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Constraint satisfaction problems

Let R be a set Boolean of relations. An R-formula is a conjunction of relations in R
Ri(x1, T4, x5) A Ra(x2, 1) N Ri(x3,x3,23) N\ R3(x5, 21, T, 1)

R-SAT
Given: an R-formula ¢

Find: a variable assignment satisfying ¢
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Constraint satisfaction problems

Let R be a set Boolean of relations. An R-formula is a conjunction of relations in R
Ri(x1, T4, x5) A Ra(x2, 1) N Ri(x3,x3,23) N\ R3(x5, 21, T, 1)
R-SAT

Given: an R-formula ¢

Find: a variable assignment satisfying ¢

R = {a # b} = R-SAT = 2-coloring of a graph
R={aVvb,aVb,aVb}= R-SAT=2SAT
R={aVbVec,aVbVé,aVbVeéaVbVe}l= R-SAT=3SAT

Question: R-SAT is polynomial time solvable for which R.?

It is NP-complete for which R.?
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Schaefer’s Dichotomy Theorem
(1978)

For every R, the TR-SAT problem is polynomial time solvable if one of the following

holds, and NP-complete otherwise:
Every relation is satisfied by the all 0 assignment
Every relation is satisfied by the all 1 assignment
Every relation can be expressed by a 2SAT formula
Every relation can be expressed by a Horn formula
Every relation can be expressed by an anti-Horn formula

Every relation is an affine subspace over GF'(2)
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Other dichotomy results

Approximability of MAX-SAT, MIN-UNSAT [Khanna et al., 2001]
Approximability of MAX-ONES, MIN-ONES [Khanna et al., 2001]
Generalization to 3 valued variables [Bulatov, 2002]

Inverse satisfiability [Kavvadias and Sideri, 1999]

etc.
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Other dichotomy results

Approximability of MAX-SAT, MIN-UNSAT [Khanna et al., 2001]
Approximability of MAX-ONES, MIN-ONES [Khanna et al., 2001]
Generalization to 3 valued variables [Bulatov, 2002]

Inverse satisfiability [Kavvadias and Sideri, 1999]

etc.

Our contribution: parameterized analogue of Schaefer’s dichotomy theorem.
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Parameterized Complexity: Summary

Two key concepts:

A parameterized problem is fixed-parameter tractable (FPT) if it has an

f (k) - nc time algorithm, where ¢ is independent of k.

Example: MINIMUM VERTEX COVER is solvable in O(2F - n) time.

A W[1]-hard problem is unlikely to be FPT. To show that a problem L is
WI[1]-hard, we have to give a parameterized reduction from a known W[1]-hard

problem to L.

o(k)

Example: MAXIMUM INDEPENDENT SET is W[1]-hard, no n algorithm is

known.

Parameterized complexity of constraint satisfaction problems — p.5/20



Parameterized Problems

For a large number of NP-hard problems, the parameterized version is fixed-parameter

tractable. For some other problems, the parameterized version is W[1]-hard.

Fixed-parameter tractable problems: WI1]-hard problems:
MINIMUM VERTEX COVER MAXIMUM INDEPENDENT SET
LONGEST PATH MINIMUM DOMINATING SET
DISJOINT TRIANGLES LONGEST COMMON SUBSEQUENCE

GRAPH GENUS SET PACKING
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Parameterized Complexity —
Motivation

Practical importance: efficient algorithms for small values of k.

Powerful toolbox for designing FPT algorithms:

Bounded Search Tree _\\..._

|
|
M

L]

Kernelization ~ T~
\ \ %g Sy Well-Quasi-Ordering
._1 ¢

Graph Minors Theorem
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Parameterized dichotomy theorem

Parameterized TR -SAT
Input: an R-formula ¢, an integer k
Parameter: k

Question: Does ¢ have a satisfying assignment of weight exactly k?

For which R is there an f (k) + n¢ algorithm for JR-SAT?

Main theorem: For every constraint family R, the parameterized /R -SAT problem
is either fixed-parameter tractable or W[1]-complete.

(+ simple characterization of FPT cases)
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Technical notes

Are constants allowed in the formula?
E.g., R(ZBl, 0, ].) AN R(]., o, $3)

Can a variable appear multiple times in a constraint?

E.g., R(a:l, L1, :1:2) AN R(CL‘3, I3, $3)

Constraints that are not satisfied by the all O assignment can be handled easily

(bounded search tree).
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Definition: R is weakly separable if

Weak separability

1. the union of two disjoint satisfying assignments is also satisfying, and

2. if a satisfying assignment contains a smaller satisfying assignment, then their

difference is also satisfying.

Example of 1:
rR(1,1,1,1,0,0,0,0,0) =1
R(0,0,0,0,1,1,0,0,0) =1

4
rR(1,1,1,1,1,1,0,0,0) =1

Example of 2:
rR(1,1,1,1,1,1,0,0) =1
R(0,0,1,1,1,1,0,0) =1

4
RrR(1,1,0,0,0,0,0,0) =1

Main theorem: R-SAT is FPT if and only if every constraint is weakly separable,

and W[1]-complete otherwise.
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Weak separability: examples

The constraint EVEN is weakly separable:

Property 1: Property 2:

even even
RrR(1,1,1,1,0,0,0,0,0) = 1 RrR(1,1,1,1,1,1,0,0) =1
R(0,0,0,0,1,1,0,0,0)=1  R(0,0,1,1,1,1,0,0) =1
—~— —_——

o 2
R(1,1,1,1,1,1,0,0,0) =1  R(1,1,0,0,0,0,0,0) = 1
N ~- - —~—

More generally: every affine constraint is weakly separable.
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Parameterized vs. classical

The easy and hard cases are different in the classical and the parameterized version:

Constraint  Classical Parameterized

rVuy in P FPT (VERTEX COVER)

rVy in P W/[1]-complete (MAXIMUM INDEPENDENT SET)
affine in P FPT

2-in-3 NP-complete FPT
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Parameterized vs. classical

The easy and hard cases are different in the classical and the parameterized version:

Constraint  Classical Parameterized

rVuy in P FPT (VERTEX COVER)

rVy in P W/[1]-complete (MAXIMUM INDEPENDENT SET)
affine in P FPT

2-in-3 NP-complete FPT

Sketch of proof begins...
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Bounded number of occurrences

Primal graph: Vertices are the variables, two variables are connected if they appear

in some clause together.
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Bounded number of occurrences

Primal graph: Vertices are the variables, two variables are connected if they appear

in some clause together.

Every satisfying assignment is composed of connected satisfying assignments.

2
Lemma: There are at most ('rd)k’ - N, connected satisfying assignments of size at

most k. (7 is the maximum arity, d is the maximum no. of occurrences)
Algorithm: Use color coding to put together the connected assignments to obtain a

size k assignment.
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The sunflower lemma

Definition: Sets S1, Sa, ..., Sk form a sunflower if the sets
S; \ (S1 NSz N-.-N Sk) are disjoint.

center

Lemma (Erdds and Rado, 1960): If the size of a set system is greater than

(p — 1)* - £! and it contains only sets of size at most £, then the system contains a
sunflower with p petals.
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Sunflower of clauses

Definition: A sunflower is a set of k clauses such that for every
either the same variable appears at position 2 in every clause,
or every clause “owns” its 2th variable.

R(wla L2y L3gLgy L5, C136)
R(wla L2y L3 s s )
R(wla L2y L3 s s )

R(x1, 22,3, T13, 14, T15)

Lemma: If a variable occurs more than cg (k) times in an R-formula, then the

formula contains a sunflower of clauses with more than k petals.
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Plucking the sunflower

For weakly separable constraints, the formula can be reduced if there is a sunflower

with k& + 1 petals. Example:

( EVEN(Z1, 2, T3, g, Ts, L)

k41 ) EVEN($1, L2y L3y ’ s )
EVEN(wl,CB27 L3, ’ ’ )
' EVEN(Z1, T2, T3, T13, T14, T15)
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Plucking the sunflower

For weakly separable constraints, the formula can be reduced if there is a sunflower

with k& + 1 petals. Example:

( EVEN(Z1, 2, T3, g, Ts, L)
k41 ) EVEN($1, L2y L3y ’ s )
EVEN(w17w27 m3907070)
' EVEN(Z1, T2, T3, T13, T14, T15)
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Plucking the sunflower

For weakly separable constraints, the formula can be reduced if there is a sunflower

with k& + 1 petals. Example:

( EVEN(Z1, 2, T3, g, Ts, L)
k41 ) EVEN($1,$2,$3, ’ s )
EVEN(wla T2,23,0,0, O)
' EVEN(Z1, T2, T3, T13, T14, T15)

U

EVEN(x1, T2, x3)
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Plucking the sunflower

For weakly separable constraints, the formula can be reduced if there is a sunflower

with k& + 1 petals. Example:

( EVEN(Z1, 2, T3, g, Ts, L)
k41 ) EVEN($1,$2,$3, ’ s )
EVEN(wla T2,23,0,0, O)
' EVEN(Z1, T2, T3, T13, T14, T15)

4
EVEN(x1, T2, x3)
EVEN(x4, 5, Tg)
EVEN(x7, g, 29)
EVEN(2 10y 1y 015)

EVEN(Z13, T14, T15)
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The algorithm

If there is a variable that occurs more than ¢ (k) times:
Find a sunflower with kK + 1 petals

Pluck the sunflower = shorter formula

If every variable occurs at most c (k) times:
Apply the bounded occurrence algorithm

ok 2.227("

Running time: - n log n, where 7 is the maximum arity in the

constraint family R..
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Hardness results: case 1

Definition: R is weakly separable if
1. the union of two disjoint satisfying assignments is also satisfying, and

2. if a satisfying assignment contains a smaller satisfying assignment, then their

difference is also satisfying.

Parameterized complexity of constraint satisfaction problems — p.18/20



Hardness results: case 1

Definition: R is weakly separable if
1. the union of two disjoint satisfying assignments is also satisfying, and

2. if a satisfying assignment contains a smaller satisfying assignment, then their

difference is also satisfying.

If property 1 is violated:
R(0,0,0,0,0,0,0,0) =1
RrR(1,1,1,0,0,0,0,0) =1
R(0,0,0,1,1,0,0,0) =1
RrR(1,1,1,1,1,0,0,0) =0
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Hardness results: case 1

Definition: R is weakly separable if
1. the union of two disjoint satisfying assignments is also satisfying, and

2. if a satisfying assignment contains a smaller satisfying assignment, then their

difference is also satisfying.
If property 1 is violated:
R(0,0,0,0,0,0,0,0) =1
RrR(1,1,1,0,0,0,0,0) =1
R(0,0,0,1,1,0,0,0) =1
RrR(1,1,1,1,1,0,0,0) =0
4
R(z,z,x,y,y,0,0,0) =1 <= TV Yy
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Hardness results: case 1

Definition: R is weakly separable if
1. the union of two disjoint satisfying assignments is also satisfying, and

2. if a satisfying assignment contains a smaller satisfying assignment, then their

difference is also satisfying.
If property 1 is violated:
R(0,0,0,0,0,0,0,0) =1
RrR(1,1,1,0,0,0,0,0) =1
R(0,0,0,1,1,0,0,0) =1
RrR(1,1,1,1,1,0,0,0) =0
Y MAXIMUM INDEPENDENT SET

R(z,z,x,y,y,0,0,0) =1 <—= TV Yy —> can be expressed!
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Hardness results: case 2

Definition: R is weakly separable if
1. the union of two disjoint satisfying assignments is also satisfying, and

2. if a satisfying assignment contains a smaller satisfying assignment, then their

difference is also satisfying.

If property 2 is violated:
R(0,0,0,0,0,0,0,0) =1
RrR(1,1,1,1,1,0,0,0) =1
R(0,0,0,1,1,0,0,0) =1
RrR(1,1,1,0,0,0,0,0) =0
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Hardness results: case 2

Definition: R is weakly separable if
1. the union of two disjoint satisfying assignments is also satisfying, and

2. if a satisfying assignment contains a smaller satisfying assignment, then their

difference is also satisfying.
If property 2 is violated:
R(0,0,0,0,0,0,0,0) =1
RrR(1,1,1,1,1,0,0,0) =1
R(0,0,0,1,1,0,0,0) =1
RrR(1,1,1,0,0,0,0,0) =0
4
R(z,z,x,y,y,0,0,0) =1 <—= = — y

Parameterized complexity of constraint satisfaction problems — p.19/20



Hardness results: case 2

Definition: R is weakly separable if
1. the union of two disjoint satisfying assignments is also satisfying, and

2. if a satisfying assignment contains a smaller satisfying assignment, then their

difference is also satisfying.

If property 2 is violated:

R(0,0,0,0,0,0,0,0) =1 Lemma: The problem is
RrR(1,1,1,1,1,0,0,0) =1 WI[1]-complete for the
R(0,0,0,1,1,0,0,0) =1 constraint —.
R(1,1,1,0,0,0,0,0) = 0

J

R(z,z,r,y,y,0,0,0) =1 < = — y
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Summary

Parameterized version of /R-SAT

FPT or W[1]-complete depending on weak separability
Bounded occurences: color coding using connected solutions
Reduction using the sunflower lemma

Linear time solvable on planar formulae
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Summary

Parameterized version of /R-SAT

FPT or W[1]-complete depending on weak separability
Bounded occurences: color coding using connected solutions
Reduction using the sunflower lemma

Linear time solvable on planar formulae

Thank you for your attention!
Questions?
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