Minicourse on parameterized algorithms and complexity

Part 2: Iterative compression

Dániel Marx (slides by Marek Cygan)

Jagiellonian University in Kraków April 21-23, 2015

What iterative compression is?

Iterative compression — main idea

Recursive approach exploiting instance structure exposed by a bit oversized solution.

What iterative compression is?

Iterative compression — main idea

Recursive approach exploiting instance structure exposed by a bit oversized solution.

Solution compression:

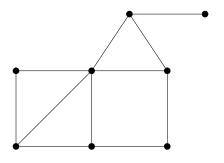
- First, apply some simple trick so that you can assume that a slightly too large solution is available.
- Then exploit the structure it imposes on the input graph to construct an optimal solution.

Vertex Cover

Vertex Cover

Input: undirected **G**, integer **k**

Question: is there a subset $X \subseteq V(G)$ of size at most k such that for each $uv \in E(G)$ we have $\{u, v\} \cap X \neq \emptyset$.

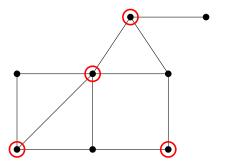


Vertex Cover

Vertex Cover

Input: undirected **G**, integer **k**

Question: is there a subset $X \subseteq V(G)$ of size at most k such that for each $uv \in E(G)$ we have $\{u, v\} \cap X \neq \emptyset$.



We exemplify the iterative compression technique by showing $2^k n^{\mathcal{O}(1)}$ algorithm for Vertex Cover.

We exemplify the iterative compression technique by showing $2^k n^{\mathcal{O}(1)}$ algorithm for Vertex Cover.

Vertex Cover Compression

Input: undirected G, integer k,

vertex cover $Z \subseteq V(G)$ of size at most 2k

Question: is there a vertex cover of size at most k?

We exemplify the iterative compression technique by showing $2^k n^{\mathcal{O}(1)}$ algorithm for Vertex Cover.

Vertex Cover Compression

Input: undirected G, integer k,

vertex cover $Z \subseteq V(G)$ of size at most 2k

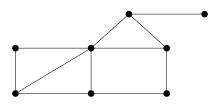
Question: is there a vertex cover of size at most k?

- Where do we get **Z** from?
- How do we use Z?

Where do we get **Z** from?

Where do we get **Z** from?

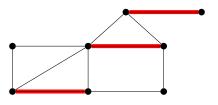
Use polynomial time 2-approximation:



Where do we get **Z** from?

Use polynomial time 2-approximation:

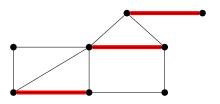
• Find any inclusionwise maximal matching M.



Where do we get Z from?

Use polynomial time 2-approximation:

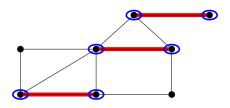
- Find any inclusionwise maximal matching M.
- If |M| > k, then no VC of size $\leq k$ exists.



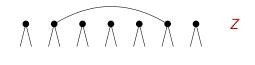
Where do we get Z from?

Use polynomial time 2-approximation:

- Find any inclusionwise maximal matching M.
- If |M| > k, then no VC of size $\leq k$ exists.
- Otherwise, set Z = V(M), we have $|Z| \leq 2k$.

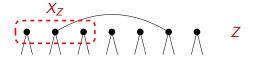


How do we use \mathbb{Z} ?



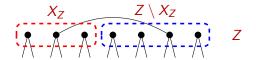
How do we use \mathbb{Z} ?

• Guess $X \cap Z = X_Z$ (by branching into $2^{|Z|} \le 4^k$ cases).



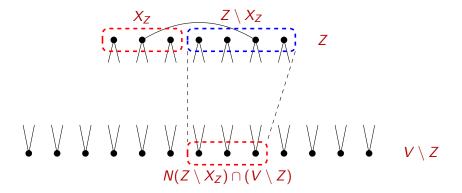
How do we use \mathbb{Z} ?

• Guess $X \cap Z = X_Z$ (by branching into $2^{|Z|} \le 4^k$ cases).



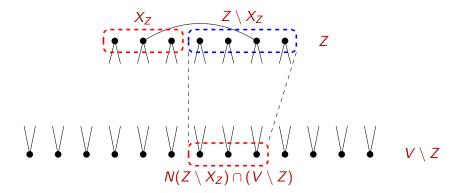
How do we use \mathbb{Z} ?

• Guess $X \cap Z = X_Z$ (by branching into $2^{|Z|} \le 4^k$ cases).



How do we use \mathbb{Z} ?

- Guess $X \cap Z = X_Z$ (by branching into $2^{|Z|} \leq 4^k$ cases).
- Check if $Z \setminus X_Z$ is independent and $|X_Z \cup N(Z \setminus X_Z)| \leq k$.



How do we use \mathbb{Z} ?

• We have obtained $2^{|Z|} n^{\mathcal{O}(1)} \leqslant 4^k n^{\mathcal{O}(1)}$ time algorithm.

How do we use \mathbb{Z} ?

- We have obtained $2^{|Z|}n^{\mathcal{O}(1)} \leq 4^k n^{\mathcal{O}(1)}$ time algorithm.
- Can we improve the dependency on k to 2^k ?

How do we use \mathbb{Z} ?

- We have obtained $2^{|Z|}n^{\mathcal{O}(1)} \leq 4^k n^{\mathcal{O}(1)}$ time algorithm.
- Can we improve the dependency on k to 2^k ?
- Notice that it would be enough to have $|Z| \le k+1$, but so far we only have $|Z| \le 2k$.

Vertex Cover

Vertex Cover Compression

Input: undirected G, integer k,

vertex cover $Z \subseteq V(G)$ of size at most k+1

Question: is there a vertex cover of size at most k?

Vertex Cover

Vertex Cover Compression

Input: undirected G, integer k,

vertex cover $Z \subseteq V(G)$ of size at most k+1

Question: is there a vertex cover of size at most k?

Idea: get **Z** from recursion!

How to get Z of size at most k + 1?

• Assume that an instance I = (G, k) without Z is given.

- Assume that an instance I = (G, k) without Z is given.
- Pick any $v \in V(G)$ and solve $I' = (G \setminus \{v\}, k)$ recursively.

- Assume that an instance I = (G, k) without Z is given.
- Pick any $v \in V(G)$ and solve $I' = (G \setminus \{v\}, k)$ recursively.
- If I' is a NO-instance then I is a NO-instance.

- Assume that an instance I = (G, k) without Z is given.
- Pick any $v \in V(G)$ and solve $I' = (G \setminus \{v\}, k)$ recursively.
- If I' is a NO-instance then I is a NO-instance.
- Otherwise set $Z = X \cup \{v\}$, where X is a solution for I'.

- Assume that an instance I = (G, k) without Z is given.
- Pick any $v \in V(G)$ and solve $I' = (G \setminus \{v\}, k)$ recursively.
- If I' is a NO-instance then I is a NO-instance.
- Otherwise set $Z = X \cup \{v\}$, where X is a solution for I'.
- (G, k, Z) is VC Compression instance to solve.

How to get Z of size at most k + 1?

- Assume that an instance I = (G, k) without Z is given.
- Pick any $v \in V(G)$ and solve $I' = (G \setminus \{v\}, k)$ recursively.
- If I' is a NO-instance then I is a NO-instance.
- Otherwise set $Z = X \cup \{v\}$, where X is a solution for I'.
- (G, k, Z) is VC Compression instance to solve.

Lemma

 $f(k)n^c$ time algorithm for VC Compression implies $f(k)n^{c+1}$ time algorithm for VC.

Vertex Cover - summary

Lemma

 $f(k)n^c$ time algorithm for VC Compression implies $f(k)n^{c+1}$ time algorithm for VC.

Reduction: Vertex Cover → Vertex Cover Compression.

Vertex Cover - summary

Lemma

 $f(k)n^c$ time algorithm for VC Compression implies $f(k)n^{c+1}$ time algorithm for VC.

Reduction: Vertex Cover → Vertex Cover Compression.

Vertex Cover Compression can be solved in time $2^{|Z|}n^{\mathcal{O}(1)}$, which leads to $2^k n^{\mathcal{O}(1)}$ algorithm for VC.

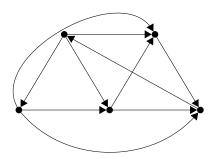
Outline

- 1 Iterative compression introduction.
- 2 Learning by example vertex cover.
- Searning by example FVS in tournament.
- Generic steps of the method.
- **5** $5^k n^{\mathcal{O}(1)}$ algorithm for FVS.
- **6** $3^k n^{\mathcal{O}(1)}$ algorithm for OCT sketch.

Feedback Vertex Set (FVS) in Tournaments

Input: a tournament (oriented clique) T, integer k

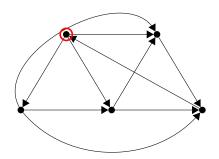
Question: is there a subset $X \subseteq V(T)$ of size at most k, such that $T \setminus X$ is acyclic



Feedback Vertex Set (FVS) in Tournaments

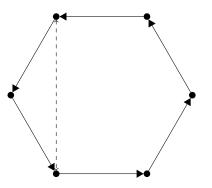
Input: a tournament (oriented clique) T, integer k

Question: is there a subset $X \subseteq V(T)$ of size at most k, such that $T \setminus X$ is acyclic



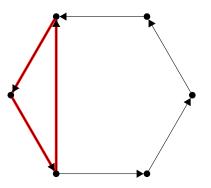
Lemma

If a tournament contains a cycle, then it contains a 3-cycle.



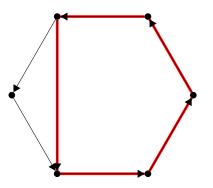
Lemma

If a tournament contains a cycle, then it contains a 3-cycle.



Lemma

If a tournament contains a cycle, then it contains a 3-cycle.



Lemma

If a tournament contains a cycle, then it contains a 3-cycle.

• This lemma implies a simple $3^k n^{\mathcal{O}(1)}$ branching algorithm.

Lemma

If a tournament contains a cycle, then it contains a 3-cycle.

- This lemma implies a simple $3^k n^{\mathcal{O}(1)}$ branching algorithm.
- By using iterative compression we will see how to improve the running time to $2^k n^{\mathcal{O}(1)}$.

Start with the recursive trick, reducing the problem to its compression version.

Start with the recursive trick, reducing the problem to its compression version.

Feedback Vertex Set (FVS) in Tournaments Compression

Input: a tournament (oriented clique) T, integer k

a FVS $Z \subseteq V(T)$ of size at most k+1

Question: is there a subset $X \subseteq V(T)$ of size at most k,

such that $T \setminus X$ is acyclic

Start with the recursive trick, reducing the problem to its compression version.

Feedback Vertex Set (FVS) in Tournaments Compression

Input: a tournament (oriented clique) *T*, integer *k*

a FVS $Z \subseteq V(T)$ of size at most k+1

Question: is there a subset $X \subseteq V(T)$ of size at most k,

such that $T \setminus X$ is acyclic

Lemma

 $f(k)n^c$ time algorithm for FVST Compression implies $f(k)n^{c+1}$ time algorithm for FVST.

Pf: this time we use induction (loop) - alternative to recursion.

• Let $V(T) = \{v_1, \ldots, v_n\}.$

Pf: this time we use induction (loop) - alternative to recursion.

- Let $V(T) = \{v_1, \dots, v_n\}.$
- We want to solve $FVST(T[V_i], k)$ for i = 1, ..., n, where $V_i = \{v_1, ..., v_i\}$.

Pf: this time we use induction (loop) - alternative to recursion.

- Let $V(T) = \{v_1, \ldots, v_n\}.$
- We want to solve $FVST(T[V_i], k)$ for i = 1, ..., n, where $V_i = \{v_1, ..., v_i\}$.
- Set $X_1 = \emptyset$, which is a solution for $FVST(T[v_1], k)$.

Pf: this time we use induction (loop) - alternative to recursion.

- Let $V(T) = \{v_1, \ldots, v_n\}.$
- We want to solve $FVST(T[V_i], k)$ for i = 1, ..., n, where $V_i = \{v_1, ..., v_i\}$.
- Set $X_1 = \emptyset$, which is a solution for $FVST(T[v_1], k)$.
- For $2 \leqslant i \leqslant n$ do
 - $Z_i = X_{i-1} \cup \{v_i\},$
 - let X_i be a solution to FVST Compression($T[V_i], k, Z_i$).
 - if no solution found for $T[V_i]$, then return NO.

Feedback Vertex Set (FVS) in Tournaments Compression

Input: a tournament (oriented clique) T, integer k a FVS $Z \subseteq V(T)$ of size at most k+1 Question: is there a subset $X \subseteq V(T)$ of size at most k, such that $T \setminus X$ is acyclic

By guessing a partition $Z = X_Z \uplus W$, we get to the disjoint version.

Feedback Vertex Set (FVS) in Tournaments Compression

Input: a tournament (oriented clique) T, integer k a FVS $Z \subseteq V(T)$ of size at most k+1 Question: is there a subset $X \subseteq V(T)$ of size at most k, such that $T \setminus X$ is acyclic

By guessing a partition $Z = X_Z \uplus W$, we get to the disjoint version.

Disjoint FVS in Tournaments Compression

Input: a tournament (oriented clique) T, integer k a FVS $W \subseteq V(T)$ of size at most k+1 Question: is there a subset $X \subseteq V(T)$ of size at most k, disjoint with W, such that $T \setminus X$ is acyclic

Disjoint FVS in Tournaments Compression

Input: a tournament (oriented clique) T, integer k a FVS $W \subseteq V(T)$ of size at most k+1

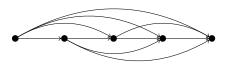
Question: is there a subset $X \subseteq V(T)$ of size at most k, disjoint with W, such that $T \setminus X$ is acyclic

Lemma

Poly time algorithm for Disjoint FVST Compression implies $2^k n^{\mathcal{O}(1)}$ time algorithm for FVST Compression.

Observation

For an acyclic tournament, there is a single topological ordering.



Simple reduction rules:

Simple reduction rules:

Reduction 1

If T[W] is not acyclic, then answer NO.

Simple reduction rules:

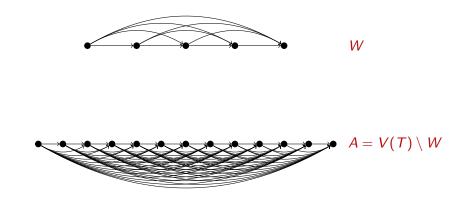
Reduction 1

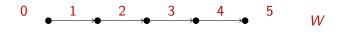
If T[W] is not acyclic, then answer NO.

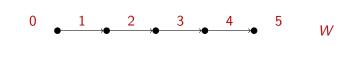
Let
$$A = V(T) \setminus W$$
 (removable set).

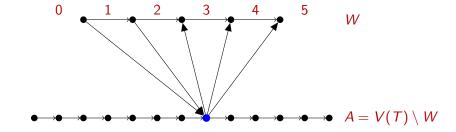
Reduction 2

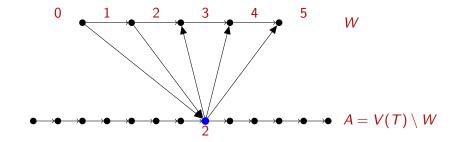
If for $v \in A$ the graph $T[W \cup \{v\}]$ contains a cycle, then remove v and reduce k by one.

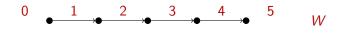


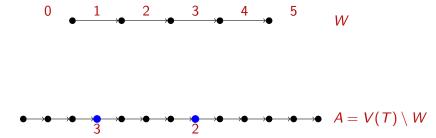


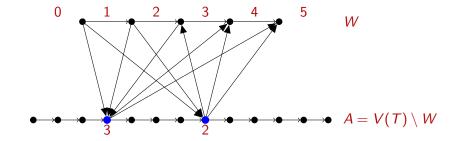


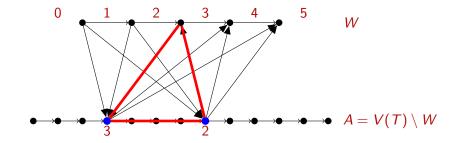


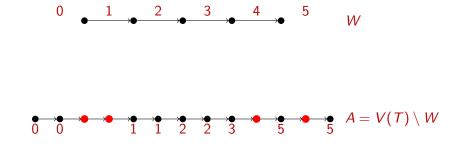


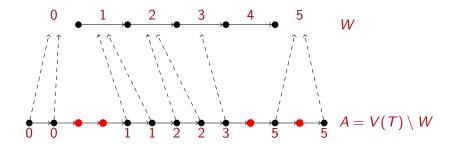


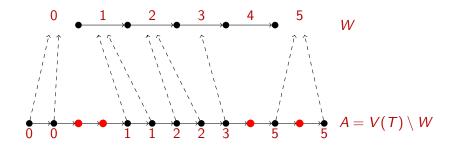












Consequently Disjoint FVST Compression may be reduced to finding longest nondecreasing subsequence.

Iterative compression schema:

• By using induction we can assume that a solution $Z \subseteq V(G)$, $|Z| \le k+1$ is given as part of input.

Iterative compression schema:

- By using induction we can assume that a solution $Z \subseteq V(G)$, $|Z| \leq k+1$ is given as part of input.
- Branch into $2^{|Z|}$ cases, guessing what part of Z should be in a solution.

Iterative compression schema:

- By using induction we can assume that a solution $Z \subseteq V(G)$, $|Z| \leq k+1$ is given as part of input.
- Branch into $2^{|Z|}$ cases, guessing what part of Z should be in a solution.
- Solve a disjoint version of the problem, where given a solution $W \subseteq V(G)$ we look for $X \subseteq V(G) \setminus W$ of size at most k.

Iterative compression schema:

- By using induction we can assume that a solution $Z \subseteq V(G)$, $|Z| \leq k+1$ is given as part of input.
- Branch into $2^{|Z|}$ cases, guessing what part of Z should be in a solution.
- Solve a disjoint version of the problem, where given a solution $W \subseteq V(G)$ we look for $X \subseteq V(G) \setminus W$ of size at most k.
- $c^k n^{\mathcal{O}(1)}$ time algorithm for the disjoint version implies $(2c)^k n^{\mathcal{O}(1)}$ time algorithm for the general problem.

Lemma

 $c^k n^{\mathcal{O}(1)}$ time algorithm for the disjoint version implies $(c+1)^k n^{\mathcal{O}(1)}$ time algorithm for the general problem.

Lemma

 $c^k n^{\mathcal{O}(1)}$ time algorithm for the disjoint version implies $(c+1)^k n^{\mathcal{O}(1)}$ time algorithm for the general problem.

$$\sum_{X \subseteq Z} c^{k-|X|} = \sum_{i=0}^{k+1} \binom{k+1}{i} c^{k-i} 1^i = (c+1)^{k+1}/c$$

Remarks:

 To make induction work, we need to find a solution (answering YES/NO is not enough).

- To make induction work, we need to find a solution (answering YES/NO is not enough).
- By default iterative compression adds *n* factor to the running time.

- To make induction work, we need to find a solution (answering YES/NO is not enough).
- By default iterative compression adds n factor to the running time.
- Ex: show that for VC and FVST this factor can be reduced to $\mathcal{O}(k)$ (hint: use $\mathcal{O}(1)$ -approximation).

- To make induction work, we need to find a solution (answering YES/NO is not enough).
- By default iterative compression adds n factor to the running time.
- Ex: show that for VC and FVST this factor can be reduced to $\mathcal{O}(k)$ (hint: use $\mathcal{O}(1)$ -approximation).
- Some natural problems are not vertex deletion closed.

- To make induction work, we need to find a solution (answering YES/NO is not enough).
- By default iterative compression adds n factor to the running time.
- Ex: show that for VC and FVST this factor can be reduced to $\mathcal{O}(k)$ (hint: use $\mathcal{O}(1)$ -approximation).
- Some natural problems are not vertex deletion closed.
- Ex: reduce Connected Vertex Cover (CVC) to CVC-Compression.

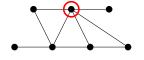
FVS

Feedback Vertex Set (FVS)

Input: undirected **G**, integer **k**

Question: is there a subset $X \subseteq V(G)$ of size at most k,

such that $G \setminus X$ is a forest



FVS

FVS is vertex deletion closed, so we can apply iterative compression schema and solving the following problem in time $c^k n^{\mathcal{O}(1)}$ leads to $(c+1)^k n^{\mathcal{O}(1)}$ time algorithm for FVS.

FVS

FVS is vertex deletion closed, so we can apply iterative compression schema and solving the following problem in time $c^k n^{\mathcal{O}(1)}$ leads to $(c+1)^k n^{\mathcal{O}(1)}$ time algorithm for FVS.

Disjoint FVS Compression

Input: undirected **G**, integer **k**

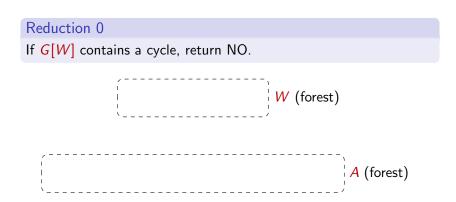
a FVS $W \subseteq V(G)$ of size at most k+1

Question: is there a subset $X \subseteq V(G)$ of size at most k,

disjoint with W, such that $G \setminus X$ is a forest

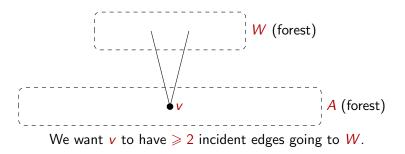
Reduction 0

If G[W] contains a cycle, return NO.



Reduction 0

If G[W] contains a cycle, return NO.

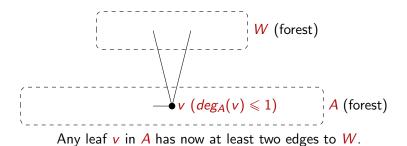


Reduction 1

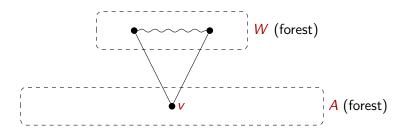
Remove all degree at most 1 vertices from G.

Reduction 2

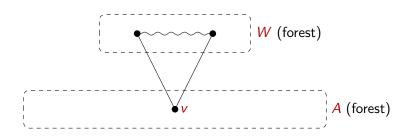
If there is $v \in A$ with deg(v) = 2 and at least one neighbor in A, then add an edge between neighbours of v (even if there was one) and remove v.



FVS - one more reduction rule



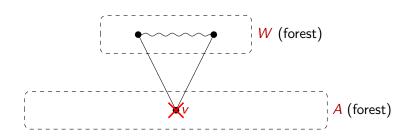
FVS - one more reduction rule



Reduction 3

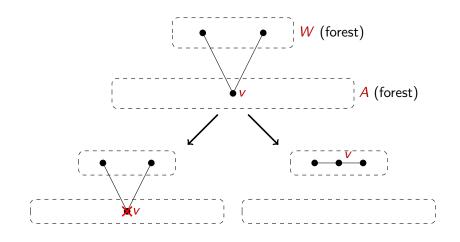
If for $v \in A = V(G) \setminus W$ the graph $G[W \cup \{v\}]$ contains a cycle, then remove v and decrease k by one.

FVS - one more reduction rule



Reduction 3

If for $v \in A = V(G) \setminus W$ the graph $G[W \cup \{v\}]$ contains a cycle, then remove v and decrease k by one.



Formally, we branch into instances:

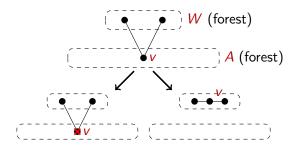
- $(G \setminus \{v\}, k-1, W)$,
- $(G, k, W \cup \{v\}).$

Formally, we branch into instances:

- $(G \setminus \{v\}, k-1, W)$,
- $(G, k, W \cup \{v\}).$

Observation

A potential $\pi(I) = k + \#cc(G[W])$ decreases in each branch.



Formally, we branch into instances:

- $(G \setminus \{v\}, k-1, W)$,
- $(G, k, W \cup \{v\}).$

Observation

A potential $\pi(I) = k + \#cc(G[W])$ decreases in each branch.

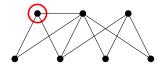
Lemma

Disjoint FVS Compression can be solved in time $4^k n^{\mathcal{O}(1)}$, consequently there is $5^k n^{\mathcal{O}(1)}$ time algorithm for FVS.

Odd Cycle Transversal (OCT)

Input: undirected **G**, integer **k**

Question: is there a subset $X \subseteq V(G)$ of size at most k, such that $G \setminus X$ is bipartite



The heart of the solution for OCT by iterative compression is the following problem, which can be solved in polynomial time!

Annotated Bipartite Coloring

Input: bipartite $G = (V_1, V_2, E)$, integer k,

a partial coloring $f_0:V(G) \rightarrow \{1,2,?\}$

Question: is there a subset $X \subseteq V(G)$ of size at most k,

and a proper coloring f of $G \setminus X$ consistent with f_0 .

```
Annotated Bipartite Coloring
Input: bipartite G = (V_1, V_2, E), integer k,
          a partial coloring f_0: V(G) \rightarrow \{1, 2, ?\}
Question: is there a subset X \subseteq V(G) of size at most k,
             and a proper coloring f of G \setminus X consistent with f_0.
```

Annotated Bipartite Coloring

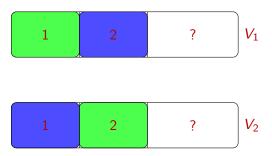
Input: bipartite $G = (V_1, V_2, E)$, integer k,

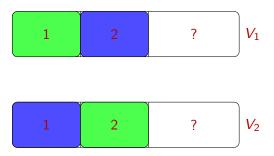
a partial coloring $f_0:V(G) \to \{1,2,?\}$

Question: is there a subset $X \subseteq V(G)$ of size at most k,

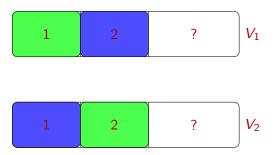
and a proper coloring f of $G \setminus X$ consistent with f_0 .

1	2	?	V_1

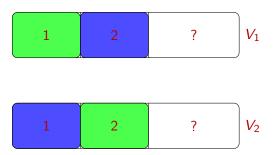




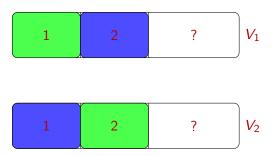
• each blue vertex is either removed or recolored wrt $V_1 \uplus V_2$,



- each blue vertex is either removed or recolored wrt $V_1 \uplus V_2$,
- each green vertex is removed or maintains color wrt $V_1 \uplus V_2$,



- each blue vertex is either removed or recolored wrt $V_1 \uplus V_2$,
- each green vertex is removed or maintains color wrt $V_1 \uplus V_2$,
- for each e ∈ E(G \ X) either both vertices are recolored, or none,



- each blue vertex is either removed or recolored wrt $V_1 \uplus V_2$,
- each green vertex is removed or maintains color wrt $V_1 \uplus V_2$,
- for each $e \in E(G \setminus X)$ either both vertices are recolored, or none,
- algorithm: find min cut between green and blue!

Summary

Iterative compression

Recursive approach exploiting instance structure exposed by a bit oversized solution.

We have seen it applied to:

- Vertex Cover.
- FVS in Tournaments,
- FVS.
- OCT (sketch).