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Lower bounds
So far we have seen positive results: basic algorithmic techniques
for fixed-parameter tractability.

What kind of negative results we have?
Can we show that a problem (e.g., Clique) is not FPT?
Can we show that a problem (e.g., Vertex Cover) has no
algorithm with running time, say, 2o(k) · nO(1)?

This would require showing that P 6= NP: if P = NP, then, e.g.,
k-Clique is polynomial-time solvable, hence FPT.

Can we give some evidence for negative results?
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Goals of this talk
Two goals:

1 Explain the theory behind parameterized intractability.
2 Show examples of parameterized reductions.
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Classical complexity
Nondeterministic Turing Machine (NTM): single tape, finite
alphabet, finite state, head can move left/right only one cell. In
each step, the machine can branch into an arbitrary number of
directions. Run is successful if at least one branch is successful.

NP: The class of all languages that can be recognized by a
polynomial-time NTM.

Polynomial-time reduction from problem P to problem Q: a
function φ with the following properties:

φ(x) can be computed in time |x |O(1),
φ(x) is a yes-instance of Q if and only if x is a yes-instance of
P .

Definition: Problem Q is NP-hard if any problem in NP can be
reduced to Q.

If an NP-hard problem can be solved in polynomial time, then every
problem in NP can be solved in polynomial time (i.e., P = NP).
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Parameterized complexity
To build a complexity theory for parameterized problems, we need
two concepts:

An appropriate notion of reduction.
An appropriate hypothesis.

Polynomial-time reductions are not good for our purposes.

Example: Graph G has an independent set k if and only if it has a
vertex cover of size n − k .

⇒ Transforming an Independent Set instance (G , k) into a
Vertex Cover instance (G , n − k) is a correct polynomial-time
reduction.

However, Vertex Cover is FPT, but Independent Set is not
known to be FPT.
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Parameterized reduction

Definition
Parameterized reduction from problem P to problem Q: a
function φ with the following properties:

φ(x) can be computed in time f (k) · |x |O(1), where k is the
parameter of x ,
φ(x) is a yes-instance of Q ⇐⇒ x is a yes-instance of P .
If k is the parameter of x and k ′ is the parameter of φ(x),
then k ′ ≤ g(k) for some function g .

Fact: If there is a parameterized reduction from problem P to
problem Q and Q is FPT, then P is also FPT.

Non-example: Transforming an Independent Set instance
(G , k) into a Vertex Cover instance (G , n − k) is not a
parameterized reduction.

Example: Transforming an Independent Set instance (G , k)
into a Clique instance (G , k) is a parameterized reduction.
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Multicolored Clique
A useful variant of Clique:

Multicolored Clique: The vertices of the input graph G are
colored with k colors and we have to find a clique containing one
vertex from each color.

(or Partitioned Clique)

V1 V2 . . . Vk

Theorem
There is a parameterized reduction from Clique to
Multicolored Clique.

Create G ′ by replacing each vertex v with k vertices, one in each
color class. If u and v are adjacent in the original graph, connect
all copies of u with all copies of v .

G G ′

V1 V2 . . . Vk

v
u u1, . . . , uk

v1, . . . , vk

k-clique in G ⇐⇒ multicolored k-clique in G ′.

Similarly: reduction to Multicolored Independent Set.
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Dominating Set

Theorem
There is a parameterized reduction from Multicolored
Independent Set to Dominating Set.

Proof: Let G be a graph with color classes V1, . . . , Vk . We
construct a graph H such that G has a multicolored k-clique iff H
has a dominating set of size k .

V1

x1 y1 x2 y2 xk yk

u

v
V2 Vk

The dominating set has to contain one vertex from each of the
k cliques V1, . . . , Vk to dominate every xi and yi .

For every edge e = uv , an additional vertex we ensures that
these selections describe an independent set.
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Dominating Set

Theorem
There is a parameterized reduction from Multicolored
Independent Set to Dominating Set.

Proof: Let G be a graph with color classes V1, . . . , Vk . We
construct a graph H such that G has a multicolored k-clique iff H
has a dominating set of size k .

V1

x1 y1 x2 y2 xk yk

u

v

we

V2 Vk

The dominating set has to contain one vertex from each of the
k cliques V1, . . . , Vk to dominate every xi and yi .
For every edge e = uv , an additional vertex we ensures that
these selections describe an independent set. 8



Variants of Dominating Set

Dominating Set: Given a graph, find k vertices that
dominate every vertex.
Red-Blue Dominating Set: Given a bipartite graph, find
k vertices on the red side that dominate the blue side.
Set Cover: Given a set system, find k sets whose union
covers the universe.
Hitting Set: Given a set system, find k elements that
intersect every set in the system.

All of these problems are equivalent under parameterized
reductions, hence at least as hard as Clique.
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Regular graphs

Theorem
There is a parameterized reduction from Clique to Clique on
regular graphs.

Proof: Given a graph G and an integer k , let d be the maximum
degree of G . Take d copies of G and for every v ∈ V (G ), fully
connect every copy of v with a set Vv of d − d(v) vertices.

G G ′

G1 G2 . . . Gd
v1

vn

Vv1

Vvn

v2
Vv2

Observe the edges incident to Vv do not appear in any triangle,
hence every k-clique of G ′ is a k-clique of G (assuming k ≥ 3).
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Partial Vertex Cover
Partial Vertex Cover: Given a graph G , integers k and s,
find k vertices that cover at least s edges.

Theorem
There is a parameterized reduction from Independent Set on
regular graphs parameterized by k to Partial Vertex Cover
parameterized by k .

Proof: If G is d-regular, then k vertices can cover s := kd edges if
and only if there is a independent set of size k .

d = 3, k = 4, s = 12
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Hard problems
Hundreds of parameterized problems are known to be at least as
hard as Clique:

Independent Set

Set Cover

Hitting Set

Connected Dominating Set

Independent Dominating Set

Partial Vertex Cover parameterized by k

Dominating Set in bipartite graphs
. . .

We believe that none of these problems are FPT.
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Basic hypotheses
It seems that parameterized complexity theory cannot be built on
assuming P 6= NP – we have to assume something stronger.

Let us choose a basic hypothesis:

Engineers’ Hypothesis

k-Clique cannot be solved in time f (k) · nO(1).

Theorists’ Hypothesis
k-Step Halting Problem (is there a path of the given NTM
that stops in k steps?) cannot be solved in time f (k) · nO(1).

Exponential Time Hypothesis (ETH)

n-variable 3SAT cannot be solved in time 2o(n).

Which hypothesis is the most plausible?
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Independent Set ⇒ Turing machines

Theorem
There is a parameterized reduction from Independent Set to
the k-Step Halting Problem.

Proof: Given a graph G and an integer k , we construct a Turing
machine M and an integer k ′ = O(k2) such that M halts in k ′

steps if and only if G has an independent set of size k .

The alphabet Σ of M is the set of vertices of G .
In the first k steps, M nondeterministically writes k vertices to
the first k cells.
For every 1 ≤ i ≤ k , M moves to the i-th cell, stores the
vertex in the internal state, and goes through the tape to
check that every other vertex is nonadjacent with the i-th
vertex (otherwise M loops).
M does k checks and each check can be done in 2k steps ⇒
k ′ = O(k2).
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Turing machines ⇒ Independent Set

Theorem
There is a parameterized reduction from the k-Step Halting
Problem to Independent Set.

Proof: Given a Turing machine M and an integer k , we construct
a graph G that has an independent set of size k ′ := (k + 1)2 if and
only if M halts in k steps.

cell 0 cell 1 cell k

before
step 1

before
step k + 1
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Turing machines ⇒ Independent Set

Theorem
There is a parameterized reduction from the k-Step Halting
Problem to Independent Set.

Proof: Given a Turing machine M and an integer k , we construct
a graph G that has an independent set of size k ′ := (k + 1)2 if and
only if M halts in k steps.

G consists of (k + 1)2 cliques, thus a k ′-independent set has
to contain one vertex from each.
The selected vertex from clique Ki ,j describes the situation
before step i at cell j : what is written there, is the head there,
and if so, what the state is, and what the next transition is.
We add edges between the cliques to rule out inconsistencies:
head is at more than one location at the same time, wrong
character is written, head moves in the wrong direction etc.
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Summary

Independent Set and k-Step Halting Problem can be
reduced to each other ⇒ Engineers’ Hypothesis and Theorists’
Hypothesis are equivalent!
Independent Set and k-Step Halting Problem can be
reduced to Dominating Set.

Is there a parameterized reduction from Dominating Set to
Independent Set?
Probably not. Unlike in NP-completeness, where most
problems are equivalent, here we have a hierarchy of hard
problems.

Independent Set is W[1]-complete.
Dominating Set is W[2]-complete.

Does not matter if we only care about whether a problem is
FPT or not!
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Boolean circuit
A Boolean circuit consists of input gates, negation gates, AND
gates, OR gates, and a single output gate.

x1 x7x6x4x3x2

Circuit Satisfiability: Given a Boolean circuit C , decide if
there is an assignment on the inputs of C making the output true.

Weight of an assignment: number of true values.

Weighted Circuit Satisfiability: Given a Boolean circuit
C and an integer k , decide if there is an assignment of weight k
making the output true.
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Weighted Circuit Satisfiability
Independent Set can be reduced to Weighted Circuit
Satisfiability:

x1 x7x6x4x3x2

Dominating Set can be reduced to Weighted Circuit
Satisfiability:

x1 x7x6x4x3x2

To express Dominating Set, we need more complicated circuits.
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Depth and weft
The depth of a circuit is the maximum length of a path from an
input to the output.
A gate is large if it has more than 2 inputs. The weft of a circuit is
the maximum number of large gates on a path from an input to the
output.

Independent Set: weft 1, depth 3
x2 x3 x4 x6 x7x1

Dominating Set: weft 2, depth 2
x1 x7x6x4x3x2
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The W-hierarchy
Let C [t, d ] be the set of all circuits having weft at most t and
depth at most d .

Definition
A problem P is in the class W[t] if there is a constant d and a
parameterized reduction from P to Weighted Circuit
Satisfiability of C [t, d ].

We have seen that Independent Set is in W[1] and
Dominating Set is in W[2].

Fact: Independent Set is W[1]-complete.
Fact: Dominating Set is W[2]-complete.

If any W[1]-complete problem is FPT, then FPT = W[1] and every
problem in W[1] is FPT.

If any W[2]-complete problem is in W[1], then W[1] = W[2].

⇒ If there is a parameterized reduction from Dominating Set to
Independent Set, then W[1] = W[2].
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Weft

Weft is a term related to weaving cloth: it is the thread that runs
from side to side in the fabric.
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Parameterized reductions
Typical NP-hardness proofs: reduction from e.g., Clique or
3SAT, representing each vertex/edge/variable/clause with a
gadget.

v1 v2 v3 v4 v5 v6

C1 C2 C3 C4

Usually does not work for parameterized reductions: cannot afford
the parameter increase.

Types of parameterized reductions:
Reductions keeping the structure of the graph.

Clique ⇒ Independent Set
Independent Set on regular graphs ⇒ Partial Vertex
Cover

Reductions with vertex representations.
Multicolored Independent Set ⇒ Dominating Set

Reductions with vertex and edge representations.
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Balanced Vertex Separator
Balanced Vertex Separator: Given a graph G and an inte-
ger k , find a set S of at most k vertices such that every component
of G − S has at most |V (G )|/2 vertices.

Theorem
Balanced Vertex Separator parameterized by k is
W[1]-hard.
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Balanced Vertex Separator

Theorem
Balanced Vertex Separator parameterized by k is
W[1]-hard.

Proof: By reduction from Clique.

G G ′

K`

|V (G )| = 11, |E (G )| = 22, k = 4, ` = 3

We form G ′ by
Subdividing every edge of G .
Making the original vertices of G a clique.
Adding an `-clique for ` = |V (G )|+ |E (G )| − 2(k +

(k
2

)
)

(assuming the graph is sufficiently large, we have ` ≥ 1).
We have |V (G ′)| = 2|V (G )| + 2|E (G )| − 2(k +

(k
2

)
) and the “big

component” of G ′ has size |V (G )|+ |E (G )|. 23
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Balanced Vertex Separator

Theorem
Balanced Vertex Separator parameterized by k is
W[1]-hard.

Proof: By reduction from Clique.

G G ′

K`

|V (G )| = 11, |E (G )| = 22, k = 4, ` = 3

We have |V (G ′)| = 2|V (G )| + 2|E (G )| − 2(k +
(k
2

)
) and the “big

component” of G ′ has size |V (G )|+ |E (G )|.

⇐: We need to reduce the size of the large component of G ′ by
k +

(k
2

)
by removing k vertices. This is only possible if the k vertices

cut away
(k
2

)
isolated vertices, i.e., the k-vertices form a k-clique in

G .
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List Coloring
List Coloring is a generalization of ordinary vertex coloring:
given a

graph G ,
a set of colors C , and
a list L(v) ⊆ C for each vertex v ,

the task is to find a coloring c where c(v) ∈ L(v) for every v .

Theorem
Vertex Coloring is FPT parameterized by treewidth.

However, list coloring is more difficult:

Theorem
List Coloring is W[1]-hard parameterized by treewidth.

24



List Coloring

Theorem
List Coloring is W[1]-hard parameterized by treewidth.

Proof: By reduction from Multicolored Independent Set.
Let G be a graph with color classes V1, . . . , Vk .
Set C of colors: the set of vertices of G .
The colors appearing on vertices u1, . . . , uk correspond to the
k vertices of the clique, hence we set L(ui ) = Vi .

If x ∈ Vi and y ∈ Vj are adjacent in G , then we need to ensure
that c(ui ) = x and c(uj) = y are not true at the same time ⇒
we add a vertex adjacent to ui and uj whose list is {x , y}.

u1 : V1 u3 : V3

u2 : V2

u4 : V4u5 : V5 25



List Coloring

Theorem
List Coloring is W[1]-hard parameterized by treewidth.

Proof: By reduction from Multicolored Independent Set.
Let G be a graph with color classes V1, . . . , Vk .
Set C of colors: the set of vertices of G .
The colors appearing on vertices u1, . . . , uk correspond to the
k vertices of the clique, hence we set L(ui ) = Vi .
If x ∈ Vi and y ∈ Vj are adjacent in G , then we need to ensure
that c(ui ) = x and c(uj) = y are not true at the same time ⇒
we add a vertex adjacent to ui and uj whose list is {x , y}.

u1 : V1 u3 : V3

u2 : V2

u4 : V4u5 : V5

{x , y}
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Vertex representation

Key idea
Represent the k vertices of the solution with k gadgets.
Connect the gadgets in a way that ensures that the
represented values are compatible.
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Odd Set
Odd Set: Given a set system F over a universe U and an integer
k , find a set S of at most k elements such that |S ∩ F | is odd for
every F ∈ F .

Theorem
Odd Set is W[1]-hard parameterized by k .

First try: Reduction from Multicolored Independent Set.
Let U = V1 ∪ . . .Vk and introduce each set Vi into F .
⇒ The solution has to contain exactly one element from each Vi .

If xy ∈ E (G ), how can we express that x ∈ Vi and y ∈ Vj cannot
be selected simultaneously? Seems difficult:

introducing {x , y} into F forces that exactly one of x and y
appears in the solution,
introducing {x} ∪ (Vj \ {y}) into F forces that either both x
and y or none of x and y appear in the solution.
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Odd Set
Reduction from Multicolored Clique.

U :=
⋃k

i=1 Vi ∪
⋃

1≤i<j≤k Ei ,j .

k ′ := k +
(k
2

)
.

Let F contain Vi (1 ≤ i ≤ k) and Ei ,j (1 ≤ i < j ≤ k).

For every v ∈ Vi and x 6= i , we introduce the sets:
(Vi \ {v}) ∪ {every edge from Ei ,x with endpoint v}
(Vi \ {v}) ∪ {every edge from Ex ,i with endpoint v}

E1,2 E1,3 E1,4 E2,3 E2,4 E3,4

V1 V4V2 V3
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Vertex and edge representation

Key idea
Represent the vertices of the clique by k gadgets.
Represent the edges of the clique by

(k
2

)
gadgets.

Connect edge gadget Ei ,j to vertex gadgets Vi and Vj such
that if Ei ,j represents the edge between x ∈ Vi and y ∈ Vj ,
then it forces Vi to x and Vj to y .

29



Variants of Odd Set
The following problems are W[1]-hard:

Odd Set

Exact Odd Set (find a set of size exactly k . . . )
Exact Even Set

Unique Hitting Set
(at most k elements that hit each set exactly once)
Exact Unique Hitting Set
(exactly k elements that hit each set exactly once)

Open question:

? Even Set: Given a set system F and an integer k , find a
nonempty set S of at most k elements such |F ∩S | is even
for every F ∈ F .
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Summary

By parameterized reductions, we can show that lots of
parameterized problems are at least as hard as Clique, hence
unlikely to be fixed-parameter tractable.
Connection with Turing machines gives some supporting
evidence for hardness (only of theoretical interest).
The W-hierarchy classifies the problems according to hardness
(only of theoretical interest).
Important trick in W[1]-hardness proofs: vertex and edge
representations.

31



Exponential Time Hypothesis (ETH)
Hypothesis introduced by Impagliazzo, Paturi, and Zane:

Exponential Time Hypothesis (ETH)

There is no 2o(n)-time algorithm for n-variable 3SAT.

Note: current best algorithm is 1.30704n [Hertli 2011].

Note: an n-variable 3SAT formula can have Ω(n3) clauses.

Sparsification Lemma [Impagliazzo, Paturi, Zane 2001]

There is a 2o(n)-time algorithm for n-variable 3SAT.
m

There is a 2o(m)-time algorithm for m-clause 3SAT.
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Lower bounds based on ETH

Exponential Time Hypothesis (ETH)

There is no 2o(m)-time algorithm for m-clause 3SAT.

The textbook reduction from 3SAT to 3-Coloring:

3SAT formula φ
n variables
m clauses

⇒
Graph G

O(n + m) vertices
O(n + m) edges

Corollary

Assuming ETH, there is no 2o(n) algorithm for 3-Coloring on an
n-vertex graph G .
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33



Transfering bounds
There are polynomial-time reductions from, say, 3-Coloring to
many other problems such that the reduction increases the number
of vertices by at most a constant factor.

Consequence: Assuming ETH, there is no 2o(n) time algorithm on
n-vertex graphs for

Independent Set

Clique

Dominating Set

Vertex Cover

Hamiltonian Path

Feedback Vertex Set

. . .
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Lower bounds based on ETH
What about 3-Coloring on planar graphs?

The textbook reduction from 3-Coloring to Planar
3-Coloring uses a “crossover gadget” with 4 external connectors:

In every 3-coloring of the gadget, opposite external connectors
have the same color.
Every coloring of the external connectors where the opposite
vertices have the same color can be extended to the whole
gadget.
If two edges cross, replace them with a crossover gadget. 35
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Lower bounds based on ETH

The reduction from 3-Coloring to Planar 3-Coloring
introduces O(1) new edges/vertices for each crossing.
A graph with m edges can be drawn with O(m2) crossings.

3SAT formula φ
n variables
m clauses

⇒
Graph G

O(m) vertices
O(m) edges

⇒
Planar graph G ′

O(m2) vertices
O(m2) edges

Corollary

Assuming ETH, there is no 2o(
√
n) algorithm for 3-Coloring on

an n-vertex planar graph G .
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Lower bounds for planar problems
Consequence: Assuming ETH, there is no 2o(

√
n) time algorithm

on n-vertex planar graphs for
Independent Set

Dominating Set

Vertex Cover

Hamiltonian Path

Feedback Vertex Set

. . .

Note: Reduction to planar graphs does not work for Clique
(why?).
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Exponential Time Hypothesis

Engineers’ Hypothesis

k-Clique cannot be solved in time f (k) · nO(1).

m
Theorists’ Hypothesis
k-Step Halting Problem (is there a path of the given NTM
that stops in k steps?) cannot be solved in time f (k) · nO(1).

⇑
Exponential Time Hypothesis (ETH)

n-variable 3SAT cannot be solved in time 2o(n).

What do we have to show to prove that ETH implies Engineers’
Hypothesis?
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⇑
Exponential Time Hypothesis (ETH)

n-variable 3SAT cannot be solved in time 2o(n).

What do we have to show to prove that ETH implies Engineers’
Hypothesis?

We have to show that an f (k) · nO(1) algorithm implies that there is
a 2o(n) time algorithm for n-variable 3SAT.
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Exponential Time Hypothesis

Engineers’ Hypothesis

k-Clique cannot be solved in time f (k) · nO(1).

m
Theorists’ Hypothesis
k-Step Halting Problem (is there a path of the given NTM
that stops in k steps?) cannot be solved in time f (k) · nO(1).

⇑
Exponential Time Hypothesis (ETH)

n-variable 3SAT cannot be solved in time 2o(n).

We actually show something much stronger and more interesting:

Theorem
Assuming ETH, there is no f (k) · no(k) algorithm for k-Clique for
any computable function f . 38



Lower bound on the exponent

Theorem
Assuming ETH, there is no f (k) · no(k) algorithm for k-Clique for
any computable function f .

Suppose that k-Clique can be solved in time f (k) · nk/s(k), where
s(k) is a monotone increasing unbounded function. We use this
algorithm to solve 3-Coloring on an n-vertex graph G in time
2o(n).

Let k be the largest integer such that f (k) ≤ n and kk/s(k) ≤ n.
Function k := k(n) is monotone increasing and unbounded.

Split the vertices of G into k groups. Let us build a graph H where
each vertex corresponds to a proper 3-coloring of one of the groups.
Connect two vertices if they are not conflicting.

Every k-clique of H corresponds to a proper 3-coloring of G .

⇒ A 3-coloring of G can be found in time
f (k) · |V (H)|k/s(k) ≤ n · (k3n/k)k/s(k) = n · kk/s(k) · 3n/s(k) = 2o(n).
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Tight bounds

Theorem
Assuming ETH, there is no f (k) · no(k) algorithm for k-Clique for
any computable function f .

Transfering to other problems:

k-Clique
(x , k) ⇒ Problem A

(x ′,O(k))

f (k) · no(k)
algorithm

⇐ f (k) · no(k))
algorithm

Bottom line:

To rule out f (k) · no(k) algorithms, we need a parameterized
reduction that blows up the parameter at most linearly.
To rule out f (k) · no(

√
k) algorithms, we need a parameterized

reduction that blows up the parameter at most quadratically.
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Tight bounds
Assuming ETH, there is no f (k)no(k) time algorithms for

Set Cover

Hitting Set

Connected Dominating Set

Independent Dominating Set

Partial Vertex Cover

Dominating Set in bipartite graphs
. . .

What about planar problems?
More problems are FPT, more difficult to prove W[1]-hardness.
The problem Grid Tiling is the key to many of these results.
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Grid Tiling

Grid Tiling

Input:
A k × k matrix and a set of pairs Si ,j ⊆ [D] × [D] for
each cell.

Find:

A pair si ,j ∈ Si ,j for each cell such that
Vertical neighbors agree in the 1st coordinate.
Horizontal neighbors agree in the 2nd coordinate.

(1,1)
(3,1)
(2,4)

(5,1)
(1,4)
(5,3)

(1,1)
(2,4)
(3,3)

(2,2)
(1,4)

(3,1)
(1,2)

(2,2)
(2,3)

(1,3)
(2,3)
(3,3)

(1,1)
(1,3)

(2,3)
(5,3)

k = 3, D = 5
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Grid Tiling

Grid Tiling

Input:
A k × k matrix and a set of pairs Si ,j ⊆ [D] × [D] for
each cell.

Find:

A pair si ,j ∈ Si ,j for each cell such that
Vertical neighbors agree in the 1st coordinate.
Horizontal neighbors agree in the 2nd coordinate.

Fact
There is a parameterized reduction from k-Clique to k × k Grid
Tiling.
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Grid Tiling is W[1]-hard

Reduction from k-Clique

Definition of the sets:

For i = j : (x , y) ∈ Si ,j ⇐⇒ x = y

For i 6= j : (x , y) ∈ Si ,j ⇐⇒ x and y are adjacent.

(vi , vi )

Each diagonal cell defines a value vi . . .
43
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43



Grid Tiling is W[1]-hard

Reduction from k-Clique

Definition of the sets:

For i = j : (x , y) ∈ Si ,j ⇐⇒ x = y

For i 6= j : (x , y) ∈ Si ,j ⇐⇒ x and y are adjacent.

(vi , .)

(., vi ) (vi , vi ) (., vi ) (., vi ) (., vi )

(vi , .)

(vi , .) (vj , vj)

(vi , .)

vi and vj are adjacent for every 1 ≤ i < j ≤ k .
43



Grid Tiling is W[1]-hard

Reduction from k-Clique

Definition of the sets:

For i = j : (x , y) ∈ Si ,j ⇐⇒ x = y

For i 6= j : (x , y) ∈ Si ,j ⇐⇒ x and y are adjacent.

(vi , .) (vj , .)

(., vi ) (vi , vi ) (., vi ) (vi , vj) (., vi )

(vi , .) (vj , .)

(., vj) (vj , vi ) (., vj) (vj , vj) (., vj)

(vi , .) (vj , .)

vi and vj are adjacent for every 1 ≤ i < j ≤ k .
43



Grid Tiling and planar problems

Theorem
k × k Grid Tiling is W[1]-hard and, assuming ETH, cannot be
solved in time f (k)no(k) for any function f .

This lower bound is the key for proving hardness results for planar
graphs.

Examples:
List Coloring on planar graphs
Multiway Cut on planar graphs with k terminals
Independent Set for unit disks
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List Coloring for planar graphs

Theorem
List Coloring for planar graphs is W[1]-hard parameterized by
treewidth.

Proof is similar to the reduction from Multicolored Clique to
List Coloring, but now the resulting graph is planar.
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A classical problem

s − t Cut
Input: A graph G , an integer p, vertices s and t

Output:
A set S of at most p edges such that removing S sep-
arates s and t.

Theorem [Ford and Fulkerson 1956]

A minimum s − t cut can be found in polynomial time.

What about separating more than two terminals?
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More than two terminals

k-Terminal Cut (aka Multiway Cut)

Input: A graph G , an integer p, and a set T of k terminals

Output:
A set S of at most p edges such that removing S sep-
arates any two vertices of T

Theorem
NP-hard already for k = 3.
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More than two terminals

k-Terminal Cut (aka Multiway Cut)

Input: A graph G , an integer p, and a set T of k terminals

Output:
A set S of at most p edges such that removing S sep-
arates any two vertices of T

Theorem

Planar k-Terminal Cut can be solved in time 2O(k) · nO(
√
k).
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Lower bounds

Theorem

Planar k-Terminal Cut can be solved in time 2O(k) · nO(
√
k).

Natural questions:

Is there an f (k) · no(
√
k) time algorithm?

Is there an f (k) · nO(1) time algorithm (i.e., is it
fixed-parameter tractable)?

Lower bounds:

Theorem

Planar k-Terminal Cut is W[1]-hard and has no f (k) · no(
√
k)

time algorithm (assuming ETH).
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Reduction from k × k Grid Tiling
to Planar k2-Terminal Cut

For every set Si ,j , we construct a gadget with 4 terminals such that
for every (x , y) ∈ Si ,j , there is a minimum multiway cut that
represents (x , y).
every minimum multiway cut represents some (x , y) ∈ Si ,j .

Main part of the proof: constructing these gadgets.
UL u1 u2 u3 u4 u5 UR

r1

r2

r3

r4

r5

DL d1 d2 d3 d4 d5 DR

`1

`2

`3

`4

`5

The gadget. 49
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Reduction from k × k Grid Tiling
to Planar k2-Terminal Cut

For every set Si ,j , we construct a gadget with 4 terminals such that
for every (x , y) ∈ Si ,j , there is a minimum multiway cut that
represents (x , y).
every minimum multiway cut represents some (x , y) ∈ Si ,j .

Main part of the proof: constructing these gadgets.
UL u1 u2 u3 u4 u5 UR

r1

r2

r3

r4

r5

DL d1 d2 d3 d4 d5 DR

`1

`2

`3

`4

`5

A cut not representing any pair. 49



Putting together the gadgets
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Putting together the gadgets

Oops!
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Putting together the gadgets
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Grid Tiling with ≤

Grid Tiling with ≤

Input:
A k × k matrix and a set of pairs Si ,j ⊆ [D] × [D] for
each cell.

Find:

A pair si ,j ∈ Si ,j for each cell such that
1st coordinate of si ,j ≤ 1st coordinate of si+1,j .
2nd coordinate of si ,j ≤ 2nd coordinate of si ,j+1.

(5,1)
(1,2)
(3,3)

(4,3)
(3,2)

(2,3)
(2,5)

(2,1)
(5,5)
(3,5)

(4,2)
(5,3)

(5,1)
(3,2)

(5,1)
(2,2)
(5,3)

(2,1)
(4,2)

(3,1)
(3,2)
(3,3)

k = 3, D = 5
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Grid Tiling with ≤

Grid Tiling with ≤

Input:
A k × k matrix and a set of pairs Si ,j ⊆ [D] × [D] for
each cell.

Find:

A pair si ,j ∈ Si ,j for each cell such that
1st coordinate of si ,j ≤ 1st coordinate of si+1,j .
2nd coordinate of si ,j ≤ 2nd coordinate of si ,j+1.

Theorem
There is a parameterized reduction from k × k-Grid Tiling to
O(k)× O(k) Grid Tiling with ≤.
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k-Independent Set for unit disks

Theorem
Given a set of n unit disks in the plane, we can find k independent
disks in time nO(

√
k).

Matching lower bound:

Theorem
There is a reduction from k × k Grid Tiling with ≤ to
k2-Independent Set for unit disks. Consequently,
Independent Set for unit disks is

is W[1]-hard, and

cannot be solved in time f (k)no(
√
k) for any function f .
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Reduction to unit disks

(5,1)
(1,2)
(3,3)

(4,3)
(3,2)

(2,3)
(2,5)

(2,1)
(5,5)
(3,5)

(4,2)
(5,3)

(5,1)
(3,2)

(5,1)
(2,2)
(5,3)

(2,1)
(4,2)

(3,1)
(3,2)
(3,3)

Every pair is represented by a unit disk in the plane.
≤ relation between coordinates ⇐⇒ disks do not intersect.
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Reduction to unit disks
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Summary
We used ETH to rule out

1 2o(n) time algorithms for, say, Independent Set.
2 2o(

√
n) time algorithms for, say, Independent Set on planar

graphs.
3 2o(k) · nO(1) time algorithms for, say, Vertex Cover.
4 2o(

√
k) · nO(1) time algorithms for, say, Vertex Cover on

planar graphs.
5 f (k)no(k) time algorithms for Clique.
6 f (k)no(

√
k) time algorithms for planar problems such as

k-Terminal Cut.

Other tight lower bounds on f (k) having the form 2o(k log k), 2o(k
2),

or 22o(k) exist.
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Approximation schemes

Polynomial-time approximation scheme (PTAS)

Input: Instance x , ε > 0
Output: (1 + ε)-approximate solution

Running time: polynomial in |x | for every fixed ε

PTAS: running time is |x |f (1/ε)

EPTAS: (Efficient PTAS) running time is f (1/ε) · |x |O(1)

FPTAS: (Fully polynomial approximation scheme) running
time is (1/ε)O(1) · |x |O(1)

For some problems, there is a PTAS, but no EPTAS is known. Can
we show that no EPTAS is possible?
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Standard parameterization
Given an optimization problem we can turn it into a decision
problem: the input is a pair (x , k) and we have to decide if there is
a solution for x with cost at least/at most k .

The standard parameterization of an optimization problem is the
associated decision problem, with the value k appearing in the
input being the parameter.

Example:

Vertex Cover
Input: (G , k)

Parameter: k
Question: Is there a vertex cover of size at most k?

If the standard parameterization of an optimization problem is
FPT, then (intuitively) it means that we can solve it efficiently if
the optimum is small.
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No EPTAS

Theorem
If the standard parameterization of an optimization problem is
W[1]-hard, then there is no EPTAS for the optimization problem,
unless FPT = W[1].

Proof: Suppose an f (1/ε) · nO(1) time EPTAS exists. Running this
EPTAS with ε := 1/(k + 1) decides if the optimum is at most/at
least k .

Example: The W[1]-hardness results immediately shows that
(assuming W[1] 6= FPT), there is no EPTAS for Independent
Set for unit disks.
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Summary

Parameterized reductions show that many problems are at
least as hard as Clique, hence unlikely to be FPT.
ETH gives tighter lower bounds, e.g., no 2o(k)nO(1) for FPT
problems and no f (k)no(k) algorithms for W[1]-hard problems.
Connection to approximation: ruling out EPTAS via
W[1]-hardness.
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