
Parameterized complexity of constraint satisfaction problems

Dániel Marx∗

Department of Computer Science and Information Theory,

Budapest University of Technology and Economics

H-1521 Budapest, Hungary

dmarx@cs.bme.hu

Abstract

We prove a parameterized analog of Schaefer’s Di-
chotomy Theorem: we show that for every finite boolean
constraint family F , deciding whether a formula con-
taining constraints from F has a satisfying assignment
of weight exactly k is either fixed-parameter tractable
(FPT) or W[1]-complete. We give a simple character-
ization of those constraints that make the problem fixed-
parameter tractable. The special cases when the formula
is restricted to be bounded occurrence, bounded treewidth
or planar are also considered, it turns out that in these
cases the problem is in FPT for every constraint fam-
ily F .

1. Introduction

A dichotomy theorem in computational complex-
ity shows that every problem in a certain family of
problems is either polynomial time solvable or NP-
complete. The first such result is Schaefer’s Dichotomy
Theorem [14], which considers boolean constraint sat-
isfaction. Let F be a finite set of boolean constraints,
each constraint is a boolean relation of some finite ar-
ity. In the F -SAT problem we are given a formula that
consists of a conjunction of clauses, where each clause is
a constraint from F on the variables. Our task is to de-
cide whether the given formula has a satisfying assign-
ment. For example, if F = {(x∨ y∨ z), (x̄∨ y∨ z), (x̄∨
ȳ∨ z), (x̄∨ ȳ∨ z̄)}, then F -SAT is equivalent to 3SAT,
as every 3CNF formula is a conjunction of such clauses.
For every constraint family F , the F -SAT problem is
a separate problem. Schaefer [14] determines the com-
plexity of each of these infinitely many problems: it
turns out that for every finite constraint family F , the

∗ Research is supported in part by grants OTKA 44733, 42559
and 42706 of the Hungarian National Science Fund.

F -SAT problem is either polynomial time solvable or
NP-complete.

There are several extensions of Schaefer’s theorem
in the literature. Bulatov [5] proved a dichotomy the-
ory similar to Schaefer’s theorem, but his result applies
for the satisfiability problem with three-valued vari-
ables. However, extending Schaefer’s theorem to vari-
ables with arbitrary domain is an important open prob-
lem (see [5, 9] for partial results).

Optimization variants of the boolean constraint sat-
isfaction problem were also considered in the literature.
First, Creignou [6] classified the approximability of the
F -MAX-SAT problem, where the goal is to maximize
the number of clauses satisfied. Khanna et al. [11] clas-
sified three other families of problems: F -MIN-SAT
(minimize the number of unsatisfied clauses), F -MAX-
ONES (find a satisfying assignment with maximum
number of true variables), F -MIN-ONES (minimize
the number of true variables). Notice that F -MAX-
SAT and F -MIN-SAT are the same problem, but due
to their different formulations, their approximability
might be different.

A parameterized problem is fixed-parameter
tractable (FPT) if it can be solved in polynomial
time for every fixed value of the problem parame-
ter k, and moreover, the degree of the polynomial in
the time bound does not depend on k. That is, a prob-
lem is in FPT, if it has an f(k)nc time algorithm,
where c is independent of k and n. Such an algo-
rithm is called uniformly polynomial. The class W[1]
contains the parameterized problems that are equiv-
alent to the problem “Does the given nondetermin-
istic Turing machine accepts input x in at most k
steps?”. It is believed that W[1]-complete prob-
lems are not fixed-parameter tractable. For more
background on parameterized complexity theory, the
reader is referred to the monograph of Downey and Fel-
lows [7].

In this paper we investigate the parameterized com-
plexity of boolean constraint satisfaction problems.
The parameterized satisfiability problem correspond-
ing to 3SAT is WEIGHTED 3SAT. Here we are given
a 3CNF formula φ together with an integer parameter
k, and it has to be determined whether φ has a satisfy-
ing assignment with exactly k true variables. Clearly,
the problem is polynomial time solvable for fixed k,
since we have to consider at most O(nk) possible so-
lutions. WEIGHTED 3SAT is one of the first prob-
lems that were proved W[1]-complete. In fact, even
WEIGHTED 2SAT is W[1]-complete, showing that
parameterized satisfiability problems and their classi-
cal counterparts can have different hardness.

The main result of the paper is a parameterized com-
plexity analog of Schaefer’s Dichotomy Theorem. For
every constraint family F , we determine the parame-
terized complexity of the WEIGHTED F -SAT prob-
lem. In WEIGHTED F -SAT we are given a formula
with constraints from F , and it has to be decided
whether the formula has a satisfying assignment with
exactly k true variables. We prove that WEIGHTED
F -SAT is either in FPT or W[1]-complete for ev-
ery constraint family F . The precise statement can be
found in Theorem 3.2. Moreover, as in Schaefer’s theo-
rem, the class of FPT constraints has a simple charac-
terization. We note here that in this theorem the class
of “easy” constraint families does not even remotely re-
sembles the class of polynomial time solvable families
in Schaefer’s theorem. It seems that very different prop-
erties are required to make WEIGHTED F -SAT easy.

The paper is organized as follows. In Section 2 we in-
troduce a new property called weak separability. Sec-
tion 3 states our main theorem (Theorem 3.2). Sec-
tion 4 handles 0-invalid constraints. Section 5 gives an
algorithm for bounded occurrence formulae. The posi-
tive results (uniformly polynomial time algorithms) are
presented in Section 6. In Section 7 we introduce a
W[1]-complete problem, which is used in Section 8 to
obtain further hardness results. Section 9 deals with the
special cases where the formula has bounded treewidth
or it is planar.

2. Weakly separable constraints

A boolean constraint is a function f : {0, 1}r → {0, 1},
where r is called the arity of f . The r-tuple s ∈ {0, 1}r

satisfies f if f(s) = 1. There are exactly 22r

differ-
ent constraints of arity r, hence if a constraint fam-
ily F contains only constraints with arity at most r,
then |F | ≤ r22r

. We will call the ith variable of a con-
straint f the ith position in f (the word variable will
be reserved for the variables appearing in a formula).

An r-tuple s ∈ {0, 1}r can be thought of as a sub-
set of {1, 2, . . . , r}: let i be in the subset if and only if
the ith component of s is 1. Therefore we can apply
standard set theoretic notations (such as union, dis-
jointness and symmetric difference) to the assignments
of a constraint. Moreover, a constraint f can be ex-
pressed as a set system over {1, 2, . . . , r} that contains
exactly those sets that correspond to satisfying assign-
ments of the constraint.

We introduce a new property that (to the best of
our knowledge) has not been investigated in the liter-
ature. It turns out that this property plays a crucial
role in the parameterized complexity of WEIGHTED
F -SAT.

Definition 2.1 (Weak separability) A constraint
R is weakly separable if

1. whenever x1 and x2 are two satisfying assignments
of R such that their intersection is satisfying, then
their union is also satisfying, and

2. whenever x1 ⊂ x2 ⊂ x3 are satisfying assignments
of R, then (x2 \ x1) ∪ x3 (= x1 ⊕ x2 ⊕ x3) is also
satisfying.

Here ⊕ means symmetric difference. In the rest of the
section, we show some properties of weak separability,
and present examples of weakly separable constraints.

A constraint is 0-valid (0-invalid) if it is satisfied
(not satisfied) by the all zero assignment. 1-valid and
1-invalid are defined similarly. In most of the paper we
consider only 0-valid constraints. If R is 0-valid, then
the requirements of Definition 2.1 can be made some-
what simpler:

Lemma 2.2 A 0-valid constraint R is weakly separable
if and only

1. whenever x1 and x2 are two disjoint satisfying as-
signments of R, then their union is also satisfying,
and

2. whenever x1 and x2 are satisfying assignments of R
such that x1 is a proper subset of x2, then their dif-
ference is also satisfying.

Proof The necessity of these two requirements follow
directly from Definition 2.1, since the all zero assign-
ment satisfies R.

Now assume that these two requirements hold. To
see that the first requirement of Definition 2.1 holds
for R, assume that x1, x2, and x1 ∩ x2 satisfy R. If
x1 ⊆ x2 or x2 ⊆ x1, then there is nothing to prove.
Otherwise x1 \ (x1 ∩ x2) = x1 \ x2 is a satisfying as-
signment by the second requirement of the lemma be-
ing proved. Assignments x1 \ x2 and x2 are disjoint,

2

hence their union x1 ∪ x2 is also satisfying by the first
requirement.

To see that the second requirement of Definition 2.1
holds, let x1 ⊂ x2 ⊂ x3 be satisfying assignments. Now
x3 \ x2 is also satisfying, and since it is disjoint from
x1, it follows that (x1 \ x2) ∪ x3 is satisfying, as re-
quired. ¤

Another way of stating Lemma 2.2 is the following.
If we consider two satisfying assignments as 0-1 vec-
tors in Z

r, and their sum (in Z
r) is also a 0-1 vector,

then the first property says that the sum is also satis-
fying. The second property says that the difference of
two satisfying vectors is also satisfying if it is a 0-1 vec-
tor. Therefore Lemma 2.2 says that whenever the sum
(difference) of the satisfying assignments is also a 0-1
vector, then the sum (difference) is also satisfying.

Definition 2.1 might seem to be a bit artificial, but
as the following examples show, this class contains sev-
eral interesting constraints.

Example 2.3 (Intersecting clutters) Consider the
set system corresponding to the satisfying assignments
of some constraint R. We say that the constraint is
intersecting if every two non-empty sets in the sys-
tem intersect each other. The constraint is a clut-
ter if neither of the non-empty satisfying assignments
is the proper subset of some other satisfying assign-
ment1. If a 0-valid constraint R is an intersecting clut-
ter, then it is weakly separable. Both requirements of
Lemma 2.2 vacuously hold: there are no disjoint satisfy-
ing assignments and a satisfying assignment cannot be
the subset of another satisfying assignment. For exam-
ple, R = {00000, 11100, 00111, 01110} is weakly sepa-
rable. Moreover, for every r and t > r/2, the r-ary con-
straint that contains the all zero assignment and all the
assignments of weight exactly t is also weakly separa-
ble.

Example 2.4 (Affine constraints) A constraint of
arity r is called affine if the subset of {0, 1}r that cor-
responds to the satisfying assignments is an affine sub-
space of the r-dimensional space over GF [2]. It can be
shown that a constraint is affine if and only if for ev-
ery three satisfying assignment x1, x2, x3, the assign-
ment x1 ⊕ x2 ⊕ x3 also satisfies the constraint.

An affine constraint of arity r can be characterized
by the equation Ax = b over GF [2], where A is ma-
trix with r columns. If there are two satisfying assign-
ments x1 and x2 such that their intersection z is also

1 Note that we use the notions intersecting and clutter in a
slightly non-standard way. Here the empty set is allowed to
be a member of a clutter or an intersecting set system.

satisfying, then this means that x1, x2 can be writ-
ten as x1 = x′

1 + z, x2 = x′
2 + z and

Ax1 = A(x′
1 + z) = b,

Ax2 = A(x′
2 + z) = b,

Az = b.

Now the union of x1 and x2 is x′
1 + x′

2 + z, which is
also satisfying since

A(x′
1 + x′

2 + z) = A(x′
1 + z) + A(x′

1 + z) − Az

= b + b − b = b.

Moreover, if x1 ⊂ x2 ⊂ x3 are three satisfying assign-
ments, then by a similar argument it can be shown that
x3 − x2 + x1 is also a satisfying assignment. Thus we
have shown that every affine constraint is weakly sep-
arable. In particular, the r-ary constraint EVENr that
requires that an even number of its variables are set to
1 is also weakly separable.

Example 2.5 (Integer lattices) An integer lattice L
is a subset of Z

r that is generated by the integer linear
combination of a finite number of vectors a1, . . . ,ak ∈
Z

r, that is, L = {α1a1 + · · · + αkak : α1, . . . , αk ∈ Z}.
An alternative definition is that L is an integer lat-
tice if and only if for every two vectors in L their sum
and their difference are also in L. This immediately im-
plies that if we consider only the 0-1 vectors in L (the
intersection of L with the hypercube {0, 1}r), then this
yields a weakly separable constraint. Indeed, the sum
and difference of every two satisfying assignment is in
L, and if it happens to be a 0-1 vector, then it is also
a satisfying assignment.

The converse is not true: not every weakly separa-
ble constraint arises from an integer lattice this way.
For example, consider the constraint R given in Ex-
ample 2.3. If R is part of an integer lattice, then
11100 + 00111 − 01110 = 10101 has to be in the lat-
tice.

If R(x1, . . . , xr) is a constraint of arity r, then for
every 1 ≤ i ≤ r we define R|(i,0)(x1, . . . , xr−1) =
R(x1, . . . , xi−1, 0, xi, . . . , xr−1) to be a constraint of ar-
ity r−1. That is, R|(i,0) is obtained from R by restrict-
ing the ith position to 0. The constraint R(i,1) is de-
fined similarly. Applying these two operations repeat-
edly on R we can obtain 3r (not necessarily distinct)
constraints: each position can be forced to 0, forced to
1, or left unchanged. These constraints will be called
the restrictions of R. Given a constraint family F , we
denote by F ∗ the set of those constraints that can be
obtained from a member of F by repeated applications
of these two operations. Clearly, if every constraint in
F has arity at most r, then |F ∗| ≤ 3r|F |.

3

Weak separability is a hereditary property with re-
spect to taking restrictions:

Lemma 2.6 If R is weakly separable, then every restric-
tion of R is also weakly separable.

Proof Assume that R has a non-weakly sep-
arable restriction R′. Without loss of general-
ity, it can be assumed that R′(x1, . . . , xr′) =

R(x1, . . . , xr′ ,

r1
︷ ︸︸ ︷

0, . . . , 0,

r2
︷ ︸︸ ︷

1, . . . , 1). Abusing notations, if
x is an r′-ary assignment of R′, then we also con-
sider x to be an r-ary assignment of R that assigns
0 to the last r1 + r2 positions. Let z be the r-ary as-
signment that assigns 1 to the last r2 positions. An
assignment x satisfies R′ if and only if x ∪ z satis-
fies R.

If R′ violates the first requirement of Definition 2.1,
then there are assignments x1, x2, x1 ∩ x2 that satisfy
R′, but x1∪x2 is not satisfying. Therefore x1∪z, x2∪z,
and their intersection (x1∩x2)∪z satisfy R. Since R is
weakly separable, thus (x1∪z)∪(x2∪z) = (x1∪x2)∪z
also satisfies R, showing that x1∪x2 satisfies R′, a con-
tradiction. The case when R′ violates the second re-
quirement can be handled similarly. ¤

Later we will need the following observation:

Lemma 2.7 If R is a 0-invalid non-weakly separable
constraint, then R has a 0-valid non-weakly separable re-
striction.

Proof If R violates the first requirement of Defini-
tion 2.1, then there are assignments x1, x2, x1 ∩ x2

that satisfy R, but x1 ∪ x2 is not satisfying. Consider
the restriction R′ of R where the positions that re-
ceive 1 in x1 ∩x2 are forced to 1. Clearly, R′ is 0-valid,
and based on x1 and x2 we can get two disjoint satis-
fying assignment whose union is not satisfying. If R vi-
olates the second requirement, then we force those po-
sitions to 1 that receive 1 in x1. Based on x2 and x3,
we obtain two satisfying assignments such that one is
the subset of the other, but their difference is not sat-
isfying. ¤

3. Weighted SAT

A clause representing the constraint f is a pair
〈f, (x1, . . . , xr)〉, where r is the arity of f and x1, . . . ,
xr are variables. A 0-1 assignment of the variables sat-
isfies this clause if f(x1, . . . , xr) = 1. If F is a finite
family of constraints, then an F -formula φ is a con-
junction of clauses C1 ∧ C2 ∧ · · · ∧ Cm where each
clause Ci represents some constraint f from F . A vari-
able assignment satisfies φ if it satisfies every clause of

φ. A formula is satisfiable if it has at least one satis-
fying assignment. The weight of an assignment is the
number of variables that are set to 1. Usually we de-
note by n the number of variables in the formula, and
by m the number of clauses.

When defining constraint satisfaction problems
some authors allow that a variable appears multi-
ple times in a clause, while some others forbid this. In
particular, Schaefer’s original paper [14] allowed mul-
tiple variables, while Khanna et al. [11] does not. Dis-
allowing multiple variables makes the constraint
satisfaction problem less general, hence it makes ob-
taining hardness results more difficult. We present our
results in the strongest possible form: we allow multi-
ple variables when giving positive results, while on the
negative side hardness is proved for the case when mul-
tiple variables are not allowed.

Formally, we will investigate the parameterized com-
plexity of the following problem:

WEIGHTED F -SAT

Input: An F -formula φ (each variable can ap-
pear at most once in a clause) and an integer
k.

Parameter: k

Question: Is there an assignment of weight
exactly k that satisfies φ?

It can be show that the problem WEIGHTED F -
SAT is in W[1] for every family F .

In the rest of be paper we consider only parame-
terized problems, hence we will say F -SAT instead of
WEIGHTED F -SAT for brevity. F -SAT∗ denotes the
more general problem where a variable can appear mul-
tiple times in a clause. If F contains only a single con-
straint R, then we abuse notation by writing R-SAT
instead of {R}-SAT.

In some cases we allow that not only variables, but
also the constants 0 and 1 can appear in the formula.
This extension of the problem will be called F -SAT01.
In the problem F -SAT0 only the constant 0 is allowed.
Problems F -SAT∗

01 and F -SAT∗
0 are defined similarly.

It is easy to see that the problem F -SAT01 is essen-
tially the same as F ∗-SAT (recall that F ∗ contains all
the restrictions of F). If a clause of the formula con-
tains constants, then the clause can be replaced by an
appropriate constraint from F ∗, and vice versa. There-
fore we obtain

Proposition 3.1 For every constraint family F , the
problemsF -SAT01 andF ∗-SAThave the same complex-
ity. ¤

4

Although the definition is somewhat technical, weak
separability is precisely the property that separates the
easy and the hard cases in the F -SAT problem:

Theorem 3.2 Let F be a finite set of constraints. If ev-
ery constraint in F is weakly separable, then F -SAT is
in FPT otherwise F -SAT is W[1]-complete.

We prove Theorem 3.2 the following way. The special
case when the formula is not satisfied by the all zero
assignment can be taken care of easily (Lemma 4.1).
The next step is to prove that the problem is in FPT
for every F if the formula is bounded occurrence, that
is, every variable occurs at most d (constant) times.
Theorem 5.3 gives a uniformly polynomial time algo-
rithm for the bounded occurrence case. The algorithm
first collects a set of solutions that are “local” in some
sense, then uses color coding to put together these as-
signments to obtain a solution of exactly the required
weight.

If a variable occurs many times in the formula and
every member of F is weakly separable, then we can
use the sunflower lemma of Erdős and Rado to find a
certain special structure in the formula. This structure
allows us to reduce the problem to a shorter but equiv-
alent form (Theorem 6.5). Repeating these reductions,
eventually we arrive to a formula where each variable
occurs a bounded number of times, proving the posi-
tive side of Theorem 3.2.

On the negative side, we use two hardness results
as basis to our reductions. First, the parameterized
maximum independent set problem is well-known to
be W[1]-complete. Notice that the maximum indepen-
dent set problem is in fact the same as F -SAT with
F = {(x̄∨ ȳ)}: the constraint (x̄∨ ȳ) (that is, NAND)
expresses the requirement that either x or y should
not be selected into the independent set. Moreover, we
prove in Lemma 7.1 that the constraint (x → y) also
makes weighted satisfiability W[1]-complete. It turns
out that if a constraint is not weakly separable, then it
can express one of (x̄∨ȳ) and (x → y), making the satis-
fiability problem W[1]-hard (Lemma 8.1). This proves
the negative side of Theorem 3.2.

Besides bounding the number of occurrences, we in-
vestigate the effect of other structural restrictions on
the formula. The incidence graph of a formula is a bi-
partite graph having the variables and clauses as ver-
tices, where the edges represent the incidence relation.
We prove that F -SAT is in FPT for every F if the
incidence graph of the formula has bounded treewidth
(Theorem 9.1) or it is planar (Theorem 9.3). These re-
sults follow from standard algorithmic techniques of
bounded treewidth graphs.

4. 0-invalid constraints

The case when the formula contains 0-invalid con-
straints can be taken care of easily: the problem can be
reduced to a constant number of 0-valid formulae.

Lemma 4.1 Let F be a family of constraints with arity
at most r. The F -SAT problem can be reduced to at most
rk instances of the F ∗-SAT (or F -SAT01) problem such
that the constructed instances contain only 0-valid con-
straints. Moreover, the reduction does not increase the
number of occurrences for any of the variables and the
parameter k′ for the generated F ∗-SAT instances is not
greater than the parameter k.

Proof We use the method of bounded search trees. If
the formula φ contains a 0-invalid clause Ci, then one
of the variables in Ci has to be 1. Therefore the al-
gorithm selects a variable in Ci and sets it to 1. Since
there are at most r variables in Ci, thus we branch into
at most r directions. Now there are constants in the for-
mula, but we can get rid of these constants by replac-
ing the clauses containing constants with appropriate
constraints from F ∗ (Prop. 3.1). We repeat this pro-
cedure until there are no 0-invalid clauses. If we set k
variables to 1 and there are still 0-invalid clauses, then
this branch of algorithm is unsuccessful and we stop.
If the formula becomes 0-valid after setting c variables
to 1, then we check whether it has a satisfying assign-
ment of weight k′ := k − c. If there is such an assign-
ment, then it gives a satisfying assignment of weight
k for the original formula. The search tree of the al-
gorithm has height at most k, hence it has at most rk

leaves, implying that we generate at most rk 0-valid for-
mulae to check. ¤

5. Bounded occurrences

In this section we give a uniformly polynomial time
algorithm for F -SAT in the special case when every
variable appears in a bounded number of clauses. The
main idea is that we can generate a linear number of
satisfying assignments such that every satisfying as-
signment of weight at most k can be obtained as the
disjoint union of some these assignments. Now an al-
gorithm based on color coding can be used to decide
whether a satisfying assignment of weight exactly k can
be put together from these selected assignments.

The vertex set of the primal graph G(φ) of formula
φ is the set of variables in φ, and two variables are con-
nected by an edge if they appear in a common clause.
We say that a set of variables is connected in φ if they
induce a connected subgraph of G(φ). A set of vari-
ables is satisfying in φ if setting these variables to 1

5

and all the other variables to 0 gives a satisfying as-
signment. The following lemma bounds the number of
connected satisfying sets:

Lemma 5.1 Let r be the maximum arity of the clauses
in the 0-valid formula φ, and assume that every vari-
able occurs at most d times in φ. There are at most
(rd)k2

· n connected satisfying sets of variables having
size at most k. Moreover, we can enumerate all such sets
in 2O(k2 log rd) · n time.

Proof In G(φ) every vertex has degree at most (r −
1)d. We give an upper bound on the number of con-
nected subsets that contain variable xi and have size
at most k. If variable xi and at most k − 1 other ver-
tices form a connected subgraph, then all these vertices
are at distance at most k − 1 from xi. There are less
than ((r − 1)d)k < (rd)k vertices at distance less than
k from xi, therefore we have to consider only these ver-
tices. One can form less than (rd)k2

different sets of size
at most k from these vertices, this bounds the number
of sets containing xi. Considering all the n variables,
we obtain the upper bound (rd)k2

· n.
It is not difficult to show that we can generate all

these sets in time polynomial in d, r, and k per set
(with appropriate data structures). Therefore the to-

tal time can bounded by 2O(k2 log rd). Moreover, select-
ing the satisfying sets can be also done within this time
bound: for each set, we have to check at most kd clauses
(those clauses that do not contain selected variables are
automatically satisfied). ¤

Two sets of variables V ′ and V ′′ are nonadjacent if
there is no clause that contains variables from both V ′

and V ′′. The union of pairwise nonadjacent satisfying
sets is also satisfying:

Lemma 5.2 If V1, V2, . . . , V` are pairwise nonadjacent
satisfying sets of variables for the 0-valid formula φ, then
V1 ∪ · · · ∪ V` also satisfies φ.

Proof Assume that clause Cj is not satisfied by V1 ∪
· · · ∪ V`. Since φ is 0-valid, hence Cj must contain one
or more variables set to 1, denote these variables by V ′.
Since the sets V1, V2, . . . , V` are pairwise nonadjacent,
thus V ′ is contained in one of these sets, say Vi. There-
fore Cj receives the same assignment as in Vi, contra-
dicting the assumption that Vi is satisfying. ¤

Now we are ready to present the algorithm for
bounded occurrence formulae:

Theorem 5.3 Let r be themaximumarity of the clauses
in a formula φ, and assume that every variable occurs at
most d times in φ. It can be decided in 2O(k2d log r) ·n log n
time whether φ has a satisfying assignment of weight k.

Proof If the formula is not 0-valid, then Lemma 4.1
can be used to reduce the problem to at most rk 0-
valid instances. Therefore in the following we assume
that the formula is 0-valid. For 0-invalid formulae, the
running time obtained below has to be multiplied by
rk, which is dominated by the exponent.

Every satisfying assignment can be partitioned into
pairwise nonadjacent connected satisfying assignments
by taking its connected components in the underly-
ing graph. Conversely, if we have pairwise nonadjacent
connected satisfying assignments, then by Lemma 5.2,
their union is also a satisfying assignment. Therefore φ
has a satisfying assignment of weight k if and only if
there are pairwise nonadjacent connected satisfying as-
signments whose total size is k. Our algorithm tries to
find such sets.

By Lemma 5.1, we can enumerate all the connected
satisfying sets of size at most k, call these sets V1,
. . . , Vt. For each such set Vi there corresponds a set
of clauses C[Vi] where the variables of Vi appear. To
each set C[Vi] we associate the weight |Vi|, clearly the
size of C[Vi] is at most d times its weight. Notice that Vi

and Vj are non-adjacent if and only if the correspond-
ing sets C[Vi] and C[Vj] are disjoint. Therefore the ob-
servation of the previous paragraph can be restated as
follows: φ has a satisfying assignment of weight k if
and only if there are pairwise disjoint sets C[Vi1], . . . ,
C[Vi`

] whose total weight is k. We use the method of
color coding to decide whether such sets exist.

First we present the randomized version of the al-
gorithm. Select a random coloring of the clauses using
a set C of c := kd colors. The algorithm uses dynamic
programming to find a solution where every clause cov-
ered by the sets C[Vi1], . . . , C[Vi`

] have different color.
For every subset C ′ ⊆ C of colors, every 0 ≤ i ≤ t and
0 ≤ k′ ≤ k we set subproblem S[C ′, i, k′] to true if one
can select pairwise disjoint sets from C[V1], . . . , C[Vi]
such that their total weight is k′, the clauses covered by
them have distinct colors, and they cover only clauses
with color from C ′. We are interested in S[C, t, k], if
it is true, then there is a weight k satisfying assign-
ment.

It is trivial to solve the subproblems for i = 0. We
can move from i to i + 1 as follows. If S[C ′, i, k′] is
true, then S[C ′, i + 1, k′] is also true, since any so-
lution for i can be used for i + 1 as well. Moreover,
let Ci be the set of colors appearing on the clauses of
C[Vi] (we assume that these colors are distinct, oth-
erwise C[Vi] cannot appear in a solution with this
coloring). If S[C ′ \ Ci, i, k

′ − |Vi|] is true, then we
can set S[C ′, i + 1, k′] to true as well: a solution to
S[C ′ \ Ci, i, k

′ − |Vi|] can be extended by the weight
|Vi| set C[Vi] to obtain a solution that covers clauses

6

only with color C ′. Using these two rules, we can solve
all the subproblems.

If there are pairwise disjoint sets C[Vi1], . . . , C[Vi`
]

whose total weight is k, then they cover at most c = kd
clauses (recall that the size of C[Vi] is at most d times
its weight). Therefore with probability at least c!/cc,
the clauses covered by C[Vi1], . . . , C[Vi`

] have distinct
colors, and the algorithm finds a solution. This means
that if there is a weight k satisfying assignment, then
on average we have to choose at most cc/c! random col-
orings to find a solution. We can derandomize the al-
gorithm by using the standard technique of k-perfect
hash functions [2, 7]. If there are m elements, then one
can construct a family of 2O(c) log m c-colorings such
that for each c-element subset X of the elements there
is a coloring in the family where each element in X re-
ceives a different color. It is clear that the algorithm
will work correctly if we modify it such that instead of
repeatedly choosing random colorings we enumerate all
the colorings in the family: eventually we select a color-
ing where all the at most c clauses covered by the solu-
tion are colored differently. Thus the algorithm consid-
ers 2O(c) log m ≤ 2O(c)d log n colorings. For each col-
oring, the dynamic programming algorithm solves at
most 2ckt ≤ 2ck(rd)k2

· n subproblems. Each subprob-
lem requires time polynomial in r, d, and k. Therefore
the total running time is 2O(k2d log r) · n log n. ¤

6. Fixed-parameter tractable cases

In this section we prove the positive part of Theo-
rem 3.2: we show that if every constraint is weakly sep-
arable, then F -SAT is in FPT. In fact, we show that
even the more general problem F -SAT∗

01 is fixed-
parameter tractable. By Lemma 4.1, the 0-invalid
clauses can be easily taken care of, therefore we as-
sume that the formula is 0-valid. If every variable
occurs at most d times (where d is a constant to be de-
fined later), then the algorithm of Theorem 5.3
can be used. On the other hand, if a variable oc-
curs more than d times, then we can find a large
sunflower of weakly separable clauses, which al-
lows us to simplify the formula.

The sunflower was defined in the context of set sys-
tems:

Definition 6.1 (Sunflower) A sunflower with p
petals is a collection of p sets S1, . . . , Sp such that the in-
tersection Si ∩ Sj is the same for every i 6= j.

In particular, p pairwise disjoint sets form a sun-
flower with p petals. The intersection of the sets will be
called the center of the sunflower. The following lemma

states that a sufficiently large set system necessarily
contains a sunflower of given size:

Lemma 6.2 (Erdős and Rado, 1960, [8]) If a set
system has more than (p − 1)``! members and the size
of each member is at most `, then the set system contains
a sunflower with p petals.

We will use the notion of sunflower for clauses in-
stead of sets. For clauses, the definition of sunflower is
the following:

Definition 6.3 (Sunflower) A sunflower with p
petals is a collection of p clauses C1, . . . , Cp such that ev-
ery clause represents the same constraint R of arity r,
and for every i = 1, . . . , p and j = 1, . . . , r

• either the same variable appears at the jth position
of every clause, or

• the variable at the jth position of clause Ci appears
only in Ci.

For example, the clauses R(x1, x2, x3, x4),
R(x1, x2, x5, x5), R(x1, x2, x6, x7) form a sunflower
with 3 petals. Here variables x1 and x2 form the cen-
ter. It turns out that if a variable appears in many
clauses, then there is a large sunflower in the for-
mula:

Lemma 6.4 Let F be a family of constraints with max-
imum arity r containing c constraints. If a variable xi

appears in more than (rrk)r · r! · rr · c clauses of an F -
formula φ, then φ contains a sunflower with non-empty
center and at least k + 1 petals.

Proof Among the clauses that contain variable xi, at
least (rrk)r·r!·rr of them has to represent the same con-
straint R ∈ F . For each such clause, consider the set
of variables contained in the clause. This way we ob-
tain a family of (rrk)r · r! · rr sets, but a set can ap-
pear multiple times in the family. As a very rough esti-
mate, we can say that there can be at most rr different
clauses on the same set of at most r variables (tak-
ing into account that a variable can appear multiple
times in a clause), therefore if we retain only one copy
of each set, then there remains at least (rrk)r · r! sets.
Therefore by Lemma 6.2, this collection of sets con-
tains a sunflower with rrk + 1 petals. The center C of
the sunflower is not empty, since it contains variable xi.
The clauses corresponding to the sets in the sunflower
all use the variables in C, but these variables may ap-
pear in these clauses at different positions. We say that
two clauses use the center C the same way if whenever
the variable at the jth position of one clause is a vari-
able in C, then the same variable appears in the other

7

clause at the jth position. It is clear that there are at
most rr (rough upper bound) different ways of using
C, thus there has to be more than k sets in the sun-
flower such that the corresponding clauses use the cen-
ter C the same way. These clauses form a sunflower
of size at least k + 1: if the variable at the jth po-
sition of a clause is in C, then it appears in all the
clauses at the jth position; if it is not in C, then it ap-
pears only in that clause. ¤

The key idea of the algorithm for weakly separable
constraints is to find a sunflower and reduce the for-
mula by “plucking” the petals of the sunflower.

Theorem 6.5 If every constraint in F is weakly sepa-
rable, then F -SAT∗

01 is fixed-parameter tractable.

Proof By Prop. 3.1, F -SAT∗
01 and F ∗-SAT∗ are

equivalent, we give an algorithm for the latter prob-
lem. Note that by Lemma 2.6, every constraint in F ∗

is weakly separable. If the given F ∗-formula φ is not
0-valid, then we use Lemma 4.1 to reduce the problem
to at most rk 0-valid instances of F ∗-SAT∗. There-
fore in the following we can assume that the formula is
0-valid and every constraint is weakly separable.

Let r be the maximum arity of the constraints in F ,
and set c := |F ∗| ≤ 3r|F | ≤ 3r ·22r

r and d := r·(rrk)r ·
r! · rr · c. If every variable occurs at most d times in the
0-valid formula φ, then Lemma 5.3 can be used to solve

the problem in 2O(k2d log r) ·n log n = 2kr+2·22O(r)

·n log n
time. Otherwise there is a variable that occurs more
than d times. This means that this variable appears in
at least d/r clauses, hence the formula contains a sun-
flower with k+1 petals (Lemma 6.4). Let C1, . . . , Ck+1

be the clauses of the sunflower and let C be its cen-
ter. The clauses of the sunflower represent the same
constraint R of arity r′ ≤ r, it can be assumed with-
out loss of generality that in each of these clauses, the
first ` ≥ 1 variables are taken from C, and the remain-
ing r′ − ` variables are outside C.

We reduce the problem to a shorter formula by
“plucking” the sunflower. In each clause C1, . . . , Ck+1

the variables of the center C are replaced by the con-
stant 0, call C ′

i these modified clauses. Furthermore, a
new clause C ′

0 is added to the formula: C ′
0 can be ob-

tained from any of the clauses Ci (i = 1, . . . , k + 1) by
replacing the variables not in C by the constant 0. (Ob-
serve that by the definition of the sunflower, this gives
the same clause C ′

0 starting from any Ci). For exam-
ple, plucking the sunflower

C1 = R(x1, x2, x3, x4),

C2 = R(x1, x2, x5, x5),

C3 = R(x1, x2, x6, x7)

gives

C ′
0 = R(x1, x2, 0, 0),

C ′
1 = R(0, 0, x3, x4),

C ′
2 = R(0, 0, x5, x5),

C ′
3 = R(0, 0, x6, x7).

We claim that this operation does not change the solv-
ability of the instance with respect to weight k solu-
tions.

Assume that the new formula φ′ has a satisfy-
ing assignment x of weight k, but this assignment
does not satisfy φ. This is only possible if one of
the clauses Ci (i = 1, . . . , k + 1) is not satisfied,
since all the other clauses of φ are present in φ′

as well. Assume that clause Ci is not satisfied, thus
x and Ci gives an r′-tuple (α1, . . . , αr′) that does
not satisfy the constraint R. However, x satisfies C ′

i,
hence (0, . . . , 0, α`+1, . . . , αr′) does satisfy R. More-
over, x satisfies C ′

0, hence (α1, . . . , α`, 0, . . . , 0) also
satisfies R. Therefore we have two disjoint assign-
ments satisfying R and since constraint R is 0-valid
and weakly separable, the union of the assignments
(α1, . . . , α`, α`+1, . . . , αr′) also satisfies R (Lemma 2.2),
a contradiction.

Now assume that φ has a satisfying assign-
ment x of weight k that does not satisfy φ′. There
are at most k true variables outside C and by the
definition of the sunflower, each such variable ap-
pears in at most one of the clauses C1, . . . , Ck+1.
Thus there has to be a clause Ci that does not con-
tain true variables outside C. Therefore the r′-tuple
(α1, . . . , α`, 0, . . . , 0) assigned by x to Ci satisfies the
constraint R. This means that the clause C ′

0 is satis-
fied in φ′. Assume therefore that for some clause C ′

j

(1 ≤ j ≤ k +1) the r′-tuple (0, . . . , 0, α`+1, . . . , αr′) as-
signed to C ′

j does not satisfy R. However, x assigns
the r′-tuple (α1, . . . , α`, α`+1, . . . , αr′) to Cj (ob-
serve that Ci and Cj use the variables of the cen-
ter the same way), thus this r′-tuple satisfies R. Now
from the weak separability of R (see also Lemma 2.2)
and from the facts that (α1, . . . , α`, 0, . . . , 0) and
(α1, . . . , α`, α`+1, . . . , αr′) satisfy R it follows that
(0, . . . , 0, α`+1, . . . , αr′) also satisfies R, a contradic-
tion.

Thus the formula φ′ is equivalent to the original
formula φ if we are only interested in weight k solu-
tions. Formula φ′ contains some constant zeros, but
we can get rid of the constants by replacing the af-
fected constraints with appropriate constraints from
F ∗ (Prop. 3.1). Notice that plucking the sunflower
strictly decreases the total number of occurrences of
the variables. Therefore by repeating this operation at
most as many times as the number of literals in the

8

original formula (≤ mr), eventually we obtain a for-
mula where every variable occurs at most d times. As
noted above, in this case Lemma 5.3 can be used to
solve the problem in uniformly polynomial time. ¤

7. Hardness of implication

The negative part of Theorem 3.2 requires us to
prove the W[1]-completeness of certain problems. All
our completeness proofs are done by reduction from
two problems, maximum independent set and IMPLI-
CATIONS, where IMPLICATIONS is F -SAT for F =
{(x → y)}. Maximum independent set (which can be
also thought of as F -SAT for F = {(x̄ ∨ ȳ)}) is a
well-known W[1]-complete problem. In this section we
show that it is W[1]-complete to find a satisfying as-
signment of weight exactly k for a formula containing
only implications of the form (x → y).

Notice that is F = {(x̄ ∨ ȳ)}, then F -SAT remains
W[1]-hard even if we look for satisfying assignments
of weight at least k instead of exactly k. On the other
hand, the constraint (x → y) is 1-valid, thus it is triv-
ial to find a satisfying assignment of weight at least k.
Therefore the following hardness result has to rely on
the fact that the weight of the satisfying assignment to
be found is exactly k.

Lemma 7.1 IMPLICATIONS is W[1]-complete.

Proof We prove that the weighted version of the prob-
lem is W[1]-complete. In the weighted version each
variable xi is given a positive integer weight w(xi), and
one has to find a satisfying assignment where the sum
of the weights of the true variables is exactly k. If the
weights are of constant size, then the weighted prob-
lem can be reduced to the unweighted problem in uni-
formly polynomial time. For each variable xi, we add
w(xi) − 1 new variables xi,1, . . . , xi,w(xi)−1, and the
clauses xi → xi,1, xi,1 → xi,2, . . . , xi,w(xi)−1 → xi.
These clauses form a cycle of implications, hence ei-
ther all or none of these variables are true in a satisfy-
ing assignment. Thus these variables effectively act as
one variable with weight w(xi), completing the reduc-
tion.

In the following, we show that weighted IMPLICA-
TIONS is W[1]-hard. The proof is by a parameterized
reduction from the maximum independent set prob-
lem. Let G(V,E) be a graph, and let k be the number
of independent vertices to be found. Set k′ = k +

(
k
2

)
.

We construct a formula where the variables are parti-
tioned into k′ sets X1, . . . , Xk′ . Each variable in Xi

has weight wi = 2i−1 + 22k′−i. The required weight of

the solution is k′′ =
∑k′

i=1 wi = 22k′

− 1.

We claim that any assignment with weight k′′ sets to
1 exactly one variable from each set Xi. Suppose that i
is the smallest index such that the claim does not hold.
There are two cases. If Xi does not contain a variable
with value 1, then consider the weight of the assign-
ment modulo 2i. The weight wi′ is 2i′−1 modulo 2i for
i′ < i, and it is 0 modulo 2i for i′ > i. By assump-
tion, there is exactly one true variable in each Xi for
i′ < i, hence the weight is

∑i−1
i′=1 2i′−1 = 2i−1 − 1 mod-

ulo 2i. However, k′′ is 2i − 1 modulo 2i, a contradic-
tion. Now assume that Xi contains at least two true
variables. In this case the weight of the assignment is
at least

∑i−1
i′=1 wi′ + 2wi ≥

∑i−1
i′=1 22k′−i′ + 2 · 22k′−i >

22k′

− 1 = k′′, again a contradiction.
In the following, we will rename the k′ = k+

(
k
2

)
sets

Xi as Yi for 1 ≤ i ≤ k and Yi,j for 1 ≤ i < j ≤ k. Each
set Yi contains |V | variables yi,v for v ∈ V . Each Yi,j

contains
(
|V |
2

)
− |E| variables, that is, there is a vari-

able yi,j,u,v for each non-edge uv 6∈ E of the graph.
Clauses are defined as follows: for every 1 ≤ i < j ≤ k
and every non-edge uv 6∈ E, we add the two clauses
(yi,j,u,v → yi,u) and (yi,j,u,v → yj,v).

Assume that there is a solution of weight exactly
k′′. We have seen that in such a solution, each set Yi

and Yi,j contains exactly one true variable. We con-
struct an independent set of size k based on this solu-
tion: if variable yi,v is true, then let v be the ith ver-
tex of the independent set. We claim that this results
in k distinct independent vertices. To see that the ith
and the jth vertex are not the same and not connected
by an edge, assume that yi,j,u,v is the unique true vari-
able in Yi,j . The clauses imply that variables yi,u and
yj,v are true, hence the ith vertex is u, and the jth ver-
tex is v. By construction, uv is a non-edge in G, hence
u and v are distinct vertices not connected by an edge.

To see the other direction, assume that v1, . . . , vk is
an independent set of size k. It is easy to see that set-
ting to 1 the variables yi,vi

(1 ≤ i ≤ k) and yi,j,vi,vj

(1 ≤ i < j ≤ k) yields a satisfying assignment of weight
exactly k′′. ¤

8. Hardness results

In this section we prove the negative side of The-
orem 3.2: if F contains a non-weakly separable con-
straint, then F -SAT is W[1]-complete. The follow-
ing lemma shows a weaker claim: it needs a slightly
stronger assumption (F contains a 0-valid non-weakly
separable constraint) and it proves hardness for the
more general problem F -SAT∗

0. The proof contains all
the important ideas, it shows what role (the lack of)
weak separability plays in the complexity of the prob-
lem. A couple of technical tricks are required to prove

9

hardness for the more restricted problem F -SAT, the
details will appear in the full version.

Lemma 8.1 Let F be a finite constraint family. If F

contains a 0-valid constraint that is not weakly separable,
then F -SAT∗

0 is W[1]-complete.

Proof Assume that R ∈ F is a 0-valid con-
straint of arity r that is not weakly separable.
Since R is 0-valid, it violates one of the require-
ments of Lemma 2.2. We consider two cases depending
on which requirement is violated. If there are two dis-
joint satisfying assignments of R whose union does not
satisfy R, then we reduce the maximum independent
set problem to R-SAT∗

0 as follows. Without loss of gen-

erality, it can be assumed that (

`1
︷ ︸︸ ︷

1, . . . , 1, 0, . . . , 0)

and (

`1
︷ ︸︸ ︷

0, . . . , 0,

`2
︷ ︸︸ ︷

1, . . . , 1, 0, . . . , 0) satisfy R but

(

`1
︷ ︸︸ ︷

1, . . . , 1,

`2
︷ ︸︸ ︷

1, . . . , 1, 0, . . . , 0) does not. Now a clause
(x̄i ∨ x̄j) of the maximum independent set problem

can be expressed as R(

`1
︷ ︸︸ ︷
xi, . . . , xi,

`2
︷ ︸︸ ︷
xj , . . . , xj , 0, . . . , 0).

It is clear that this clause forbids that both of xi and
xj is true at the same time, but the clause is satis-
fied if at most one of them is true.

If R violates the second requirement of weak sepa-
rability, then we reduce IMPLICATIONS to R-SAT∗

0.
Without loss of generality, it can be assumed that

(

`1
︷ ︸︸ ︷

1, . . . , 1, 0, . . . , 0) and (

`1
︷ ︸︸ ︷

1, . . . , 1,

`2
︷ ︸︸ ︷

1, . . . , 1, 0, . . . , 0) sat-

isfy R but (

`1
︷ ︸︸ ︷

0, . . . , 0,

`2
︷ ︸︸ ︷

1, . . . , 1, 0, . . . , 0) does not. In
this case a clause (xi → xj) of the IMPLICA-
TIONS problem can be replaced by the clause

R(

`1
︷ ︸︸ ︷
xj , . . . , xj ,

`2
︷ ︸︸ ︷
xi, . . . , xi, 0, . . . , 0). Clearly, xi can-

not be true without xj being true as well, but ev-
ery other combination of values is allowed. ¤

Lemma 8.1 can be strengthened to obtain the nega-
tive side of Theorem 3.2 (details omitted):

Theorem 8.2 Let F be a finite constraint family. If F

contains a constraint that is not weakly separable, then
F -SAT is W[1]-complete.

9. Bounded treewidth and planarity

The incidence graph I(φ) of formula φ is a bipartite
graph whose vertices are the variables and clauses of
φ, and a clause is connected to those variables that ap-
pear in the clause. We show that certain structural as-
sumptions on the incidence graph allows us to solve the

F -SAT problem in uniformly polynomial time for ev-
ery constraint family F .

Treewidth is a well-studied parameter of graphs.
It is important from the algorithmic point of view,
since a large number of hard problems becomes easy
on bounded treewidth graphs (cf. [12]). Bounded
treewidth makes the problem easy in our case as well:

Theorem 9.1 For every finite constraint family F , the
F -SAT problem can be solved in f(F , w)k2(n+m) time
if the incidence graph of the formula has n variables, m
clauses and treewidth at most w.

Proof The problem can be solved using the standard
algorithmic techniques of bound treewidth graphs. De-
tails omitted. ¤

A formula is planar if its incidence graph is a pla-
nar graph. The complexity of the satisfiability problem
restricted to planar formulae was investigated in [13]:
it was show that the problem remains NP-complete
even with this restriction. The NP-completeness of pla-
nar SAT was used to determine the complexity of sev-
eral planar and geometric problems. It turns out that
for problems like maximum independent set, minimum
dominating set, minimum vertex cover, etc. the pla-
nar version is as hard as the general problem.

However, in the world of parameterized complexity
the situation is very different. The planar version of
maximum independent set and minimum dominating
set is fixed-parameter tractable while the general prob-
lem is W[1]-hard [1]. In general, we show that F -SAT
is in FPT for every constraint family F . The proof
uses standard techniques: using the layering method of
Baker [3], we can reduce the problem to bounded out-
erplanarity instances. Graphs with bounded outerpla-
narity have bounded treewidth, hence the algorithm of
Theorem 9.1 can be used.

Definition 9.2 (t-outerplanar) An embedding of
graph G(V,E) is 1-outerplanar (or simply outerpla-
nar), if it is planar, and all vertices lie on the exte-
rior face. For t ≥ 2, an embedding of a graph G(V,E)
is t-outerplanar, if it is planar, and when all vertices on
the outer face are deleted, then a (t− 1)-outerplanar em-
bedding of the resulting graph is obtained. A graph
is t-outerplanar, if it has a t-outerplanar embed-
ding. A t-outerplanar embedding divides the ver-
tices into t layers: layer L1 contains the vertices on the
outer face, while for i ≥ 2, layer Li contains those ver-
tices that are on the outer face after deleting layers L1,
. . . , Li−1.

Theorem 9.3 For every finite constraint family F , the
F -SAT problem can be solved in time f(F , k)(n + m)

10

if the formula has n variables, m clauses, and a planar
incidence graph.

Proof A planar embedding of I(φ) can be found in
linear time [10]. The embedding is t-outerplanar for
some integer t, we can determine the layers L1, . . . ,
Lt. The variables are partitioned into k +1 sets: let Xi

(0 ≤ i ≤ k) contain the variables in layer L3(k+1)j+3i+`

for j = 0, 1, . . . and ` = 1, 2, 3. Clearly, every variable
belongs to one of these sets. Given a weight k satis-
fying assignment, in at least one of the k + 1 sets all
the variables are set to 0. For i = 0, 1, . . . , k, we check
whether there is a weight k assignment where every
variable in Xi is set to 0. If there is a weight k satis-
fying assignment, then we eventually find one for some
i.

For a given i we proceed as follows. Replace every
variable in Xi with the constant 0, and delete the cor-
responding vertices from the graph. Now all the ver-
tices in layer L3(k+1)j+3i+2 represent clauses. Moreover,
since the variables appearing in such a clause have to be
in layer L3(k+1)j+3i+1, L3(k+1)j+3i+2, or L3(k+1)j+3i+3,
all these variables were replaced by 0. If this assign-
ment does not satisfy the clause (it is not 0-valid),
then there is no satisfying assignment where the vari-
ables in Xi are zero. On the other hand, if the clause
is 0-valid, then it is automatically satisfied in every
such assignment, hence we can delete it from the for-
mula and the graph. Thus for every j = 0, 1, . . . , all
the vertices in layer L3(k+1)j+3i+2 are deleted, which
means that the remaining graph is the disjoint union
of (3(k + 1) − 1)-outerplanar graphs, which is also
(3(k+1)−1)-outerplanar. A theorem of Bodlaender [4,
Theorem 83] assures that a t-outerplanar graph has
treewidth at most 3t−1, therefore we have to solve the
problem on a graph with treewidth at most 9(k+1)−4,
which can be done in linear time by Theorem 9.1. ¤

Acknowledgments

I’m grateful to Katalin Friedl for her suggestions
that greatly improved the presentation of the paper.

References

[1] J. Alber, H. Fernau, and R. Niedermeier. Parameter-
ized complexity: Exponential speed-up for planar graph
problems. In ICALP 2001, volume 2076 ofLecture Notes

in Comput. Sci, pages 261–272. Springer, Berlin, 2001.

[2] N. Alon, R. Yuster, and U. Zwick. Finding and counting
given length cycles. Algorithmica, 17(3):209–223, 1997.

[3] B.S.Baker. Approximationalgorithms forNP-complete
problems on planar graphs. J. Assoc. Comput. Mach.,
41(1):153–180, 1994.

[4] H. L. Bodlaender. A partial k-arboretum of graphs with
bounded treewidth. Theoret. Comput. Sci., 209(1-2):1–
45, 1998.

[5] A. A. Bulatov. A dichotomy theorem for constraints on
a three-element set. In Proc. 43th Symp. Foundations

of Computer Science, pages 649–658. IEEE, November
2002.

[6] N. Creignou. A dichotomy theorem for maximum gen-
eralized satisfiability problems. J. Comput. System Sci.,
51(3):511–522, 1995. 24th Annual ACM Symposium on
the Theory of Computing (Victoria, BC, 1992).

[7] R. G. Downey and M. R. Fellows. Parameterized com-

plexity. Monographs in Computer Science. Springer-
Verlag, New York, 1999.

[8] P. Erdős and R. Rado. Intersection theorems for sys-
tems of sets. J. London Math. Soc., 35:85–90, 1960.

[9] T. Feder and M. Y. Vardi. The computational struc-
ture of monotone monadic SNP and constraint satisfac-
tion: a study through Datalog and group theory. SIAM

J. Comput., 28(1):57–104, 1999.

[10] J. Hopcroft and R. Tarjan. Efficient planarity testing.
J. Assoc. Comput. Mach., 21:549–568, 1974.

[11] S.Khanna,M.Sudan,L.Trevisan,andD.P.Williamson.
The approximability of constraint satisfaction prob-
lems. SIAM J. Comput., 30(6):1863–1920, 2001.

[12] T. Kloks. Treewidth, volume 842 of Lecture Notes in

Computer Science. Springer-Verlag, Berlin, 1994. Com-
putations and approximations.

[13] D. Lichtenstein. Planar formulae and their uses. SIAM

J. Comput., 11(2):329–343, 1982.

[14] T. J. Schaefer. The complexity of satisfiability prob-
lems. In Proceedings of the tenth annual ACM sympo-

sium on Theory of computing, pages 216–226. 1978.

11

