
Slightly Superexponential Parameterized Problems∗

Daniel Lokshtanov† Dániel Marx‡ Saket Saurabh§

Abstract

A central problem in parameterized algorithms is to obtain algorithms with running
time f(k) · nO(1) such that f is as slow growing function of the parameter k as possible.
In particular, a large number of basic parameterized problems admit parameterized al-
gorithms where f(k) is single-exponential, that is, ck for some constant c, which makes
aiming for such a running time a natural goal for other problems as well. However there
are still plenty of problems where the f(k) appearing in the best known running time is
worse than single-exponential and it remained “slightly superexponential” even after se-
rious attempts to bring it down. A natural question to ask is whether the f(k) appearing
in the running time of the best-known algorithms is optimal for any of these problems.

In this paper, we examine parameterized problems where f(k) is kO(k) = 2O(k log k)

in the best known running time and for a number of such problems, we show that the
dependence on k in the running time cannot be improved to single exponential. More
precisely we prove following tight lower bounds, for four natural problems, arising from
three different domains:

• In the Closest String problem, given strings s1, . . . , st over an alphabet Σ of
length L each, and an integer d, the question is whether there exists a string s
over Σ of length L, such that its hamming distance from each of the strings si,
1 ≤ i ≤ t, is at most d. The pattern matching problem Closest String is known
to be solvable in time 2O(d log d) · nO(1) and 2O(d log |Σ|) · nO(1) . We show that there
are no 2o(d log d) ·nO(1) or 2o(d log |Σ|) ·nO(1) time algorithms, unless the Exponential
Time Hypothesis (ETH) fails.

• The graph embedding problem Distortion, that is, deciding whether a graph G
has a metric embedding into the integers with distortion at most d can be solved
in time 2O(d log d) · nO(1). We show that there is no 2o(d log d) · nO(1) time algorithm,
unless the ETH fails.

• The Disjoint Paths problem can be solved in time in time 2O(w log w) · nO(1) on
graphs of treewidth at most w. We show that there is no 2o(w log w) · nO(1) time
algorithm, unless the ETH fails.

• The Chromatic Number problem can be solved in time in time 2O(w log w) ·nO(1)

on graphs of treewidth at most w. We show that there is no 2o(w log w) · nO(1) time
algorithm, unless the ETH fails.

To obtain our results, we first prove the lower bound for variants of basic problems:
finding cliques, independent sets, and hitting sets. These artificially constrained variants
form a good starting point for proving lower bounds on natural problems without any

∗A preliminary version of the paper appeared in the proceedings of SODA 2011.
†Department of Informatics, University of Bergen, Bergen, Norway. daniello@ii.uib.no. Supported by

ERC Starting Grant PaPaAlg (No. 715744).
‡Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI), Budapest,

Hungary. dmarx@cs.bme.hu. Supported by ERC Starting Grant PARAMTIGHT (No. 280152) and Consol-
idator Grant SYSTEMATICGRAPH (No. 755978).
§The Institute of Mathematical Sciences, Chennai, India. saket@imsc.res.in. Supported by the ERC

Starting Grant PARAPPROX (No. 306992).

technical restrictions and could be of independent interest. Several follow up works have
already obtained tight lower bounds by using our framework, and we believe it will prove
useful in obtaining even more lower bounds in the future.

1 Introduction

The goal of parameterized complexity is to find ways of solving NP-hard problems more
efficiently than brute force: our aim is to restrict the combinatorial explosion to a parameter
that is hopefully much smaller than the input size. Formally, a parameterization of a problem
is assigning an integer k to each input instance and we say that a parameterized problem
is fixed-parameter tractable (FPT) if there is an algorithm that solves the problem in time
f(k) · |I|O(1), where |I| is the size of the input and f is an arbitrary computable function
depending on the parameter k only. There is a long list of NP-hard problems that are FPT
under various parameterizations: finding a vertex cover of size k, finding a cycle of length
k, finding a maximum independent set in a graph of treewidth at most k, etc. For more
background, the reader is referred to the monographs [18, 29, 34, 60].

The practical applicability of fixed-parameter tractability results depends very much on
the form of the function f(k) in the running time. In some cases, for example in results
obtained from Graph Minors theory, the function f(k) is truly horrendous (towers of ex-
ponentials), making the result purely of theoretical interest. On the other hand, in many
cases f(k) is a moderately growing exponential function: for example, f(k) is 1.2738k in
the current fastest algorithm for finding a vertex cover of size k [14], which can be further
improved to 1.1616k in the special case of graphs with maximum degree 3 [67]. For some

problems, f(k) can be even subexponential (e.g., c
√
k) [24, 23, 22, 1].

The implicit assumption in the research on fixed-parameter tractability is that whenever
a reasonably natural problem turns out to be FPT, then we can improve f(k) to ck with some
small c (hopefully c < 2) if we work on the problem hard enough. Indeed, for some basic
problems, the current best running time was obtained after a long sequence of incremental
improvements. However, it is very well possible that for some problems there is no algorithm
with single-exponential f(k) in the running time.

In this paper, we examine parameterized problems where f(k) is “slightly superexponen-
tial” in the best known running time: f(k) is of the form kO(k) = 2O(k log k). Algorithms
with this running time naturally occur when a search tree of height at most k and branching
factor at most k is explored, or when all possible permutations, partitions, or matchings of a
k element set are enumerated. For a number of such problems, we show that the dependence
on k in the running time cannot be improved to single exponential. More precisely, we show
that a 2o(k log k) · |I|O(1) time algorithm for these problems would violate the Exponential
Time Hypothesis (ETH), which is a complexity-theoretic assumption that can be informally
stated as saying that there is no 2o(n)-time algorithm for n-variable 3SAT [44].

In the first part of the paper, we prove the lower bound for variants of basic problems:
finding cliques, independent sets, and hitting sets. These variants are artificially constrained
such that the search space is of size 2O(k log k) and we prove that a 2o(k log k) · |I|O(1) time
algorithm would violate the ETH. The results in this section demonstrate that for some
problems the natural 2O(k log k) · |I|O(1) upper bound on the search space is actually a tight
lower bound on the running time. More importantly, the results on these basic problems form
a good starting point for proving lower bounds on natural problems without any technical
restrictions.

In the second part of the paper, we use our results on the basic problems to prove tight
lower bounds for four natural problems from three different domains:

2

• In the Closest String problem, given strings s1, . . . , st over an alphabet Σ of length
L each, and an integer d, the question is whether there exists a string s over Σ of
length L, such that its hamming distance from each of the strings si, 1 ≤ i ≤ t, is
at most d. The pattern matching problem Closest String is known to be solvable
in time 2O(d log d) · |I|O(1) [40] and 2O(d log |Σ|) · |I|O(1) [55]. We show that there are no
2o(d log d) · nO(1) or 2o(d log |Σ|) · nO(1) time algorithms, unless the ETH fails.

• The graph embedding problem Distortion, that is, deciding whether a n vertex graph
G has a metric embedding into the integers with distortion at most d can be done in
time 2O(d log d) · nO(1)[33]. We show that there is no 2o(d log d) · nO(1) time algorithm,
unless the ETH fails.

• The Disjoint Paths problem can be solved in time 2O(w logw) ·nO(1) on n vertex graphs
of treewidth at most w [64]. We show that there is no 2o(w logw) ·nO(1) time algorithm,
unless the ETH fails.

• The Chromatic Number problem can be solved in time 2O(w logw) ·nO(1) on n vertex
graphs of treewidth at most w [46]. We show that there is no 2o(w logw) · nO(1) time
algorithm, unless the ETH fails.

We remark that the algorithm given in [64] does not mention the running time for Disjoint
Paths as 2O(w logw) ·nO(1) on graphs of bounded treewidth but a closer look reveals that it is
indeed the case. We expect that many further results of this form can be obtained by using
the framework of the current paper. Thus parameterized problems requiring “slightly super-
exponential” time 2O(k log k) · |I|O(1) is not a shortcoming of algorithm design or pathological
situations, but an unavoidable feature of the landscape of parameterized complexity.

It is important to point out that it is a real possibility that some 2O(k log k) · |I|O(1) time
algorithm can be improved to single-exponential dependence with some work. In fact, there
are examples of well-studied problems where the running time was “stuck” at 2O(k log k)·|I|O(1)

for several years before some new algorithmic idea arrived that made it possible to reduce
the dependence to 2O(k) · |I|O(1):

• In 1985, Monien [57] gave a k! ·nO(1) time algorithm for finding a cycle of length k in a
graph on n vertices. Alon, Yuster, and Zwick [2] introduced the color coding technique
in 1995 and used it to show that a cycle of length k can be found in time 2O(k) · nO(1).

• In 1995, Eppstein [31] gave a O(kkn) time algorithm for deciding if a k-vertex planar
graph H is a subgraph of an n-vertex planar graph G. Dorn [26] gave an improved
algorithm with running time 2O(k) · n. One of the main technical tools in this result is
the use of sphere cut decompositions of planar graphs, which was used earlier to speed
up algorithms on planar graphs in a similar way [27].

• In 1995, Downey and Fellows [28] gave a kO(k) · nO(1) time algorithm for Feedback
Vertex Set (given an undirected graph G on n vertices, delete k vertices to make
it acyclic). A randomized 4k · nO(1) time algorithm was given in 2000 [6]. The first
deterministic 2O(k) · nO(1) time algorithms appeared only in 2005 [42, 21], using the
technique of iterative compression introduced by Reed et al. [62].

• In 2003, Cook and Seymour [17] used standard dynamic programming techniques
to give a 2O(w logw) nO(1)-time algorithm for Feedback Vertex Set on graphs of
treewidth w, and it was considered plausible that this is the best possible form of
running time. Hence it was a remarkable surprise in 2011 when Cygan et al. [19]

3

presented a 3wnO(1) time randomized algorithm by using the so-called Cut & Count
technique. Later, Bodlaender et al. [9] and Fomin et al. [36] obtained deterministic
single-exponential parameterized algorithms using a different approach.

As we can see in the examples above, achieving single-exponential running time often requires
the invention of significant new techniques. Therefore, trying to improve the running time for
a problem whose best known parameterized algorithm is slightly superexponential can lead
to important new discoveries and developments. However, in this paper we identify problems
for which such an improvement is very unlikely. The 2O(k log k) dependence on f(k) seems
to be inherent to these problems, or one should realize that in achieving single-exponential
dependence one is essentially trying to disprove the ETH.

There are some lower bound results on FPT problems in the parameterized complexity
literature, but not of the form that we are proving here. Cai and Juedes [12] proved that
if the parameterized version of a MAXSNP-complete problems (such as Vertex Cover on
graphs of maximum degree 3) can be solved in time 2o(k) · |I|O(1), then ETH fails. Using
parameterized reductions, this result can be transfered to other problems: for example,

assuming the ETH, there is a no 2o(
√
k) · |I|O(1) time algorithm for planar versions of Vertex

Cover, Independent Set, and Dominating Set (and this bound is tight). However, no
lower bound above 2O(k) was obtained this way for any problem so far.

Flum, Grohe, and Weyer [35] tried to rebuild parameterized complexity by redefining
fixed-parameter tractability as 2O(k) · |I|O(1) time and introducing appropriate notions of
reductions, completeness, and complexity classes. This theory could be potentially used to
show that the problems treated in the current paper are hard for certain classes, and therefore
they are unlikely to have single-exponential parameterized algorithms. However, we see no
reason why these problems would be complete for any of those classes (for example, the only
complete problem identified in [35] that is actually FPT is a model checking on problem on
words for which it was already known that f(k) cannot even be elementary). Moreover, we
are not only giving evidence against single-exponential time algorithms in this paper, but
show that the 2O(k log k) dependence is actually tight.

2 Basic problems

In this section, we modify basic problems in such a way that they can be solved in time
2O(k log k)|I|O(1) by brute force, and this is best possible assuming the ETH. In all the problems
of this section, the task is to select exactly one element from each row of a k × k table such
that the selected elements satisfy certain constraints. This means that the search space is
of size kk = 2O(k log k). We denote by [k] × [k] the set of elements in a k × k table, where
(i, j) is the element in row i and column j. Thus selecting exactly one element from each
row gives a set (1, ρ(1)), . . . , (k, ρ(k)) for some mapping ρ : [k] → [k]. In some of the
variants, we not only require that exactly one element is selected from each row, but we
also require that exactly one element is selected from each column, that is, ρ has to be a
permutation. The lower bounds for such permutation problems will be essential for proving
hardness results on Closest String (Section 3) and Distortion (Section 4). The key
step in obtaining the lower bounds for permutation problems is the randomized reordering
argument of Theorem 2.11. The analysis and derandomization of this step is reminiscent of
the color coding [2] and chromatic coding [1] techniques.

To prove that a too fast algorithm for a certain problem P contradicts the Exponential
Time Hypothesis, we have to reduce n-variable 3SAT to problem P and argue that the
algorithm would solve 3SAT in time 2o(n). It will be somewhat more convenient to do the

4

reduction from 3-Coloring. We use the well-known fact that there is a polynomial-time
reduction from 3SAT to 3-Coloring where the number of vertices of the graph is linear in
the size formula.

Proposition 2.1. Given a 3SAT formula φ with n-variables and m-clauses, it is possible to
construct a graph G with O(n+m) vertices in polynomial time such that G is 3-colorable if
and only if φ is satisfiable.

Proposition 2.1 implies that an algorithm for 3-Coloring with running time subex-
ponential in the number of vertices gives an algorithm for 3SAT that is subexponential in
the number of clauses. This is sufficient for our purposes, as the Sparsification Lemma of
Impagliazzo, Paturi and Zane [44] shows that such an algorithm already violates the ETH.

Lemma 2.2 ([44]). Assuming the ETH, there is no 2o(m) time algorithm for m-clause 3SAT.

Combining Proposition 2.1 and Lemma 2.2 gives the following proposition:

Proposition 2.3. Assuming the ETH, there is no 2o(n) time algorithm for deciding whether
an n-vertex graph is 3-colorable.

2.1 k × k Clique

The first problem we investigate is the variant of the standard clique problem where the
vertices are the elements of a k × k table, and the clique we are looking for has to contain
exactly one element from each row.

k × k Clique
Input: A graph G over the vertex set [k]× [k]

Parameter: k
Question: Is there a k-clique in G with exactly one element from each row?

Note that the graph G in the k×k Clique instance has O(k2) vertices at most O(k4) edges,
thus the size of the instance is O(k4).

Theorem 2.4. Assuming the ETH, there is no 2o(k log k) time algorithm for k × k Clique.

Proof. Suppose that there is an algorithm A that solves k× k Clique in 2o(k log k) time. We
show that this implies that 3-Coloring on a graph with n vertices can be solved in time
2o(n), which contradicts the ETH by Proposition 2.3.

Let H be a graph with n vertices. Let k be the smallest integer such that 3n/k+1 ≤ k, or
equivalently, n ≤ k log3 k − k. Note that such a finite k exists for every n and it is easy to
see that k log k = O(n) for the smallest such k. Intuitively, it will be useful to think of k as
a value somewhat larger than n/ log n (and hence n/k is somewhat less than log n).

Let us partition the vertices of H into k groups X1, . . . , Xk, each of size at most dn/ke.
For every 1 ≤ i ≤ k, let us fix an enumeration of all the proper 3-colorings of H[Xi]. Note
that there are most 3dn/ke ≤ 3n/k+1 ≤ k such 3-colorings for every i. We say that a proper
3-coloring ci of H[Xi] and a proper 3-coloring cj of H[Xj] are compatible if together they
form a proper coloring of H[Xi ∪Xj]: for every edge uv with u ∈ Xi and v ∈ Xj , we have
ci(u) 6= cj(v). Let us construct a graph G over the vertex set [k]× [k] where vertices (i1, j1)
and (i2, j2) with i1 6= i2 are adjacent if and only if the j1-th proper coloring of H[Xi1] and
the j2-th proper coloring of H[Xi2] are compatible (this means that if, say, H[Xi1] has less
than j1 proper colorings, then (i1, j1) is an isolated vertex).

5

We claim that G has a k-clique having exactly one vertex from each row if and only if H
is 3-colorable. Indeed, a proper 3-coloring of H induces a proper 3-coloring for each of H[X1],
. . . , H[Xk]. Let us select vertex (i, j) if and only if the proper coloring of H[Xi] induced by
c is the j-th proper coloring of H[Xi]. It is clear that we select exactly one vertex from each
row and they form a clique: the proper colorings of H[Xi] and H[Xj] induced by c are clearly
compatible. For the other direction, suppose that (1, ρ(1)), . . . , (k, ρ(k)) form a k-clique for
some mapping ρ : [k]→ [k]. Let ci be the ρ(i)-th proper 3-coloring of H[Xi]. The colorings
c1, . . . , ck together define a coloring c of H. This coloring c is a proper 3-coloring: for every
edge uv with u ∈ Xi1 and v ∈ Xi2 , the fact that (i1, ρ(i1)) and (i2, ρ(i2)) are adjacent means
that ci1 and ci2 are compatible, and hence ci1(u) 6= ci2(v).

Running the assumed algorithm A on G decides the 3-colorability of H. Let us estimate
the running time of constructing G and running algorithm A on G. The graph G has k2

vertices and the time required to construct G is polynomial in k: for each Xi, we need
to enumerate at most k proper 3-colorings of G[Xi]. Therefore, the total running time is
2o(k log k) · kO(1) = 2o(n) (using that k log k = O(n)). It follows that we have a 2o(n) time
algorithm for 3-Coloring on an n-vertex graph, contradicting the ETH.

k × k Permutation Clique is a more restricted version of k × k Clique: in addition
to requiring that the clique contains exactly one vertex from each row, we also require that
it contains exactly one vertex from each column. In other words, the vertices selected in the
solution are (1, ρ(1)), . . . , (k, ρ(k)) for some permutation ρ of [k]. Given an instance I of
k × k Clique having a solution S, if we randomly reorder the vertices in each row, then
with some probability the reordered version of solution S contains exactly one vertex from
each row and each column of the reordered instance. In Theorem 2.5, we use this argument
to show that a 2o(k log k) time algorithm for k× k Permutation Clique gives a randomized
2o(k log k) time algorithm for k×k Clique. Section 2.1.1 shows how the proof of Theorem 2.5
can be derandomized.

Theorem 2.5. If there is a 2o(k log k) time algorithm for k× k Permutation Clique, then
there is a randomized 2o(m) time algorithm for m-clause 3SAT.

Proof. We show how to transform an instance I of k × k Clique into an instance I ′ of
k × k Permutation Clique with the following properties: if I is a no-instance, then I ′ is
a no-instance, and if I is a yes-instance, then I ′ is a yes-instance with probability at least
2−O(k). This means that if we perform this transformation 2O(k) times and accept I as a
yes-instance if and only at least one of the 2O(k) constructed instances is a yes-instance, then
the probability of incorrectly rejecting a yes-instance can be reduced to an arbitrary small
constant. Therefore, a 2o(k log k) time algorithm for k × k Permutation Clique implies a
randomized 2O(k) · 2o(k log k) = 2o(k log k) time algorithm for k × k Clique.

Let c(i, j) : [k]× [k]→ [k] be a mapping chosen uniform at random; we can imagine c as
a coloring of the k× k vertices. Let c′(i, j) = F if there is a j′ 6= j such that c(i, j) = c(i, j′)
and let c′(i, j) = c(i, j) otherwise (i.e., if c(i, j) = x 6= F, then no other vertex has color x in
row i). The instance I ′ of k× k Permutation Clique is constructed the following way: if
there is an edge between (i1, j1) and (i2, j2) in instance I and c′(i1, j1), c′(i2, j2) 6= F, then we
add an edge between (i1, c

′(i1, j1)) and (i2, c
′(i2, j2)) in instance I ′. That is, we use mapping

c to rearrange the vertices in each row. If vertex (i, j) clashes with some other vertex in the
same row (that is, c(i, j) = F), then all the edges incident to (i, j) are thrown away.

Suppose that I ′ has a k-clique (1, ρ(1)), . . . , (k, ρ(k)) for some permutation ρ of [k]. For
every i, there is a unique δ(i) such that c′(i, δ(i)) = ρ(i): otherwise (i, ρ(i)) is an isolated
vertex in I ′. It is easy to see that (1, δ(i)), . . . , (k, δ(k)) is a clique in I: vertices (i1, δ(i1))

6

and (i2, δ(i2)) have to be adjacent, otherwise there would be no edge between (i1, ρ(i1)) and
(i2, ρ(i2)) in I ′. Therefore, if I is a no-instance, then I ′ is a no-instance as well.

Suppose now that I is a yes-instance: there is a clique (1, δ(1)), . . . , (k, δ(k)) in I. Let
us estimate the probability that the following two events occur:

(1) For every 1 ≤ i1 < i2 ≤ k, c(i1, δ(i1)) 6= c(i2, δ(i2)).

(2) For every 1 ≤ i ≤ k and 1 ≤ j ≤ k with j 6= δ(i), c(i, δ(i)) 6= c(i, j).

Event (1) means that c(1, δ(1)), . . . , c(k, δ(k)) is a permutation of [k]. Therefore, the prob-
ability of (1) is k!/kk = e−O(k) (using Stirling’s Formula). For a particular i, event (2) holds
if k − 1 randomly chosen values are all different from c(i, δ(i)). Thus the probability that
(2) holds for a particular i is (1 − 1/k)−(k−1) ≥ e−1 and the probability that (2) holds for
every i is at least e−k. Furthermore, events (1) and (2) are independent: we can imagine
the random choice of the mapping c as first choosing the values c(1, δ(1)), . . . , c(k, δ(k)) and
then choosing the remaining k2−k values. Event (1) depends only on the first k choices, and
for any fixed result of the first k choices, the probability of event (2) is the same. Therefore,
the probability that (1) and (2) both hold is e−O(k).

Suppose that (1) and (2) both hold. Event (2) implies that c(i, δ(i)) = c′(i, δ(i)) 6= F for
every 1 ≤ i ≤ k. Event (1) implies that if we set ρ(i) := c(i, δ(i)), then ρ is a permutation of
[k]. Therefore, the clique (1, ρ(1)), . . . , (k, ρ(k)) is a solution of I ′, as required.

In the next section, we show that instead of random colorings, we can use a certain
deterministic family of colorings. This will imply:

Corollary 2.6. Assuming the ETH, there is no 2o(k log k) time algorithm for k × k Permu-
tation Clique.

2.1.1 Derandomization

In this section, we give a coloring family that can be used instead of the random coloring
in the proof of Theorem 2.5. We call a graph G to be a cactus-grid graph if the vertices are
elements of a k × k table and the graph precisely consists of a clique containing exactly one
vertex from each row and each vertex in the clique is adjacent to every other vertex in its
row. There are no other edges in the graph, thus the graph has exactly

(
k
2

)
+ k(k− 1) edges.

We are interested in a coloring family F = {f : [k]× [k]→ [k + 1]} with the property that
for any cactus-grid graph G with vertices from k×k table, there exists a function f ∈ F such
that f properly colors the vertices of G. We call such a F as a coloring family for cactus-grid
graphs.

Before we proceed to construct a coloring family F of size 2O(k log log k), we explain how this
can be used to obtain the derandomized version of Theorem 2.5, the Corollary 2.6. Suppose
that the instance I of k × k Clique is a yes-instance. Then there is a clique (1, δ(1)), . . . ,
(k, δ(k)) in I. Consider the cactus-grid graph G consisting of clique (1, δ(1)), . . . , (k, δ(k))
and for each 1 ≤ i ≤ k, the edges between (i, δ(i)) and (i, j) for every j 6= δ(i). Let f ∈ F be
a proper coloring of G. Now since (1, δ(1)), . . . , (k, δ(k)) is a clique in G they get distinct
colors by f and since all the vertices in the row i, (i, j), j 6= δ(i), are adjacent to (i, δ(i)) we
have that f((i, j)) 6= f(i, δ(i)). So if we use this f in place of c(i, j), the random coloring
used in the proof of Theorem 2.5, then events (1) and (2) hold and we know that the instance
I ′ obtained using f is a yes-instance of k × k Permutation Clique. Thus we know that
an instance I of k × k Clique has a clique of size k containing exactly one element from
each row if and only if there exists an f ∈ F such that the corresponding instance I ′ of
k× k Permutation Clique has a clique of size k such that it contains exactly one element

7

from each row and column. This together with the fact that the size of F is bounded by
2O(k log log k) imply the Corollary 2.6.

To construct our deterministic coloring family we also need a few known results on perfect
hash families. Let H = {f : [n]→ [k]} be a set of functions such that for all subsets S of size
k there is a h ∈ H such that it is one-to-one on S. The set H is called (n, k)-family of perfect
hash functions. There are some known constructions for set H. We summarize them below.

Proposition 2.7 ([2, 59]). There exists explicit construction H of (n, k)-family of perfect
hash functions of size O(11k log n). There is also another explicit construction H of (n, k)-
family of perfect hash functions of size O(ekkO(log k) log n).

Now we are ready to state the main lemma of this section.

Lemma 2.8. There exists explicit construction of coloring family F for cactus-grid graphs
of size 2O(k log log k).

Proof. Our idea for deterministic coloring family F for cactus-grid graphs is to keep k func-
tions f1, . . . , fk where each fi is an element of a (k, k′)-family of perfect hash functions for
some k′ and use it to map the elements of {i} × k (the column i). We guess the number
of vertices of G that appear in each column, and we reserve that many private colors for
the column so that these colors are not used on the vertices of any other columns. This
will ensure that we get the desired coloring family. We make our intuitive idea more precise
below. A description of a function f ∈ F consists of a tuple having

• a set S ⊆ [k];

• a tuple (k1, k2, . . . , k`) where ki ≥ 1, ` = |S| and
∑`

i=1 ki = k;

• ` functions f1, . . . , f` where fi ∈ Hi and Hi is a (k, ki)-family of perfect hash functions.

The set S tells us which columns the clique intersects. Let the elements of S = {s1, . . . , s`} be
sorted in increasing order, say s1 < s2 < · · · < s`. Then the tuple (k1, k2, . . . , k`) tells us that
the column sj , 1 ≤ j ≤ `, contains kj vertices from the clique. Hence with this interpretation,
given a tuple (S, (k1, . . . , k`), f1, . . . , f`) we define the coloring function g : [k]× [k]→ [k] as
follows. Every element in [k]×{1, . . . , k}\S is mapped to k+1. Now for vertices in [k]×{sj}
(vertices in column sj), we define g(i, sj) = fj(i)+

∑
1≤i<j ki. We do this for every j between

1 and `. This concludes the description. Now we show that it is indeed a coloring family for
cactus-grid graphs. Given a cactus grid graph G, we first look at the columns it intersects
and that forms our set S and then the number of vertices it intersects in each column makes
the the tuple (k1, k2, . . . , k`). Finally for each of the columns there exists a function h in the
perfect (k, ki)-hash family that maps the elements of clique in this column one to one with
[ki]; we store this function corresponding to this column. Now we show that the function g
corresponding to this tuple properly colors G. The function g assigns different values from
[k] to the columns in S and hence we have that the vertices of clique gets distinct colors as
in each column we have a function fi that is one-to-one on the vertices of S. Now we look at
the edge with both end-points in the same row. If any of the end-point occurs in column that
is not in S, then we know that it has been assigned k+1 while the vertex from the clique has
been assigned color from [k]. If both end-points are from S, then the offset we use to give
different colors to vertices in these columns ensures that these end-points get different colors.
This shows that g is indeed a proper coloring of G. This shows that for every cactus-grid
graph we have a function g ∈ F . Finally, the bound on the size of F is as follows,

2k4k
∏̀
i=1

(11ki log k) ≤ 2O(k)(log k)` ≤ 2O(k log log k). (1)

8

This concludes the proof.

The bound achieved in Equation 1 on the size of F is sufficient for our purpose but it is
not as small as 2O(k) that one can obtain using a simple application of probabilistic methods.
We provide a family F of size 2O(k) below which could be of independent algorithmic interest.

Lemma 2.9. There exists explicit construction of coloring family F for cactus-grid graphs
of size 2O(k).

Proof. We incurred a factor of (log k)` in the construction given in Lemma 2.8 because for
every column we applied hash functions from [k] → [ki]. Loosely speaking, if we could
replace these by [k2

i] → [ki], then the size of family will be 11ki log ki ≤ 12ki and then∏`
i=1 11ki log ki ≤ 12k. Next we describe a procedure to do this by incurring an extra cost of

2O(log3 k). To do this we use the following classical lemma proved by Fredman, Komlós and
Szemerédi [38].

Lemma 2.10 ([38]). Let W ⊆ [n] with |W | = r. The mapping f : [n] → [2r2] such that
f(x) = (tx mod p) mod 2r2 is one-to-one when restricted to W for at least half of the
values t ∈ [p]. Here p is any prime between n and 2n.

The idea is to use Lemma 2.10 to choose multipliers (t in the above description) appro-
priately. Let us fix a prime p between k and 2k. Given a set S and a tuple (k1, k2, . . . , k`) we
make a partition of set S as follows Si = {sj |sj ∈ S, 2i−1 < kj ≤ 2i} for i ∈ {0, . . . , dlog ke}.
Now let us fix a set Si, by our construction we know that the size of intersection of the clique
with each of the columns in Si is roughly same. For simplicity of argument, let us fix a
clique W of some cactus grid graph G. Consider a bipartite graph (A,B) where A contains
a vertex for each column in Si and B consists of numbers from [p]. Now we give an edge
between vertex a ∈ A and b ∈ B if we can use b as a multiplier in Lemma 2.10, that is, the
map f(x) = (bx mod p) mod 22i+1 is one-to-one when restricted to the vertices of the
clique W to the column a.

Observe that because of Lemma 2.10, every vertex in A has degree at least p/2 and hence
there exists a vertex b ∈ B that can be used as a multiplier for at least half of the elements in
the set A. We can repeat this argument by removing a vertex b ∈ B, that could be used as
a multiplier for half of the vertices in A, and all the columns for which it can be multiplier.
This implies that there exits a set Xi ⊆ [p] of size log |A| ≤ log k that could be used as a
multiplier for every column in A. Now we give a description of a function f ∈ F that consists
of a tuple having

• a set S ⊆ [k];

• a tuple (k1, k2, . . . , k`) where ki ≥ 1, ` = |S| and
∑`

i=1 ki = k;

• ((bi1, . . . , b
i
q), (L

i
1, . . . , L

i
q)), 1 ≤ i ≤ dlog ke, q = dlog ke; Here (Li1, . . . , L

i
q) is a partition

of Si and the interpretation is that for every column in Lij we will use bij as a multiplier
for range reduction;

• ` functions f1, . . . , f` where fi ∈ Hi and Hi is a (8k2
i , ki)-family of perfect hash func-

tions.

This completes the description. Now given a tuple

(S, (k1, . . . , k`), {((bi1, . . . , biq), (Li1, . . . , Liq)) | 1 ≤ i ≤ dlog ke}, f1, . . . , f`)

9

we define the coloring function g : [k]×[k]→ [k] as follows. Every element in [k]×{1, . . . , k}\S
is mapped to k + 1. Now for vertices in [k]× {sj} (vertices in column sj), we do as follows.

Suppose sj ∈ Lβα then we define g(i, sj) = (
∑

1≤i<j ki) + fj(((b
β
αsj) mod p) mod ck2

j).
We do this for every j between 1 and `. This concludes the description for g. Observe that
given a vertex in column sj we first use the function in Lemma 2.10 to reduce its range to
roughly O(k2

j) and still preserving that for every subset [k] of size at most 2kj there is some
multiplier which maps it injective. It is evident from the above description that this is indeed
a coloring family of cactus grid graphs. The range of any function in F is k+ 1 and the size
of this family is

2k4k
dlog ke∏
i=1

(p)log k

dlog ke∏
i=1

4
∑dlog ke

j=1 |Li
j |
∏̀
i=1

(11ki log ki) ≤ 8k(2k)log k4k12k ≤ 2O(k+(log k)3) ≤ 2O(k).

The last assertion follows from the fact that
∑dlog ke

i=1

∑dlog ke
j=1 |Lij | ≤ k and

∑`
i=1 ki = k. This

concludes the proof.

2.2 k × k Independent Set

The lower bounds in Section 2.4 for k × k (Permutation) Clique obviously hold for the
analogous k×k (Permutation) Independent Set problem: by taking the complement of
the graph, we can reduce one problem to the other. We state here a version of the independent
set problem that will be a convenient starting point for reductions in later sections:

2k × 2k Bipartite Permutation Independent Set
Input: A graph G over the vertex set [2k]×[2k] where every edge is between

I1 = {(i, j) | i, j ≤ k} and I2 = {(i, j) | i, j ≥ k + 1}.
Parameter: k

Question: Is there an independent set (1, ρ(1)), . . . , (2k, ρ(2k)) ⊆ I1 ∪ I2 in G
for some permutation ρ of [2k]?

That is, the upper left quadrant I1 and the lower right quadrant I2 induce independent sets,
and every edge is between these two independent sets. The requirement that the solution is
a subset of I1 ∪ I2 means that ρ(i) ≤ k for 1 ≤ i ≤ k and ρ(i) ≥ k + 1 for k + 1 ≤ i ≤ 2k.

Theorem 2.11. Assuming the ETH, there is no 2o(k log k) time algorithm for 2k × 2k Bi-
partite Permutation Independent Set.

Proof. Given an instance I of k × k Permutation Independent Set, we construct an
equivalent instance I ′ of 2k×2k Bipartite Permutation Independent Set the following
way. For every 1 ≤ i ≤ k and 1 ≤ j, j′ ≤ k, j 6= j′, we add an edge between (i, j) and
(i+ k, j′+ k) in I ′. If there is an edge between (i1, j1) and (i2, j2) in I, then we add an edge
between (i1, j1) and (i2 + k, j2 + k) in I ′. This completes the description of I ′.

Suppose that I has a solution (1, δ(1)), . . . , (k, δ(k)) for some permutation δ of [2k].
Then it is obvious from the construction of I ′ that (1, δ(1)), . . . , (k, δ(k)), (1 + k, δ(1) + k),
. . . , (2k, δ(k) + k) is an independent set of I ′ and δ(1), . . . , δ(k), δ(1) + k, . . . , δ(k) + k
is clearly a permutation of [2k]. Suppose that (1, ρ(1)), . . . , (2k, ρ(2k)) is solution of I ′ for
some permutation ρ of [2k]. By definition, ρ(i) ≤ k for 1 ≤ i ≤ k. We claim that (1, ρ(k)),
. . . , (k, ρ(k)) is an independent set of I. Observe first that ρ(i + k) = ρ(i) + k for every
1 ≤ i ≤ k: otherwise there is an edge between (i, ρ(i)) and (i+ k, ρ(i+ k)) in I ′. If there is
an edge between (i1, ρ(i1)) and (i2, ρ(i2)) in I, then by construction there is an edge between
(i1, ρ(i1)) and (i2 + k, ρ(i2) + k) = (i2 + k, ρ(i2 + k)) in I ′, contradicting the assumption that
(1, ρ(k)), . . . , (2k, ρ(2k)) is an independent set in I ′.

10

2.3 k × k Hitting Set

Hitting Set is a W[2]-complete problem, but if we restrict the universe to a k × k table
where only one element can be selected from each row, then it can be solved in time O∗(kk)
by brute force.

k × k Hitting Set
Input: Sets S1, . . . , Sm ⊆ [k]× [k].

Parameter: k
Question: Is there a set S containing exactly one element from each row such

that S ∩ Si 6= ∅ for any 1 ≤ i ≤ m?

We say that the mapping ρ hits a set S ⊆ [k]× [k], if (i, ρ(i)) ∈ m for some 1 ≤ i ≤ S. Note
that unlike for k × k Clique and k × k Independent Set, the size of the k × k Hitting
Set instance cannot be bounded by a function of k.

It is quite easy to reduce k × k Independent Set to k × k Hitting Set: for every
pair (i1, j1), (i2, j2) of adjacent vertices, we need to ensure that they are not selected si-
multaneously, which can be forced by a set that contains every element of rows i1 and i2,
except (i1, j1) and (i2, j2). However, in Section 3.1 we prove the lower bound for Closest
String by reduction from a restricted form of k × k Hitting Set where each set contains
at most one element from each row. The following theorem proves the lower bound for this
variant of k × k Hitting Set. The basic idea is that an instance of 2k × 2k Bipartite
Permutation Independent Set can be transformed in an easy way into an instance of
Hitting Set where each set contains at most one element from each column and we want
to select exactly one element from each row and each column. By adding each row as a new
set, we can forget about the restriction that we want to select exactly one element from each
row: this restriction will be automatically satisfied by any solution. Therefore, we have a
Hitting Set instance where we have to select exactly one element from each column and
each set contains at most one element from each column. By changing the role of rows and
columns, we arrive to a problem of the required form.

Theorem 2.12. Assuming the ETH, there is no 2o(k log k) · nO(1) time algorithm for k × k
Hitting Set, even in the special case when each set contains at most one element from each
row.

Proof. To make the notation in the proof less confusing, we introduce a transposed variant of
the problem (denote by k× k Hitting SetT), where exactly one element has to be selected
from each column. We prove the lower bound for k × k Hitting SetT with the additional
restriction that each set contains at most one element from each column; this obviously
implies the theorem.

Given an instance I of 2k × 2k Bipartite Permutation Independent Set, we con-
struct an equivalent 2k × 2k Hitting SetT instance I ′ on the universe [2k] × [2k]. For
1 ≤ i ≤ k, let set Si contain the first k elements of row i and for k + 1 ≤ i ≤ 2k, let set
Si contain the last k elements of row i. For every edge e in instance I, we construct a set
Se the following way. By the way 2k × 2k Bipartite Permutation Independent Set is
defined, we need to consider only edges connecting some (i1, j1) and (i2, j2) with i1, j1 ≤ k
and i2, j2 ≥ k + 1. For such an edge e, let us define

Se = {(i1, j′) | 1 ≤ j′ ≤ k, j′ 6= j1} ∪ {(i2, j′) | k + 1 ≤ j′ ≤ 2k, j′ 6= j2}.

Suppose that (1, δ(1)), . . . , (2k, δ(2k)) is a solution of I for some permutation ρ of [2k].
We claim that it is a solution of I ′. As ρ is a permutation, the set satisfies the requirement

11

that it contains exactly one element from each column. As δ(i) ≤ k if and only if i ≤ k, the
set Si is hit for every 1 ≤ i ≤ 2k. Suppose that there is an edge e connecting (i1, j1) and
(i2, j2) such that set Se of I ′ is not hit by this solution. Elements (i1, δ(i1)) and (i2, δ(i2))
are selected and we have 1 ≤ δ(i1) ≤ k and k + 1 ≤ δ(i2) ≤ 2k. Thus if these two elements
do not hit Se, then this is only possible if δ(i1) = j1 and δ(i2) = j2. However, this means
that the solution for I contains the two adjacent vertices (i1, j1) and (i2, j2), a contradiction.

Suppose now that (ρ(1), 1), . . . , (ρ(2k), 2k) is a solution for I ′. Because of the sets Si,
1 ≤ i ≤ 2k, the solution contains exactly one element from each row, i.e., ρ is a permutation
of 2k. Moreover, the sets S1, . . . , Sk have to be hit by the k elements in the first k columns.
This means that ρ(i) ≤ k if i ≤ k and consequently ρ(i) > k if i > k. We claim that (ρ(1), 1),
. . . , (ρ(2k), 2k) is also a solution of I. It is clear that the only thing that has to be verified
is that these 2k vertices form an independent set. Suppose that (ρ(j1), j1) and (ρ(j2), j2) are
connected by an edge e. We can assume that ρ(j1) ≤ k and ρ(j2) > k, which implies j1 ≤ k
and j2 > k. The solution for I ′ hits set Se, which means that either the solution selects an
element (ρ(j1), j′) or an element (ρ(j2), j′). Elements (ρ(j1), j1) and (ρ(j2), j2) are the only
elements of this form in the solution, but neither of them appears in Se. Thus (ρ(1), 1), . . . ,
(ρ(2k), 2k) is indeed a solution of I

3 Closest String

Computational biology applications often involve long sequences that have to be analyzed in
a certain way. One core problem is finding a “consensus” of a given set of strings: a string
that is close to every string in the input. The Closest String problem defined below
formalizes this task.

Closest String
Input: Strings s1, . . . , st over an alphabet Σ of length L each, an integer

d
Parameter: d

Question: Is there a string s of length L such d(s, si) ≤ d for every 1 ≤ i ≤ t?

We denote by d(s, si) the Hamming distance of the strings s and si, that is, the number of
positions where they have different characters. The solution s will be called the center string.

Closest String and its generalizations (Closest Substring, Distinguishing (Sub)string
Selection, Consensus Patterns) have been thoroughly explored both from the viewpoint
of approximation algorithms and fixed-parameter tractability [55, 66, 56, 40, 51, 16, 32, 39,
49, 25]. In particular, Gramm et al. [40] showed that Closest String is fixed-parameter
tractable parameterized by d: they gave an algorithm with running time O(dd · |I|). The
algorithm works over an arbitrary alphabet Σ (i.e., the size of the alphabet is part of the
input). It is an obvious question whether the dependence on d can be reduced to single
exponential, i.e., whether the running time can be improved to 2O(d) · |I|O(1). For small fixed
alphabets, Ma and Sun [55] achieved single-exponential dependence on d: the running time
of their algorithm is |Σ|O(d) · |I|O(1). Improved algorithms with running time of this form,
but with better constants in the exponent were given in [66, 16]. We show here that the
dd and |Σ|d dependence are best possible (assuming the ETH): the dependence cannot be
improved to 2o(d log d) or to 2o(d log |Σ|). More precisely, what our proof actually shows is that
2o(t log t) dependence is not possible for the parameter t = max{d, |Σ|}. In particular, single
exponential dependence on d cannot be achieved if the alphabet size is unbounded.

12

Theorem 3.1. Assuming the ETH, there is no 2o(d log d) · |I|O(1) or 2o(d log |Σ|) · |I|O(1) time
algorithm for Closest String.

Proof. We prove the theorem by a reduction from the Hitting Set problem considered in
Theorem 2.12. Let I be an instance of k × k Hitting Set with sets S1, . . . , Sm; each
set contains at most one element from each row. We construct an instance I ′ of Closest
String as follows. Let Σ = [2k+ 1], L = k, and d = k− 1 (this means that the center string
has to have at least one character common with every input string). Instance I ′ contains
(k+ 1)m input strings sx,y (1 ≤ x ≤ m, 1 ≤ y ≤ k+ 1). If set Sx contains element (i, j) from
row i, then the i-th character of sx,y is j; if Sx contains no element of row i, then the i-th
character of sx,y is y + k. Thus string sx,y describes the elements of set Sx, using a certain
dummy value between k+ 1 and 2k+ 1 to mark the rows disjoint from Sx. The strings sx,1,
. . . , sx,k+1 differ only in the choice of the dummy values.

We claim that I ′ has a solution if and only if I has. Suppose that (1, ρ(1)), . . . , (k, ρ(k))
is a solution of I for some mapping ρ : [k] → [k]. Then the center string s = ρ(1) . . . ρ(k) is
a solution of I ′: if element (i, ρ(i)) of the solution hits set Sx of I, then both s and sx,y have
character ρ(i) at the i-th position. For the other direction, suppose that center string s is a
solution of I ′. As the length of s is k, there is a k + 1 ≤ y ≤ 2k + 1 that does not appear in
s. If the i-th character of s is some 1 ≤ c ≤ k, then let ρ(i) = c; otherwise, let ρ(i) = 1 (or
any other arbitrary value). We claim that (1, ρ(1)), . . . , (k, ρ(k)) is a solution of I, i.e., it
hits every set Sx of I. To see this, consider the string sx,y, which has at least one character
common with s. Suppose that character c appears at the i-th position in both s and sx,y.
It is not possible that c > k: character y is the only character larger than k that appears in
sx,y, but y does not appear in s. Therefore, we have 1 ≤ c ≤ k and ρ(i) = c, which means
that element (i, ρ(i)) = (i, c) of the solution hits Sx.

The claim in the previous paragraph shows that solving instance I ′ using an algorithm
for Closest String solves the k × k Hitting Set instance I. Note that the size n of the
instance I ′ is polynomial in k and m. Therefore, a 2o(d log d) · |I|O(1) or a 2o(d log |Σ|) · |I|O(1)

algorithm for Closest String would give a 2o(k log k) · (km)O(1) time algorithm for k × k
Hitting Set, violating the ETH (by Theorem 2.12).

4 Distortion

Given an undirected graph G with the vertex set V (G) and the edge set E(G), a metric
associated with G is M(G) = (V (G), D), where the distance function D is the shortest
path distance between u and v for each pair of vertices u, v ∈ V (G). We refer to M(G)
as to the graph metric of G. Given a graph metric M and another metric space M ′ with
distance functions D and D′, a mapping f : M →M ′ is called an embedding of M into M ′.
The mapping f has contraction cf and expansion ef if for every pair of points p, q in M ,
D(p, q) ≤ D′(f(p), f(q)) · cf and D(p, q) · ef ≥ D′(f(p), f(q)) respectively. We say that f is
non-contracting if cf is at most 1. A non-contracting mapping f has distortion d if ef is at
most d. One of the most well studied case of graph embedding is when the host metric M ′

is R1 and D′ is the Euclidean distance. This is also called embedding the graph into integers
or line. Formally, the problem of Distortion is defined as follows.

Distortion
Input: A graph G, and a positive integer d

Parameter: d
Question: Is there an embedding g : V (G)→ Z such that for all u, v ∈ V (G),

D(u, v) ≤ |g(u)− g(v)| ≤ d ·D(u, v)?

13

The problem of finding embedding with good distortion between metric spaces is a fun-
damental mathematical problem [45, 52] that has been studied intensively [3, 4, 5, 48].
Embedding a graph metric into a simple low-dimensional metric space like the real line has
proved to be a useful algorithmic tool in various fields (for an example see [43] for a long list
of applications). Bădoiu et al. [4] studied Distortion from the viewpoint of approximation
algorithms and exact algorithms. They showed that there is a constant a > 1, such that
a-approximation of the minimum distortion of embedding into the line, is NP-hard and pro-
vided an exact algorithm computing embedding of a n vertex graph into line with distortion d
in time nO(d). Subsequently, Fellows et al. [33] improved the running time of their algorithm
to dO(d) · n and thus proved Distortion to be fixed parameter tractable parameterized by
d. We show here that the dO(d) dependence in the running time of Distortion algorithm
is optimal (assuming the ETH). To achieve this we first obtain a lower bound on an inter-
mediate problem called Constrained Permutation, then give a reduction that transfers
the lower bound from Constrained Permutation to Distortion. The superexponential
dependence on d is particularly interesting, as cn time algorithms for finding a minimum
distortion embedding of a graph on n vertices into line have been given by Fomin et al. [37]
and Cygan and Pilipczuk [20].

Constrained Permutation
Input: Subsets S1, . . . , Sm of [k]

Parameter: k
Question: A permutation ρ of [k] such that for every 1 ≤ i ≤ m, there is a

1 ≤ j < k such that ρ(j), ρ(j + 1) ∈ Si.

Given a permutation ρ of [k], we say that x and y are neighbors if {x, y} = {ρ(i), ρ(i+1)}
for some 1 ≤ i < k. In the Constrained Permutation problem the task is to find
a permutation that hits every set Si in the sense that there is a pair x, y ∈ Si that are
neighbors in ρ.

Theorem 4.1. Assuming the ETH, there is no 2o(k log k)mO(1) time algorithm for Con-
strained Permutation.

Proof. Given an instance I of 2k × 2k Bipartite Permutation Independent Set, we
construct an equivalent instance I ′ of Constrained Permutation. Let k′ = 24k and
for ease of notation, let us identify the numbers in [k′] with the elements r`i , r̄

`
i , c

`
j , c̄

`
j for

1 ≤ ` ≤ 3, 1 ≤ i, j ≤ 2k. The values r`i represent the rows and the values c`j represent the

columns. If r̄`i and c`j are neighbors in ρ, then we interpret it as selecting element j from row
i. More precisely, we want to construct the sets S1, . . . , Sm in such a way that if (1, δ(1)),
. . . , (2k, δ(2k)) is a solution of I, then the following permutation ρ of [k′] is a solution of I ′:

r1
1, r̄

1
1, c

1
δ(1), c̄

1
δ(1), r

1
2, r̄

1
2, c

1
δ(2), c̄

1
δ(2), . . . , r

1
2k, r̄

1
2k, c

1
δ(2k), c̄

1
δ(2k),

r2
1, r̄

2
1, c

2
δ(1), c̄

2
δ(1), r

2
2, r̄

2
2, c

2
δ(2), c̄

2
δ(2), . . . , r

2
2k, r̄

2
2k, c

2
δ(2k), c̄

2
δ(2k),

r3
1, r̄

3
1, c

3
δ(1), c̄

3
δ(1), r

3
2, r̄

3
2, c

3
δ(1), c̄

3
δ(2), . . . , r

3
2k, r̄

3
2k, c

3
δ(2k), c̄

3
δ(2k).

The first property that we want to ensure is that every solution of I ′ looks roughly like ρ
above: pairs r`i r̄

`
i and pairs c`j c̄

`
j alternate in some order. Then we can define a permutation

δ such that δ(i) = j if r1
i r̄

1
i is followed by the pair c1

j c̄
1
j . The sets in instance I ′ will ensure

that this permutation δ is a solution of I. Let instance I ′ contain the following groups of
sets:

1. For every 1 ≤ ` ≤ 3 and 1 ≤ i ≤ 2k, there is a set {r`i , r̄`i} ,

14

2. For every 1 ≤ ` ≤ 3 and 1 ≤ j ≤ 2k, there is a set {c`j , c̄`j},

3. For every 1 ≤ `′ < `′′ ≤ 3, 1 ≤ i ≤ 2k, X ⊆ [2k], there is a set {r̄`′i , r̄`
′′
i } ∪ {c`

′
j | j ∈

X} ∪ {c`′′j | j 6∈ X},

4. For every 1 ≤ i ≤ k, there is a set {r̄1
i } ∪ {c1

j | 1 ≤ j ≤ k},

5. For every k + 1 ≤ i ≤ 2k, there is a set {r̄1
i } ∪ {c1

j | k + 1 ≤ j ≤ 2k},

6. For every two adjacent vertices (i1, j1) ∈ I1 and (i2, j2) ∈ I2, there is a set {r̄1
i1
, r̄1
i2
} ∪

{c1
j | 1 ≤ j ≤ k, j 6= j1} ∪ {c1

j | k + 1 ≤ j ≤ 2k, j 6= j2}.

Recall that every edge of instance I goes between the independent sets I1 = {(i, j) | i, j ≤ k}
and I2 = {(i, j) | i, j ≥ k + 1}. Let us verify first that if δ is a solution of I, then the
permutation ρ described above satisfies every set. It is clear that sets in the first two groups
are satisfied. To see that every set in group 3 is satisfied, consider a set corresponding to a
particular 1 ≤ `′ < `′′ ≤ 3, 1 ≤ i ≤ 2k, X ⊆ [2k]. If δ(i) ∈ X, then r̄`

′
i and c`

′
δ(i) are neighbors

and both appear in the set; if δ(i) 6∈ X, then r̄`
′′
i and c`

′′
δ(i) are neighbors and both appear in

the set. Sets in group 4 and 5 are satisfied because δ(i) ≤ k for 1 ≤ i ≤ k and δ(i) ≥ k + 1
for k + 1 ≤ i ≤ 2k. Finally, let (i1, j1) ∈ V1 and (i2, j2) ∈ V2 be two adjacent vertices and
consider the corresponding set in group 6. As the solution of I is an independent set, either
δ(i1) 6= j1 or δ(i2) 6= j2. In the first case, r̄1

i1
and c1

δ(i1) are neighbors and both appear in the

set; in the second case, r̄1
i2

and c1
δ(i2) are neighbors and both appear in the set.

Next we show that if ρ is a solution of I ′, then a solution for I exists. We say that an
element r̄`i is good if its neighbors are r`i and c`

′
j for some 1 ≤ `′ ≤ 3 and 1 ≤ j ≤ 2k. Similarly,

an element c`j is good if its neighbors are c̄`j and r̄`
′
i for some 1 ≤ `′ ≤ 3 and 1 ≤ i ≤ 2k. Our

first goal is to show that every r̄`i and c`j is good. The sets in group 1 and 2 ensure that r`i
and r̄`i are neighbors, and c`j and c̄`j are neighbors.

We claim that for every 1 ≤ `′ < `′′ ≤ 3, and 1 ≤ i ≤ 2k, if elements r̄`
′
i and r̄`

′′
i are

not neighbors, then both of them are good. Let us build a 4k-vertex graph B whose vertices
are c`

′
j , c`

′′
j (1 ≤ j ≤ 2k). Let us connect by an edge those vertices that are neighbors in ρ.

Moreover, let us make c`
′
j and c`

′′
j adjacent for every 1 ≤ j ≤ 2k. Observe that the degree of

every vertex is at most 2 (as c`
′
j has only one neighbor besides c̄`

′
j). Moreover, B is bipartite:

in every cycle, edges of the form c`
′
j c

`′′
j alternate with edges not of this form. Therefore,

there is a bipartition (Y, Ȳ) of B such that the set Y (and hence Ȳ) contains exactly one
of c`

′
j and c`

′′
j for every 1 ≤ j ≤ 2k. Group 3 contains a set SY = {r̄`′i , r̄`

′′
i } ∪ Y and a set

SȲ = {r̄`′i , r̄`
′′
i } ∪ Ȳ : as Y contains exactly one of c`

′
j and c`

′′
j , there is a choice of X that

yields these sets. Permutation ρ satisfies SY and SȲ , thus each of SY and SȲ contains a pair
of neighboring elements. By assumption, this pair cannot be r̄`

′
i and r̄`

′′
i . As Y induces an

independent set of B, this pair cannot be contained in Y either. Thus the only possibility
is that one of r̄`

′
j and r̄`

′′
j is the neighbor of an element of Y . If, say, r̄`

′
j is a neighbor of an

element y ∈ Y , then r̄`
′
j is good. In this case, r̄`

′
j is not the neighbor of any element of Ȳ ,

which means that the only way two members of SȲ are neighbors if r̄`
′′
j is a neighbor of a

member of Ȳ , i.e., r̄`
′′
j is also good.

At most one of r̄2
i and r̄3

i can be the neighbor of r̄1
i , thus we can assume that r̄1

i and r̄`i
are not neighbors for some ` ∈ {2, 3}. By the claim in the previous paragraph, r̄1

i and r̄`i are
both good. In particular, this means that r̄1

i is not the neighbor of r̄2
i and r̄3

i , hence applying
again the claim, it follows that r̄2

i and r̄3
i are both good. Thus r̄`i is good for every 1 ≤ ` ≤ 3

15

vi�1

Ca

vn+1v1

UiUi�1

cd�1
b

c1
b

cd
b

cd+1
b

Cb

ui
2

ui
k

ui
1

sisi�1

ui�1
k

ui�1
2

ui�1
1

cd+1
a

c3
a

c2
a

c1
a

vi+1vi

Figure 1: A construction used in Theorem 4.2.

claim that � is a solution of I. The sets in group 4 and 5 ensure that �(i) k for every
1 i k and �(i) � k + 1 if k + 1 i 2k. To see that (1, �(i)), . . . , (2k, �(2k)) is an
independent set, consider two adjacent vertices (i1, j1) 2 I1 and (i2, j2) 2 I2. We show that
it is not possible that �(i1) = j1 and �(i2) = j2. Consider the set S in group 6 corresponding
to the edge connecting (i1, j1) and (i2, j2). As r̄1

i1
, r̄1

i2
, and every c1

j is good, then only way

S is can be satisfied is that r̄1
i1

or r̄1
i2

is the neighbor of some c1
j appearing in S. If �(i1) = j1

and �(i2) = j2, then the c1
j1

and c1
j2

are the neighbors of r̄1
i1

and r̄1
i2

, respectively, but c1
j1

and

c1
j2

do not appear in S. This shows that if there is a solution for I 0, then there is a solution
for I as well.

The size of the constructed instance I 0 is polynomial in 2k. Thus if I 0 can be solved in
time 2o(k0 log k0) · |I 0| = 2o(k log k) · 2O(k) = 2o(k log k), then this gives a 2o(k log k) time algorithm
for 2k ⇥ 2k Bipartite Permutation Independent Set.

Theorem 4.2. Assuming ETH, there is no 2o(d log d) ·nO(1) time algorithm for Distortion.

Proof. We prove the theorem by a reduction from the Constrained Permutation prob-
lem. Let I be an instance of Constrained Permutation consisting of subsets S1, . . . , Sm

of [k]. Now we show how to construct the graph G, an input to Distortion correspond-
ing to I. For an ease of presentation we identify [k] with vertices u1, . . . , uk. We also set
U = {u1, . . . , uk} and d = 2k. The vertex set of G consists of the following set of vertices.

• A vertex ui
j for every 1 i m and 1 j k. We also denote the set {ui

1, . . . , u
i
k}

by Ui.

• A vertex si for each set Si.

• Two cliques Ca and Cb of size d + 1 consisting of vertices c1
a, . . . , c

d+1
a and c1

b , . . . , c
d+1
b

respectively.

• A path P of length m (number of edges) consisting of vertices v1, . . . , vm+1.

We add the following more edges among these vertices. We add edges from all the vertices
in clique Ca but c1

a to v1 and add edges from all the vertices in clique Cb but c1
b to vm+1.

For all 1 i < m and 1 j k, make ui
j adjacent to vi, vi+1 and ui+1

j . For 1 j k,

make um
j adjacent to vm, vm+1. Finally make si adjacent to ui

j if uj 2 Si. This concludes
the construction. A figure corresponding to the construction can be found in Figure 4.

16

Figure 1: A construction used in Theorem 4.2

and 1 ≤ i ≤ 2k, and the pigeonhole principle implies that c`j is good for every 1 ≤ ` ≤ 3 and
1 ≤ i ≤ 2k.

As every c1
j is good, the sets in groups 4 and 5 can be satisfied only if every r̄1

i has a

neighbor c1
j . Let δ(i) = j if c1

j is the neighbor of r̄1
i ; clearly δ is a permutation of [2k]. We

claim that δ is a solution of I. The sets in group 4 and 5 ensure that δ(i) ≤ k for every
1 ≤ i ≤ k and δ(i) ≥ k + 1 if k + 1 ≤ i ≤ 2k. To see that (1, δ(i)), . . . , (2k, δ(2k)) is an
independent set, consider two adjacent vertices (i1, j1) ∈ I1 and (i2, j2) ∈ I2. We show that
it is not possible that δ(i1) = j1 and δ(i2) = j2. Consider the set S in group 6 corresponding
to the edge connecting (i1, j1) and (i2, j2). As r̄1

i1
, r̄1

i2
, and every c1

j is good, then only way

S is can be satisfied is that r̄1
i1

or r̄1
i2

is the neighbor of some c1
j appearing in S. If δ(i1) = j1

and δ(i2) = j2, then the c1
j1

and c1
j2

are the neighbors of r̄1
i1

and r̄1
i2

, respectively, but c1
j1

and

c1
j2

do not appear in S. This shows that if there is a solution for I ′, then there is a solution
for I as well.

The size of the constructed instance I ′ is polynomial in 2k. Thus if I ′ can be solved in
time 2o(k

′ log k′) · |I ′| = 2o(k log k) · 2O(k) = 2o(k log k), then this gives a 2o(k log k) time algorithm
for 2k × 2k Bipartite Permutation Independent Set.

Theorem 4.2. Assuming the ETH, there is no 2o(d log d) · nO(1) time algorithm for Distor-
tion.

Proof. We prove the theorem by a reduction from the Constrained Permutation prob-
lem. Let I be an instance of Constrained Permutation consisting of subsets S1, . . . , Sm
of [k]. Now we show how to construct the graph G, an input to Distortion correspond-
ing to I. For an ease of presentation we identify [k] with vertices u1, . . . , uk. We also set
U = {u1, . . . , uk} and d = 2k. The vertex set of G consists of the following set of vertices.

16

• A vertex uij for every 1 ≤ i ≤ m and 1 ≤ j ≤ k. We also denote the set {ui1, . . . , uik}
by Ui.

• A vertex si for each set Si.

• Two cliques Ca and Cb of size d+ 1 consisting of vertices c1
a, . . . , c

d+1
a and c1

b , . . . , c
d+1
b

respectively.

• A path P of length m (number of edges) consisting of vertices v1, . . . , vm+1.

We add the following more edges among these vertices. We add edges from all the vertices
in clique Ca but c1

a to v1 and add edges from all the vertices in clique Cb but c1
b to vm+1.

For all 1 ≤ i < m and 1 ≤ j ≤ k, make uij adjacent to vi, vi+1 and ui+1
j . For 1 ≤ j ≤ k,

make umj adjacent to vm, vm+1. Finally make si adjacent to uij if uj ∈ Si. This concludes
the construction. A figure corresponding to the construction can be found in Figure 4.

For our proof of correctness we also need the following known facts about distortion d
embedding of a graph into integers. For an embedding g, let v1, v2, . . . , vq be an ordering
of the vertices such that g(v1) < g(v2) < · · · < g(vn). If g is such that for all 1 ≤ i < q,
D(vi, vi+1) = |g(vi)− g(vi+1)|, then the mapping g is called pushing embedding. It is known
that pushing embeddings are always non-contracting and if G can be embedded into integers
with distortion d, then there is a pushing embedding of G into integers with distortion d [33].

Let a permutation ρ of [k] = U be a solution to I, an instance of Constrained Permu-
tation. This automatically leads to a permutation on U that we represent by ρ(U). There
is a natural bijection between U and Ui with uj ∈ U being mapped to uij . So when we
write ρ(Ui) then this means that the vertices of U are permuted with respect to ρ and being
identified with its counterpart in Ui. Now we give a pushing embedding for the vertices in G
with c1

a being placed at 0. All the vertices except the set vertices si appear in the following
order

c1
a, . . . , c

d+1
a , v1, ρ(U1), v2, ρ(U2), v3, . . . , vm, ρ(Um), vm+1, c

d+1
b , . . . , c1

b .

Since ρ is a solution to I we know that for every Si there exists a 1 ≤ j < k such that
ρ(j)ρ(j + 1) ∈ Si. We place si between ρ(uij) and ρ(uij+1). By our construction the given
embedding is pushing and hence non-contracting. To show that for every pair of vertices
u, v ∈ V (G), |g(u)− g(v)| ≤ d ·D(u, v), we only have to show that for every edge uv ∈ E(G),
|g(u) − g(v)| ≤ d. This can be readily checked from the construction. What needs to be
verified is that for any two adjacent vertices u and v, the sequence of vertices between u and
v in the pushing embedding give a total distance at most d ·D(u, v). The cruical observation
is that the distance between two consecutive vertices from Ui is 2, and hence it must be at
least distance 2 apart on the line. If si is adjacent to two consecutive vertices in Ui we can
“squeeze” in si between those two vertices without disturbing the rest of the construction.

In the reverse direction, assume that we start with a distortion d pushing embedding of
G. Consider the layout of the graph induced on Ca and the vertex v1. This is a clique of size
d + 2 minus an edge and hence Ca ∪ {v1} can be layed out in two ways: c1

a, Ca \ {c1
a}, v1 or

v1, Ca \ {c1
a}, c1

a. Since we can reverse the layout, we can assume without loss of generality
that it is c1

a, Ca \ {c1
a}, v1. Without loss of generality we can also assume that v1 is placed

on position 0. Since every vertex in U1 is adjacent to v1 and the negative positions are
taken by the vertices in Ca, the k = d/2 vertices of U1 must lie on the positions {1, . . . , d}.
We first argue that no vertex of U1 occupies the position d. Suppose it does. Then the
rightmost vertex of U2 (to the right of v1 in the embedding) must be on position at least 2d.
Simultaneously v2 must be on position at most d − 1 since d is already occupied and v2 is
adjacent to v1. But v2 is adjacent to the rightmost vertex of U2 and hence the distance on
the line between them becomes at least d+ 1, a contradiction. So U1 must use only positions

17

in {1, . . . , d−1}. Since the distance between two consecutive vertices in U1 is 2 together with
the fact that we started with a pushing embedding imply that the vertices of U1 occupy all
odd positions of {1,, d − 1}. Now, U2 must be on the positions in {d + 1, . . . , 2d} with
the rightmost vertex in U2 being on at least 2d − 1. Since d − 1 is occupied by someone in
U1 and v2 is adjacent to both v1 and the rightmost vertex of U2 it follows that v2 must be
on position d.

We can now argue similarly to the previous paragraph that U2 does not use position 2d,
and hence v3 is on position 2d while U2 must use the odd positions of {d + 1, . . . , 2d − 1}.
We can repeat this argument for all i and position the vertex vi of the path at d(i− 1) and
place the vertices of Ui at odd positions between d(i− 1) and di. Of course, all the vertices
of the clique Cb will come after vm+1.

Consider the order in which the embedding puts the vertices of U1. We claim that it
must put the vertices of U2 in the same order. Look at the embedding of U1 and U2 from
left to right and let j be the first index where u1

α of U1 is placed between 0 and d while u2
β

of U2 is placed between d and 2d and α 6= β. This implies that u2
α appears further back in

the permutation of U2 and hence the distance between the positions of u1
α and u2

α in U1 is
more than d while u1

α and u2
α are adjacent to each other in the graph. By repeating this

argument for all i and i + 1 we can show that order of all Ui’s is the same. Consider si. It
must be put on some even position, with some vertices of Uj coming before and after si. But
then, because we started with pushing embedding we have that si is adjacent to both those
vertices, and hence i = j as si is adjacent to only the vertices in Ui.

Now we take the permutation ρ for [k], imposed by the ordering of U1, as a solution
to the instance I of Constrained Permutation. For every set Si we need to show that
there exists a 1 ≤ j < k such that ρ(j), ρ(j + 1) ∈ Si. Consider the corresponding si in the
embedding and look at the vertices that are placed left and right of it. Let these be uiα and
uiβ. Then by construction α and β are neighbors to si in G and hence α and β belong to Si.
Now since the ordering of Ui’s are same we have that they are consecutive in the permutation
ρ. This concludes the proof in the reverse direction.

The claim in the previous paragraph shows that an algorithm finding a distortion d em-
bedding of G into line solves the instance I of Constrained Permutation. Note the num-
ber of vertices in G is bounded by a polynomial in k and m. Therefore a 2o(d log d) · |V (G)|O(1)

algorithm for Distortion would give a 2o(k log k) · (km)O(1) algorithm for Constrained
Permutation, violating the ETH by Theorem 4.1.

5 Disjoint Paths

There are many natural graph problems that are fixed-parameter tractable parameterized
by the treewidth of the input graph. In most cases, these results can be obtained by well-
understood dynamic programming techniques. In fact, Courcelle’s Theorem provide a clean
way of obtaining such results. If the dynamic programming needs to keep track of a per-
mutation, partition, or a matching at each node, then running time of such an algorithm is
typically of the form wO(w) ·nO(1) on graphs with treewidth w [64]. We demonstrate a prob-
lem where this form of running time is necessary for the solution and it cannot be improved
to 2o(w logw) · nO(1). We start with definitions of treewidth and pathwidth.

Definitions of Treewidth and Pathwidth. A tree decomposition of a graph G is a pair
(X , T) where T is a tree and X = {Xi | i ∈ V (T)} is a collection of subsets of V such that:

1.
⋃
i∈V (T)Xi = V ,

18

2. for each edge xy ∈ E, {x, y} ⊆ Xi for some i ∈ V (T);

3. for each x ∈ V the set {i | x ∈ Xi} induces a connected subtree of T .

The width of the tree decomposition is maxi∈V (T){|Xi| − 1}. The treewidth of a graph G
is the minimum width over all tree decompositions of G. We denote by tw(G) the treewidth
of graph G. If in the definition of treewidth we restrict the tree T to be a path then we get
the notion of pathwidth and denote it by pw(G).

Now we return to our problem. Given an undirected graph G and p vertex pairs (si, ti),
the Disjoint Paths problem asks whether there exists p mutually vertex disjoint paths
in G linking these pairs. This is one of the classic problems in combinatorial optimization
and algorithmic graph theory, and has many applications, for example in transportation
networks, VLSI layout, and virtual circuits routing in high-speed networks. The problem is
NP-complete if p is part of the input and remains so even if restrict the input graph to be
planar [47, 54]. However if p is fixed then the problem is famously fixed-parameter tractable
as a consequence of the seminal Graph Minors theory of Robertson and Seymour [63]. A
basic building block in their algorithm for Disjoint Paths is an algorithm for Disjoint
Paths on graphs of bounded treewidth. To our interest is the following parameterization of
Disjoint Paths.

Disjoint Paths
Input: A graph G together with a tree-decomposition of width w, and p

vertex pairs (si, ti).
Parameter: w

Question: Does there exist p mutually vertex disjoint paths in G linking si to
ti?

The best known algorithm for this problem runs in time 2O(w logw) · n [64] and here we
show that this is indeed optimal. To get this lower bound we first give a linear parameter
reduction from k × k Hitting Set to Directed Disjoint Paths, a variant of Disjoint
Paths where the input is a directed graph, parameterized by pathwidth of the underlying
undirected graph. Finally we obtain a lower bound of 2o(k log k)|V (G)|O(1) on Disjoint Paths
parameterized by pathwidth under the ETH, by giving a linear parameter reduction from
Directed Disjoint Paths parameterized by pathwidth to Disjoint Paths parameterized
by pathwidth. Obviously, this proves the same lower bound under the (potentially much
smaller) parameter treewidth as well.

Theorem 5.1. Assuming the ETH, there is no 2o(w logw)·nO(1) time algorithm for Directed
Disjoint Paths.

Proof. The key tool in the reduction from k×k Hitting Set to Directed Disjoint Paths
is the following gadget. For every k ≥ 1 and set S ⊆ [k]× [k], we construct the gadget Gk,S
the following way (see Figure 2 for illustration).

• For every 1 ≤ i ≤ k, it contains vertices ai, bi.

• For every 1 ≤ i, j ≤ k, it contains a vertex vi,j and edges −−−→aivi,j ,
−−−→
vi,jbj .

• For every 1 ≤ i ≤ k, it contains a directed path Pi = ci,0di,1v
∗
i,1ci,1 . . . di,kv

∗
i,kci,k.

• For every 1 ≤ i, j ≤ k, it contains vertices fi,j , f
1
i,j , f

2
i,j and edges

−−−→
bjfi,j ,

−−−−→
fi,jci,j ,

−−−−→
f1
i,jfi,j ,−−−−→

fi,jf
2
i,j ,
−−−−→
f1
i,jci,0,

−−−−−→
ci,j−1f

2
i,j .

• It contains two vertices s and t, and for every (i, j) ∈ S, there are two edges
−−→
sdi,j ,

−−→
di,jt.

19

c2,0

c2,1

c2,2

c2,3

d2,1

d2,2

d2,3

v∗2,1

v∗2,2

v∗2,3

a2

v2,1

v2,2

f2,1

b2 f2,2

b1
f1

2,2 f2
2,2

f1
1,2 f2

1,2

a1

a3 b3

s

t

P2

Figure 2: Part of the gadget G3,S with (2, 1), (2, 3) ∈ S. The highlighted paths satisfy the
demands (a2, c2,3), (f1

1,2, f
2
1,2), (f1

2,2, f
2
2,2) and (s, t).

The demand pairs in the gadget are as follows:

• For every 1 ≤ i ≤ k, there is a demand (ai, ci,k).

• For every 1 ≤ i, j ≤ k, there is a demand (f1
i,j , f

2
i,j).

• There is a demand (s, t).

This completes the description of the gadget. The intuition behind the construction is
the following. To satisfy the demand (ai, ci,k), the path needs to leave ai to vi,j for some
1 ≤ j ≤ k. Thus if a collection of paths form a solution for the gadget, then for every
1 ≤ i ≤ k, exactly one of the vertices vi,1, . . . , vi,k is used by the paths. We say that a
solution represents the mapping ρ : [k] → [k] if for every 1 ≤ i ≤ k, vertex vi,ρ(i) is used
by the paths in the solution. Moreover, if the path satisfying (ai, ci,k) leaves ai to vi,j , then
it enters the path Pi via the vertex fi,j , and reaches ci,k on the path Pi. In this case, the
demand (f1

i,j , f
2
i,j) cannot use vertex fi,j , and has to use the part of Pi from ci,0 to ci,j−1.

Then these two paths leave free only vertex v∗i,j of Pi and no other v∗. This means that the
vi,j and v∗i,j vertices behave exactly the opposite way: if vi,ρ(i) is used by the solution, then
every vertex v∗i,1, . . . , v∗i,k is used, with the exception of v∗i,j . The following claim formalizes
this important property of the gadget.

Claim 5.2. For every k ≥ 1 and S ⊆ [k]× [k], gadget Gk,S has the following properties:

1. For every ρ : [k] → [k] that hits S, gadget Gk,S has a solution that represents ρ, and
v∗i,ρ(i) is not used by the paths in the solution for any 1 ≤ i ≤ k.

2. If Gk,S has a solution that represents ρ, then ρ hits S and vertex v∗i,j is used by the
paths in the solution for every 1 ≤ i ≤ k and j 6= ρ(i).

20

Proof. To prove the first statement, we construct a solution the following way. Demand
(ai, ci,j) is satisfied by the path aivi,ρ(i)bρ(i)fi,ρ(i)ci,ρ(i) . . . ci,k, where we use a subpath of Pi
to go from ci,ρ(i) to ci,k. For every 1 ≤ i, j ≤ k, if j 6= ρ(i), then the demand (f1

i,j , f
2
i,j) is

satisfied by the path f1
i,jfi,jf

2
i,j . If j = ρ(i), then vertex fi,j is already used by the demand

(ai, ci,j). In this case demand (f1
i,j , f

2
i,j) is satisfied by the path f1

i,jci,0 . . . ci,j−1f
2
i,j . Finally,

as ρ hits S, there is a 1 ≤ i ≤ k such that (i, ρ(i)) ∈ S and hence the edges
−−−−→
sdi,ρ(i) and

−−−−→
di,ρ(i)t

exist. Therefore, we can satisfy the demand (s, t) via di,ρ(i). Note that this vertex is not used
by the other paths: the path satisfying demand (ai, ci,k) uses Pi only from ci,ρ(i) to ci,k, the
path satisfying demand (f1

i,ρ(i), f
2
i,ρ(i)) uses Pi from ci,0 to ci,ρ(i)−1, and no other path reaches

Pi. This also implies that v∗i,ρ(i) is used by none of the paths, as required.
For the second part, consider a solution of Gk,S representing some mapping ρ. This

means that the path of demand (ai, ci,k) uses vertex vi,ρ(i) and hence bi,ρ(i). The only way
to reach ci,k from bi,ρ(i) without going through any other terminal vertex is using the path
fi,ρ(i)ci,ρ(i) . . . ci,k. This means that demand (f1

i,ρ(i), f
2
i,ρ(i)) cannot use vertex fi,ρ(i), hence it

has to use the path f1
i,ρ(i)ci,0 . . . ci,ρ(i)−1f

2
i,ρ(i). It follows that for every 1 ≤ i ≤ k and j 6= ρ(i),

vertices di,j and v∗i,j are used by the paths satisfying demands (ai, ci,k) and (f1
i,ρ(i), f

2
i,ρ(i)).

This shows that every v∗i,j with j 6= ρ(i) is used by the paths in the solution. Moreover,
the path satisfying (s, t) has to go through vertex di,ρ(i) for some i. By the way the edges
incident to s and t are defined, this is only possible if ρ(i) ∈ S, that is, ρ hits S.

Let S1, . . . , Sm be the sets appearing in the k×k Hitting Set instance I. We construct
an instance ~I of Directed Disjoint Paths consisting of m gadgets G1, . . . , Gm, where
gadget Gt (1 ≤ t ≤ m) is a copy of the gadget Gk,Si

defined above. For every 1 ≤ t < m and
every 1 ≤ i, j ≤ k, we identify vertex v∗i,j of Gt and vertex vi,j of Gt+1. This completes the

description of the instance ~I of Directed Disjoint Paths.
We have to show that the pathwidth of the constructed graph ~G of ~I is O(k) and that

~I has a solution if and only if I has. To bound the pathwidth of ~G, for every 0 ≤ t ≤ m,
1 ≤ i, j ≤ k, let us define the bag Bt,i,j such that it contains vertices a1, . . . , ak, b1, . . . , bk, s,
t, fi,j , f

1
i,j , f

2
i,j , and the path Pi of gadget Gt (unless t = 0), and vertices a1, . . . , ak, b1, . . . ,

bk of gadget Gt+1 (unless t = m). It can be easily verified that the size of each bag is O(k)
and if two vertices are adjacent, then they appear together in some bag. Furthermore, if we
order the bags lexicographically according to (t, i, j), then each vertex appears precisely in
an interval of the bags. This shows that the pathwidth of ~G is O(k).

Next we show that if I has a solution ρ : [k]→ [k], then ~I also has a solution. As ρ hits
every St, by the first part of the Claim, each gadget Gt has a solution representing ρ. To
combine these solutions into a solution for ~I, we have to make sure that the vertices vi,j , v

∗
i,j

that were identified are used only in one gadget. Since the solution for gadget Gt represents
ρ, it uses vertices v1,ρ(i), . . . , vk,ρ(k), but no other vi,j vertex. As vertex vi,j of gadget Gt
was identified with vertex v∗i,j of gadget Gt−1, these vertices might be used by the solution of
Gt−1 as well. However, the solution of Gt−1 also represents ρ and as claimed in the first part
of the Claim, the solution does not use vertices v∗1,ρ(1), . . . , v

∗
k,ρ(k). Therefore, no conflict

arises between the solutions of Gt and Gt−1.
Finally, we have to show that a solution for ~I implies that a solution for I exists. We

say that a solution for ~I is normal with respect to Gt if the paths satisfying the demands in
Gt do not leave Gt (the vertices vi,j , v

∗
i,j that were identified are considered as part of both

gadgets, so we allow the paths to go through these vertices). We show by induction that the
solution for ~I is normal for every Gt. Suppose that this is true for Gt−1. If some path P
satisfying a demand in Gt leaves Gt, then it has to enter either Gt−1 or Gt+1. If P enters a

21

vertex of Gt+1 that is not in Gt, then it cannot go back to Gt: the only way to reach a vertex
vi,j of Gt+1 is from vertex ai, which has indegree 0. Therefore, let us suppose that P enters
Gt−1 at some vertex v∗i,j of Gt−1. The only way the path can return to Gt is via some vertex
v∗i,j′ of Gt−1 with j′ ≥ j. By the induction hypothesis, the solution is normal with respect
to Gt−1, thus the second part of the Claim implies that there is a unique j such that v∗i,j is
not used by the paths satisfying the demands in Gt−1. As P can use only this vertex v∗i,j ,
it follows that j′ = j and hence path P does not use any vertex of Gt−1 not in Gt, In other
words, P does not leave Gt.

Suppose now that the solution is normal with respect to every Gt, which means that
it induces a solution for every gadget. Suppose that the solution of gadget Gt represents
mapping ρt. We claim that every ρt is the same. Indeed, if ρt(i) = j, then the solution
of Gt uses vertex vi,j of Gt, which is identical to vertex v∗i,j of Gt−1. This means that the
solution of Gt−1 does not use v∗i,j , and by the second part of the Claim, this is only possible
if ρt−1(i) = j. Thus ρt−1 = ρt for every 1 < i ≤ m, let ρ be this mapping. Again by the
claim, ρ hits every set St in instance I, thus ρ is a solution of I.

For our main proof we will also need the following lemma.

Lemma 5.3 ([7]). Let G be a graph (possibly with parallel edges) having pathwidth at most
w. Let G′ be obtained from G by subdividing some of the edges. Then the pathwidth of G′ is
at most w + 1.

Theorem 5.4. Assuming the ETH, there is no 2o(w logw) ·nO(1) time algorithm for Disjoint
Paths.

Proof. Let ~I be a instance of Directed Disjoint Paths on a directed graph D having
pathwidth w. We transform D into an undirected graph G, where two adjacent vertices
vin, vout correspond to each vertex v of D, and if −→uv is an edge of D, then we introduce
a new vertex euv that is adjacent to both uout and vin. It is not difficult to see that the
pathwidth of G is at most 2w + 2 = O(w): G can be obtained from the underlying graph
of D by duplicating vertices (which at most doubles the size of each bag) and subdividing
edges (which increases pathwidth at most by one).

Let I be an instance of Disjoint Paths on G where there is a demand (vout, uin) cor-
responding to every demand of (v, u) of ~I. It is clear that if ~I has a solution, then I has a
solution as well: every directed path from u to v in D can be turned into a path connecting
uout and vin in G. However, the converse is not true: it is possible that an undirected path P
in G reaches vin from euv and instead of continuing to vout, it continues to some ewv. In this
case, there is no directed path corresponding to P in D. We add further edges and demands
to forbid such paths.

Let B1, . . . , Bn be a path decomposition of G having width w′ = O(w). For every vertex
x of G, let `(x) and r(x) be the index of the first and last bags, respectively, were x appears.
It is well-known that the decomposition can be chosen such that r(x) 6= r(y) for any two
vertices x and y.

We modify G to obtain a graph G′ the following way. If vertex v has d inneighbors u1, . . . ,
ud in D, then vin has d+ 1 neighbors in G: vout and d vertices eu1v, . . . , eudv. Suppose that
the neighbors of v are ordered such that r(eu1v) < · · · < r(eudv). We introduce 2d − 2 new
vertices vs1, . . . , vsd−1, vt1, . . . , vtd−1 such that vsi and vti are both adjacent to euiv and eui+1v.
For every 1 ≤ i ≤ d − 1, we introduce a new demand (vsi , v

t
i). Repeating this procedure for

every vertex v of D creates an instance I ′ of undirected Disjoint Paths on a graph G′.
We show that these new vertices and edges increase the pathwidth at most by a constant

factor. Observe that G′ can be obtained from G by adding two parallel edges between euiv

22

and eui+1v and subdividing them. Thus by Lemma 5.3, all we need to show is that adding
these new edges increases pathwidth only by a constant factor. If r(euiv) ≥ `(eui+1v), then the
parallel edges between euiv and eui+1v can be added without changing the path decomposition:
bag Br(eiv) contains both vertices. If r(euiv) < `(eui+1v), then let us insert vertex euiv into
every bag Bj for r(euiv) < j ≤ `(eui+1v). Now bag B`(eui+1v) contains both euiv and eui+1v,
thus we can add two parallel edges between them. Note that vertex vin appears in every bag
where euiv is inserted: if not, then either vin does not appear in bags with index at most
r(euiv), or it does not appear in bags with index at least `(eui+1v), contradicting the fact that
vin is adjacent to both euiv and eui+1v. Furthermore, vertices euiv and eujv are not inserted
into the same bag for any i 6= j: if j > i, then r(eujv) > r(eui+1v) ≥ `(eui+1v). Therefore,
the number of new vertices in each bag is at most the original size of the bag, i.e., the size
of each bag increases by at most a factor of 2.

We claim that I ′ has a solution if and only if ~I has. If ~I has a solution, then the directed
path satisfying demand (u, v) gives in a natural way an undirected path in G′ that satisfies
demand (uout, vin). Thus we can obtain a pairwise disjoint collection of paths that satisfy
the demands of the form (uout, vin). Note that if vout, eu1v, . . . , eudv are the neighbors of vin

in G′, then the paths in this collection use at most one of the vertices eu1v, . . . , eudv, say,
eujv. Now we can satisfy the demands (vsi , v

t
i) for every 1 ≤ i ≤ d − 1: for i < j, we can

use the path vsi euivv
t
i , and for i ≥ j, we can use the path vsi eui+1vv

t
i . Thus instance I ′ has a

solution.
For the other direction, suppose that I ′ has a solution. Let us call a path of this solution

a main path if it satisfies a demand of the form (uout, vin). We claim that if vin is an internal
vertex of a main path P , then P contains vout as well. Otherwise, P has to contain at least
two of the neighbors eu1v, . . . , eudv of vout. In this case, less than d− 1 vertices out of eu1v,
. . . , eudv remain available for the d− 1 demands (vs1, v

t
1), . . . , (vsd, v

t
d), a contradiction.

Consider a main path P that satisfies a demand (uout, vin) of I ′. Clearly, P cannot go
through any terminal vertex other than uout and vin. As u has indegree 0 in D, path P has
to go to some euw and then to win after starting from uout. By our claim in the previous
paragraph, the next vertex has to be wout, then again some ewz and zin and so on. Thus
there is a directed path in D that corresponds to P in G′. This means that directed paths
corresponding to the main paths of the solution for I ′ form a solution for ~I.

6 Chromatic Number

In this section, we give another lower bound result for a problem that is known to admit
an algorithm with running time wO(w) · nO(1) on graphs with treewidth w. In particular we
show that the running time cannot be improved to 2o(w logw) ·nO(1) unless the ETH collapses.
Given a graph G, a function f : V (G)→ {1, . . . , `}, is called an `-proper coloring of G, if for
any edge uv ∈ E(G), we have that f(u) 6= f(v). The chromatic number of a graph G is the
minimum positive integer ` for which G admits an proper `-coloring and is denoted by χ(G).
In the Chromatic Number problem, we are given a graph G and objective is to find the
value of χ(G). It is well known that if G has treewidth w then χ(G) ≤ w+ 1. Using, this we
can obtain an algorithm for Chromatic Number running in time wO(w) · nO(1) on graphs
with treewidth w [46]. We show that in fact this running time is optimal.

In what follows, we give a lower bound for a parameter even larger than the treewidth of
the input graph. Given a graph G, a subset of vertices C is called vertex cover if for every
uv ∈ E, either u ∈ C or v ∈ C. In other words, G− C is an independent set. In particular,
we will study the following parameterization of the problem.

23

Chromatic Number
Input: A graph G together with a vertex cover C of size at most k and a

positive integer `.
Parameter: k

Question: Is χ(G) ≤ `?

It is well known that if G has a vertex cover of size k, then its treewidth is upper bounded
by k + 1 and thus we can test whether χ(G) ≤ ` in time kO(k) · nO(1).

Theorem 6.1. Assuming the ETH, there is no 2o(k log k) · nO(1) time algorithm for Chro-
matic Number parameterized by vertex cover number.

Proof. We prove the theorem by a reduction from the k×k Permutation Clique problem.
Let (I, k) be an instance of k × k Permutation Clique consisting of a graph H over the
vertex set [k]× [k] and a positive integer k. Recall that in the k× k Permutation Clique
problem, the goal is to check whether there is a clique containing exactly one vertex from
each row, and containing exactly one vertex from each column. In other words, the vertices
selected in the solution are (1, ρ(1)), . . . , (k, ρ(k)) for some permutation ρ of [k].

Now we show how to construct the graph G, an input to Chromatic Number starting
from H. The vertex set of G consists of the following set of vertices and edges.

• We have two cliques Ca and Cb of size k. The vertex set of Cx, x ∈ {a, b}, consists of
{x1, . . . , xk}.

• For every i, j, x, y ∈ [k], i 6= j and x 6= y, for which (i, x) and (j, y) are not adjacent
in H, we have a new vertex wijxy. We first make wijxy adjacent to bi and bj . Finally, we

add edges between wijxy and {a1, . . . , ak} \ {ax, ay}.
This concludes the construction.

We now show that H has a permutation clique if and only if χ(G) = k. Let the vertices
selected in the permutation clique are (1, ρ(1)), . . . , (k, ρ(k)) for some permutation ρ of
[k]. Now we define a proper k-coloring of G. For every j ∈ [k], we color the vertex aj
with j and the vertex bj with ρ(j). The only vertices that are left uncolored are wijxy.

Observe that the only colors that we can use for wijxy are {x, y}. Thus, if we can show that
Z = {x, y} \ {ρ(i), ρ(j)} is non-empty then we can use any color in Z to color wijxy. But that
follows since there is an edge between (i, ρ(i)) and (j, ρ(j)) and there is no edge between
(i, x) and (j, y) by definition of wijxy.

Next we show the reverse direction. Let f be a proper k-coloring function for G. Without
loss of generality we can assume that f(aj) = j. For every i ∈ [k], define ρ(i) = f(bi).
Observe that since Cb is a clique and f is a proper k-coloring for H and hence in particular
for Cb, we have that ρ is a permutation of [k]. We claim that (1, ρ(1)), . . . , (k, ρ(k)) forms a
permutation clique of H. Towards this we only need to show that there is an edge between
every (i, ρ(i)) and (j, ρ(j)) in H. For contradiction assume that (i, ρ(i)) and (j, ρ(j)) are not
adjacent in H. Consider, the vertex wijρ(i)ρ(j) in G. It can only be colored with either ρ(i) or

ρ(j). However, f(bi) = ρ(i) and f(bj) = ρ(j). This contradicts the fact that f is a proper
k-coloring of G. This concludes the proof in the reverse direction.

Finally, observe that the vertices of Ca and Cb form a vertex cover for G of size 2k. The
claim in the previous paragraph shows that an algorithm finding a χ(G) solves the instance
(I, k) of k × k Permutation Clique. Note the number of vertices in G is bounded by
a polynomial in k and the vertex cover of G is bounded by 2k. Therefore a 2o(k log k)nO(1)

algorithm for Chromatic Number would give a 2o(k log k) algorithm for k×k Permutation
Clique, violating the ETH by Theorem 2.5.

24

7 Conclusion

In this paper we showed that several parameterized problems have slightly superexponential
running time unless the ETH fails. In particular we showed for four well-studied problems
arising in three different domains that the known superexponential algorithms are optimal:
assuming the ETH, there is no 2o(d log d) · |I|O(1) or 2o(d log |Σ|) · |I|O(1) time algorithm for
Closest String, 2o(d log d) · |I|O(1) time algorithm for Distortion, and 2o(w logw) · |I|O(1)

time algorithm for Disjoint Paths and Chromatic Number parameterized by treewidth.
We believe that many further results of this form can be obtained by using the framework
of the current paper. Two concrete problems that might be amenable to our framework are:

• Are the known parameterized algorithms for Point Line Cover [50, 41] and Di-
rected Feedback Vertex Set [15], parameterized by the solution size, running in
time 2O(k log k) · |I|O(1) optimal?

In the conference version of this paper [53], we asked further questions of this form, which
have been answered by now.

• Is the 2O(k log k) · |I|O(1) time parameterized algorithm for Interval Completion [65]
optimal? In 2016, Cao [13] showed that this is not the case: the problem can be solved
in single-exponential time 6k · nO(1). In fact, recently Bliznets et al. [8] obtained an

algorithm with running time kO(
√
k) · nO(1) for Interval Completion.

• Are the known parameterized algorithms for Hamiltonian Path [34], Connected
Vertex Cover [58] and Connected Dominating Set [24], parameterized by the
treewidth w of the input graph, running in time 2O(w logw) · |I|O(1) optimal? In 2011,
Cygan et al. introduced the technique of Cut & Count [19], which is able to give
2O(w) · |I|O(1) time randomized algorithms for all these problems. Later, deterministic
algorithms with this running time were found [9, 36]. Cygan et al. showed also that,
assuming the ETH, there is no 2o(w logw) ·nO(1) time algorithm for Cycle Packing on
graphs of treewidth w.

It seems that our paper raised awareness in the field of parameterized algorithms that tight
lower bounds are possible even for running times that may look somewhat unnatural, and
in particular if a problem can be solved in time 2O(k log k) · nO(1), then it is worth exploring
whether this can be improved to single-exponential or a lower bound can be proved. The
invention of the Cut & Count technique and the related results of Cygan et al. [19] seem to
be influenced by this realization. By now, there are other papers building on our work and
investigating the optimality of 2O(k log k) · nO(1) time algorithms in the context of bounded-
treewidth graphs or graph modification problems [10, 11, 61, 30]

References

[1] N. Alon, D. Lokshtanov, and S. Saurabh, Fast FAST, in Proceedings of the
36th International Colloquium, on Automata, Languages and Programming (ICALP),
vol. 5555 of Lecture Notes in Computer Science, Springer, 2009, pp. 49–58.

[2] N. Alon, R. Yuster, and U. Zwick, Color-coding, J. Assoc. Comput. Mach., 42
(1995), pp. 844–856.

25

[3] M. Bădoiu, J. Chuzhoy, P. Indyk, and A. Sidiropoulos, Low-distortion embed-
dings of general metrics into the line, in Proceedings of the 37th Annual ACM Sympo-
sium on Theory of Computing (STOC), ACM, 2005, pp. 225–233.

[4] M. Bădoiu, K. Dhamdhere, A. Gupta, Y. Rabinovich, H. Räcke, R. Ravi,
and A. Sidiropoulos, Approximation algorithms for low-distortion embeddings into
low-dimensional spaces, in Proceedings of the 16th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), ACM and SIAM, 2005, pp. 119–128.

[5] M. Bădoiu, P. Indyk, and A. Sidiropoulos, Approximation algorithms for embed-
ding general metrics into trees, in Proceedings of the 18th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), ACM and SIAM, 2007, pp. 512–521.

[6] A. Becker, R. Bar-Yehuda, and D. Geiger, Randomized algorithms for the loop
cutset problem, J. Artif. Intell. Res. (JAIR), 12 (2000), pp. 219–234.

[7] D. Bienstock, Graph searching, path-width, tree-width and related problems (a sur-
vey), in Reliability of computer and communication networks (New Brunswick, NJ,
1989), vol. 5 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., Amer. Math. Soc.,
Providence, RI, 1991, pp. 33–49.

[8] I. Bliznets, F. V. Fomin, M. Pilipczuk, and M. Pilipczuk, Subexponential pa-
rameterized algorithm for interval completion, in Proceedings of the 27th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), ACM and SIAM, 2016, pp. 1116–
1131.

[9] H. L. Bodlaender, M. Cygan, S. Kratsch, and J. Nederlof, Deterministic
single exponential time algorithms for connectivity problems parameterized by treewidth,
Inform. and Comput., 243 (2015), pp. 86–111.

[10] É. Bonnet, N. Brettell, O. Kwon, and D. Marx, Parameterized vertex dele-
tion problems for hereditary graph classes with a block property, in Proceedings of the
42nd International Workshop on Graph-Theoretic Concepts in Computer Science (WG),
vol. 9941 of Lecture Notes in Computer Science, Springer, 2016, pp. 233–244.

[11] H. Broersma, P. A. Golovach, and V. Patel, Tight complexity bounds for FPT
subgraph problems parameterized by the clique-width, Theor. Comput. Sci., 485 (2013),
pp. 69–84.

[12] L. Cai and D. W. Juedes, On the existence of subexponential parameterized algo-
rithms, J. Comput. Syst. Sci., 67 (2003), pp. 789–807.

[13] Y. Cao, Linear recognition of almost interval graphs, in Proceedings of the 27th An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA), ACM and SIAM, 2016,
pp. 1096–1115.

[14] J. Chen, I. A. Kanj, and G. Xia, Improved upper bounds for vertex cover, Theor.
Comput. Sci., 411 (2010), pp. 3736–3756.

[15] J. Chen, Y. Liu, S. Lu, B. O’Sullivan, and I. Razgon, A fixed-parameter algorithm
for the directed feedback vertex set problem, J. ACM, 55 (2008), pp. 21:1–21:19.

[16] Z. Chen, B. Ma, and L. Wang, A three-string approach to the closest string problem,
J. Comput. Syst. Sci., 78 (2012), pp. 164–178.

26

[17] W. J. Cook and P. D. Seymour, Tour merging via branch-decomposition, INFORMS
Journal on Computing, 15 (2003), pp. 233–248.

[18] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh, Parameterized Algorithms, Springer, 2015.

[19] M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk, J. M. M. van Rooij, and
J. O. Wojtaszczyk, Solving connectivity problems parameterized by treewidth in single
exponential time, in Proceedings of the 52nd Annual IEEE Symposium on Foundations
of Computer Science (FOCS), 2011, pp. 150–159.

[20] M. Cygan and M. Pilipczuk, Bandwidth and distortion revisited, Discrete Applied
Mathematics, 160 (2012), pp. 494–504.

[21] F. Dehne, M. Fellows, M. Langston, F. Rosamond, and K. Stevens, An
O(2O(k)n3) FPT algorithm for the undirected feedback vertex set problem, Theory Com-
put. Syst., 41 (2007), pp. 479–492.

[22] E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and D. M. Thilikos, Subexponential
parameterized algorithms on graphs of bounded-genus and H-minor-free graphs, Journal
of the ACM, 52 (2005), pp. 866–893.

[23] E. D. Demaine and M. Hajiaghayi, Fast algorithms for hard graph problems: Bidi-
mensionality, minors, and local treewidth, in Proceedings of the 12th International Sym-
posium on Graph Drawing (GD), vol. 3383 of Lecture Notes in Computer Science, 2004,
pp. 517–533.

[24] , Bidimensionality: new connections between fpt algorithms and ptass, in Proceed-
ings of the 16th Annual ACM-SIAM Symposium on Discrete algorithms (SODA), ACM
and SIAM, 2005, pp. 590–601.

[25] X. Deng, G. Li, Z. Li, B. Ma, and L. Wang, A PTAS for distinguishing (sub)string
selection, in Proceedings of the 29th International Colloquium, on Automata, Languages
and Programming (ICALP), vol. 2380 of Lecture Notes in Computer Science, Springer,
2002, pp. 740–751.

[26] F. Dorn, Planar subgraph isomorphism revisited, in Proceedings of the 27th Inter-
national Symposium on Theoretical Aspects of Computer Science (STACS), vol. 5 of
LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010, pp. 263–274.

[27] F. Dorn, E. Penninkx, H. L. Bodlaender, and F. V. Fomin, Efficient exact
algorithms on planar graphs: Exploiting sphere cut decompositions, Algorithmica, 58
(2010), pp. 790–810.

[28] R. G. Downey and M. R. Fellows, Parameterized computational feasibility, in Pro-
ceedings of the Second Cornell Workshop on Feasible Mathematics, P. Clote and J. Rem-
mel, eds., Feasible Mathematics II, Birkhauser Boston, 1995, pp. 219–244.

[29] R. G. Downey and M. R. Fellows, Parameterized Complexity, Monographs in
Computer Science, Springer, New York, 1999.

[30] P. G. Drange, M. S. Dregi, and P. van ’t Hof, On the computational complexity
of vertex integrity and component order connectivity, in Proceedings of the 25th Inter-
national Symposium on Algorithms and Computation (ISAAC), vol. 8889 of Lecture
Notes in Computer Science, Springer, 2014, pp. 285–297.

27

[31] D. Eppstein, Subgraph isomorphism in planar graphs and related problems, J. Graph
Algorithms Appl., 3 (1999).

[32] P. A. Evans, A. D. Smith, and H. T. Wareham, On the complexity of finding
common approximate substrings, Theoret. Comput. Sci., 306 (2003), pp. 407–430.

[33] M. R. Fellows, F. V. Fomin, D. Lokshtanov, E. Losievskaja, F. A. Rosa-
mond, and S. Saurabh, Distortion is fixed parameter tractable, TOCT, 5 (2013),
pp. 16:1–16:20.

[34] J. Flum and M. Grohe, Parameterized Complexity Theory, Springer, Berlin, 2006.

[35] J. Flum, M. Grohe, and M. Weyer, Bounded fixed-parameter tractability and log2

nondeterministic bits, J. Comput. Syst. Sci., 72 (2006), pp. 34–71.

[36] F. V. Fomin, D. Lokshtanov, F. Panolan, and S. Saurabh, Efficient computation
of representative families with applications in parameterized and exact algorithms, J.
ACM, 63 (2016), pp. 29:1–29:60.

[37] F. V. Fomin, D. Lokshtanov, and S. Saurabh, An exact algorithm for minimum
distortion embedding, Theor. Comput. Sci., 412 (2011), pp. 3530–3536.

[38] M. L. Fredman, J. Komlós, and E. Szemerédi, Storing a sparse table with o(1)
worst case access time, J. ACM, 31 (1984), pp. 538–544.

[39] J. Gramm, J. Guo, and R. Niedermeier, On exact and approximation algorithms for
distinguishing substring selection, in Proceedings of the 14th International Symposium
on Fundamentals of Computation Theory (FCT), vol. 2751 of Lecture Notes in Computer
Science, Springer, 2003, pp. 195–209.

[40] J. Gramm, R. Niedermeier, and P. Rossmanith, Fixed-parameter algorithms for
closest string and related problems, Algorithmica, 37 (2003), pp. 25–42.

[41] M. Grantson and C. Levcopoulos, Covering a set of points with a minimum number
of lines, in Proceedings of the 6th Italian Conference on Algorithms and Complexity
(CIAC), vol. 3998 of Lecture Notes in Computer Science, 2006, pp. 6–17.

[42] J. Guo, J. Gramm, F. Hüffner, R. Niedermeier, and S. Wernicke,
Compression-based fixed-parameter algorithms for feedback vertex set and edge bipar-
tization, J. Comput. Syst. Sci., 72 (2006), pp. 1386–1396.

[43] A. Gupta, I. Newman, Y. Rabinovich, and A. Sinclair, Cuts, trees and `1-
embeddings of graphs, Combinatorica, 24 (2004), pp. 233–269.

[44] R. Impagliazzo, R. Paturi, and F. Zane, Which problems have strongly exponential
complexity?, J. Comput. System Sci., 63 (2001), pp. 512–530.

[45] P. Indyk, Algorithmic applications of low-distortion geometric embeddings, in Proceed-
ings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS), IEEE,
2001, pp. 10–33.

[46] K. Jansen and P. Scheffler, Generalized coloring for tree-like graphs, Discrete Ap-
plied Mathematics, 75 (1997), pp. 135–155.

28

[47] R. M. Karp, On the computational complexity of combinatorial problems, Netwroks, 5
(1975), pp. 45–68.

[48] C. Kenyon, Y. Rabani, and A. Sinclair, Low distortion maps between point sets,
in Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC),
ACM, 2004, pp. 272–280.

[49] J. K. Lanctot, M. Li, B. Ma, S. Wang, and L. Zhang, Distinguishing string
selection problems, Inform. and Comput., 185 (2003), pp. 41–55.

[50] S. Langerman and P. Morin, Covering things with things, Discrete & Computational
Geometry, 33 (2005), pp. 717–729.

[51] M. Li, B. Ma, and L. Wang, On the closest string and substring problems, J. ACM,
49 (2002), pp. 157–171.

[52] N. Linial, Finite metric-spaces—combinatorics, geometry and algorithms, in Proceed-
ings of the International Congress of Mathematicians, Vol. III, Beijing, 2002, Higher Ed.
Press, pp. 573–586.

[53] D. Lokshtanov, D. Marx, and S. Saurabh, Slightly superexponential parameter-
ized problems, in Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), ACM-SIAM, 2011, pp. 760–776.

[54] J. F. Lynch, The equivalence of theorem proving and the interconnection problem, ACM
SIGDA Newsletter, 5 (1975), pp. 31–65.

[55] B. Ma and X. Sun, More efficient algorithms for closest string and substring problems,
SIAM J. Comput., 39 (2009), pp. 1432–1443.

[56] D. Marx, Closest substring problems with small distances, SIAM Journal on Comput-
ing, 38 (2008), pp. 1382–1410.

[57] B. Monien, How to find long paths efficiently, in Analysis and design of algorithms for
combinatorial problems (Udine, 1982), vol. 109 of North-Holland Math. Stud., North-
Holland, Amsterdam, 1985, pp. 239–254.

[58] H. Moser, Exact algorithms for generalizations of vertex cover, Institut für Informatik,
Friedrich-Schiller-Universität Jena, 2005.

[59] M. Naor, L. J. Schulman, and A. Srinivasan, Splitters and near-optimal deran-
domization, in Proceedings of the 36th IEEE Symposium on Foundations of Computer
Science (FOCS), IEEE, 1995, pp. 182–191.

[60] R. Niedermeier, Invitation to fixed-parameter algorithms, vol. 31 of Oxford Lecture
Series in Mathematics and its Applications, Oxford University Press, Oxford, 2006.

[61] M. Pilipczuk, Problems parameterized by treewidth tractable in single exponential time:
A logical approach, in Proceedings of the 36th International Symposium on Mathemati-
cal Foundations of Computer Science (MFCS), vol. 6907 of Lecture Notes in Computer
Science, Springer, 2011, pp. 520–531.

[62] B. Reed, K. Smith, and A. Vetta, Finding odd cycle transversals, Operations Re-
search Letters, 32 (2004), pp. 299–301.

29

[63] N. Robertson and P. D. Seymour, Graph minors XIII. The disjoint paths problem,
J. Comb. Theory, Ser. B, 63 (1995), pp. 65–110.

[64] P. Scheffler, A practical linear time algorithm for disjoint paths in graphs with
bounded tree-width, FU Berlin, Fachbereich 3 Mathematik, Tech. Rep. 396/1994 (1994).

[65] Y. Villanger, P. Heggernes, C. Paul, and J. A. Telle, Interval completion is
fixed parameter tractable, SIAM J. Comput., 38 (2009), pp. 2007–2020.

[66] L. Wang and B. Zhu, Efficient algorithms for the closest string and distinguishing
string selection problems, in Proceedings of the 3rd International Workshop on Frontiers
in Algorithmics (FAW), vol. 5598 of Lecture Notes in Computer Science, Springer, 2009,
pp. 261–270.

[67] M. Xiao, Simple and improved parameterized algorithms for multiterminal cuts, Theory
Comput. Syst., 46 (2010), pp. 723–736.

30

