be applied again. Otherwise, we can use the algorithm
of Theorem 5.

– Identifies a necessary set (Nv, Ne) whose size is bounded by a function of k1

and k2. In this case, the algorithm can branch into a constant number of
directions: one vertex of Nv or one edge of Ne has to be deleted.

The overall algorithm Hole Cover Compression is shown in Figure 3.
The algorithm calls the clique reduction method (which is described in the fol-
lowing section) and can make some number of recursive calls to Hole Cover

Compression with parameter (k1−1, k2) and with parameter (k1, k2−1). That
is, the sum k1 + k2 strictly decreases in each recursive call, hence the recursion
depth is at most k1 + k2. By assumption, if Clique Reduction returns a nec-
essary set, then its size can be bounded by a function of k1 and k2. This means

8

Hole Cover Compression(G, k1, k2, X, Y)

1. Let W := ω(X, Y). If the clique size of G \ W is at most ck1,k2
, then use

the algorithm of Theorem 5.
2. If G \ W has a clique K of size more than ck1,k2

, then call Clique Re-

duction(G, W,K, k1, k2).
3. If there is an irrelevant vertex v, then delete v from G, and go to Step 1.
4. If there is a necessary set (Nv, Ne):
5. For each vertex v ∈ Nv , call Hole Cover Compression(G\v, k1−1, k2).

– If the answer is “Yes” for some v ∈ Nv, and (X ′, Y ′) is a size-(k1 −
1, k2) hole cover of G \ v, then answer “(X ′ ∪ v, Y ′) is a size-(k1, k2)
hole cover of G.”

6. For each edge e ∈ Ne, call Hole Cover Compression(G \ e, k1, k2 − 1).
– If the answer is “Yes” for some e ∈ Ne, and (X ′, Y ′) is a size-(k1, k2−1)

hole cover of G \ e, then answer “(X ′, Y ′ ∪ e) is a size-(k1, k2) hole
cover of G.”

7. If the answer is “No” for every v and every e, then answer “No.”

Fig. 3. Algorithm Hole Cover Compression.

that the algorithm branches into a constant number of directions, and the size of
the recursion tree can be also bounded by some function of k1 and k2. Thus the
running time of Hole Cover Compression can be bounded by g(k1, k2)n

α

for an appropriate function g and constant α.

5 Clique reduction

As in the previous section, we assume that W is a set of at most k1 + 2k2 + 1
vertices such that G0 := G \ W is a chordal graph. In this section we show
that if there is a large clique K in G0, then in polynomial time we can either
find a necessary set or an irrelevant vertex of K. In the rest of the section, we
fix a clique K in G0. Intuitively speaking, a vertex v of K is not irrelevant,
if it is somehow essential for the holes of G. Every hole of G goes through a
vertex of W , thus every hole of G not completely contained in W goes through a
neighbor of W in G0. Thus the neighbors of W play an important role, hence we
try to understand the structure of such vertices in Section 5.1. Those neighbors
of W are especially important that are reachable from K in certain technical
sense, and hence can be part of a hole containing also a vertex of K. We will
investigate such vertices in Section 5.2. These structural results enable us to
identify a bounded number of important vertices in the clique K and we can
declare any other vertex of the clique irrelevant (Section 5.3). More precisely,
in Section 5.4 we show that if there is a hole going through such an irrelevant
vertex (possibly after the deletion of k1 vertices and k2 edges), then there is a
hole avoiding this vertex. This shows that removing the irrelevant vertex does
not change the answer to the problem.

9

5.1 Labeling

If a vertex v ∈ V \ W is the neighbor of some vertex ℓ ∈ W , then we say
that v has label ℓ. A vertex can have more than one label; the labels of a given
vertex form a subset of W . The following easy observations will be used to find
necessary sets if certain structures appear in the graph G0:

Proposition 6. If P is a path of length at least 2 connecting u and v, and
vertices u and v are the only vertices in P having label ℓ, then every hole cover
has to contain either ℓ, ℓu, ℓv or at least one vertex or edge of P .

Proof. If (X, Y) is a hole cover disjoint from P and contains none of vertex
ℓ, edges ℓu, and ℓv, then ℓuPvℓ contains a hole in G \ (X, Y) (Prop. 3), a
contradiction. ⊓⊔

Lemma 7. Let v be a vertex without label t, let x1, . . . , xk1+k2+2 be independent
t-labeled vertices, and let P1, . . . , Pk1+k2+2 be internally disjoint paths where Pi

connects v and xi, and the internal vertices of Pi do not have label t. Then
({v, t}, ∅) is a necessary set.

Proof. Let (X, Y) be a hole cover of size-(k1, k2) disjoint from ({v, t}, ∅). Con-
sider the internally disjoint paths vPixit for every i = 1, . . . , k1 + k2 + 2. Since
v, t 6∈ X , hole cover (X, Y) can obstruct at most k1 + k2 of these paths. Assume
without loss of generality that vP1x1t and vP2x2t are not obstructed; this means
that x1 and x2 can be connected with a path x1P1vP2x2 whose internal vertices
do not have label t. Since x1 and x2 are neighbors of t in G \ (X, Y) and there
is no edge between them, Prop. 6 implies that there is a hole in G \ (X, Y).

Lemma 8. Let H1, . . . , Hk1+k2+1 be holes in G, let S be the set of all vertices
that are contained in more than one Hi, and let ES be the edges induced by S.
If |S| ≤ c for some constant c depending only on k1 and k2, then (S, ES) is a
necessary set of size at most c + c(c − 1)/2.

Proof. Let (X, Y) be a hole cover of size-(k1, k2) such that S ∩ X = ∅ and
SE ∩ Y = ∅. Now each vertex of X and each edge of Y can be contained in at
most one hole Hi. Thus there has to be a hole which is not covered by (X, Y),
a contradiction.

In Lemma 10 we give a bound on the number of independent labeled vertices
in the neighborhood of a connected unlabeled set. We need the following lemma
of Kleinberg [17]:

Lemma 9 (Kleinberg [17]). Let A be a set of vertices. Suppose that for some
k, there do not exists k + 1 pairwise disjoint paths with distinct endpoints in A.
Then there is a set Z of size at most 3k such that each component of G \ Z
contains at most one vertex of A \ Z.

Note that there is a polynomial-time algorithm that finds k +1 pairwise disjoint
paths with distinct endpoints in A (if such paths exist) [10] and the proof of
Lemma 9 can be made algorithmic. Thus in polynomial time we can either find
the k + 1 disjoint paths or the set Z of size 3k.

10

Lemma 10. Let B be a connected subset of V0 = V (G0) such that no vertex in
B has label t. Let I be an independent set of t-labeled vertices in the neighborhood
of B. If |I| > 6(k1 + k2)

2, then we can find a necessary set in polynomial time.

Proof. Let I = {v1, v2, . . . , v6(k1+k2)2+1} be an independent set of vertices with
label t in the neighborhood of B. Denote by G′

0 the subgraph of G0 induced by
I ∪ B. If there are k1 + k2 + 1 disjoint paths in G′

0 with distinct endpoints in
I, then these paths together with vertex t give k1 + k2 + 1 holes that intersect
only in vertex t. By Lemma 8, this means that we can find a necessary set.
Assume therefore that there are no such paths; by Lemma 9, this means that
there is a set Z of size at most 3k1 + 3k2 such that each component of G′

0 \ Z
contains at most one vertex of I. Let C1, . . . , Cc be the components of G′

0 \ Z
containing a vertex of I, and let vi be the unique vertex Ci ∩ I. Note that
c ≥ |I \Z| ≥ 6(k1 +k2)

2 +1−3(k1+k2) > 3(k1 +k2)(k1 +k2 +1) (if k1 +k2 > 1).
We claim that each Ci is adjacent to a vertex of Z∩B. First, it is not possible

that Z ∩B = ∅: vertices vi and vj are in the neighborhood of B, hence they can
be connected with a path whose internal vertices are in B, and this path would
not be blocked by Z if B ∩ Z = ∅. Let z ∈ B ∩ Z be an arbitrary vertex. Each
vertex vi has a neighbor u ∈ B. If u ∈ Z, then u is a neighbor of Ci in Z ∩ B.
Otherwise, there is a path fully contained in B that connects u and z. Let z′ be
the first vertex (starting from u) on this path that is in Z. Now z′ is a neighbor
of Ci.

Since |Z∩B| ≤ 3(k1 +k2), there has to be a vertex z ∈ Z∩B that is adjacent
to more than k1 +k2 +1 components. Assume without loss of generality that z is
adjacent to components C1, . . . , Ck1+k2+2, and path Pi connects vertex vi with
z such that the internal vertices of Pi are in Ci. Note that these paths intersect
only in Z ∩B. Since z ∈ Z ∩B does not have label t, Lemma 7 gives a necessary
set. ⊓⊔

5.2 Dangerous vertices

Let us fix a maximal clique K of G0. A vertex v ∈ V0 \K is called a t-dangerous
vertex (for K) if v has label t and there is a path P from v to a vertex u ∈ K such
that v is the only vertex having label t on the path. Vertex v is a t∗-dangerous
vertex if v has label t and there is a path P from v to a vertex u ∈ K such that
v and u are not neighbors, u also has label t, and the internal vertices of the
path do not have label t. Vertex u is a t-witness (t∗-witness) of v, the path P is
a t-witness (t∗-witness) path of v. A vertex v can be t-dangerous for more than
one t ∈ W , or it can be t- and t∗-dangerous at the same time. For a subgraph
G′

0 of G0, we use the expression with respect to G′

0 if we require that the witness
path is in G′

0.
The name dangerous comes from the observation that if there is a hole in G

that goes through the clique K, then the hole has to go through a dangerous
vertex as well. For example, if a hole starts in t ∈ W , goes to a t-labeled neighbor
v ∈ V0 \K of t, goes to a t-labeled vertex u ∈ K via a path P ⊆ V0, and returns
to t, then v is a t∗-dangerous vertex, u is its witness, and P is the witness path

11

(a) (b)

v2v1

t2t1

P

K K

t

v

u u

Fig. 4. (a) A t∗-dangerous vertex v. (b) A t1-dangerous vertex v1 and a t2-dangerous
vertex v2.

(see Figure 4a). In the situation depicted in Figure 4b, the hole goes through two
vertices t1, t2 of W , and the hole has a subpath with endpoints v1, v2 that goes
through K (where v1 and v2 are the neighbors of t1 and t2, respectively). The
internal vertices of this path do not have labels t1, t2, hence v1 is t1-dangerous
and v2 is t2-dangerous, and u is a witness for both. When we delete vertices
to make the graph chordal, our aim is to destroy as many witness paths as
possible and to make many vertices non-dangerous. It will turn out that if a
clique is large, then it contains many vertices whose deletion does not affect the
dangerous vertices, thus there is no use of deleting them.

We prove two technical results on dangerous vertices: we bound by 6(k1+k2)
2

(resp., 6(k1 +k2)
3) the number of independent t-dangerous (resp., t∗-dangerous)

vertices. Since G0 is chordal (hence perfect), it follows that these vertices can be
covered by 6(k1 + k2)

2 (resp., 6(k1 + k2)
3) cliques.

Lemma 11. Given a set I of more than 6(k1 + k2)
2 independent t-dangerous

vertices, we can find a necessary set in polynomial time.

Proof. Consider the subgraph G′

0 of G0 induced by those vertices that do not
have label t. The clique K contains vertices only from one connected component
of G′

0, let B be this component. Clearly, every t-dangerous vertex is a neighbor
of B in G0. Therefore, by Lemma 10, we can find a necessary set. ⊓⊔

Lemma 12. Given a set I of more than 6(k1 + k2)
3 independent t∗-dangerous

vertices, we can find a necessary set in polynomial time.

Proof. Consider the subgraph G′

0 of G0 induced by the vertices without label t.
Let C1, . . . , Cc be the connected components of G′

0. The internal vertices of a
witness path for a t∗-dangerous vertex are completely contained in one of these
components. Let Ii ⊆ I contain a t∗-dangerous vertex v ∈ I if and only if v has
a witness path with internal vertices only in Ci.

If |Ii| > 6(k1 +k2)
2 for some 1 ≤ i ≤ c, then we are ready by using Lemma 10

for the connected subgraph Ci. Thus c > k1 + k2, otherwise the size of the

12

independent set is at most 6(k1+k2)
3. Let us fix k1+k2+1 of these components.

For each such component Ci, let us select a t∗-dangerous vertex that has a witness
path Pi whose internal vertices are in Ci. Each path Pi together with vertex t
form a hole. As the internal vertices of the Pi’s are in different components, the
k1 + k2 + 1 holes can intersect each other only in their endpoints and in t. This
means that there are only 2k1 +2k2 +3 vertices that are contained in more than
one of the holes; therefore, by Lemma 8, we can find a necessary set of bounded
size. ⊓⊔

5.3 Marking the clique

In the next two lemmas, we show that for a clique Q of dangerous vertices,
there is only a constant (i.e., depending only on k1, k2) number of vertices in K
whose deletion can make a dangerous vertex of Q non-dangerous. For every other
vertex u ∈ K, if v is t-dangerous, then v ∈ Q remains t-dangerous with respect
to G0 \u. Even more is true: if X is a set of at most k1 vertices and Y is a set of
at most k2 edges, then v ∈ Q is t-dangerous with respect to G0 \ (X, Y) if and
only if v is t-dangerous with respect to G0 \ (X ∪ u, Y). In the following lemma,
we mark some number of vertices such that any unmarked vertex u ∈ K has this
property. Essentially, we have to mark those vertices of K that are “closest” to
Q, where closeness is measured in the clique tree decomposition.

Lemma 13. Let Q be a clique of t-dangerous vertices. For every k1, k2, there is a
constant dk1,k2

, such that we can mark dk1,k2
vertices in K such that if X is a set

of k1 vertices, and Y is a set of k2 edges, and v ∈ Q has an unmarked t-witness
u with respect to G0 \ (X, Y), then v has a marked t-witness u′ ∈ K \ ω(X, Y)
with respect to G0 \ (X ∪ u, Y).

Proof. Consider the clique tree decomposition of the chordal graph G0. Since
Q and K are cliques, there are two nodes x and y such that every vertex of Q
covers node x, and every vertex of K covers node y. Consider those vertices of K
that do not have label t, and order these vertices such that the distance of their
subtrees from node x is nondecreasing. Let us mark the first dk1,k2

:= k1+2k2+1
vertices (or all of them, if there are less than k1 +2k2 +1 such vertices). Suppose
that the witness u of v is not marked. Since |ω(X, Y)| ≤ k1 + 2k2, there is
a marked vertex u′ ∈ K \ ω(X, Y). By the way the vertices are ordered, the
distance of the subtree of u′ from x is not larger than the distance of the subtree
of u from x. Therefore, the witness path P connecting v and u goes through the
neighborhood of u′, i.e., P has a subpath P ′ from v to a neighbor w of u′. As
u′ 6∈ ω(X, Y), the edge wu′ is in G0 \(X, Y), hence the witness path vP ′u′ shows
that u′ is a t-witness of v with respect to G \ (X ∪ u, Y). ⊓⊔

The next lemma proves a similar statement for t∗-dangerous vertices. How-
ever, now the marking procedure is more complicated. The reason for this com-
plication is that a t∗-witness for v has to satisfy two (somewhat contradicting)
requirements: the witness has to be reachable from v (thus it has to be close to
the clique Q), but it should not be a neighbor of v (thus it should not be too
close to Q).

13

K

x b1 b2 a1 b3 b4 b5 a2 a3 b6 a4 y

u1

u4

u3

u2

v1

v2

v3

v4

v5

v6

bβ1
aα1 bβ2

aα2 bβ3
aα3

Q

Fig. 5. Proof of Lemma 14: the path between nodes x and y. The rectangles show the
subtrees of the vi’s and ui’s on this path.

Lemma 14. Let Q be a clique of t∗-dangerous vertices. For every k1, k2, there
is a constant d∗k1,k2

such that either we can find a necessary set or we can mark
d∗k1,k2

vertices in K such that if X is a set of k1 vertices, Y is a set of k2 edges,
v ∈ Q has an unmarked t∗-witness with respect to G0 \ (X, Y), then v has a
marked t∗-witness u ∈ K \ ω(X, Y) as well.

Proof. Consider the clique tree decomposition of the chordal graph G0, let Tv

be the subtree corresponding to a vertex v. Since Q and K are cliques, there
are two nodes x and y such that every v ∈ Q covers x, and every u ∈ K covers
y. Consider the unique path connecting x and y in the tree, and identify the
vertices of the path with the integers 1, 2, . . . , n, where x = 1 and y = n. Let
u1, u2, . . . be the vertices of K having label t and denote by ai the smallest node
of Tui

on this path. Similarly, let v1, v2, . . . be the vertices of Q and denote by
bi the largest node of Tvi

on this path. Clearly, Tvi
and Tuj

intersect if and only
if ai ≤ bj . For convenience, we assume that the ai’s and bi’s are all distinct,
this can be achieved by slightly modifying the tree decomposition. Furthermore,
we can assume that the vertices are ordered such that the sequence ai and the
sequence bi are strictly increasing (see Figure 5).

We define a subsequence of bi and aj as follows. Let β1 = 1. For every j ≥ 1,
let αj be the smallest value such that aαj

> bβj
. For every i ≥ 2, let βi be the

smallest value such that bβi
> aαi−1

. If we cannot find such a βi or αj , then
we stop. Therefore, the sequence bβ1

, aα1
, bβ2

, aα2
, . . . is strictly increasing. In

Figure 5, dark rectangles correspond to the members of this sequence.

Let us be a witness of a t∗-dangerous vertex vβj
. We claim that uαj

is also
a witness for t∗-dangerous vertex vβj

. Clearly, as > bβj
(otherwise us would be

a neighbor of vβj
), hence as ≥ aαj

by the definition of αj . Let P be a witness
path from vβj

to us. Since as ≥ aαj
, path P goes through the neighborhood of

uαj
, i.e., there is a vertex w of P that is in the neighborhood of uαj

. Let P ′ be
the subpath of P from vβj

to w. As uαj
is not a neighbor of vβj

(by construction

14

of the sequence bβ1
, aα1

, . . .), path vβj
P ′uαj

is a witness path. This proves the
claim that uαj

is a witness of vβj
.

Let bβℓ
be the last element of the sequence that corresponds to a vertex of

Q. We claim that if ℓ > 2k1 + 2k2 + 1, then we can find a necessary set. Let Pi

be a witness path from vβi
to its witness uαi

. For every 1 ≤ i ≤ k1 + k2 + 1,
let Hi be the hole tvβ2i

P2iuα2i
t. Suppose first that a vertex w of G0 appears in

two holes Hi and Hi′ for i < i′. This is only possible if w is an internal vertex
of both P2i and P2i′ . It is easy to see that each internal vertex of P2i covers at
least one node in the interval [bβ2i

, aα2i
] and each internal vertex of P2i′ covers

at least one node in the interval [bβ2i′
, aα2i′

]. Therefore, w covers both aα2i
and

bβ2i′
which implies that w also covers bβ2i+1

and aα2i+1
(since 2i′ > 2i+1). Now

tvβ2i+1
wuα2i+1

is a hole of size 4 and the vertices and edges of this hole form a
necessary set. Therefore, we can assume that every vertex of G0 appears in at
most one of the holes H1, . . . , Hk1+k2+1. Thus there is only one vertex, namely
t, that appears in more than one of the holes, hence by Lemma 8, ({t}, ∅) is a
necessary set.

Therefore, it can be assumed that ℓ ≤ 2k1 + 2k2 + 1. For each i = 1, 2, . . . , ℓ,
we mark the k1 + 2k2 + 1 vertices uαi

, uαi+1, . . . , uαi+k1+2k2+1 (if they exist).
Thus we mark at most d∗k1,k2

:= (k1 + 2k1 + 1)(2k1 + 2k2 + 1) vertices. Assume
that vertex vx ∈ Q has a witness path (with respect to G0 \ (X, Y)) to some
uy. Since vx and uy are not neighbors, bx < ay and there is a j with bx <
aαj

≤ ay. If y ≤ αj + k1 + 2k2 + 1, then uy is marked. Otherwise ω(X, Y)
does not contain at least one of the vertices uαj+1, uαj+2, . . . , uαj+k1+2k2+1,
say vertex uαj+r 6∈ ω(X, Y). Since uy is a witness of vx, there is a path P from
vx to uy in G \ (X, Y) such that the internal vertices of P do not have label
t. From aαj+r ≤ aαj+k1+2k2+1 < ay it follows that P goes through a neighbor
w of aαj+r; let P ′ be the subpath of P from vx to w. Since uαj+r 6∈ ω(X, Y),
edge wuαj+r is in G \ (X, Y). Moreover, bx < aαj

≤ aαj+r implies that vx and
uαj+r are not neighbors, thus vertex uαj+r is a t∗-witness of vx with witness
path vxP ′uαj+r. ⊓⊔

In the next two lemmas, we extend Lemma 13 and Lemma 14 to apply not
only for a clique Q of t-dangerous vertices, but for every dangerous vertex. By
Lemmas 11 and 12, there are no large independent sets of dangerous vertices.
Observing that G0 is chordal and hence its complement is a perfect graph (as
discussed in Section 2), we obtain that the number of cliques required to cover
the dangerous vertices is a constant depending only on k1, k2.

Lemma 15. For every k1, k2, there is a constant c
(1)
k1,k2

such that either we can

find a necessary set or we can mark c
(1)
k1,k2

vertices in K such that for every set
X of k1 vertices, set Y of k2 edges, and label t ∈ W , if vertex v is a t-dangerous
vertex v with respect to G0 \ (X, Y) and v has an unmarked witness u ∈ K, then
v has a marked witness u′ ∈ K \ ω(X, Y) with respect to G0 \ (X ∪ u, Y).

Proof. For every t ∈ W , we mark vertices as follows. Consider the set of vertices
D that are t-dangerous for K in G0. For chordal graphs, a maximum independent

15

set can be found in polynomial time [11]; let I be a maximum independent set in
D. If |I| > 6(k1 + k2)

2, then we can find a necessary set by Lemma 11. Thus the
size of the maximum independent set in D is at most a constant depending only
on k1 and k2. The number of cliques required to cover D is exactly the number
of independent sets required to cover D in the complement graph, i.e., it is the
chromatic number of the complement of G[D]. Since G[D] induces a chordal
graph (as D ⊆ V \ W) and the complement of a chordal graph is a perfect
graph [11], it follows that D can be covered by at most 6(k1 + k2)

2 cliques. For
each such clique Q, we mark the vertices given by Lemma 13. Hence the total
number of marked vertices in K can be bounded by a constant depending only
on k1, k2. ⊓⊔

Lemma 16. For every k1, k2, there is a constant c
(2)
k1,k2

such that either we can

find a necessary set or we can mark c
(2)
k1,k2

vertices in K such that for every set X
of k1 vertices, set Y of k2 vertices, and label t ∈ W , if a vertex v is t∗-dangerous
with respect to G \ (X, Y) and has an unmarked witness u ∈ K, then v has a
marked witness u ∈ K \ ω(X, Y) with respect to G0 \ (X ∪ u, Y) as well.

Proof. The proof is similar to the proof of Lemma 15. For each t ∈ W and each
clique Q of t∗-dangerous vertices, we mark vertices as in Lemma 14, the rest of
the proof is identical. ⊓⊔

5.4 Fragments of a hole

Let H be a hole in G. Since G \ W is chordal, H has to contain at least one
vertex of W . Hence H \W is a set of paths P1, P2, . . . , Ps, the set F = H ∩W
together with this collection of paths will be called the fragments of the hole
H (Figure 6). The paths P1, . . . , Ps are independent: Pi and Pj do not have
adjacent vertices if i 6= j. The internal vertices of a path Pi do not have any
labels from F . Moreover, each end point has exactly one label from F . The only
exception is that if a path Pi consists of only a single vertex, in this case it
contains exactly two labels from F (see P1 in Figure 6). A label in F can appear
only on at most two vertices in the fragments: if a vertex of W is in the hole,
then at most two of its neighbors can belong to the hole. However, the neighbors
of a vertex in W can also be in W , thus it is possible that a label in F appears
on only one or on none of the paths. Another property is that if the length of Pi

is 1, then the labels of the two end points are different, otherwise the hole would
induce a triangle.

The following lemma shows that if we have the fragments of a hole, and a
path is replaced with some new path satisfying certain requirements, then the
new collection of paths also induces a hole.

Lemma 17. Let F , P1, . . . , Ps be the fragments of a hole H. Assume that the
length of P1 is at least 1. Let x and y be the end points of P1, and let ℓx and
ℓy be their (unique) labels in F , respectively. Let P ′

1 be a path with the following
properties:

16

W F

P3

P2

P1

Fig. 6. The fragments F , P1, P2, P3 of a hole.

– the end points of P ′

1 are x and y′, for some vertex y′ that has label ℓy,
– the internal vertices of P ′

1 do not have label ℓx,
– if ℓx 6= ℓy, then y′ does not have label ℓx,
– if ℓx = ℓy, then x and y′ are not neighbors.

Then there is a hole in the graph induced by the vertices of F , P ′

1, P2, . . . , Ps.

Proof. We consider two cases. If |F | = 1, then ℓx = ℓy. Since x and y′ are not
neighbors, the internal vertices of the path P ′

1 do not have label ℓx, it follows
that the path P ′

1 and the only vertex of F form a hole of length at least 4.
Now assume that |F | > 1. It can be assumed that P ′

1 is a minimal path, i.e.,
each internal vertex on the path is adjacent only to the previous and the next
vertex. Let z be the (unique) neighbor of x on P ′

1. The paths P ′

1, P2, . . . , Ps,
and the set F gives a walk from z to ℓx without going through x. Furthermore,
z and ℓx are the only vertices on this walk that are in the neighborhood of x. To
see this, observe that x is adjacent only to ℓx in F , only to z in P ′

1, and to no
vertex in P2, . . . , Ps. As ℓx and z are not adjacent (z does not have label ℓx),
Prop. 3 implies that the graph induced by F , P ′

1, P2, . . . , Ps contains a hole. ⊓⊔

To show that a vertex u ∈ K is irrelevant, we have to show that every size-
(k1, k2) hole cover of G \ u is a hole cover of G. That is, if X is a set of k1

vertices, Y is a set of k2 edges, and there is a hole H in G\ (X, Y) going through
u, then there is a hole H ′ in G \ (X ∪u, Y). The idea is to look at the fragments
of H and reroute one of the paths: if path P1 is going through u, then we find
a path P ′

1 avoiding u, and use Lemma 17 to obtain the hole H ′. As we shall see
in Lemma 19, if the length of P1 is at least 1, then P ′

1 can be found using our
previous results on dangerous vertices. However, we have to treat separately the
case when P1 consists of only a single vertex. This seemingly simple case turns
out to be surprisingly difficult.

17

Lemma 18. For every k1, k2, there is a constant c
(3)
k1,k2

such that either we can

find a necessary set or we can mark c
(3)
k1,k2

vertices in K such that if X is a set
of k1 vertices, Y is a set of k2 edges, and there is a hole in G \ (X, Y) with
fragments F , P1, . . . , Ps where P1 is only a single vertex u ∈ K, then G\ (X, Y)
has a hole that does not use any unmarked vertex of K.

Proof. For every ℓ1, ℓ2, ℓ3 ∈ W , consider those vertices of K that have both
labels ℓ1 and ℓ2, but do not have label ℓ3 and let us mark k1 + 2k2 + 1 of these
vertices (if there are less than k1 + 2k2 + 1 such vertices, then we mark all of
them). Since the number of triples (ℓ1, ℓ2, ℓ3) depends only on |W | ≤ k1+2k2+1,
the number of marked vertices can be bounded by a function of k1, k2.

Let F , P1, . . . , Ps be the fragments of a hole H . Without loss of generality,
assume that P1 consists of a single vertex u, in this case u has two labels ℓ1, ℓ2

from F . Let us consider the case |F | > 2 first. If |F | > 2, then there is another
label ℓ3 ∈ F \ {ℓ1, ℓ2}. Vertex ℓ3 has two neighbors a and b in the hole H , and
there is a walk from a to b such that the internal vertices of this walk are not
neighbors of ℓ3. By the way we marked the vertices, there is a marked vertex
u′ ∈ K \ (X, Y) that has labels ℓ1, ℓ2, but does not have label ℓ3. Therefore, if
we replace P1 with the path P ′

1 consisting only of the single vertex u′, then we
get another walk from a to b. Since u′ does not have label ℓ3, it remains true
that the internal vertices of this walk are not neighbors of ℓ3. Hence by Prop. 3,
there is a walk that contains only the marked vertex u′ from K.

The hard case is when |F | = 2, the rest of the proof is devoted to handle
this situation. We mark some additional vertices as follows. If |F | = 2, then s
cannot be larger than 2. Furthermore, it is not possible that s = 1, since that
would imply that the hole has only three vertices ℓ1, ℓ2 ∈ F , and P1. Therefore,

(*) hole H has two fragments P1 and P2, where P1 is only a single vertex
of K.

Consider a clique tree decomposition of G0 and let x be a node that is covered
by every vertex of the clique K. Assume that x is the root of the tree in the
decomposition. For each hole H satisfying (*), define wH to be the node that
is covered by some vertex of P2 and is closest to the node x. Observe that wH

cannot be x: that would imply that some vertex of P2 is adjacent with every
vertex of K, including P1. Let w1, . . . , wr be those nodes that can arise this way
from some hole satisfying (*). Although the number of holes satisfying (*) can
be exponential, for every node w we can check in polynomial time whether there
is a hole H with wH = w: all we have to do is to try every possible single-vertex
path P1 in K and every possible endpoints of P2, and for each possibility check
whether there is a suitable path that covers only w and some of its descendants.
Assume that the nodes wi are ordered by nonincreasing distance from x. We
select a subset of these nodes the following way: we go through the list w1, . . . ,
wr, and a select a node if and only if none of its descendants are selected. Let
wi1 , . . . , wiq

be the selected nodes. Observe that a selected node cannot be the
ancestor or descendant of some other selected node.

18

We consider two cases. First we show that if q > k1 + k2, then a necessary
set can be identified. Consider the holes Hi1 , . . . , Hik1+k2+1

that give rise to the
nodes wi1 , . . . , wik1+k2+1

. For each hole Hij
, there is a path P2 in the fragments

of the hole, denote by Pij
this path. By the definition of wij

, the vertices of
Pij

cover only the descendants of wij
, hence in particular they do not cover a

descendant of wij′
for any j 6= j′. It follows that there are at most k1 + k2 + 3

vertices that appear in more than one of these holes: the vertices ℓ1, ℓ2 and at
most k1 + k2 + 1 vertices in K. Thus by Lemma 8, we can find a necessary set.

Assume therefore that q ≤ k1+k2. For each wij
, we mark at most k1+2k2+1

vertices of K. Consider those vertices of K that have both labels ℓ1 and ℓ2. For
every such vertex v, the tree corresponding to v has some distance from node
wij

. Order the vertices such that this distance is nonincreasing and mark the
first k1 + 2k2 + 1 vertices in this ordering (or all of them, if there are less than
k1 + 2k2 + 1 such vertices). Thus at most (k1 + k2)(k1 + 2k2 + 1) vertices are
marked.

We show that the marked vertices satisfy the requirements. Let H be a hole
in G \ (X, Y) and let P1, P2 be the two fragments of H , where P1 consists of a
single vertex u ∈ K. Since H satisfies (*), there is a node wi corresponding to H .
Because of the way the nodes are selected, some descendant of wi (possibly wi

itself) is selected, i.e., some wij
is the descendant of wi. Vertex u is not adjacent

to any vertex of P2, hence u does not cover wi, i.e., the tree of u has nonzero
distance from wi. This means that the tree of u has nonzero distance also from
wij

. Consider the k1+2k2+1 vertices marked when the node wij
was considered.

If u is not marked, then this means that there are k1 + 2k2 + 1 vertices in K
whose trees have not smaller distance from wij

, implying that these vertices do
not cover wi either. At least one of these k1 +2k2 +1 vertices are not in ω(X, Y),
let u′ ∈ K be such a vertex. Now u′ is not adjacent to any vertex of P2, hence we
can obtain a hole avoiding u in G\ (X, Y) by replacing P1 with the single-vertex
path consisting of u′ only. ⊓⊔

Now we are ready to prove the main lemma:

Lemma 19. For every k1, k2, there is a constant ck1,k2
such that either we can

find a necessary set or we can find an irrelevant vertex in every maximal clique
of size greater than ck1,k2

.

Proof. Given a maximal clique K, we mark the vertices according to Lem-
mas 15, 16, and 18. Moreover, for each ℓ1, ℓ2 ∈ F , consider those vertices that
have label ℓ1, but do not have label ℓ2, and mark k1 + 2k2 + 1 of these vertices
(if there are less than k1 + 2k2 + 1 such vertices for a given ℓ1, ℓ2, then all of
them are marked). We argue that any unmarked vertex is irrelevant. Since the
number of marked vertices depends only on k1, k2, the lemma follows.

Let u ∈ K be an unmarked vertex. To show that u is irrelevant, assume that
X is a set of k1 vertices, Y is a set of k2 edges, and H is a hole in G \ (X, Y)
containing u. We have to show that G \ (X, Y) contains a hole avoiding u. We
construct the hole avoiding u by replacing the fragment of H going through u
with some other path going through K.

19

Case 5

x = y = u

Case 1

ℓ1ℓ1 ℓ2ℓ2

Case 2

ℓx = ℓy

Case 6

y

yu u

Case 3 Case 4

y = u y = u

y = u

x

x

x

x

x

ℓx

ℓx

ℓx

ℓx

ℓy

ℓy

ℓy

ℓy

Fig. 7. The cases in the proof of Lemma 19.

Let F , P1, . . . , Ps be the fragments of H . Since the paths of the fragments are
independent (i.e., the vertices on two different paths are not neighbors), without
loss of generality it can be assumed that u is in P1 and only P1 intersects the
clique K. Let x and y be the two end vertices of P1. Path P1 can contain at
most one other vertex of K besides u. We consider several cases depending on
which combination of x = y, u = x, u = y, |K ∩ P1| = 1 holds (Figure 7):

Case 1: P1 consists of only a single vertex (x = y = u). Lemma 18 ensures
that there is a hole in G \ (X, Y) that does not use u.

In the remaining cases we assume that x 6= y. Moreover, without loss of
generality it can be assumed that u 6= x. Let ℓx be the (unique) label of x in F
and let ℓy be the (unique) label of y in F .

Case 2: P1 consists of two vertices x, y = u, and P1 is completely contained
in K. In this case ℓx 6= ℓy, otherwise there would be a triangle in the hole. Since
u is not marked, there are k1 + 2k2 + 1 marked vertices in K that have label ℓy

but do not have label ℓx. At least one of these vertices are not in ω(X, Y), let
u′ be such a vertex. If we replace P1 = {x, u} with the path P ′

1 = {x, u′}, then
by Lemma 17 there is a hole not containing u.

In the remaining cases we assume without loss of generality that end point
x is not in K.

Case 3: x, y 6∈ K. In this case, |K ∩ P1| can be either 1 or 2 (Fig. 7 sketches
|K ∩ P1| = 2). It is possible that ℓx = ℓy and the following proof works for that

20

situation as well. Vertex x (resp., y) is an ℓx-dangerous (resp., ℓy-dangerous)
vertex with respect to G0 \ (X, Y) for K, and u is a witness for that. By the way
the vertices are marked (see Lemma 15) there is a marked witness ux (resp., uy)
in K \ ω(X, Y) for x (resp., y); let Px (resp., Py) be the corresponding witness
path in G0 \ (X ∪ u, Y). We consider three cases:

– Px \ x contains a vertex y′ that has label ℓy. (Notice that Px \ x contains no
vertex with label ℓx, hence this case is not possible if ℓx = ℓy). Let y′ be the
first vertex on Px (starting from x) with label ℓy. Let P ′

1 be the subpath of Px

from x to y′. Now F , P ′

1, P2, . . . , Ps satisfy the requirements of Lemma 17,
hence G \ (X, Y) has a hole disjoint from u.

– The case when Py\y contains a vertex that has label ℓx follows by symmetry.
– Assume that Px \ x contains no vertex with label ℓy and Py \ y contains

no vertex with label ℓx. Let P ′

1 be the path xPxuxuyPyy; from ux, uy ∈
K \ ω(X, Y) it follows that edge ux, uy 6∈ Y , hence P ′

1 is fully contained in
G\(X∪u, Y). It is easy to see that F , P ′

1, P2, . . . , Ps satisfy the requirements
of Lemma 17, hence G \ (X, Y) has a hole disjoint from u.

In the remaining cases, we assume that x 6∈ K and y ∈ K.
Case 4: x 6∈ K, y ∈ K, u 6= y (hence |K ∩ P1| = 2). Vertex x is an ℓx-

dangerous vertex for K, and u is a witness for x in G0 \ (X, Y). By the way the
vertices are marked (see Lemma 15) there is another witness u′ ∈ K \ ω(X, Y);
let Px be the witness path corresponding to u′. Let P ′

1 be the path xPxu′y, since
u′ ∈ K \ ω(X, Y), the edge u′y is in G0 \ (X, Y). Now F , P ′

1, P2, . . . , Ps satisfy
Lemma 17, thus there is a hole not containing u.

Case 5: x 6∈ K, y = u, ℓx 6= ℓy. In this case, |K ∩ P1| can be either 1 or 2
(Fig. 7 sketches |K ∩ P1| = 1). Vertex x is an ℓx-dangerous vertex for K, and
u is a witness for x in G0 \ (X, Y). By the way the vertices are marked (see
Lemma 15) there is another witness u′ ∈ K \ (X, Y); let Px be the witness path
corresponding to u′. Since u is not marked, there are k1+2k2+1 marked vertices
in K that have label ℓy but do not have label ℓx. At least one of these vertices
are not in ω(X, Y), let y′ be such a vertex. Let P ′

1 be the path xPxu′y′. Now the
conditions in Lemma 17 are satisfied, hence there is a hole not containing u.

Case 6: x 6∈ K, y = u, ℓx = ℓy. In this case, |K ∩ P1| can be either 1 or 2
(Fig. 7 sketches |K ∩ P1| = 2). Vertex x is an ℓ∗x-dangerous vertex for K, and
u is a witness for x in G0 \ (X, Y). By the way the vertices are marked (see
Lemma 15) there is another witness u′ ∈ K \ ω(X, Y); let Px be the witness
path corresponding to u′. It is clear that F, P ′

1 satisfy Lemma 17. ⊓⊔

6 Conclusions

We have shown that Chordal Deletion is fixed-parameter tractable. The
problem was formulated in a way that includes both the vertex and edge deletion
versions: k1 vertices and k2 edges have to be deleted to make the graph chordal.
This formulation could be convenient for the study of other deletion problems as
well. Our algorithm does not provide a problem kernel in an obvious way, thus

21

it is a natural open question whether there is problem kernel of polynomial size
for the problem.

The parameterized complexity literature contains a growing number of fixed-
parameter tractability results for various deletion problems. Some of these results
follow immediately from the graph minors theory of Robertson and Seymour (see
[1]), while some of the results are more concrete algorithms [6, 24, 22]. Recently,
a hardness result has been obtained, which shows that we cannot expect that the
deletion problem is FPT for every natural graph class: Lokshtanov has shown
that deleting k edges/vertices to make the graph wheel-free is W[2]-hard [20].
Thus, despite the similarity of wheel-free and chordal (i.e., hole-free) graphs, the
deletion problem is W[2]-hard for the former and FPT for the latter.

A natural next step would be to study the deletion problem for interval
graphs. The (edge) completion problem for interval graphs was shown to be
FPT by Heggernes et al. [14]. The algorithm is much more involved than chordal
completion. First, all the minimal chordal completions are enumerated (using
the algorithm discussed in the introduction), thus the problem is reduced to
chordal graphs that are not interval graphs. The algorithm is based on a thorough
understanding of such graphs. It is not clear whether a similar strategy could
be used for the interval deletion problem: the algorithm presented in this paper
cannot be modified such that it enumerates all the minimal solutions, in fact,
it is possible that there are nO(k) minimal solutions. Thus it is not sufficient to
solve the interval deletion problem on chordal graphs.

References

1. I. Adler, M. Grohe, and S. Kreutzer. Computing excluded minors. In SODA
’08: Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete al-
gorithms, pages 641–650, Philadelphia, PA, USA, 2008. Society for Industrial and
Applied Mathematics.

2. H. L. Bodlaender. A tourist guide through treewidth. Acta Cybernet., 11(1-2):1–21,
1993.

3. L. Cai. Fixed-parameter tractability of graph modification problems for hereditary
properties. Inform. Process. Lett., 58(4):171–176, 1996.

4. L. Cai. Parameterized complexity of vertex colouring. Discrete Appl. Math.,
127:415–429, 2003.

5. B. Courcelle. Graph rewriting: an algebraic and logic approach. In Handbook of
theoretical computer science, Vol. B, pages 193–242. Elsevier, Amsterdam, 1990.

6. F. Dehne, M. Fellows, M. Langston, F. Rosamond, and K. Stevens. An O(2O(k)n3)
FPT algorithm for the undirected feedback vertex set problem. Theory Comput.
Syst., 41(3):479–492, 2007.

7. M. Dom, J. Guo, F. Hüffner, R. Niedermeier, and A. Truß. Fixed-parameter
tractability results for feedback set problems in tournaments. In Algorithms and
complexity, volume 3998 of Lecture Notes in Computer Science, pages 320–331.
Springer, Berlin, 2006.

8. R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer, New York, 1999.

9. J. Flum and M. Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, Berlin, 2006.

22

10. T. Gallai. Maximum-minimum Sätze und verallgemeinerte Faktoren von Graphen.
Acta Math. Acad. Sci. Hungar., 12:131–173, 1961.

11. M. C. Golumbic. Algorithmic graph theory and perfect graphs. Academic Press,
New York, 1980.

12. M. Grohe. Computing crossing numbers in quadratic time. J. Comput. System
Sci., 68(2):285–302, 2004.

13. J. Guo, J. Gramm, F. Hüffner, R. Niedermeier, and S. Wernicke. Compression-
based fixed-parameter algorithms for feedback vertex set and edge bipartization.
J. Comput. System Sci., 72(8):1386–1396, 2006.

14. P. Heggernes, C. Paul, J. A. Telle, and Y. Villanger. Interval completion with few
edges. In STOC ’07: Proceedings of the thirty-ninth annual ACM symposium on
Theory of computing, pages 374–381, New York, NY, USA, 2007. ACM.

15. M. L. Ho. Linear time algorithms for graphs close to chordal graphs, 2003. M.Phil
Thesis, Department of Computer Science and Engineering, The Chinese University
of Hong Kong.

16. H. Kaplan, R. Shamir, and R. E. Tarjan. Tractability of parameterized comple-
tion problems on chordal, strongly chordal, and proper interval graphs. SIAM J.
Comput., 28(5):1906–1922, 1999.

17. J. Kleinberg. Detecting a network failure. Internet Math., 1(1):37–55, 2003.
18. T. Kloks. Treewidth, volume 842 of Lecture Notes in Computer Science. Springer,

Berlin, 1994.
19. J. M. Lewis and M. Yannakakis. The node-deletion problem for hereditary prop-

erties is NP-complete. J. Comput. System Sci., 20(2):219–230, 1980.
20. D. Lokshtanov. Wheel-free deletion is W[2]-hard. In Proceedings of the Interna-

tional Workshop on Parameterized and Exact Computation (IWPEC 2008), volume
5018 of Lecture Notes in Computer Science, pages 141–147. Springer, 2008.

21. D. Marx. Parameterized coloring problems on chordal graphs. Theor. Comput.
Sci., 351(3):407–424, 2006.

22. D. Marx and I. Schlotter. Obtaining a planar graph by vertex deletion. In 33nd
International Workshop on Graph-Theoretic Concepts in Computer Science (WG
2007), volume 4769 of Lecture Notes in Computer Science, pages 292–303. Springer,
Berlin, 2007.

23. A. Natanzon, R. Shamir, and R. Sharan. Complexity classification of some edge
modification problems. Discrete Appl. Math., 113(1):109–128, 2001.

24. B. Reed, K. Smith, and A. Vetta. Finding odd cycle transversals. Operations
Research Letters, 32(4):299–301, 2004.

25. N. Robertson and P. D. Seymour. Graph minors. XIII. The disjoint paths problem.
J. Combin. Theory Ser. B, 63(1):65–110, 1995.

26. D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of vertex elimi-
nation on graphs. SIAM J. Comput., 5(2):266–283, 1976.

27. M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM J. Algebraic
Discrete Methods, 2(1):77–79, 1981.

23

