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Abstract

We obtain a number of lower bounds on the running
time of algorithms solving problems on graphs of bounded
treewidth. We prove the results under the Strong Exponen-
tial Time Hypothesis of Impagliazzo and Paturi. In partic-
ular, assuming that SAT cannot be solved in (2− ǫ)nmO(1)

time, we show that for any ǫ > 0;

• Independent Set cannot be solved in time (2 −

ǫ)tw(G)|V (G)|O(1),

• Dominating Set cannot be solved in time (3 −

ǫ)tw(G)|V (G)|O(1),

• Max Cut cannot be solved in time (2 −

ǫ)tw(G)|V (G)|O(1),

• Odd Cycle Transversal cannot be solved in time
(3 − ǫ)tw(G)|V (G)|O(1),

• For any q ≥ 3, q-Coloring cannot be solved in time
(q − ǫ)tw(G)|V (G)|O(1),

• Partition Into Triangles cannot be solved in time
(2 − ǫ)tw(G)|V (G)|O(1).

Our lower bounds match the running times for the best

known algorithms for the problems, up to the ǫ in the base.

1 Introduction

It is well-known that many NP-hard graph problems
can be solved efficiently if the treewidth (tw(G)) of the
input graph G is bounded. For an example, an ex-
pository algorithm to solve Vertex Cover and In-
dependent Set running in time O∗(4tw(G)) is de-
scribed in the algorithms textbook by Kleinberg and
Tardos [15] (the O∗ notation suppresses factors poly-
nomial in the input size), while the book of Nieder-
meier [21] on fixed-parameter algorithms presents an
algorithm with running time O∗(2tw(G)). Similar al-
gorithms, with running times on the form O∗(ctw(G))
for a constant c, are known for many other graph
problems such as Dominating Set, q-Coloring and
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Odd Cycle Transversal [1, 9, 10, 28]. Algorithms
for graph problems on bounded treewidth graphs have
found many uses as subroutines in approximation algo-
rithms [7, 8], parameterized algorithms [6, 20, 27], and
exact algorithms [12, 24, 29].

In this paper, we show that any improvement over
the currently best known algorithms for a number of
well-studied problems on graphs of bounded treewidth
would yield a faster algorithm for SAT. In particular,
we show if there exists an ǫ > 0 such that

• Independent Set can be solved in time O∗((2 −
ǫ)tw(G)) or

• Dominating Set can be solved in time O∗((3 −
ǫ)tw(G)) or

• Max Cut can be solved in time O∗((2 − ǫ)tw(G))
or

• Odd Cycle Transversal can be solved in time
O∗((3 − ǫ)tw(G)) or

• there is a q ≥ 3 such that q-Coloring can be
solved in time O∗((q − ǫ)tw(G)) or

• Partition Into Triangles can be solved in time
O∗((2 − ǫ)tw(G))

then SAT can be solved in O∗((2 − δ)n) time for
some δ > 0. Here n is the number of variables in
the input formula to SAT. Such an algorithm would
violate the Strong Exponential Time Hypothesis (SETH)
of Impagliazzo and Paturi [13]. Thus, assuming SETH,
the known algorithms for the mentioned problems on
graphs of bounded treewidth are essentially the best
possible.

To show our results we give polynomial time many-
one reductions that transform n-variable boolean for-
mulas φ to instances of the problems in question. Such
reductions are well-known, but for our results we need
to carefully control the treewidth of the graphs that
our reductions output. A typical reduction creates n
gadgets corresponding to the n variables; each gad-
get has a small constant number of vertices. In most
cases, this implies that the treewidth can be bounded
by O(n). However, to prove the a lower bound of the
form O∗((2−ǫ)tw(G)), we need that the treewidth of the



constructed graph is (1 + o(1))n. Thus we can afford to
increase the treewidth by at most one per variable. For
lower bounds above O∗((2−ǫ)tw(G)), we need even more
economical constructions. To understand the difficulty,
consider the Dominating Set problem, here we want
to say that if Dominating Set admits an algorithm
with running time O∗((3−ǫ)tw(G)) = O∗(2log(3−ǫ)tw(G))
for some ǫ > 0, then we can solve SAT on input for-
mulas with n-variables in time O∗((2 − δ)n) for some
δ > 0. Therefore by näıvely equating the exponent in
the previous sentence we get that we need to construct
an instance for Dominating Set whose treewidth is
essentially n

log 3 . In other words, each variable should
increase treewidth by less than one. The main chal-
lenge in our reductions is to squeeze out as many com-
binatorial possibilities per increase of treewidth as pos-
sible. In order to control the treewidth of the graphs
we construct, we upper bound the pathwidth (pw(G))
of the constructed instances and use the fact that for
any graph G, tw(G) ≤ pw(G). Thus all of our lower
bounds also hold for problems on graphs of bounded
pathwidth.

Complexity Assumption: The Exponential

Time Hypothesis (ETH) and its strong variant (SETH)
are conjectures about the exponential time complexity
of k-SAT. The k-SAT problem is a restriction of SAT,
where every clause in input boolean formula φ has
at most k literals. Let sk = inf{δ : k-SAT can be

solved in 2δn time}. The Exponential Time Hypothesis
conjectured by Impagliazzo, Paturi and Zane [14] is
that s3 > 0. In [14] it is shown that ETH is robust,
that is s3 > 0 if and only if there is a k ≥ 3 such
that sk > 0. In the same year it was shown that
assuming ETH the sequence {sk} increases infinitely
often [13]. Since SAT has a O∗(2n) time algorithm,
{sk} is bounded by above by one, and Impagliazzo and
Paturi [13] conjecture that 1 is indeed the limit of this
sequence. In a subsequent paper [3], this conjecture is
coined as SETH.

While ETH is now a widely believed assumption,
and has been used as a starting point to prove running
time lower bounds for numerous problems [5, 4, 11,
19, 18], SETH remains largely untouched (with one
exception [22]). The reason for this is two-fold. First,
the assumption that limk→∞ sk = ∞ is a very strong
one. Second, when proving lower bounds under ETH we
can utilize the Sparsification Lemma [14] which allows us
to reduce from instances of 3-SAT where the number of
clauses is linear in the number of variables. Such a tool
does not exist for SETH, and this seems to be a major
obstruction for showing running time lower bounds for
interesting problems under SETH. We overcome this
obstruction by circumventing it – in order to show

running time lower bounds for algorithms on bounded
treewidth graphs sparsification is simply not required.

Related Work. Despite of the importance of fast
algorithms on graphs of bounded treewidth or path-
width, there is no known natural graph problem for
which we know an algorithm outperforming the näıve
approach on bounded pathwidth graphs. For treewidth,
the situation is slightly better: Alber et al. [1] gave a
O∗(4tw(G)) time algorithm for Dominating Set, im-
proving over the natural O∗(9tw(G)) algorithm of Telle
and Proskurowski [26]. Recently, van Rooij et al. [28]
observed that one could use fast subset convolution [2]
to improve the running time of algorithms on graphs of
bounded treewidth. Their results include a O∗(3tw(G))
algorithm for Dominating Set and a O∗(2tw(G)) time
algorithm for Partition Into Triangles. Interest-
ingly, the effect of applying subset convolution was that
the running time for several graph problems on bounded
treewidth graphs became the same as the running time
for the problems on graphs of bounded pathwidth.

In [28], van Rooij et al. believe that their algorithms
are probably optimal, since the running times of their
algorithms match the size of the dynamic programming
table, and that improving the size of the table without
losing time should be very difficult. Our results prove
them right: improving their algorithm is at least as hard
as giving an improved algorithm for SAT.

2 Preliminaries

In this section we give various definitions which we make
use of in the paper. Let G be a graph with vertex set
V (G) and edge set E(G). A graph G′ is a subgraph

of G if V (G′) ⊆ V (G) and E(G′) ⊆ E(G). For subset
V ′ ⊆ V (G), the subgraph G′ = G[V ′] of G is called a
subgraph induced by V ′ if E(G′) = {uv ∈ E(G) | u, v ∈
V ′}. By N(u) we denote (open) neighborhood of u in
graph G that is the set of all vertices adjacent to u and
by N [u] = N(u) ∪ {u}. Similarly, for a subset D ⊆ V ,
we define N [D] = ∪v∈DN [v].

A tree decomposition of a graph G is a pair (X , T )
where T is a tree and X = {Xi | i ∈ V (T )} is a collection
of subsets of V such that: 1.

⋃
i∈V (T ) Xi = V (G),

2. for each edge xy ∈ E(G), {x, y} ⊆ Xi for some
i ∈ V (T ); 3. for each x ∈ V (G) the set {i | x ∈
Xi} induces a connected subtree of T . The width of
the tree decomposition is maxi∈V (T ){|Xi| − 1}. The
treewidth of a graph G is the minimum width over all
tree decompositions of G. We denote by tw(G) the
treewidth of graph G. If in the definition of treewidth
we restrict the tree T to be a path then we get the notion
of pathwidth and denote it by pw(G). For our purpose
we need an equivalent definition of pathwidth via mixed

search games.



In a mixed search game, a graph G is considered as
a system of tunnels. Initially, all edges are contaminated
by a gas. An edge is cleared by placing searchers
(like a pebble placed on a node) at both its end-points
simultaneously or by sliding a searcher along the edge.
A cleared edge e is re-contaminated if there is a path P
containing e and a contaminated edge and no internal
vertex of P contains a searcher. A search is a sequence
of operations that can be of the following types: (a)
placement of a new searcher on a vertex; (b) removal
of a searcher from a vertex; (c) sliding a searcher on a
vertex along an incident edge and placing the searcher
on the other end. A search strategy is winning if
after its termination all edges are cleared. The mixed
search number of a graph G, denoted by ms(G), is the
minimum number of searchers required for a winning
strategy of mixed searching on G. Takahashi, Ueno
and Kajitani [25] obtained the following relationship
between pw(G) and ms(G), which we use for bounding
the pathwidth of the graphs obtained in reduction.

Proposition 2.1. ([25]) For a graph G, pw(G) ≤
ms(G) ≤ pw(G) + 1.

An instance to SAT always consists of a boolean
formula φ = C1 ∧ · · · ∧Cm over n variables {v1, . . . , vn}
where each clause Ci is OR of one or more literals
of variables. We also denote a clause Ci by the set
{ℓ1, ℓ2, . . . , ℓc} of its literals and denote by |Ci| the
number of literals in Ci. An assignment τ to the
variables is an element of {0, 1}n, and it satisfies the
formula φ if for every clause Ci there is literal that is
assigned 1 by τ . We say that a variable vi satisfies a
clause Cj if there exists a literal corresponding to vi

in {ℓ1, ℓ2, . . . , ℓc} and it is set to 1 by τ . A group of
variables satisfy a clause Cj if there is a variable that
satisfies the clause Cj . All the sections in this paper
follow the following pattern: definition of the problem;
statement of the lower bound; construction used in the
reduction; correctness of the reduction; and the upper
bound on the pathwidth of the resultant graph.

3 Independent Set

An independent set of a graph G is a set S ⊆ V (G) such
that G[S] contains no edges. In the Independent Set
problem we are given a graph G and the objective is to
find an independent set of maximum size.

Theorem 3.1. If Independent Set can be solved in

O∗((2− ǫ)tw(G)) for some ǫ > 0 then SAT can be solved

in O∗((2 − δ)n) time for some δ > 0.

Construction. Given an instance φ to SAT we
construct a graph G as follows. We assume that every

bCj

cend

cstart

p2j
np2j−1

n

p
2j−1
1 p

2j
1

ℓc

ℓ1

cp′
1

cpc

cp1

Pn

P1

Figure 1: Reduction to Independent Set: clause
gadget Ĉj attached to the n paths representing the
variables.

clause has an even number of variables, if not we can
add a single variable to all odd size clauses and force
this variable to false. First we describe the construction
of clause gadgets. For a clause C = {ℓ1, ℓ2, . . . , ℓc}

we make a gadget Ĉ as follows. We take two paths,
CP = cp1, cp2 . . . , cpc and CP ′ = cp′1, cp

′
2 . . . cp′c having

c vertices each, and connect cpi with cp′i for every i.

For each literal ℓi we make a vertex ℓi in Ĉ and make
it adjacent to cpi and cp′i. Finally we add two vertices
cstart and cend, such that cstart is adjacent to cp1 and
cend is adjacent to cpc. Observe that the size of the
maximum independent set of Ĉ is c+ 2. Also, since c is
even, any independent set of size c+2 in Ĉ must contain
at least one vertex in C = {ℓ1, ℓ2, . . . , ℓc}. Finally,
notice that for any i, there is an independent set of
size c + 2 in Ĉ that contains ℓi and none of ℓj for j 6= i.

We first construct a graph G1. We make n paths
P1, . . . , Pn, each path of length 2m. Let the vertices
of the path Pi be p1

i . . . p2m
i . The path Pi corresponds

to the variable vi. For every clause Ci of φ we make
a gadget Ĉi. Now, for every variable vi, if vi occurs
positively in Cj , we add an edge between p2j

i and the

literal corresponding to vi in Ĉj . If vi occurs negatively

in Cj , we add an edge between p2j−1
i and the literal

corresponding to vi in Ĉj . Now we construct the graph
G as follows. We take n + 1 copies of G1, call them
G1, . . . Gn+1. For every i ≤ n we connect Gi and Gi+1

by connecting p2m
j in Gi with p1

j in Gi+1 for every j ≤ n.
This concludes the construction of G.

Lemma 3.1. If φ is satisfiable, then G has an indepen-



dent set of size (mn +
∑

i≤m |Ci| + 2)(n + 1).

Proof. Consider a satisfying assignment to φ. We
construct an independent set I in G. For every variable
vi if vi is set to true, then pick all the vertices on odd
positions from all copies of Pi, that is p1

i , p
3
i , p

5
i and

so on. If vi is false then pick all the vertices on even
positions from all copies of Pi, that is p2

i , p
4
i , p

6
i and so

on. It is easy to see that this is an independent set of
size mn(n + 1) containing vertices from all the paths.

We will now consider the gadget Ĉj corresponding to

a clause Cj . We will only consider the copy of Ĉj in
G1 as the other copies can be dealt identically. Let
use choose a true literal ℓa in Cj and let vi be the

corresponding variable. Consider the vertex ℓa in Ĉj .
If vi occurs positively in Cj then vi is true. Then I does

not contain p2j
i , the only neighbour of ℓa outside of Ĉj .

On the other hand if vi occurs negatively in Cj then vi

is false. In this case I does not contain p2j−1
i , the only

neighbour of ℓa outside of Ĉj . There is an independent

set of size |Cj |+2 in Ĉ that contains ℓa and none out of
ℓb, b 6= a. We add this independent set to I and proceed
in this manner for every clause gadget. By the end of
the process (

∑
i≤m |Ci|+ 2)(n + 1) vertices from clause

gadgets are added to I, yielding that the size of I is
(mn +

∑
i≤m |Ci| + 2)(n + 1), concluding the proof. 2

Lemma 3.2. If G has an independent set of size (mn+∑
i≤m |Ci| + 2)(n + 1), then φ is satisfiable.

Proof. Consider an independent set of G of size (mn +∑
i≤m |Ci| + 2)(n + 1). The set I can contain at most

m vertices from each copy of Pi for every i ≤ n and at
most |Cj |+ 2 vertices from each copy of the gadget Cj .
Since I must contain at least these many vertices from
each path and clause gadget in order to contain at least
(mn +

∑
i≤m |Ci| + 2)(n + 1) vertices, it follows that

I has exactly m vertices in each copy of each path Pi

and exactly |Cj |+2 vertices in each copy of each clause

gadget Ĉj . For a fixed j, consider the n + 1 copies of
the path Pj . Since Pj in Gi is attached to Pj in Gi+1

these n + 1 copies of Pi together form a path P having
2m(n + 1) vertices. Since |I ∩ P | = m(n + 1) it follows
that I∩P must contain every second vertex of P , except
possibly in one position where I ∩ P skips two vertices
of P . There are only n paths and n + 1 copies of G1,
hence the pigeon-hole principle yields that in some copy
Gy of G1, I contains every second vertex on every path
Pi. From now onwards we only consider such a copy
Gy.

In Gy, for every i ≤ n, I contains every second
vertex of Pi. We make an assignment to the variables of
φ as follows. If I contains all the odd numbered vertices

of Pi then vi is set to true, otherwise I contains all the
even numbered vertices of Pi and vi is set to false. We
argue that this assignment satisfies φ. Indeed, consider
any clause Cj , and look at the gadget Ĉj . We know that

I contains |Cj | + 2 vertices from Ĉj and hence I must
contain a vertex ℓa in corresponding to a literal of Cj .
Suppose ℓa is a literal of vi. Since I contains ℓa, if ℓa

occurs positively in Cj , then I can not contain p2j
i and

hence vi is true. Similarly, if ℓa occurs negatively in Cj

then I can not contain p2j−1
i and hence vi is false. In

both cases vi satisfies Cj and hence all clauses of φ are
satisfied by the assignment. 2

Lemma 3.3. pw(G) ≤ n + 4.

Proof. We give a mixed search strategy to clean G using
n + 3 searchers. For every i we place a searcher on the
first vertex of Pi in G1. The n searchers slide along
the paths P1, . . . Pn in m rounds. In round j each
searcher i starts on p2j−1

i . Then, for every variable vi

that occurs positively in Cj , the searcher i slide forward

to p2j
i . Observe that at this point there is a searcher

on every neighbour of the gadget Ĉj . This gadget can

now be cleaned with 3 additional searchers. After Ĉj

is clean, the additional 3 searchers are removed, and
each of the n searchers on the paths P1, . . . Pn slide
forward along these paths, such that searcher i stands

on p
2(j+1)
i . At that point, the next round commences.

When the searchers have cleaned G1 they slide onto
the first vertex of P1 . . . Pn in G2. Then they proceed
to clean G2, . . . , Gn+1 in the same way that G1 was
cleaned. Now applying Proposition 2.1 we get that
pw(G) ≤ n + 4. 2

The construction, together with Lemmata 3.1, 3.2
and 3.3 proves Theorem 3.1.

4 Dominating Set

A dominating set of a graph G is a set S ⊆ V (G) such
that V (G) = N [S]. In the Dominating Set problem
we are given a graph G and the objective is to find a
dominating set of minimum size.

Theorem 4.1. If Dominating Set can be solved in

O∗((3 − ǫ)pw(G)) time for some ǫ > 0 then SAT can be

solved in O∗((2 − δ)n) time for some δ > 0.

Construction. Given ǫ < 1 and an instance φ to
SAT we construct a graph G as follows. We first chose
an integer p depending only on ǫ. Exactly how p is
chosen will be discussed in the proof of Theorem 4.1.
We group the variables of φ into groups F1, F2, . . . , Ft,
each of size at most β = ⌊log 3p⌋. Hence t = ⌈n/β⌉. We
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Figure 2: Reduction to Dominating Set: group
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now proceed to describe a “group gadget” B̂, which is
central in our construction.

To build the group gadget B̂ we make p paths
P1, . . . , Pp, where the path Pi contains the vertices p1

i ,
p2

i and p3
i . To each path Pi we attach two guards gi and

g′i, both of which are neighbours to p1
i , p2

i and p3
i . When

the gadgets are attached to each other, the guards will
not have any neighbours outside of their own gadget B̂,
and will ensure that at least one vertex out of p1

i , p2
i

and p3
i are chosen in any minimum size dominating set

of G. Let P be a vertex set containing all the vertices
on the paths P1, . . . , Pp. For every subset S of P that
picks exactly one vertex from each path Pi we make two
vertices xS and x′

S , where xS is adjacent to all vertices
of P \ S (all those vertices that are on paths and not
in S) and x′

S is only adjacent to xS . We conclude the

construction of B̂ by making all the vertices x′
S (for

every set S) adjacent to each other, that is making them
into a clique, and adding a guard x adjacent to x′

S for
every set S. Essentially x′

S ’s together with x forms a
clique and all the neighbors of x reside in this clique.

We construct the graph G as follows. For every
group Fi of variables we make m(2pt + 1) copies of the

gadget B̂, call them B̂j
i for 1 ≤ j ≤ m(2pt+1). For every

fixed i ≤ t we connect the gadgets B̂1
i , B̂2

i . . . , B̂
m(2pt+1)
i

in a path-like manner. In particular, for every j <
m(2pt + 1) and every ℓ ≤ p we make an edge between

p3
ℓ in the gadget B̂j

i with p1
ℓ in the gadget B̂j+1

i . Now
we make two new vertices h and h′, with h adjacent
to h′, p1

j in B̂1
i for every i ≤ t, j ≤ p and to p3

j

in B̂
m(2pt+1)
i for every i ≤ t, j ≤ p. That is, for

all 1 ≤ i ≤ t, h is adjacent to first and last vertices
of “long paths” obtained after connecting the gadgets

B̂1
i , B̂2

i . . . , B̂
m(2pt+1)
i in a path-like manner.

h′

h

bBx
t

bBx
1

bcℓ
j

Figure 3: Reduction to Dominating Set: arranging
the group gadgets. Note that x = mℓ + j, thus ĉℓ

j is

attached to vertices in B̂x
1 , . . . , B̂x

t .

For every 1 ≤ i ≤ t, and to every assignment of
the variables in the group Fi, we designate a subset
S of P in the gadget B̂ that picks exactly one vertex
from each path Pj . Since there are at most 2β different
assignments to the variables in Fi, and there are 3p ≥
2β such sets S, we can assign a unique set to each
assignment. Of course, the same set S can correspond
to one assignment of the group F1 and some another
assignment of the group F2. Recall that the clauses
of φ are C1, . . . , Cm. For every clause Cj we make
2pt + 1 vertices ĉℓ

j , one for each 0 ≤ ℓ < 2pt + 1. The

vertex ĉℓ
j will be connected to the gadgets B̂mℓ+j

i for
every 1 ≤ i ≤ t. In particular, for every assignment
of the variables in the group Fi that satisfy the clause
Cj , we consider the subset S of P that corresponds
to the assignment. For every 0 ≤ ℓ < 2n + 1,
we make x′

S in B̂mℓ+j
i adjacent to ĉℓ

j . The best
way to view this is that every clause Cj has 2pt + 1

private gadgets, B̂j
i , B̂

m+j
i , . . . , B̂m2pt+j

i , in every group
of gadgets corresponding to Fi’s. Now we have 2pt + 1
vertices corresponding to the clause Cj , one each for one

gadget from each group gadgets corresponding to Fi’s.
This concludes the construction of G.

Lemma 4.1. If φ has a satisfying assignment, then G
has a dominating set of size (p + 1)tm(2pt + 1) + 1.



Proof. Given a satisfying assignment to φ we construct
a dominating set D of G that contains the vertex h and
exactly p+1 vertices in each gadget B̂j

i . For each group
Fi of variables we consider the set S which corresponds
to the restriction of the assignment to the variables in
Fi. From each gadget B̂j

i we add the set S to D and
also the vertex x′

S to D. It remains to argue that D
is indeed a dominating set. Clearly the size is bounded
by (p + 1)tm(2pt + 1) + 1, as the number of gadgets is
tm(2pt + 1).

For a fixed i ≤ t and j consider the vertices on
the path Pj in the gadgets B̂ℓ

i for every ℓ ≤ m(2pt + 1).
Together these vertices form a path of length 3m(2pt+1)
and every third vertex of this path is in S. Thus, all
vertices on this path are dominated by other vertices on
the path, except for the first and last one. Both these
vertices, however, are dominated by h.

Now, fix some i ≤ t and l ≤ m(2pt+1) and consider

the gadget B̂ℓ
i . Since D contains some vertex on the

path Pj , we have that for every j both gj and g′j are
dominated. Furthermore, for every set S∗ not equal to
S that picks exactly one vertex from each Pj , vertex xS∗

is dominated by some vertex on some Pj—namely by all
vertices in S \ S∗ 6= ∅. The last assertion follows since
xS∗ is connected to all the vertices on paths except S∗.
On the other hand, xS is dominated by x′

S , and x′
S also

dominates all the other vertices x′
S∗ for S∗ 6= S and the

guard x.
The only vertices not yet accounted for are the

vertices ĉℓ
j for every j ≤ m and ℓ < 2pt + 1. Fix

a j and a ℓ and consider the clause Cj . This clause
contains a literal set to true, and this literal corresponds
to a variable in the group Fi for some i ≤ t. Of
course, the assignment to Fi satisfies Cj . Let S be
the set corresponding to this assignment of Fi. By the
construction of D, the dominating set contains x′

S in

B̂mℓ+j
i and x′

S is adjacent to ĉℓ
j . This concludes the

proof. 2

Lemma 4.2. If G has a dominating set of size (p +
1)tm(2pt + 1) + 1, then φ has a satisfying assignment.

Proof. Let D be a dominating set of G of size at most
(p + 1)tm(2pt + 1) + 1. Since D must dominate h′,
hence without loss of generality we can assume that D
contains h. Furthermore, inside every gadget B̂ℓ

i , D
must dominate all the guards, namely gj and g′j for
every j ≤ p, and also x. Thus D contains at least p + 1
vertices from each gadget B̂ℓ

i which in turn implies that

D contains exactly p + 1 vertices from each gadget B̂ℓ
i .

The only way D can dominate gj and g′j for every j and
in addition dominate x with only p+1 verticesis if D has
one vertex from each Pj , j ≤ p and in addition contains

some vertex in N [x]. Let S be D ∩ P in B̂ℓ
i . Observe

that xS is not dominated by D ∩ S. The only vertex in
N [x] that dominates xS is x′

S and hence D contains x′
S .

Now we want to show that for every 1 ≤ i ≤ t there
exists one 0 ≤ ℓ ≤ 2tp such that for fixed i, D ∩ P is
same in all the gadgets B̂mℓ+r

i , 1 ≤ r ≤ m. Consider a

gadget B̂ℓ
i and its follower, B̂ℓ+1

i . Let S be D∩P in B̂ℓ
i

and S′ be D ∩ P in B̂ℓ+1
i . Observe that if S contains

pa
j in B̂ℓ

i and pb
j in B̂ℓ+1

i then we must have b ≤ a. We
call a consecutive pair bad if for some j ≤ p, D contains
pa

j in B̂ℓ
i and pb

j in B̂ℓ+1
i and b < a. Hence for a fixed

i, we can at most have 2p consecutive bad pairs. Now
we mark all the bad pairs that occur among the gadgets
corresponding to some Fi. This way we can mark only
2tp bad pairs. Thus, by the pigeon hole principle, there
exists an ℓ ∈ {0, . . . , 2tp} such that there are no bad

pairs in B̂mℓ+r
i for all 1 ≤ i ≤ t and 1 ≤ r ≤ m.

We make an assignment φ by reading off D ∩ P in
each gadget B̂mℓ+1

i . In particular, for every group Fi,

we consider S = D ∩ P in the gadget B̂mℓ+1
i . This set

S corresponds to an assignment of Fi, and this is the
assignment of Fi that we use. It remains to argue that
every clause Cr is satisfied by this assignment.

Consider the vertex ĉr
ℓ . We know that it is domi-

nated by some x′
S in a gadget B̂mℓ+r

i . The set S corre-
sponds to an assignment of Fi that satisfies the clause
Cr. Because D ∩ P remains unchanged in all gadgets
from B̂mℓ+1

i to B̂mℓ+r
i , this is exactly the assignment φ

restricted to the group Fi. This concludes the proof. 2

Lemma 4.3. pw(G) ≤ tp + O(3p)

Proof. We give a mixed search strategy to clean the
graph with tp + O(3p) searchers. For a gadget B̂ we
call the vertices p1

j and p3
j , 1 ≤ j ≤ p, as entry vertices

and exit vertices respectively. We search the graph in
m(2tp + 1) rounds. In the beginning of round ℓ there

are searchers on the entry vertices of the gadgets B̂ℓ
i

for every i ≤ t. Let 1 ≤ a ≤ m and 0 ≤ b <
2tp + 1 be integers such that ℓ = a + mb. We place
a searcher on ĉb

a. Then, for each i between 1 and p

in turn we first put searchers on all vertices of B̂ℓ
i and

then remove all the searchers from B̂ℓ
i except for the

ones standing on the exit vertices. After all gadgets
B̂ℓ

1 . . . B̂ℓ
t have been cleaned in this manner, we can

remove the searcher from ĉb
a. To commence the next

round, the searchers slide from the exit positions of B̂ℓ
i

to the entry positions of B̂ℓ+1
i for every i. In total, at

most tp + |V (B̂)| + 1 ≤ tp + O(3p) searchers are used
simultaneously. This together with Proposition 2.1 give
the desired upperbound on the pathwidth. 2

Proof. [Proof (of Theorem 4.1)] Suppose Dominating
Set can be solved in O∗((3 − ǫ)pw(G))= O∗(3λpw(G))



time, where λ = log3(3 − ǫ) < 1. We choose p large

enough such that λ · p
⌊p log 3⌋ = δ′

log 3 for some δ′ < 1.

Given an instance of SAT we construct an instance
of Dominating Set using the above construction and
the chosen value of p. Then we solve the Dominat-
ing Set instance using the O∗(3λpw(G)) time algo-
rithm. Correctness is ensured by Lemmata 4.1 and
4.2. Lemma 4.3 yields that the total time taken is
upper bounded by O∗(3λpw(G)) ≤ O∗(3λ(tp+f(λ))) ≤

O∗(3λ
np

⌊p log 3⌋ ) ≤ O∗(3δ′ n
log 3 ) ≤ O∗(2δ′′n) =O∗((2− δ)n),

for some δ′′, δ < 1. This concludes the proof. 2

5 Max Cut

A cut in a graph G is a partition of V (G) into V0 and V1.
The cut-set of the cut is the set of edges whose one end
point is in V0 and the other in V1. We say that an edge
is crossing this cut if it has one endpoint in V0 and one
in V1, that is, the edge is in the cut-set. The size of the
cut is the number of edges in G which are crossing this
cut. If the edges of G have positive integer weights then
the weight of the cut is the sum of the weights of edges
which are crossing the cut. In the Max Cut problem
we are given a graph G together with an integer t and
asked whether there is a cut of G of size at least t. In
the Weighted Max Cut problem every edge has a
positive integer weight and the objective is to find a cut
of weight at least t. In this section we show the following
theorem.

Theorem 5.1. If Max Cut can be solved in O∗((2 −
ǫ)pw(G)) for some ǫ > 0 then SAT can be solved in

O∗((2 − δ)n) time for some δ > 0.

Construction. Given an instance φ of SAT we
first construct an instance Gw of Weighted Max Cut
as follows. We later explain how to obtain an instance
of unweighted Max Cut from here.

We start with making a vertex x0. Without loss
of generality, we will assume that x0 ∈ V0 in every
solution. We make a vertex v̂i for each variable vi.
For every clause Cj we make a gadget as follows. We

make a path P̂j having 4|Cj | vertices. All the edges

on P̂j have weight 3n. Now, we make the first and

last vertex of P̂j adjacent to x0 with an edge of weight

3n. Thus the path P̂j plus the edges from the first and

last vertex of P̂j to x0 form an odd cycle Ĉj . We will
say that the first, third, fifth, etc, vertices are on odd

positions on P̂j while the remaining vertices are on even

positions. For every variable vi that appears positively
in Cj we select a vertex p at an even position (but not

the last vertex) on P̂j and make v̂ adjacent to p and

p’s successor on P̂j with edges of weight 1. For every

variable vi that appears negatively in Cj we select a

vertex p at an odd position on P̂j and make v̂ adjacent

to p and p’s successor on P̂j with edges of weight 1.

We make sure that each vertex on P̂j receives an edge
at most once in this process. There are more than
enough vertices on P̂j to accommodate all the edges
incident to vertices corresponding to variables in the
clause Cj . We create such a gadget for each clause and
set t = 1 + (12n + 1)

∑m

j=1 |Cj |. This concludes the
construction.

Lemma 5.1. If φ is satisfiable, then Gw has a cut of

weight at least t.

Proof. Suppose φ is satisfiable. We put x0 in V0 and for
every variable vi we put v̂i in V1 if vi is true and v̂i in V0

if vi is false. For every clause Cj we proceed as follows.
Let us choose a true literal of Cj and suppose that this

literal corresponds to a vertex pj on P̂j . We put the

first vertex on P̂j in V1, the second in V0 and then we

proceed along P̂j putting every second vertex into V1

and V0 until we reach pj . The successor p′j of pj on P̂j

is put into the same set as pj . Then we continue along

P̂j putting every second vertex in V1 and V0. Notice
that even though Cj may contain more than one literal
that is set to true, we only select one vertex pj from the

path P̂j and put pj and its successor on the same side
of the partition. It remains to argue that this cut has
weight at least t.

For every clause Cj all edges on the path P̂j except
for pjp

′
j are crossing, and the two edges to x0 from

the first and last vertex of P̂j are crossing as well.
These edges contribute 12n|Cj| to the weight of the
cut. We know that pj corresponds to a literal that is
set to true, and this literal corresponds to a variable
vi. If vi occurs positively in Cj then vi ∈ V1 and

pj is on an even position of P̂j . Thus both pj and
his successor p′j are in V0 and hence both vipj and
vip

′
j are crossing, contributing 2 to the weight of the

cut. For each of the remaining variables vi′ appearing
in Cj , one of the two neighbours of v̂i′ on P̂j appear
in V0 and one in V1, so exactly one edge from vi′ to
P̂j is crossing. Thus the total weight of the cut is
t =

∑m

j=1 12n|Cj|+ |Cj |+1 = m+(12n+1)
∑m

j=1 |Cj |.
This completes the proof. 2

Lemma 5.2. If Gw has a cut of weight at least t, then

φ is satisfiable.

Proof. Let (V0, V1) be a cut of G of maximum weight,
hence the weight of this cut is at least t. Without loss of
generality, let x0 ∈ V0. For every clause Cj at least one

edge of the odd cycle Ĉj is not crossing. If more than



one edge of this cycle is not crossing, then the total
weight of the cut edges incident to the path P̂j is at
most 3n(4|Cj | − 1)+ 2n < 12|Cj|. In this case we could

change the partition (V0, V1) such that all edges of P̂j

are crossing and the first vertex of P̂j is in V1. Using
the new partition the weight of the crossing edges in the
cycle Ĉj is at least 12|Cj| and the edges not incident to

P̂j are unaffected by the changes. This contradicts that
(V0, V1) was a maximum weight cut. Thus it follows

that exactly one edge of Ĉj is not crossing.
Given the cut (V0, V1) we set each variable vi to true

if v̂i ∈ V1 and vi to false otherwise. Consider a clause
Cj and a variable vi that appears in Cj . Let uv be the

edge of Ĉ′
j that is not crossing. If there is a variable v̂i

adjacent to both u and v, then it is possible that both
v̂iu and v̂iv are crossing. For every other variable vi′ in
Cj , at most one of the edges from v̂i′ to P̂j is crossing.
Thus, the weight of the edges that are crossing in the
gadget Ĉj is at most (12n + 1)|Cj|+ 1. Hence, to find a
cut-set of weight at least t in G, we need to have crossing
edges in Ĉj with sum of their weights exactly equal to
12n|Cj| + |Cj | + 1. It follows that there is a vertex v̂i

adjacent to both u and v such that both v̂iu and v̂iv are
crossing.

If vi occurs in Cj positively then u is on an even
position and hence, u ∈ V0. Since v̂iu is crossing it
follows that vi is true and Cj is satisfied. On the other
hand, if vi occurs in Cj negated then u is on an odd
position and hence, u ∈ V1. Since v̂iu is crossing it
follows that vi is false and Cj is satisfied. As this holds
for each clause individually, this concludes the proof. 2

For every edge e ∈ E(Gw), let we be the weight of e
in Gw. We construct an unweighted graph G from Gw

by replacing every edge e = uv by we paths from u to v
on three edges. Let W be the sum of the edge weights
of all edges in Gw.

Lemma 5.3. G has a cut of size 2W + t if and only if

Gw has a cut of weight at least t.

Proof. Given a partition of V (Gw) we partition V (G)
as follows. The vertices of G that also are vertices of
V (G) are partitioned in the same way as in V (Gw). On
each path of length 3, if the endpoints of the path are
in different sets we can partition the middle vertices of
the path such that all edges are cut. If the endpoints
are in the same set we can only partition the middle
vertices such that 2 out of the 3 edges are cut. The
reverse direction is similar. 2

Lemma 5.4. pw(G) ≤ n + 5.

Proof. We give a search strategy to clean G with n + 5
searchers. We place one searcher on each vertex v̂i and
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Figure 4: Reduction to q-Coloring: the way the
connector connects a vertex vl

i with v for a particular
“bad color” x ∈ [q] \ {µi(v

l
i)}. The left side shows the

case x = red = 1, the right side x = 2 (q = 4).

one searcher on x0. Then one can search the gadgets
Ĥj one by one. In Gw it is sufficient to use 2 searchers

for each Ĥj , whereas in G after the edges have been
replaced by multiple paths on three edges, we need 4
searchers. This combined with Proposition 2.1 gives the
desired upper bound on the pathwidth of the graph. 2

The construction, together with Lem-
mata 5.1, 5.2, 5.3 and 5.4 proves Theorem 5.1.

6 Graph Coloring

A q-coloring of G is a function µ : V (G) → [q]. A q-
coloring µ of G is proper if for every edge uv ∈ E(G)
we have µ(u) 6= µ(v). In the q-Coloring problem
we are given as input a graph G and the objective is
to decide whether G has a proper q-coloring. In the
List Coloring problem, every vertex v is given a list
L(v) ⊆ [q] of admissible colors. A proper list coloring

of G is a function µ : V (G) → [q] such that µ is a
proper coloring of G that satisfies µ(v) ∈ L(v) for every
v ∈ V (G). In the q-List Coloring problem we are
given a graph G together with a list L(v) ⊆ [q] for every
vertex v. The task is to determine whether there exists
a proper list coloring of G.

A feedback vertex set of a graph G is a set S ⊆
V (G) such that G \ S is a forest; we denote by
fvs(G) the size of the smallest such set. It is well-
known that tw(G) ≤ fvs(G) + 1. Unlike in the other
sections, where we give lower bounds for algorithms
parameterized by pw(G), the following theorem gives
also a lower bound for algorithms parameterized by
fvs(G). Such a lower bound follows very naturally
from the construction we are doing here, but not from
the constructions in the other sections. It would be
interesting to explore whether it is possible to prove
tight bounds parameterized by fvs(G) for the problems
considered in the other sections.



Theorem 6.1. If q-Coloring can be solved in O∗((q−
ǫ)fvs(G)) or O∗((3 − ǫ)pw(G)) time for some ǫ > 0, then

SAT can be solved in O∗((2− δ)n) time for some δ > 0.

Construction. We will show the result for List
Coloring first, and then give a simple reduction
that demonstrates that q-Coloring can be solved in
O∗((q − ǫ)fvs(G)) time if and only if q-List Coloring
can.

Depending on ǫ and q we choose a parameter p.
Now, given an instance φ to SAT we will construct
a graph G with a list L(v) for every v, such that G
has a proper list-coloring if and only if φ is satisfiable.
Throughout the construction we will call color 1-red,
color 2-white and color 3-black.

We start by grouping the variables of φ into t groups
F1, . . . , Ft of size ⌊log qp⌋. Thus t = ⌈ n

⌊log qp⌋⌉. We will

call an assignment of truth values to the variables in
a group Fi a group assignment. We will say that a
group assignment satisfies a clause Cj of φ if Cj contains
at least one literal which is set to true by the group
assignment. Notice that Cj can be satisfied by a group
assignment of a group Fi, even though Cj also contains
variables that are not in Fi.

For each group Fi, we make a set Vi of p vertices
v1

i , . . . , vp
i . The vertices in Vi get full lists, that is, they

can be colored by any color in [q]. The coloring of the
vertices in Vi will encode the group assignment of Fi.
There are qp ≥ 2|Fi| possible colorings of Vi. Thus, to
each possible group assignment of Fi we attach a unique
coloring of Vi. Notice that some colorings of Vi may not
correspond to any group assignments of Fi.

For each clause Cj of φ, we make a gadget Ĉj . The

main part of Ĉj is a long path P̂j that has one vertex

for each group assignment that satisfies Ĉj . Notice that
there are at most tqp possible group assignments, and
that q and p are constants independent of the input φ.
The list of every vertex on P̂j is {red, white, black}. We
attach two vertices pstart

j and pend
j to the start and end

of P̂j respectively, and the two vertices are not counted

as vertices of the path P̂j itself. The list of pstart
j is

{white}. If |V (P̂j)| is even, then the list of pend
j is

{white}, whereas if |V (P̂j)| is odd then the list of pend
j

is {black}. The intention is that to properly color P̂j

one needs to use the color red at least once, and that
once is sufficient. The position of the red colored vertex
on the path P̂j encodes how the clause Cj is satisfied.

For every vertex v on P̂j we proceed as follows.
The vertex v corresponds to a group assignment to Fi

that satisfies the clause Cj . This assignment in turn
corresponds to a coloring of the vertices of Vi. Let this
coloring be µi. We build a connector whose role is to

v
p
1v1

1

bPjpstart
j pend

j

V1 Vt

v1
t v

p
t

Figure 5: Reduction to q-Coloring. The t groups of
vertices V1, . . . , Vt represent the t groups of variables F1,
. . . , Ft (each of size ⌈log qp⌉). Each vertex of the clause

path P̂j is connected to one group Vi via a connector.

enforce that v can be red only if coloring µi appears on
Vi. To build the connector, for each vertex vl

i ∈ Vi and
color x ∈ [q] \ {µi(v

l
i)} we do the following.

• If x is red, then we add one vertex wy for every
color y except for red. We make wy adjacent to vl

i

and the list of wy is {red, y}. Then we add a vertex
w which is adjacent to all vertices wy and v, and
whose list is all of [q].

• If x is not red, we add two vertices wy and w′
y for

each color y except for red. We make wy adjacent
to vl

i and w′
y adjacent to wy . The list of wy is

{x, red} while the list of w′
y is {y, red}. Finally we

add a vertex w adjacent to w′
y for all y and to v.

The list of w is all of [q].

Notice that in the above construction we have reused the
names w, wy and w′

y for many different vertices: in each
connector, there is a separate vertex w for each vertex
vl

i ∈ Vi and color x ∈ [q]\{µi(v
l
i)}. Building a connector

for each vertex v on P̂j concludes the construction of the

clause gadget Ĉj , and creating one such gadget for each
clause concludes the construction of G. The following
lemma summarizes the most important properties of the
connector.

Lemma 6.1. Consider the connector corresponding a

vertex v on P̂j and coloring µi of Vi.

1. Any coloring on Vi and any color c ∈ {white, black}
on v can be extended to the rest of the connector.

2. Coloring µi on Vi and any color c ∈
{red, white, black} on v can be extended to

the rest of the connector.

3. In any coloring of the connector, if v is red, then

µi appears on Vi.

Proof. 1. For each vertex vl
i ∈ Vi and color x ∈

[q] \ {µi(v
l
i)} we do the following.



• If x is red then in the construction of Ĉj we added a
vertex wy with list {y, red} for every color y 6= red
adjacent to vl

i, and a vertex w with list [q] adjacent
to wy for every y 6= red. If vl

i is colored red, then
we color each vertex wy with y and w with red.
Notice that w is adjacent to v, but v is colored
either white or black, so it is safe to color w red.
If, on the other hand, vl

i is not colored red, we can
color wy red for every y. Then all the neighbours
of w have been colored with red, except for v which
has been colored white or black. Thus it is safe to
color w with the color out of black and white which
was not used to color v.

• If x is not red, then in the construction of Ĉj we
added two vertices wy and w′

y for each color y
except for red, and also added a vertex w. The
vertices wy are adjacent to vl

i and for every y 6= red
the vertex w′

y is adjacent to wy. Finally w is
adjacent to al the vertices w′

y and to v. For every
y the list of wy is {x, red} while the list of w′

y is

{y, red}. The list of w is [q]. If vl
i is colored with

x, then we let wy take color red and w′
y take color

y for every y 6= red. We color w with red. In the
case that vl

i is colored with a color different from
x, we let wy be colored with x and w′

y be colored
red for every y 6= red. Finally, all the neighours
of w except for v have been colored red, while v is
colored with either black or white. According to
the color of v we can either color w black or white.

2. We can assume that v is red, otherwise we are
done by the previous statement. For each vertex vl

i ∈ Vi

and color x ∈ [q] \ {µi(v
l
i)} we do the following.

• If x is red then in the construction of Ĉj we added a
vertex wy with list {y, red} for every color y 6= red
adjacent to vl

i, and a vertex w with list [q] adjacent
to wy for every y 6= red. Since vl

i′ is not colored red
by µi, we can color wy red for every y. Then all
the neighbours of w including v have been colored
with red and it is safe to color w with white.

• If x is not red, then in the construction of Ĉj we
added two vertices wy and w′

y for each color y
except for red, and also added a vertex w. The
vertices wy are adjacent to vl

i and for every y 6= red
the vertex w′

y is adjacent to wy. Finally w is
adjacent to all the vertices w′

y and to v. For every
y the list of wy is {x, red} while the list of w′

y is

{y, red}. The list of w is [q]. Since µi colors vl
i with

a color different from x we let wy be colored with
x and w′

y be colored red for every y 6= red. Finally,
all the neighours of w including v have been colored
red so it is safe to color w white.

3. Suppose for contradiction that v is red, but some
vertex vl

i ∈ Vi has been colored with a color x 6= µi(v
l
i).

There are two cases. If x is red, then in the construction
we added vertices wy adjacent to vl

i for every color
y 6= red. Also we added a vertex w adjacent to v and
to wy for each y 6= red. The list of wy is {red, y} and
hence wy must have been colored y for every y 6= red.
But then w is adjacent to v which is colored red, and
to wy which is colored y for every y 6= red. Thus vertex
w has all colors in its neighborhood, a contradiction. In
the case when x is not red, then in the construction we
added two vertices wy and w′

y for each y 6= red. Each

wy was adjacent to vl
i and had {x, red} as its list. Since

vl
i is colored x, all the wy vertices must be colored red.

For every y 6= red, we have that w′
y is adjacent to wy

and has {red, y} as its list. Hence for every y 6= red the
vertex w′

y is colored with y. But, in the construction
we also added a vertex w adjacent to v and to w′

y for
each y 6= red. Thus again, vertex w has all colors in its
neighbourhood, a contradiction. 2

Lemma 6.2. If φ is satisfiable, then G has a proper

list-coloring.

Proof. Starting from a satisfying assignment of φ we
construct a coloring γ of G. The assignment to φ
corresponds to a group assignment to each group Fi.
Each group assignment corresponds to a coloring of Vi.
For every i, we let γ color the vertices of Vi using the
coloring corresponding to the group assignment of Fi.

Now we show how to complete this coloring to a
proper coloring of G. Since the gadgets Ĉj are pairwise
disjoint, and there are no edges going between them, it
is sufficient to show that we can complete the coloring
for every gadget Ĉj . Consider the clause Cj . The
clause contains a literal that is set to true, and this
literal belongs to a variable in the group Fi. The
group assignment of Fi satisfies the clause Cj . Thus,

there is a vertex v on P̂j that corresponds to this
assignment. We set γ(v) as red (that is, γ colors v red),
pstart

j is colored white and pend
j is colored with its only

admissible color, namely black if |V (P̂j)| is even and

white if |V (P̂j)| is odd. The remaining vertices of P̂j are
colored alternatingly white or black. By Lemma 6.1(2),
the coloring can be extended to every vertex of the
connector between Vi and v: the coloring appearing
on Vi is the coloring µi corresponding to the group
assignment Fi. For every other vertex u on P̂j , the
color of u is black or white, thus Lemma 6.1(1) ensures
that the coloring can be extended to any connector on
u.

As this procedure can be repeated to color the
gadget Ĉj for every clause Cj , we can complete γ to
a proper list-coloring of G. 2



Lemma 6.3. If G has a proper list-coloring γ, then φ
is satisfiable.

Proof. Given γ we construct an assignment to the
variables of φ as follows. For every group Fi of variables,
if γ colors Vi with a coloring that corresponds to a group
assignment of Fi then we set this assignment for the
variables in Fi. Otherwise we set all the variables in Fi

to false. We need to argue that this assignment satisfies
all the clauses of φ.

Consider a clause Cj and the corresponding gadget

Ĉj . By a simple parity argument, P̂j can not be colored
using only the colors black and white. Thus, some
vertex v on P̂j is colored red. The vertex v corresponds
to a group assignment of some group Fi that satisfies
Ĉj . As v is red, Lemma 6.1(3) implies that Vi is
colored with the coloring µi that corresponds to this
assignment. The construction then implies that our
chosen assignment satisfies Cj . As this is true for every
clause, this concludes the proof. 2

Observation 1. The vertices
⋃

i≤t Vi form a feedback

vertex set of G. Furthermore, pw(G) ≤ pt + 4

Proof. Observe that after removing
⋃

i≤t Vi, all that is

left are the gadgets Ĉj which do not have any edges
between each other. Each such gadget is a tree and
hence

⋃
i≤t Vi form a feedback vertex set of G. If we

place a searcher on each vertex of
⋃

i≤t Vi it is easy

to see that each gadget Ĉj can be searched with 4
searchers. The pathwidth bound on G follows using
Proposition 2.1. 2

Lemma 6.4. If q-List Coloring can be solved in

O∗((q− ǫ)fvs(G)) time for some ǫ < 1, then SAT can be

solved in O∗((2 − δ)n) time for some δ < 1.

Proof. Let O∗((q − ǫ)fvs(G))= O∗(qλfvs(G)) time, where
λ = logq(q − ǫ) < 1. We choose a sufficiently large p
such that δ′ = λ p

p−1 < 1. Given an instance φ of SAT
we construct a graph G using the construction above,
and run the assumed q-List Coloring. Correctness
follows from Lemmata 6.2 and 6.3. By Observation 1
the graph G has a feedback vertex set of size p⌈ n

⌊p log q⌋⌉.

The choice of p implies that

λp⌈
n

⌊p log q⌋
⌉ ≤ λp

n

(p − 1) log q
+p ≤ δ′

n

log q
+p ≤ δ′′n,

for some δ′′ < 1. Hence SAT can be solved in time
O∗(2δ′′n) =O∗((2 − δ)n), for some δ > 0. 2

Finally, observe that we can reduce q-List-
Coloring to q-Coloring by adding a clique Q =
{q1, . . . , qc} on q vertices to G and making qi adjacent

to v when i /∈ L(v). Any coloring of Q must use q dif-
ferent colors, and without loss of generality qi is colored
with color i. Then one can complete the coloring if and
only if one can properly color G using a color from L(v)
for each v. We can add the clique Q to the feedback
vertex set—this increases the size of the minimum feed-
back vertex set by q. Since q is a constant independent
of the input, this yields Theorem 6.1.

7 Odd Cycle Transversal

An equivalent formulation of Max Cut is to delete the
minimum number of edges to make the graph bipartite.
We can also consider the vertex deletion version of the
problem. An odd cycle transversal of a graph G is a
subset S ⊆ V (G) such that G \ S is bipartite. In the
Odd Cycle Transversal problem we are given a
graph G together with an integer k and asked whether
G has an odd cycle transversal of size k. The proof of
the following theorem can be found in [16].

Theorem 7.1. If Odd Cycle Transversal can be

solved in O∗((3 − ǫ)pw(G)) time for ǫ > 0, then SAT
can be solved in O∗((2 − δ)n) time for some δ > 0.

8 Partition Into Triangles

A triangle packing in a graph G is a collection of
pairwise disjoint vertex sets S1, S2, . . . St in G such that
Si induces a triangle in G for every i. The size of the
packing is t. If V (G) =

⋃
i≤t Si then the collection

S1 . . . St is a partition of G into triangles. In the
Triangle Packing problem we are given a graph G
and an integer t and asked whether there is a triangle
packing in G of size at least t. In the Partition Into
Triangles problem we are given a graph G and asked
whether G can be partitioned into triangles. Notice that
since Partition Into Triangles is the special case
of Triangle Packing when the number of triangles
is the number of vertices divided by 3, the bound of
Theorem 8.1 holds for Triangle Packing as well. A
proof of Theorem 8.1 can be found in [16].

Theorem 8.1. If Partition Into Triangles can be

solved in O∗((2 − ǫ)pw(G)) for ǫ > 0 then SAT can be

solved in O∗((2 − δ)n) time for some δ > 0.

9 Conclusion

We have showed that for a number of basic graph
problems, the best known algorithms parameterized by
treewidth are optimal in the sense that base of the expo-
nential dependence on treewidth is best possible. Recall
that for Dominating Set and Partition Into Tri-
angles, this running time was obtained quite recently
using the new technique of fast subset sum convolu-



tions [28]. Thus it could have been a real possibility
that the running time is improved for some other prob-
lems as well.

The results are proved under the Strong Exponen-
tial Time Hypothesis (SETH). While this hypothesis is
relatively recent and might not be accepted by everyone,
our results at least make a connection between rather
specific graph problems and the very basic issue of bet-
ter Sat algorithms. Our results suggest that one should
not try to find better algorithms on bounded treewidth
graphs for the problems considered in the paper: as this
would disprove SETH, such an effort is better spent on
trying to disprove SETH directly in the domain of sat-
isfiability. Finally, we suggest the following open ques-
tions for future work:

• Can we prove similar tight lower bounds under
the restriction that the graph is planar? Or is it
possible to find improved algorithms on bounded
treewidth planar graphs?

• Can we prove tight lower bounds for problems pa-
rameterized not by treewidth, but by something
else? Naturally, one should look at problems where
the algorithm or the the running time suggests that
the best known algorithm is optimal. Possible can-
didates are the O(2k) time algorithm for Steiner
Tree with k terminals [2], and the O(2k) (resp.,
O(3k)) time algorithms for Edge Bipartization
(resp., Odd Cycle Transversal) [17, 23].

• For the q-Coloring problem, we were able to
prove lower bounds parameterized by the feedback
vertex set number. Can we prove such bounds for
the other problems as well?
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