On the hardness of losing weight*

Andrei Krokhin! and Déniel Marx?

! Department of Computer Science, Durham University, Durham, DH1 3LE, UK
andrei.krokhin@durham.ac.uk
2 Department of Computer Science and Information Theory, Budapest University of
Technology and Economics, H-1521 Budapest, Hungary
dmarx@cs.bme.hu

Abstract. We study the complexity of local search for the Boolean con-
straint satisfaction problem (CSP), in the following form: given a CSP
instance, that is, a collection of constraints, and a solution to it, the
question is whether there is a better (lighter, i.e., having strictly less
Hamming weight) solution within a given distance from the initial so-
lution. We classify the complexity, both classical and parameterized, of
such problems by a Schaefer-style dichotomy result, that is, with a re-
stricted set of allowed types of constraints. Our results show that there
is a considerable amount of such problems that are NP-hard, but fixed-
parameter tractable when parameterized by the distance.

1 Introduction

Local search is one of the most widely used approaches to solving hard optimiza-
tion problems. The basic idea of local search is that one tries to iteratively im-
prove a current solution by searching for better solutions in its (k-)neighborhood
(i.e., within distance k from it). Any optimization algorithm can be followed by a
local search phase, thus the problem of finding a better solution locally is of prac-
tical interest. As a brute force search of a k-neighborhood is not feasible for large
k, thus it is natural to study the complexity of searching the k-neighborhood.

The constraint satisfaction problem (CSP) provides a framework in which it is
possible to express, in a natural way, many combinatorial problems encountered
in artificial intelligence and computer science. A CSP instance is represented by
a set of variables, a domain of values for each variable, and a set of constraints
on the variables. The basic aim is then to find an assignment of values to the
variables that satisfies the constraints. Boolean CSP (when all variables have
domain {0, 1}) is a natural generalization of SAT where constraints are given by
arbitrary relations, not necessarily by clauses. Local search methods for SAT and
CSP are very extensively studied (see, e.g., [5,9,10,11]).

Complexity classifications for various versions of (Boolean) CSP have recently
attracted massive attention from researchers, and one of the most popular direc-
tions here is to characterise restrictions on the type of constraints that lead to

* The first author is supported by UK EPSRC grants EP/C543831/1 and
EP/C54384X/1; the second author is supported by the Magyary Zoltan Fels6oktatési
Kozalapitvdny and the Hungarian National Research Fund (OTKA grant 67651).

problems with lower complexity in comparison with the general case (see [2,3]).
Such classifications are sometimes called Schaefer-style because the first clas-
sification of this type was obtained by T.J. Schaefer in his seminal work [15].
A local-search related Schaefer-style classification for Boolean MAX CSP was
obtained in [1], in the context of local search complexity classes such as PLS.

The hardness of searching the k-neighborhood (for any optimisation problem)
can be studied very naturally in the framework of parameterized complexity [6,8],
as suggested in [7]; such a study for the traveling salesman problem (TSP) was re-
cently performed in [14]. Parameterized complexity studies hardness in finer de-
tail than classical complexity. Consider, for example, two standard NP-complete
problems MINIMUM VERTEX COVER and MAXIMUM CLIQUE. Both have the
natural parameter k: the size of the required vertex cover/clique. Both problems
can be solved in n°%*) time by complete enumeration. Notice that the degree of
the polynomial grows with k, so the algorithm becomes useless for large graphs,
even if k is as small as 10. However, MINIMUM VERTEX COVER can be solved
in time O(2* - n?) [6,8]. In other words, for every fixed cover size there is a
polynomial-time (in this case, quadratic) algorithm solving the problem where
the degree of the polynomial is independent of the parameter. Problems with this
property are called fixed-parameter tractable. The notion of W[1]-hardness in
parameterized complexity is analogous to NP-completeness in classical complex-
ity. Problems that are shown to be W[1]-hard, such as MaXxiMmuM CLIQUE [6,8],
are very unlikely to be fixed-parameter tractable. A Schaefer-style classification
of the basic Boolean CSP with respect to parameterized complexity (where the
parameter is the required Hamming weight of the solution) was obtained in [13].

In this paper, we give a Schaefer-style complexity classification for the follow-
ing problem: given a collection of Boolean constraints, and a solution to it, the
question is whether there is a better (i.e., with smaller Hamming weight) solution
within a given (Hamming) distance k from the initial solution. We obtain classi-
fication results both for classical (Theorem 9) and for parameterized complexity
(Theorem 3). However, we would like to point out that it makes much more sense
to study this problem in the parameterized setting. Intuitively, if we are able to
decide in polynomial time whether there is a better solution within distance k,
then this seems to be almost as powerful as finding the best solution (although
there are technicalities such as whether there is a feasible solution at all). Our
classification confirms this intuition: searching the k-neighborhood is polynomial-
time solvable only in cases where finding the optimum is also polynomial-time
solvable. On the other hand, there are cases (for example, 1-IN-3 SAT or affine
constraints of fixed arity) where the problem of finding the optimum is NP-hard,
but searching the k-neighborhood is fixed-parameter tractable. This suggests
evidence that parameterized complexity is the right setting for studying local
search.

The paper is organized as follows. Section 2 reviews basic notions of param-
eterized complexity and Boolean CSP. Section 3 presents the classificiation with
respect to fixed-parameter tractability, while Section 4 deals with polynomial-
time solvability. The proofs omitted from Section 4 will appear in the full version.

2 Preliminaries

Boolean CSP. A formula ¢ is a pair (V,C) consisting of a set V' of variables
and a set C of constraints. Each constraint ¢; € C' is a pair (3;, R;), where 3; =
(@15 --.,Tipr,) is an r;-tuple of variables (the constraint scope) and R; C {0,1}"
is an r;-ary Boolean relation (the constraint relation). A function f: V — {0,1}
is a satisfying assignment of ¢ if (f(zi1),..., f(zir,)) is in R; for every ¢; € C.
Let I" be a set of Boolean relations. A formula is a I'-formula if every constraint
relation R; is in I'. In this paper, I is always a finite set. The (Hamming) weight
w(f) of assignment f is the number of variables x with f(x) = 1. The distance
dist(f1, f2) of assignments f1, f2 is the number of variables x with fi(z) # fa(x).

We recall various standard definitions concerning Boolean constraints (cf. [3]):

— R is O-valid if (0,...,0) € R.

Ris 1-valid if (1,...,1) € R.

R is Horn or weakly negative if it can be expressed as a conjunction of clauses

such that each clause contains at most one positive literal. It is known that R

is Horn if and only if it is min-closed: if (a1, ...,a,) € Rand (b1,...,b.) € R,

then (min(ay,by),...,min(a,,b,)) € R.

— R is affine if it can be expressed as a conjunction of constraints of the form
x1+x2+---+x = b, where b € {0, 1} and addition is modulo 2. The number
of tuples in an affine relation is always an integer power of 2.

— R is width-2 affine if it can be expressed as a conjunction of constraints of
the form z =y and = # y.

— R is IHS-B— (or implicative hitting set bounded) if it can be represented by
a conjunction of clauses of the form (z), (x — y) and (-z1 V... —x,), n > 1.

— The relation Rp.y.q (for 1 < p < g) has arity ¢ and Rp..q(21,...,24) is true
if and only if exactly p of the variables z1, ..., x, have value 1.

The following definition is new in this paper. It plays a crucial role in char-
acterizing the fixed-parameter tractable cases for local search.

Definition 1. Let R be a Boolean relation and (ai,...,a.) € R. A set S C
{1,...,7} 4s a flip set of (a1,...,a,) (with respect to R) if (b1,...,b.) € R
where b; =1 —a; fori €S and b; = a; fori & S. We say that R is flip separable
if whenever some (ai,...,a,) € R has two flip sets Sy,S2 with S; C Sa, then
Sa \ S1 is also a flip set for (ay,...,a,).
It is easy to see that Rj 3 is flip separable: every flip set has size exactly 2,
hence S; C S3 is not possible. Moreover, R,.v.q is also flip separable for every
p < q. Affine constraints are also flip separable: to see this, it is sufficient to
verify the definition only for the constraint z; +--- + =, = 0.

The basic problem in CSP is to decide if a formula has a satisfying assign-
ment:

CSP(IN)
Input: A I'formula ¢.

Question: Does ¢ have a satisfying assignment?

Schaefer completely characterized the complexity of CSP(I") for every finite
set I' of Boolean relations [15]. In particular, every such problem is either in
PTIME or NP-complete, and there is a very clear description of the boundary
between the two cases.

Optimization versions of Boolean CSP were investigated in [3,4]. A straight-
forward way to obtain an optimization problem is to relax the requirement that
every constraint is satisfied, and ask for an assignment maximizing the number
of satisfied constraints. Another possibility is to ask for a solution with mini-
mum/maximum weight. In this paper, we investigate the problem of minimizing
the weight. As we do not consider the approximability of the problem, we define
here only the decision version:

MIN-ONEs(I")
Input: A I'-formula ¢ and an integer W.
Question: Does ¢ have a satisfying assignment [with w(f) < W?

The characterization of the approximability of finding a minimum weight
satisfying assignment for a I'-formula can be found in [3]. Here we state only the
classification of polynomial-time solvable and NP-hard cases:

Theorem 2 ([3]). Let I' be a finite set of Boolean relations. MIN-ONES(I") is
solvable in polynomial time if one the following holds, and NP-complete other-
wise:

— FEvery R € I' is 0-valid.
— Fvery R € I' ws Horn.
— FEvery R € I' is width-2 affine.

A Schaefer-style characterization of the approximability of finding two sat-
isfying assignments to a formula with a largest distance between them was ob-
tained in [4], motivated by the blocks world problem from KR, while a Schaefer-
style classification of the problem of deciding whether a given satisfying assign-
ment to a given CSP instance is component-wise minimal was presented in [12],
motivated by the circumscription formalism from Al

The main focus of the paper is the local search version of minimizing weight:

LS-CSP(I)
Input: A I'-formula ¢, a satisfying assignment f, and an integer k.

Question: Does ¢ have a satisfying assignment f’ with w(f’') < w(f)
and dist(f, f') < k?

LS in the above problem stands for both “local search” and “lighter solution.”
Observe that the satisfying assignments of an (z V y)-formula correspond to
the vertex covers of the graph where the variables are the vertices and the edges
are the constraints. Thus LS-CSP({z V y}) is the problem of reducing the size
of a (given) vertex cover by including and excluding a total of at most k vertices.

As we shall see (Lemma T7), this problem is W[1]-hard, even for bipartite graphs.
Since the complement of an independent set is a vertex cover and vice versa, a
similar W[1]-hardness result follows for increasing an independent set.

Parameterized complexity. In a parmeterized problem, each instance con-
tains an integer k called the parameter. A parameterized problem is fized-param-
eter tractable (FPT) if it can be solved by an algorithm with running time
f(k) - n°, where n is the length of the input, f is an arbitrary (computable)
function depending only on k, and c is a constant independent of k.

A large fraction of NP-complete problems is known to be FPT. On the other
hand, analogously to NP-completeness in classical complexity, the theory of
W[1]-hardness can be used to give strong evidence that certain problems are
unlikely to be fixed-parameter tractable. We omit the somewhat technical defi-
nition of the complexity class W[1], see [6,8] for details. Here it will be sufficient
to know that there are many problems, including MAXiMUM CLIQUE, that were
proved to be W/l]-hard. To prove that a parameterized problem is W([1]-hard,
we have to present a parameterized reduction from a known W/[1]-hard problem.
A parameterized reduction from problem L; to problem Ls is a function that
transforms a problem instance x of L with parameter k into a problem instance
a2’ of Lo with parameter k' in such a way that

— 7' is a yes-instance of Lo if and only if x is a yes-instance of L1,

— k' can be bounded by a function of k, and

— the transformation can be computed in time f(k) - |z|¢ for some constant ¢
and function f(k).

It is easy to see that if there is a parameterized reduction from L; to Lo, and
Lo is FPT, then it follows that Ly is FPT as well.

3 Characterizing fixed-parameter tractability

In this section, we completely characterize those finite sets I" of Boolean relations
for which LS-CSP(I') is fixed-parameter tractable.

Theorem 3. Let I be a finite set of Boolean relations. The problem LS-CSP(I")
is in FPT if every relation in I' is Horn or every relation in I is flip separable.
In all other cases, LS-CSP(I") is W[1]-hard.

First we handle the fixed-parameter tractable cases (Lemmas 4 and 6)

Lemma 4. If I is finite and every R € I' is Horn, then LS-CSP(I") is FPT.

Proof. If there is a solution f’ for the LS-CSP(I") instance (&, f, k), then we can
assume f'(z) < f(x) for every variable z: by defining f”(z) := min{ f(x), f'(z)},
we get that f” is also satisfying (as every R € I" is min-closed) and dist(f”, f) <
dist(f’, f). Thus we can restrict our search to solutions that can be obtained from
f by changing some 1’s to 0’s, but every 0 remains unchanged.

Since w(f’) < w(f), there is a variable x with f(x) = 1 and f’(z) = 0. For
every variable x with f(z) = 1, we try to find a solution f’ with f/(x) = 0 using

a simple bounded-height search tree algorithm. For a particular x, we proceed as
follows. We start with initial assignment f. Change the value of = to 0. If there
is a constraint {((z1,...,x,), R) that is not satisfied by the new assignment, then
we select one of the variables z1, ..., z, that has value 1, and change it to 0.
Thus at this point we branch into at most r — 1 directions. If the assignment
is still not satisfying, the we branch again on the variables of some unsatisfied
constraint. The branching factor of the resulting search tree is at most ryax — 1,
where 7yax is the maximum arity of the relations in I'. By the observation above,
if there is a solution, then we find a solution on the first k& levels of the search
tree. Therefore, we can stop the search on the k-th level, implying that we visit
at most (rmax — 1)k+1 nodes of the search tree. The work to be done at each
node is polynomial in the size n of the input, hence the total running time is

(Pmax — 1)1 . nOM), O

If every R € I' is not only Horn, but THS-B— (which is a subset of Horn), then
the algorithm of Lemma 4 actually runs in polynomial time:

Corollary 5. If every R € I' is IHS-B—, then LS-CSP(I") is in PTIME.

Proof. We can assume that every constraint is either (x), (x — y), or (T V---V
Z,). If a constraint (Z; V - -V Z,) is satisfied in the initial assignment f, then it
remains satisfied after changing some 1’s to 0. Observe that if a constraint (z) or
(x — y) is not satisfied, then at most one variable has the value 1. Thus there is
no branching involved in the algorithm of Lemma 4, making it a polynomial-time
algorithm. O

For flip separable relations, we give a very similar branching algorithm. How-
ever, in this case the correctness of the algorithm requires a nontrivial argument.

Lemma 6. If I is finite and every R € I is flip separable, then LS-CSP(I") is
FPT.

Proof. Let (¢, f,k) be an instance of LS-CSP(I"). If w(f’) < w(f) for some
assignment f’, there there is a variable with f(z) = 1 and f’(z) = 0. For
every variable x with f(z) = 1, we try to find a solution f’ with f’(x) = 0 using
a simple bounded-height search tree algorithm. For each such x, we proceed
as follows. We start with the initial assignment f and set the value of = to 0.
Iteratively do the following: (a) if there is a constraint in ¢ that is not satisfied
by the current assignment and such that the value of some variable in it has not
been flipped yet (on this branch), then we select one of such variables, and flip
its value; (b) if there is no such constraint, but the current assignment is not
satisfying then we move to the next branch; (c¢) if every constraint is satisfied,
then either we found a required solution or else we move to the next branch. If
a required solution is not found on the first k levels of the search tree then the
algorithm reports that there is no required solution.

Assume that (¢, f,k) is a yes-instance. We claim that if f’ is a required
solution with minimal distance from f, then some branch of the algorithm finds
it. Let X be the set of variables on which f and f” differ, so | X| < k. We now show

that on the first k levels of the search tree, the algorithm finds some satisfying
assignment fp (possibly heavier than f) that differs from f only on a subset
Xp C X of variables. To see this, assume that at some node of the search tree,
the current assignment differs from the initial assignment only on a subset of X;
we show that this remains true for at least one child of the node. If we branch
on the variables (21, ..., ;) of an unsatisfied constraint, then at least one of its
variables, say x;, has a value different from f’ (as f’ is a satisfying assignment).
It follows that x; € X: otherwise the current value of x; is f(z;) (since so far
we changed variables only in X) and f(z;) = f/(z;) (by the definition of X),
contradicting the fact that current value of z; is different from f(z;). Thus if we
change variable x;, it remains true that only variables from X are changed. Since
|X| < k, this branch of the algorithm has to find some satisfying assignment fo.

If w(fo) < w(f), then, by the choice of f’, we must have fo = f’. Otherwise,
let Xog € X be the set of variables where f and fy differ and let f” be the
assignment that differs from f exactly on the variables X \ Xg. From the fact that
every constraint is flip separable, it follows that f” is a satisfying assignment.
We claim that w(f”) < w(f). Indeed, if changing the values of the variables in X
decreases the weight and changing the values in X does not decrease the weight,
then the set X \ X has to decrease the weight. This contradicts the assumption
that f’ is a solution whose distance from f is minimal: f” is a solution with
distance | X \ Xo| < |X|. Thus it is sufficient to investigate only the first k levels
of the search tree. As in the proof of Lemma 4, the branching factor of the tree
is at most ryay — 1, and the algorithm runs in time (rpa — 1)+ - nOM), O

All the hardness proofs in this section are based on the following lemma:

Lemma 7. LS-CSP({z V y}) is W[1]-hard.

Proof. The proof is by reduction from a variant of MAXIMUM CLIQUE: given a
graph G(V, E) with a distinguished vertex x and an integer ¢, we have to decide
whether G has a clique of size ¢ that contains z. It is easy to see that this problem
is W[1]-hard. Furthermore, it can be assumed that ¢ is odd. Let n be the number
of vertices of G and let m be the number of edges. We construct a formula ¢ on
m + n(t —1)/2 — 1 variables and a satisfying assignment f such that G has a
clique of size ¢ containing x if and only if ¢ has a satisfying assignment f’ with
w(f") < w(f) and distance at most k :=¢(t — 1) — 1 from f.
Let d := (t — 1)/2 (note that ¢ is odd). The formula ¢ has d variables vy,
.., vq for each vertex v # x of G and a variable u. for each edge e of G. The
distinguished vertex x has only d — 1 variables x1, ..., z4_1. If a vertex v is the
endpoint of an edge e, then for every 1 <i<d (or 1 <i<d-—1,if v =2x), we
add the constraint u. V v;. Thus each variable u, is in 2d — 1 or 2d constraints
(depending on whether z is the endpoint of e or not). Set f(u.) = 1 for every
e € FE and f(v;) = 0 for every v € V, 1 < i < d. Clearly, f is a satisfying
assignment.
Assume that G has a clique K of size ¢ that includes z. Set f’(v;) = 1 for
every v € K (1 <i<d) and set f/'(ue) = 0 for every edge e¢ in K; let f’ be the
same as f on every other variable. Observe that f’ is also a satisfying assignment:

if a variable u. was changed to 0 and there is a constraint u. V v;, then v € K
and hence f'(v;) = 1. We have w(f’) < w(f): dt — 1 variables were changed to
1 (note that = € K) and ¢(t — 1)/2 = dk variables were changed to 0. Moreover,
the distance of f and f’is exactly dt —1+¢(t —1)/2=t(t—1)—1=k.
Assume now that f’ satisfies the requirements. Let K be the set of those
vertices v in G for which f/(v;) = 1 for every i. We claim that K is a clique of
size t in G. Observe that there are at least d| K|—1 variables v; with f(v;) > f(v;)
and f'(u.) < f(u.) is possible only if both endpoints of e are in K, i.e., e is in
the set E(K) of edges in K. Thus w(f’) < w(f) implies d|K| -1 < |E(K)| <
|K|(|K| — 1)/2, which is only possible if |[K| > 2d + 1 = t. If |K| > ¢, then
f(v;) > f(v;) for at least (¢ + 1)d — 1 variables, hence there must be at least
that many variables u, with f’(u.) < f(u.). Thus the distance of f and f’ is at
least 2(t+1)d—2 > t(t— 1) — 1. Therefore, we can assume |K|=t. Now dt—1 <
|[E(K)| < |K|(|]K| —1)/2 = t(t — 1)/2 is only possible if |E(K)| = t(t — 1)/2
(i.e., K is a clique) and it follows that there are exactly dt — 1 variables v; with
f(vi) > f(w) (ie., z € K). O

Now we are ready to present the main hardness proof of the section:
Lemma 8. If I' contains a relation Ry that is not Horn and a relation Ry that

is not flip separable, then LS-CSP(I") is W[1]-hard.

Proof. The proof is by reduction from LS-CSP({z V y}). Let (¢1, f1,k) be an
instance of LS-CSP({z V y}), i.e., every constraint relation in formula ¢; =
(V,C) is (x V y). Since Ry is not min-closed, we can assume (by permuting the
variables) that for some ri,ry > 1, r3,74 > 0, if we define

T1 T2 T3 T4

R =R
1(x7yaw05w1) - I(I)'"7l‘aya'"7y7w07"'7w05w15"'7w1)7

then (0,1,0,1),(1,0,0,1) € R}, but (0,0,0,1) € R}. Since R} is obtained from
R; by identifying variables, we can use the relation R} when specifying instances
of LS-CSP(I"). We consider two cases:

Case 1: (1,1,0,1) € R}. In this case Rj(z,y,0,1) = x V y, hence it is
easy to simulate LS-CSP({z V y}). The only difficulty is how to simulate the
constants 0 and 1. We do this as follows. Let us construct a formula ¢ that
has every variable of V' and new variables ¢j), ¢] for every 1 < j < k+ 1 (these
new variables will play the role of the constants). We define assignment f of
¢2 by setting fa(x) = fi(z) for x € V and fa(g)) = 0 and fa(q]) = 1 for
1<j<k+1.Forl<a,b,c<k+1, weadd constraint c} be = Ry (g%, 48,45, q5);
it is clearly satisfied by assignment fo. To simulate a constraint z V y, we add
Chyy = B1(2,y, 40, 1) for every 1 < j <k + 1.

It is easy to see that if there is a solution f] for the original instance (¢1, f1, k),
then by setting f}(z) = fi(z) for every z € V and f5(q)) = 0, f4(q]) = 1 for
every 1 < j < k+1 gives a solution f} for the constructed instance (¢2, f2, k). We
claim the converse is also true: if f} is a solution for the instance (¢2, f2, k), then
the restriction fi of f} to V gives a solution for (¢1, f1,k). Since the distance
of fo and f} is at most k, there are 1 < b,c < k + 1 with fi(q}) = 0 and

f5(qf) = 1. Because of the constraint ¢ , ., we have that f5(¢f) = 1 for every
1 <a<k+1 Tt follows that f} restricted to V is a satisfying assignment of
¢1: for every constraint x V y € C, the constraint ci’y’b prevents the possibility
f4(x) = F4(y) = 0. We have seen that f5(q}) > fo(dh) and fi(gl) > fo(q]) for
every 1 <j < k+ 1. Now w(f4) < w(f2) implies that the weight of f; on V has
to be less than the weight of fo on V. Thus w(f]) < w(f1)-

Case 2: (1,1,0,1) ¢ R}, which means that R} (z,y,0,1) is ¢ # y. In this case
we have to rely on the fact that Ry is not flip separable to simulate the constraint
x Vy. We construct formula ¢o and its satisfying assignment f, as follows. Each
variable z is replaced by 3 variables x1, x2, x3. We set fao(x1) = fa(z2) = f1(2)
and fo(x3) = 1 — fi(x). Furthermore, for 1 < j < 3k + 1, we add the variables
g} and ¢] and set fa(q}) =0 and fa(q]) = 1.

For every 1 < a,b,c < 3k+1, we add the constraint ¢} be = Ri(at, a5, a5, q5),
as in the previous case. For every z € V, 1 < j < 3k ¥ 1, and ¢/ = 1,2, we

add Ci&j = R} (xy,zs, qg, qi), as we shall see, the role of these constraints is to

ensure fy(z1) = fy(22) # f5(x3).

Since Ry is not flip separable, there is a tuple (s1,...,s,) € Rz that has flip
sets S; C Sz, but S \ S is not a flip set. For every constraint V y of ¢1, we
add 3k + 1 constraints to ¢ as follows. First, for 1 <7 <rand 1 < j <3k +1,
we define variable v} as

ry ifi € S; and s; =0,
rg ifi € 57 and s; =1,
i Jy ifie S\ S and s; =1,
¢ ys ifi€ Sy\ Sy and s; =0,
gl ifi ¢Sy and s; =1,
qé if i € S5 and s; = 0.

For every 1 < j < 3k + 1, we add the constraint ci’y’j = Ry(v],...,vl). For
example, assume that (0,1,0,1) € R and this tuple has flip sets 51 = {1,2}
and Sy = {1,2,3,4}, but Sy \ S1 = {3,4} is not a flip set. This means that
(0,1,0,1),(1,0,1,0),(1,0,0,1) € Ry and (0,1,1,0) & Rs. In this case, constraint
&3, s Ra(w, s, ys,yn). Assuming f(z1) # f(zs) and f(y1) # Flys), any
combination of values on z; and y; satisfies the constraint, except if f(z1) =
f(y1) = 0. Thus the constraint effectively acts as a constraint z; V y;.

Finally, we set the maximum allowed distance to k' := 3k. This completes
the description of the constructed instance (¢a, fo, k).

Assume first that f{ is a solution for the instance (¢1, f1, k). Define fj(z1) =
f5(x2) = fi(z) and fi(z3) =1 — f{(z) for every z € V, and define f5(¢f) = 0,
f(ql) = 1 for every 1 < j < 3k + 1. The fact w(f]) < w(f1) implies w(f}) <
w(f2). Furthermore, the distance of fo and f} is exactly three times the distance
of f1 and fy, i.e., at most 3k. We claim that f} satisfies the constraints of ¢s.

f 1 2 3 : .
This is easy to see for ¢}, . and ¢ , ;. For ¢ ;, this can be seen as follows:

— If fi(x) =0, fi(y) = 1, then this holds because (s1,...,s,) € Ra.

— If fi(x) =1, fi(y) = 0, then this holds because Ss is a flip set.
— If fi(x) =1, fi(y) = 1, then this holds because S; is a flip set.

For the other direction, assume that f} is a solution for instance (¢a, fo, k).
Define f{(z) = f5(z1) for every x € V; we claim that f] is a solution for instance
(¢1, f1, k). Since the distance of fo and f4 is at most 3k, there are 1 < b, ¢ < 3k+1
with f5(q8) = 0 and f}(q§) = 1. Because of the constraint Chp.er We have that
f4(qf) = 1 for every 1 < a < 3k + 1. The constraints C%Lb and ci&b ensure
that fé(xl) = fé(xQ) =1- fé(x3) (SiIlCe (0,0,0, 1) g Rll and (1a 170a 1) g Rll)
It follows that the distance of f; and f] is at most k: fi(z) # fi(z) implies
fa(xe) # fo(xe) for £ = 1,2,3, hence this can hold for at most k different
x € V. Moreover, w(f{) < w(f1): this follows from the facts w(f3) < w(f2) and
£5(a) = fa(ab)s f3(al) > folat) (1<j <3k+1).

We claim that every constraint x V y of ¢, is satisfied. Assume that fi(z) =
fily) = f4(z1) = f4(y1) = 0. Now ci,y,b is not satisfied: this follows from the
fact that Ss \ S1 is not a flip set for (sy,...,s,) (with respect to Rs). O

4 Characterizing polynomial-time solvability

In this section, we completely characterize those finite sets I" of Boolean relations
for which LS-CSP(I) is polynomial-time solvable.

Theorem 9. Let I be a finite set of Boolean relations. The problem LS-CSP(I")
1s in PTIME if every relation in I" is IHS-B— or every relation in I is width-2
affine. In all other cases, LS-CSP(I") is NP-hard.

Proof. If every relation in I' is IHS-B—, then Corollary 5 gives a polynomial-
time algorithm. If every relation in I" is width-2 affine then the following simple
algorithm solves LS-CSP(I): for a given instance (¢, f, k), compute the graph
whose vertices are the variables in ¢ and two vertices are connected if there is a
constraint = or # in ¢ imposed on them. If there is a connected component of
this graph which has at most k vertices and such that f assigns more 1’s in this
component than it does 0’s, then flipping the values in this component gives a
required lighter solution. If such a component does not exists, then there is no
lighter solution within distance k from f.

By Lemma 8, if I" contains a relation that is not Horn and a relation that
is not flip separable then LS-CSP(I") is NP-hard. (Note that Lemma 8 is a
polynomial-time reduction from an NP-hard problem.) Thus we can assume
that every relation in I" is Horn or every relation in I" is flip separable. We prove
only the former case; the proof for the latter case will appear in the full version.

Assume now that I" is Horn, and there is a relation R € I” that is not IHS-B—.
We prove that LS-CSP({R}) is NP-hard. It is shown in the proof of Lemma 5.27
of [3] that then R is at least ternary and one can permute the coordinates in
R and then substitute 0 and 1 in R in such a way that the ternary relation
R'(z,y,2) = R(x,y,2,0,...,0,1,...,1) has the following properties:

1. R’ contains tuples (1,1,1),(0,1,0), (1,0,0),(0,0,0), and
2. R’ does not contain the tuple (1,1, 0).

10

Note that if (0,0,1) € R’ then R/(z,z,y) is ¢ — y. If (0,0,1) € R’ then,
since R (and hence R') is Horn (i.e., min-closed), at least one of of the tuples
(1,0,1) and (0,1,1) is not in R’. Then it is easy to check that at least one of
the relations R'(x,y,x) and R'(y,x,x) is * — y. Hence, we can use constraints
of the form x — y when specifying instances of LS-CSP({R'}).

We reduce MINIMUM DOMINATING SET to LS-CSP({R'}). Let G(V, E) be
a graph with n vertices and m edges where a dominating set of size at most ¢
has to be found. Let vy, ..., v, be the vertices of G. Let S = 3m. We construct
a formula with nS + 2m + 1 variables as follows:

— There is a special variable z.

— For every 1 < i < n, there are S variables x; 1, ..., ;5. There is a constraint
x5 — x4, for every 1 < j,j <n.

— For every 1 < i < n, if v,,, ..., vs, are the neighbors of v;, then there
are d variables y; 1, ..., yi,q and the following constraints: zs, 1 — i1,
RNwy1,9i1,¥i,2) BN (Ts5,1,i,2,Yi3)5 - oy BN (XTsy 15 Yi,d—1,Yia), B (i1, Yind,).

— For every variable z, there is a constraint x — z.

Observe that the number of variables of type y; ; is exactly 2m. Setting every
variable to 1 is a satisfying assignment. Set k := St + 5 — 1.

Assume that there is a satisfying assignment where the number of 0’s is at
most k (but positive). Variable = has to be 0, otherwise every other variable is
1. If ;1 is 0, then z; ; is 0 for every 1 < j < S. Thus k < S(¢ + 1) implies that
there are at most ¢ values of ¢ such that x;; is 0. Let D consist of all vertices
v; such that z;; is 0. We claim that D is a dominating set. Suppose that some

vertex v; is not dominated. This means that if v, , ..., vs, are the neighbors of
v;, then the variables 4, 1, ..., Zs,;,1, ;,1 all have the value 1. However, this
means that these variables force variables y; 1, ..., ¥;,4 and variable x to value

1, a contradiction. Thus D is a dominating set of size at most .

The reverse direction is also easy to see. Assume that G has a dominating set
D of size at most ¢. For every 1 <¢ <mn and 1 < j < S, set variable x; ; to 1 if
and only v; is not contained in D. Set x to 0. It is easy to see that this assignment
can be extended to the variables y; ; to obtain a satisfying assignment: indeed,

if vg,, ..., vs, are the neighbors of v; and none of them is in D then v; € D,
and we set y;1 = ... = y; ¢ = 1. Otherwise, if j is minimal such that vy, € D,
weset y;1 = ... =Yy; ;-1 =1 and y; 4 = 0 for ¢ > j. This satisfying assignment

contains at most St 4+ 2m + 1 < k variables with value 0, as required.

Finally, we reduce LS-CSP({R’'}) to LS-CSP({R}) (and so to LS-CSP(I")).
Take an instance (¢, f, k) of LS-CSP({R'}), let V' be the variables of ¢ and
€1,...,¢p the constraints of ¢. We build an instance ¢’ of LS-CSP({R}) as
follows.

1. For each 1 <i < max(p,k + 1), introduce new variables z}, %.
2. For each constraint ¢; = R/(z,y, z) in formula ¢, replace it by the constraint

R(z,y, z,xf, ..., xh, 2%, ..., x%).
3. For each ordered pair (i, j) where 1 <4, < max(p, k+1), add the constraints
i i d d J .0 J J ooJ i d J o J
R(x}y, xh, x), 2}, ..., x}, a1, ..., x1) and R(x], x1, 2%, 2], ...,z @], ..., z]).

11

Finally, extend f so that, for all i, we have 2§, = 0 and 2} = 1. It is clear that
the obtained mapping f’ is a solution to the new instance. Note that, by the
choice of R/, the tuple (1,1,0,0,...,0,1,...,1) does not belong to R. Hence, the
constraints added in step (3) above ensure that if a variable of the form z{ or
2! in f’ is flipped then, in order to get a solution to ¢’ different from f’, one
must flip at least one of) or x} for each 1 < i < max(p, k + 1). Consequently,
all solutions to ¢’ that lie within distance k from f’ must agree with f’ on all
such variables. In other words, searching for such a solution, it makes sense to
flip only variables from V. Thus, clearly, the instances (¢, f, k) and (¢', f/, k) are
equivalent. a

References

1. P. Chapdelaine and N. Creignou. The complexity of Boolean constraint satisfaction
local search problems. Annals of Mathematics and Artificial Intelligence, 43:51-63,
2005.

2. D. Cohen and P. Jeavons. The complexity of constraint languages. In F. Rossi,
P. van Beek, and T. Walsh, editors, Handbook of Constraint Programming, chap-
ter 8. Elsevier, 2006.

3. N. Creignou, S. Khanna, and M. Sudan. Complexity Classifications of Boolean Con-
straint Satisfaction Problems, volume 7 of SIAM Monographs on Discrete Mathe-
matics and Applications. 2001.

4. P. Crescenzi and G. Rossi. On the Hamming distance of constraint satisfaction
problems. Theoretical Computer Science, 288(1):85-100, 2002.

5. E. Dantsin, A. Goerdt, E. Hirsch, R. Kannan, J. Kleinberg, C. Papadimitriou,
P. Raghavan, and U. Schoning. A deterministic (2 — kiﬂ)” algorithm for k-SAT
based on local search. Theoretical Computer Science, 289:69-83, 2002.

6. R.G. Downey and M.R. Fellows. Parameterized Complexity. Springer, 1999.

7. M.R. Fellows. Parameterized complexity: new developments and research frontiers.
In Aspects of Complexity (Kaikura, 2000), volume 4 of de Gruyter Series in Logic
and Applications, pages 51-72. 2001.

8. J. Flum and M. Grohe. Parameterized Complezity Theory. Springer, 2006.

9. J. Gu, P. Purdom, J. Franko, and B.W. Wah. Algorithms for the Satisfiability
Problem. Cambridge University Press, Cambridge, MA, 2000.

10. E. Hirsch. SAT local search algorithms: worst-case study. Journal of Automated
Reasoning, 24:127-143, 2000.

11. H. Hoos and E. Tsang. Local search methods. In F. Rossi, P. van Beek, and
T. Walsh, editors, Handbook of Constraint Programming, chapter 5. Elsevier, 2006.

12. L. Kirousis and Ph. Kolaitis. The complexity of minimal satisfiability problems.
Information and Computation, 187:20-39, 2003.

13. D. Marx. Parameterized complexity of constraint satisfaction problems. Compu-
tational Complexity, 14:153-183, 2005.

14. D. Marx. Searching the k-change neighborhood for TSP is W[1]-hard. Operations
Research Letters, 36:31-36, 2008.

15. T.J. Schaefer. The complexity of satisfiability problems. In STOC’78, pages 216—
226, 1978.

12

