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Reactions to FPT

Typical graph algorithms researcher:

Hmm... Is my favorite graph problem FPT parameterized by the
size of the solution/number of objects/etc. ?

Typical CSP researcher:

Sat is trivially FPT parameterized by the number of variables.
So why should I care?
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Parameterizing Sat

Trivial: 3Sat is FPT parameterized by the number of variables
(2k · nO(1) time algorithm).

Trivial: 3Sat is FPT parameterized by the number of clauses
(23k · nO(1) time algorithm).

What about Sat parameterized by the number k of clauses?
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Trivial: 3Sat is FPT parameterized by the number of variables
(2k · nO(1) time algorithm).

Trivial: 3Sat is FPT parameterized by the number of clauses
(23k · nO(1) time algorithm).

What about Sat parameterized by the number k of clauses?

Algorithm 1: Problem kernel

If a clause has more than k literals: can be ignored, removing
it does not make the problem any easier.
If every clause has at most k literals: there are at most k2

variables, use brute force.
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Parameterizing Sat

Trivial: 3Sat is FPT parameterized by the number of variables
(2k · nO(1) time algorithm).

Trivial: 3Sat is FPT parameterized by the number of clauses
(23k · nO(1) time algorithm).

What about Sat parameterized by the number k of clauses?

Algorithm 2: Bounded search tree

Pick a variable occuring both positively and negatively, branch
on setting it to 0 or 1.
In both branches, the number of clauses strictly decreases ⇒
search tree of size 2k .
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Max Sat

Max Sat: Given a formula, satisfy at least k clauses.
Polynomial for fixed k : guess the k clauses, use the previous
algorithm to check if they are satisfiable.
Is the problem FPT?

YES: If there are at least 2k clauses, a random assignment
satisfies k clauses on average. Otherwise, use the previous
algorithm.

This is not very insightful, can we say anything more interesting?
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Above average Max Sat

m/2 satisfiable clauses are guaranteed. But can we satisfy m/2 + k
clauses?

Above average Max Sat (satisfy m/2 + k clauses) is FPT
[Mahajan and Raman 1999]

Above average Max r-Sat (satisfy (1− 1/2r )m + k clauses)
is FPT [Alon et al. 2010]

Satisfying
∑m

i=1(1− 1/2ri ) + k clauses is NP-hard for k = 2
[Crowston et al. 2012]

Above average Max r-Lin-2 (satisfy m/2 + k linear
equations) is FPT [Gutin et al. 2010]

Permutation CSPs such as Maximum Acyclic Subgraph
and Betweenness [Gutin et al. 2010].
. . .
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Boolean constraint satisfaction problems
Let Γ be a set of Boolean relations. An Γ-formula is a conjunction
of relations in Γ:

R1(x1, x4, x5) ∧ R2(x2, x1) ∧ R1(x3, x3, x3) ∧ R3(x5, x1, x4, x1)

SAT(Γ)

Given: an Γ-formula ϕ

Find: a variable assignment
satisfying ϕ

Γ = {a 6= b} ⇒ SAT(Γ) = 2-coloring of a graph
Γ = {a ∨ b, a ∨ b̄, ā ∨ b̄} ⇒ SAT(Γ) = 2SAT
Γ = {a ∨ b ∨ c , a ∨ b ∨ c̄ , a ∨ b̄ ∨ c̄ , ā ∨ b̄ ∨ c̄} ⇒ SAT(Γ) = 3SAT

Question: SAT(Γ) is polynomial time solvable for which Γ?
It is NP-complete for which Γ?
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Schaefer’s Dichotomy Theorem (1978)

Theorem [Schaefer 1978]
For every Γ, the SAT(Γ) problem is polynomial-time solvable if one
of the following holds, and NP-complete otherwise:

Every relation is satisfied by the all 0 assignment
Every relation is satisfied by the all 1 assignment
Every relation can be expressed by a 2SAT formula
Every relation can be expressed by a Horn formula
Every relation can be expressed by an anti-Horn formula
Every relation is an affine subspace over GF(2)

This is surprising for two reasons:
this family does not contain NP-intermediate problems and
the boundary of polynomial-time and NP-hard problems can
be cleanly characterized.
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Other dichotomy results

Approximability of Max-Sat, Min-Unsat
[Khanna et al. 2001]

Approximability of MaxOnes-Sat, MinOnes-Sat
[Khanna et al. 2001]

Generalization to 3-valued variables [Bulatov 2002]

Inverse satisfiability [Kavvadias and Sideri, 1999]

etc.

Celebrated open question: generalize Schaefer’s result to relations
over variables with non-Boolean, but fixed domain.
CSP(Γ): similar to SAT(Γ), but with non-Boolean domain.

Conjecture [Feder and Vardi 1998]

Let Γ be a finite set of relations over an arbitrary fixed domain.
Then CSP(Γ) is either polynomial-time solvable or NP-complete.
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Weighted problems

Parameterizing by the weight (= number of 1s) of the solution.
MinOnes-Sat(Γ) :
Find a satisfying assignment with weight at most k
ExactOnes-Sat(Γ) :
Find a satisfying assignment with weight exactly k
MaxOnes-Sat(Γ) :
Find a satisfying assignment with weight at least k

The first two problems can be always solved in nO(k) time, and the
third one as well if Sat(Γ) is in P.

Goal: Characterize which languages Γ make these problems FPT.
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ExactOnes-Sat(Γ)

Theorem [Marx 2004]

ExactOnes-Sat(Γ) is FPT if Γ is weakly separable and
W[1]-hard otherwise.

Examples of weakly separable constraints:
affine constraints
“0 or 5 out of 8”

Examples of not weakly separable constraints:
(¬x ∨ ¬y)

x → y
“0 or 4 out of 8”
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Larger domains

What is the generalization of ExactOnes-Sat(Γ) to larger
domains?

1 Find a solution with exactly k nonzero values
(zeros constraint).

2 Find a solution where nonzero value i appears exactly ki times
(cardinality constraint).

Theorem [Bulatov and M. 2011]

For every Γ closed under substituting constants, CSP(Γ) with zeros
constraint is FPT or W[1]-hard.

11



Larger domains

The following two problems are equivalent:
CSP(Γ) with cardinality constraint, where Γ contains only the
relation R = {00, 10, 02}.
Biclique: Find a complete bipartite graph with k vertices on
each side. The fixed-parameter tractability of Biclique is a
notorious open problem (conjectured to be hard).

So the best we can get at this point:

Theorem [Bulatov and M. 2011]

For every Γ closed under substituting constants, CSP(Γ) with
cardinality constraint is FPT or Biclique-hard.
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MinOnes-Sat(Γ)

The bounded-search tree algorithm for Vertex Cover can be
generalized to MinOnes-Sat.

Observation
MinOnes-Sat(Γ) is FPT for every finite Γ.

But can we solve the problem simply by preprocessing?

Definition
A polynomial kernel is a polynomial-time reduction creating an
equivalent instance whose size is polynomial in k .

Goal: Characterize the languages Γ for which MinOnes-Sat(Γ)
has a polynomial kernel.
Example: the special case d-Hitting Set (where Γ contains only
R = x1 ∨ · · · ∨ xd ) has a polynomial kernel.
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Sunflower lemma
Definition
Sets S1, S2, . . . , Sk form a sunflower if the sets
Si \ (S1 ∩ S2 ∩ · · · ∩ Sk) are disjoint.

petal center

Lemma [Erdős and Rado, 1960]

If the size of a set system is greater than (p − 1)d · d ! and it
contains only sets of size at most d , then the system contains a
sunflower with p petals.
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Sunflowers and d-Hitting Set

d-Hitting Set
Given a collection S of sets of size at most d and an integer k , find
a set S of k elements that intersects every set of S.

petal center

Reduction Rule
Suppose more than k + 1 sets form a sunflower.

If the sets are disjoint ⇒ No solution.
Otherwise, keep only k + 1 of the sets.
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Dichotomy for kernelization

Kernelization for general MinOnes-Sat(Γ) generalizes the
sunflower reduction, and requires that Γ is “mergeable.”

Theorem [Kratsch and Wahlström 2010]

(1) If MinOnes-Sat(Γ) is polynomial-time solvable or Γ is
mergeable, then MinOnes-Sat(Γ) has a polynomial
kernelization.

(2) If MinOnes-Sat(Γ) is NP-hard and Γ is not mergebable,
then MinOnes-Sat(Γ) does not have a polynomial kernel,
unless the polynomial hierarchy collapses.
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Dichotomy for kernelization

Similar results for other problems:

Theorem [Kratsch, M., Wahlström 2010]

If Γ has property X , then MaxOnes-Sat(Γ) has a polynomial
kernel, and otherwise no (unless the polynomial hierarchy
collapses).
If Γ has property Y , then ExactOnes-Sat(Γ) has a
polynomial kernel, and otherwise no (unless the polynomial
hierarchy collapses).
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Local search

Local search
Walk in the solution space by iteratively replacing the current
solution with a better solution in the local neighborhood.

Problem: local search can stop at a local optimum (no better
solution in the local neighborhood).

More sophisticated variants: simulated annealing, tabu search, etc.
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Local neighborhood

The local neighborhood is defined in a problem-specific way:
For TSP, the neighbors are obtained by swapping 2 cities or
replacing 2 edges.
For a problem with 0-1 variables, the neighbors are obtained
by flipping a single variable.
For subgraph problems, the neighbors are obtained by
adding/removing one edge.

More generally: reordering k cities, flipping k variables, etc.

Larger neighborhood (larger k):
algorithm is less likely to get stuck in a local optimum,
it is more difficult to check if there is a better solution in the
neighborhood.
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Searching the neighborhood

Question: Is there an efficient way of finding a better solution in
the k-neighborhood?

We study the complexity of the following problem:

k-step Local Search

Input: instance I , solution x , integer k
Find: A solution x ′ with dist(x , x ′) ≤ k that is

“better” than x .

Remark 1: If the optimization problem is hard, then it is unlikely
that this local search problem is polynomial-time solvable:
otherwise we would be able to find an optimum solution.

Remark 2: Size of the k-neighborhood is usually nO(k) ⇒ local
search is polynomial-time solvable for every fixed k , but this is not
practical for larger k .
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k-step Local Search

The question that we want to investigate:

Question
Is k-step Local Search FPT for a particular problem?

If yes, then local search algorithms can consider larger
neighborhoods, improving their efficiency.

Important: k is the number of allowed changes and not the size of
the solution. Relevant even if solution size is large.

Examples:
Local search is easy: it is FPT to find a larger independent set
in a planar graph with at most k exchanges [Fellows et al. 2008].
Local search is hard: it is W[1]-hard to check if it is possible to
obtain a shorter TSP tour by replacing at most k arcs
[M. 2008].
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Local search for Sat

Simple satisfiability:

Theorem [Dantsin et al. 2002]

Finding a satisfying assignment in the k-neighborhood for q-Sat is
FPT.

An optimization problem:

Theorem [Szeider 2011]

Finding a better assignment in the k-neighborhood for Max 2-Sat
is W[1]-hard.

A family of problems:

Theorem [Krokhin and M. 2008]

Dichotomy results for MinOnes-Sat(Γ).
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Strict vs. permissive

Something strange: for some problems (e.g., Vertex Cover on
bipartite graphs), local search is hard, even though the problem is
polynomial-time solvable.

Strict k-step Local Search

Input: instance I , solution x , integer k
Find: A solution x ′ with dist(x , x ′) ≤ k that is

“better” than x .

Permissive k-step Local Search

Input: instance I , solution x , integer k
Find: Any solution x ′ “better” than x , if there is

such a solution at distance at most k .
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Constraint Satisfaction Problems (CSP)

A CSP instance is given by describing the
variables,
domain of the variables,
constraints on the variables.

Task: Find an assignment that satisfies every constraint.

I = C1(x1, x2, x3) ∧ C2(x2, x4) ∧ C3(x1, x3, x4)

Examples:
3Sat: 2-element domain, every constraint is ternary
Vertex Coloring: domain is the set of colors, binary
constraints
k-Clique (in graph G ): k variables, domain is the vertices of
G ,
(k
2

)
binary constraints
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Graphs and hypergraphs related to CSP
Gaifman/primal graph: vertices are the variables, two variables
are adjacent if they appear in a common constraint.

Incidence graph: bipartite graph, vertices are the variables and
constraints.

Hypergraph: vertices are the variables, constraints are the
hyperedges.

I = C1(x2, x1, x3) ∧ C2(x4, x3) ∧ C3(x1, x4, x2)

C1 C3

C2
HypergraphIncidence graphPrimal graph

x3

x2

x1

x4 x4

x4

C3
x3

x2

x1

C2C1

x3x2x1
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Treewidth and CSP

Theorem [Freuder 1990]

For every fixed k , CSP can be solved in polynomial time if the
primal graph of the instance has treewidth at most k .

Note: The running time is |D|O(k), which is not FPT
parameterized by treewidth.

We know that binary CSP(G) is polynomial-time solvable for every
class G of graphs with bounded treewidth. Are there other
polynomial cases?
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Tractable structures

Question: Which graph properties lead to polynomial-time
solvable CSP instances?

Systematic study:
Binary CSP: Every constraint is of arity 2.
CSP(G): problem restricted to binary CSP instances with
primal graph in G.
Which classes G make CSP(G) FPT?
E.g., if G is the set of trees, then it is easy, if G is the set of
3-regular graphs, then it is W[1]-hard.
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Dichotomy for binary CSP
Complete answer for every class G:

Theorem [Grohe-Schwentick-Segoufin 2001]
Let G be a computable class of graphs.
(1) If G has bounded treewidth, then CSP(G) is

FPT parameterized by number of variables
(in fact, polynomial-time solvable).

(2) If G has unbounded treewidth, then CSP(G) is
W[1]-hard parameterized by number of variables.

Note: In (2), CSP(G) is not necessarily NP-hard.
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Dichotomy for binary CSP
Complete answer for every class G:

Theorem [Grohe-Schwentick-Segoufin 2001]
Let G be a recursively enumerable class of graphs. Assuming
FPT 6= W[1], the following are equivalent:

Binary CSP(G) is polynomial-time solvable.
Binary CSP(G) is FPT.
G has bounded treewidth.

Note: Fixed-parameter tractability does not give us more power
here than polynomial-time solvability!

28



Combination of parameters

CSP can be parameterized by many (combination of) parameters.
Examples:

CSP is W[1]-hard parameterized by the treewidth of the primal
graph.
CSP is FPT parameterized by the treewidth of the primal
graph and the domain size.

[Samer and Szeider 2010] considered 11 parameters and determined
the complexity of CSP by any subset of these parameters.

tw: treewidth of primal graph
twd : tw of dual graph
tw∗: tw of incidence graph
vars: number of variables
dom: domain size
cons: number of constraints

arity: maximum arity
dep: largest relation size
deg: largest variable occurrence
ovl: largest overlap between scopes
diff: largest difference between scopes
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the complexity of CSP by any subset of these parameters.

tw: treewidth of primal graph
twd : tw of dual graph
tw∗: tw of incidence graph
vars: number of variables
dom: domain size
cons: number of constraints

arity: maximum arity
dep: largest relation size
deg: largest variable occurrence
ovl: largest overlap between scopes
diff: largest difference between scopes
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Summary

Fixed-parameter tractability results for Sat and CSPs do exist.
Choice of parameter is not obvious.
Above average parameterization.
Local search.
Parameters related to the graph of the constraints.
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