Minicourse on parameterized
algorithms and complexity

Part 3: Randomized techniques

Daniel Marx

Jagiellonian University in Krakéw
April 21-23, 2015

Why randomized?

o A guaranteed error probability of 107190

deterministic algorithm.
(Probability of hardware failure is larger!)

is as good as a

e Randomized algorithms can be more efficient and/or
conceptually simpler.

@ Can be the first step towards a deterministic algorithm.

Polynomial-time vs. FPT randomization

Polynomial-time randomized algorithms
@ Randomized selection to pick a typical, unproblematic,
average element/subset.

@ Success probability is constant or at most polynomially small.

Randomized FPT algorithms

@ Randomized selection to satisfy a bounded number of
(unknown) constraints.

@ Success probability might be exponentially small.

Randomization

There are two main ways randomization appears:
@ Algebraic techniques

e Schwartz-Zippel Lemma
o Linear matroids

@ This lecture: combinatorial techniques.

Randomization as reduction

Problem A

(what we want to
solve)

Randomized magic

Problem B

(what we can solve)

Color Coding

k-PATH

Input: A graph G, integer k.
Find: A simple path of length k.

Note: The problem is clearly NP-hard, as it contains the
HAMILTONIAN PATH problem.

Theorem [Alon, Yuster, Zwick 1994]

k-PATH can be solved in time 20(k) . ,O(1)

Color Coding

@ Assign colors from [k] to vertices V(G) uniformly and
independently at random.

Color Coding

@ Assign colors from [k] to vertices V(G) uniformly and
independently at random.

Color Coding

@ Assign colors from [k] to vertices V(G) uniformly and
independently at random.

@ 0

@ Check if there is a path colored 1 —2 — - -+ — k; output “YES"
or “NO".
o If there is no k-path: no path colored 1 —2 — --- — k exists =
“NO”.
o If there is a k-path: the probability that such a path is colored
1—2—---—kis k= thus the algorithm outputs “YES" with
at least that probability.

Error probability

Useful fact

If the probability of success is at least p, then the probability that
the algorithm does not say “YES" after 1/p repetitions is at most

(1—p)/P < (eP)P =1/e~0.38

Error probability

Useful fact

If the probability of success is at least p, then the probability that
the algorithm does not say “YES" after 1/p repetitions is at most

(1—p)/P < (eP)P =1/e~0.38

o Thus if p > k—*, then error probability is at most 1/e after k¥
repetitions.

@ Repeating the whole algorithm a constant number of times
can make the error probability an arbitrary small constant.

o For example, by trying 100 - k¥ random colorings, the
probability of a wrong answer is at most 1/e'0,

Finding a path colored 1 —2 —--- — k

o Edges connecting nonadjacent color classes are removed.
@ The remaining edges are directed towards the larger class.

@ All we need to check if there is a directed path from class 1 to
class k.

Finding a path colored 1 —2 —--- — k

o Edges connecting nonadjacent color classes are removed.
@ The remaining edges are directed towards the larger class.

@ All we need to check if there is a directed path from class 1 to
class k.

Finding a path colored 1 —2 —--- — k

YR YR YSR YR
®/ \®//ﬁ)
o a P \g
N 1
oo ||l &
TR @\ ©)

o Edges connecting nonadjacent color classes are removed.
@ The remaining edges are directed towards the larger class.

@ All we need to check if there is a directed path from class 1 to
class k.

Finding a path colored 1 —2 —--- — k

CEEE)

o Edges connecting nonadjacent color classes are removed.
@ The remaining edges are directed towards the larger class.

@ All we need to check if there is a directed path from class 1 to
class k.

Finding a path colored 1 —2 —--- — k

CEEE)

o Edges connecting nonadjacent color classes are removed.
@ The remaining edges are directed towards the larger class.

@ All we need to check if there is a directed path from class 1 to
class k.

Color Coding

k-PATH

Color Coding

success probability:

Finding a
1-2— . —k
colored path

polynomial-time
solvable

10

Improved Color Coding

@ Assign colors from [k] to vertices V/(G) uniformly and
independently at random.

@ Check if there is a colorful path where each color appears
exactly once on the vertices; output “YES" or “NO".

11

Improved Color Coding

@ Assign colors from [k] to vertices V(G) uniformly and
independently at random.

o Check if there is a colorful path where each color appears
exactly once on the vertices; output “YES" or “NO".

o If there is no k-path: no colorful path exists = "NO”.
o If there is a k-path: the probability that it is colorful is

KU (B,
KK” Tk €

thus the algorithm outputs “YES" with at least that probability.

11

Improved Color Coding

@ Assign colors from [k] to vertices V/(G) uniformly and
independently at random.

o Repeating the algorithm 100e* times decreases the error
probability to e =100,

How to find a colorful path?
e Try all permutations (k! - n() time)

@ Dynamic programming (2% - n°1) time)

11

Finding a colorful path
Subproblems:
We introduce 2% - |V/(G)| Boolean variables:

x(v, C) = TRUE for some v € V(G) and C C [K]
(i
There is a path P ending at v such that each color in
C appears on P exactly once and no other color
appears.

Answer:

There is a colorful path <= x(v, [k]) = TRUE for some vertex v.

Initialization & Recurrence:
Exercise.

12

Improved Color Coding

k-PATH

Color Coding

success probability:

Finding a
colorful path

Solvable in time
ok . ,0(1)

13

Derandomization

Definition

A family # of functions [n] — [k] is a k-perfect family of hash
functions if for every S C [n] with |S| = k, there is an h € H such
that h(x) # h(y) for any x,y € S, x # y.

Theorem [Alon, Yuster, Zwick 1994]

There is a k-perfect family of functions [n] — [k] having size
29(%) Jog n (and can be constructed in time polynomial in the size
of the family).

14

Derandomization

Definition

A family # of functions [n] — [k] is a k-perfect family of hash
functions if for every S C [n] with |S| = k, there is an h € H such
that h(x) # h(y) for any x,y € S, x # y.

Theorem [Alon, Yuster, Zwick 1994]

There is a k-perfect family of functions [n] — [k] having size
29(%) Jog n (and can be constructed in time polynomial in the size
of the family).

Instead of trying O(e¥) random colorings, we go through a
k-perfect family 7{ of functions V(G) — [k].

If there is a solution S

= The vertices of S are colorful for at least one h € H

= Algorithm outputs “YES".

— k-PATH can be solved in deterministic time 29(K) . ,O(1),

14

Derandomized Color Coding

k-PATH

k-perfect family
20(%) log n functions

Finding a
colorful path

Solvable in time
ok . ,0(1)

15

Bounded-degree graphs

Meta theorems exist for bounded-degree graphs, but randomization
is usually simpler.

DENSE k-VERTEX SUBGRAPH

Input: A graph G, integers k, m.
Find: A set of k vertices inducing > m edges.

Note: on general graphs, the problem is W[1]-hard parameterized
by k, as it contains k-CLIQUE.

Theorem

DENSE k-VERTEX SUBGRAPH can be solved in randomized time
2k(d+1) . nO(1) on graphs with maximum degree d.

16

DENSE k-VERTEX SUBGRAPH

@ Remove each vertex with probability 1/2 independently.

17

DENSE k-VERTEX SUBGRAPH

@ Remove each vertex with probability 1/2 independently.

o With probability 27% no vertex of the solution is removed.

o With probability 274 every neighbor of the solution is
removed.

@ = We have to find a solution that is the union of connected
components!

17

DENSE k-VERTEX SUBGRAPH

@ Remove each vertex with probability 1/2 independently.

[] / I
o With probability 27% no vertex of the solution is removed.

o With probability 274 every neighbor of the solution is
removed.

@ = We have to find a solution that is the union of connected
components!

17

DENSE k-VERTEX SUBGRAPH

@ Remove each vertex with probability 1/2 independently.

ky vertices ko vertices k3 vertices k; vertices

my edges my edges m3 edges T m; edges

Select connected components with
@ at most k vertices and

@ at least m edges.

What problem is this?

17

DENSE k-VERTEX SUBGRAPH

@ Remove each vertex with probability 1/2 independently.

kq vertices ko vertices ks vertices k; vertices

my edges my edges m3 edges T m; edges

Select connected components with
@ at most k vertices and
@ at least m edges.

What problem is this?

KNAPSACK!

17

DENSE k-VERTEX SUBGRAPH

Select connected components with
@ at most k vertices and
@ at least m edges.
This is exactly KNAPSACK!
(l.e., pick objects of total weight at most S and value at least V.)
We can interpret
@ number of vertices = weight of the items
@ number of edges = value of the items

If the weights are integers, then DP solves the problem in time
polynomial in the number of objects and the maximum weight.

18

DENSE k-VERTEX SUBGRAPH

DENSE
k-VERTEX
SUBGRAPH

Random deletions

success probability:
o—k(d+1)

KNAPSACK

Polynomial time

19

BALANCED SEPARATION

Useful problem for recursion:

BALANCED SEPARATION

Input: A graph G, integers k, qg.

Find:
" A set S of at most k vertices such that G \ S has

at least two components of size at least g each.

Theorem

BALANCED SEPARATION can be solved in randomized time
20(g+k) . ,O(1)

20

BALANCED SEPARATION

G S G

@ Remove each vertex with probability 1/2 independently.

21

BALANCED SEPARATION

T

@ Remove each vertex with probability 1/2 independently.

21

BALANCED SEPARATION

T

@ Remove each vertex with probability 1/2 independently.

o With probability 2% every vertex of the solution is removed.

o With probability 279 no vertex of T7 is removed.

o With probability 279 no vertex of T is removed.

21

BALANCED SEPARATION

T i‘Tz
Remove each vertex with probability 1/2 independently.
With probability 2% every vertex of the solution is removed.

With probability 279 no vertex of T; is removed.
With probability 279 no vertex of T, is removed.

= The reduced graph G’ has two components of size > g that
can be separated in the original graph G by k vertices.

For any pair of large components of G’, we find a minimum
s—tecutin G.

21

BALANCED SEPARATION

BALANCED
SEPARATION

Random deletions

success probability:
2—(k+2q)

MINIMUM s — ¢t
CuT

Polynomial time

22

Conclusions

Randomization gives elegant solution to many problems.
Derandomization is sometimes possible (but less elegant).

Small (but f(k)) success probability is good for us.

Reducing the problem we want to solve to a problem that is
easier to solve.

23

