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Abstract

Given a graph G and a subset S of vertices, the Subset
TSP problem asks for a shortest closed walk in G
visiting all vertices of S. The problem can be solved in
time 2k ·nO(1) using the classical dynamic programming
algorithms of Bellman and of Held and Karp, where k =
|S| and n = |V (G)|. Our main result is showing that the

problem can be solved in time (2O(
√
k log k) +W ) · nO(1)

if G is a planar graph with weights that are integers
no greater than W . While similar speedups have been
observed for various paramterized problems on planar
graphs, our result cannot be simply obtained as a
consequence of bounding the treewidth of G or invoking
bidimensionality theory. Our algorithm consists of two
steps: (1) find a locally optimal solution, and (2) use it
to guide a dynamic program. The proof of correctness
of the algorithm depends on a treewidth bound on a
graph obtained by combining an optimal solution with
a locally optimal solution.

1 Introduction

The Traveling Salesperson Problem (TSP) is one of the
most famous and most studied combinatorial optimiza-
tion problems. Given a pair (S, d(·, ·)) where S is a
finite set and d : S × S −→ R is a weight function, a
tour is a permutation cycle (s0 . . . sk−1). The weight of
a tour is

∑
i d(si, si+1 (mod k)), and the goal is to find

a minimum-weight tour. We use k for the size of S.
An easy reduction from Hamiltonian Cycle shows
that the problem is NP-hard even if every weight is 1
or 2. The problem can be solved by enumerating all the
(k − 1)! tours, or more efficiently, by the classical dy-
namic programming algorithms of Bellman [4] and Held
and Karp [17] solving 2k subproblems.
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Metric TSP is the special case when the pair
(S, d) is a metric space, that is, the distances are
symmetric and satisfy the triangle inequality. This
problem is equivalent to finding a minimum-weight walk
in an undirected graph with nonnegative symmetric
edge-weights, for one can define S to be the vertex set
and d(u, v) to be the u-to-v distance (this is the metric
corresponding to the edge-weighted graph). Metric
TSP has a polynomial-time 3

2 -approximation due to
Christofides [7]. Various special cases of Metric TSP
or the related Hamiltonian Cycle problem are known
to be solvable in time cn for different constants c < 2
[14, 5, 18, 13]. However, in general graphs, we do not
expect algorithms with running time 2o(n) for Metric
TSP, as this would contradict the Exponential Time
Hypothesis (ETH), see, e.g., the survey [27].

The problem becomes significantly easier when the
metric is the Euclidean metric between points in the
plane. For this problem, polynomial-time approxima-
tion schemes are known [1, 29, 30]. Moreover, there is
a 2O(

√
n log n)-time algorithm to find the optimum solu-

tion [32].
The problem also becomes significantly easier when

the metric is given by distances in a planar graph. First,
it admits a polynomial-time approximation scheme
(PTAS) ([15] for the case of unit weights) and ([2]
for general weights) and even a linear-time approxi-
mation scheme [22, 24]. For finding an exact solution,
the well-known fact that an n-vertex planar graph has
treewidth O(

√
n) [31] combined with standard tech-

niques for solving TSP on bounded-treewidth graphs
yield a 2O(

√
n log n)-time algorithm [8]. Using noncross-

ing properties with a Catalan bound yields a 2O(
√
n)-

time algorithm [12].
One motivation for studying Metric TSP where

the metric is given by distances in a planar graph is
that a road network can be modeled by a planar graph
(ignoring overpasses etc.). However, this formulation
requires the tour to visit every road intersection, which
is not very realistic. This suggests the Subset TSP
problem: given a graph G and a subset S ⊆ V (G)
of vertices, the task is to find the shortest closed walk
visiting every vertex of S (and possibly other vertices).



We refer to the vertices in S as terminals.
For general graphs, Subset TSP can be modeled

by just starting with the metric space corresponding
to G and then taking the submetric induced on S.
However, even when G is planar, the submetric is
not in general the metric corresponding to a planar
graph, so Subset TSP restricted to planar graphs
is a strict generalization of Metric TSP restricted
to planar graphs. Indeed, this problem is also a
strict generalization of Metric TSP restricted to the
Euclidean metric of points in the plane: a planar
embedded graph can be constructed by taking the line
segments between the given points, and introducing new
vertices at the crossings.

Do the favorable algorithmic properties of Metric
TSP on planar graphs carry over to Subset TSP prob-
lem? It has been shown that this generalization has an
O(n log n) approximation scheme [23]. Moreover, using
standard techniques for bounded-treewidth graphs, the
problem can be solved exactly in time 2O(

√
n log n). But

note that the number k of terminals is likely to be much
smaller than the total number of vertices. By disregard-
ing planarity, one can use the classical DP approach on
the submetric to solve the problem exactly in 2k · nO(1)

time. Can we do better by exploiting planarity? In
particular, can we get an exact algorithm whose run-
ning time is polynomial in n and whose dependence on
k improves over that of the general algorithm? Our
main result is a positive answer to this question:

Theorem 1.1. Subset TSP on a planar n-vertex
graph with k terminals can be solved in time

(2O(
√
k log k) + W ) · nO(1) if the weights are integers no

greater than W .

As we have observed above, Theorem 1.1 cannot
be obtained by simply observing that the n-vertex
planar graph G has treewidth O(

√
n), as this leads

only to 2O(
√
n log n) time algorithms. Bidimensionality

theory [10, 9] gives parameterized algorithms on planar

graphs with running time of the form 2O(
√
k) · nO(1)

or 2O(
√
k log k) · nO(1) for a number of problems such as

finding an independent set of size k or finding a cycle
of length at most k. The main idea of these algorithms
is that either the graph contains an Ω(

√
k) × Ω(

√
k)

grid minor, in which case we can immediately get an
answer, or the graph has no such grid, in which case
we can conclude that the graph has treewidth O(

√
k)

and hence standard techniques on bounded-treewidth
graphs can be used. This approach does not seem to
work for Subset TSP: it is not clear what we can
conclude from the existence of an Ω(

√
k)× Ω(

√
k) grid

minor in this problem.
Our algorithm eventually relies on the fact that an

O(k)-vertex planar graph G has treewidth O(
√
k), but

we have to adopt a different viewpoint in order to be
able to exploit this combinatorial relation. First, let us
review how TSP can be solved in time 2k · nO(1) using
dynamic programming [4, 17]. Let us fix an arbitrary
start vertex v0. For every vertex x and subset S′ ⊆ S,
we define the subproblem (x, S′), which is the minimum
length of a path from v0 to x that visits exactly the
terminals in S′. It can be shown that if we have solved
all the subproblems with |S′| = i, then the subproblems
with |S′| = i+1 can be solved using a simple recurrence
relation. The subproblem (x, S) tells us the minimum
length of a path from v0 to x visiting all vertices and
it is easy to deduce the minimum length of the tour
from these subproblems. The dominating factor of the
running time comes from the number of subproblems,
which is k · 2k.

We can try to generalize the algorithm described in
the previous paragraph the following way. Instead of
requiring a path from v0 to x visiting a certain set S′,
we require a family of at most p paths with specified
endpoints such that these paths together visit every
vertex of S′. The family of paths can be specified by 2p
endpoints, which adds a factor of kO(p) to the number
of subproblems; as long as p = O(

√
k), this is only

2O(
√
k log k). One could expect that by keeping track

of O(
√
k) paths, the algorithm becomes more powerful

and perhaps finds the optimum solution more efficiently.
While this might be true, the main bottleneck of the
algorithm is the number of possible such sets S′, which
is still 2k. Thus if we want to improve the running time
beyond 2k, we need to find a way of considering only
a restricted collection S of subsets S′, instead of all 2k

possible subsets of S.
One of the main technical ideas of the paper appears

in the way this restricted collection S of subsets is
constructed. The construction is based on a locally
optimal solution. First, by the symmetry of the weight
function, the weight of a tour is the same as the weight
of its reversal. Up to reversal, a tour is specified by
an undirected graph on vertex set S whose edges form
a simple cycle. Therefore, we henceforth use the term
S-tour (or just tour if the choice of S is clear) to refer
to such a graph.

A popular heuristic for symmetric TSP is based on
iteratively improving a tour by making small changes.
For a number c, a c-change in a tour consists of removing
c edges to split the tour into c paths and then adding
c new edges to reconnect the endpoints of these paths
and obtain a new tour. We say that a tour is a c-opt
tour with respect to the metric d(·, ·) if no such move
can strictly improve the length of the tour. Finding
2-opt or 3-opt tours form the basis of many heuristic



algorithms [26, 19, 20, 21].
The following bound is the main combinatorial re-

sult of the paper: it bounds the treewidth of combining
an optimal tour and a 4-opt tour. For technical reasons,
we need to impose an additional condition on the 4-opt
tour. We say a tour is non-self-crossing with respect
to the planar embedded graph G if it corresponds to a
non-self-crossing walk in G (see Section 2 for details).

Theorem 1.2. Let G be a planar embedded graph, let
S be a set of k terminals, and let (S, d(·, ·)) be the
corresponding metric space. Let T4 be an S-tour that
is 4-opt with respect to d(·, ·) and non-self-crossing with
respect to G. Then there is an optimal tour Topt with
respect to d(·, ·) such that the k-vertex graph formed by
the union of the cycles T4 and Topt has treewidth at most

α
√
k, where α is a universal constant.

Note that this is a purely combinatorial statement and
gives no algorithm for finding the optimum or comput-
ing a tree decomposition of the union. Nevertheless, we
conclude from Theorem 1.2 that it is sufficient to form
the restricted collection S of subsets of S by taking ev-
ery possible union of O(

√
k) consecutive segments of T4.

For this choice, the size of S is kO(
√
k) = 2O(

√
k log k). A

subproblem is defined by specifying O(
√
k) endpoints

for the paths and selecting a member of S, hence the

number of subproblems is also 2O(
√
k log k).

In summary, the algorithm works as follows. First,
we find a non-self-crossing 4-opt S-tour in polynomial
time by iterative improvement. Then we construct a
collection of subsets by taking every possible union of

O(
√
k) consecutive segments of T4 and define 2O(

√
k log k)

types of partial solutions; each type is defined by
fixing the endpoints of O(

√
k) paths and selecting a

subset from our collection. Starting with some trivial
partial solutions, we present a way of combining partial
solutions to obtain larger partial solutions. We use
the tree decomposition given by Theorem 1.2 to prove
that this process of combining partial solutions will
eventually lead to an optimum solution for the whole
problem.

Strictly speaking, our algorithm cannot be called
dynamic programming. The usual meaning of dynamic
programming is that we specify some number of well-
defined subproblems and then we provide a correct
answer for each of these subproblems in some order,
based on the answers for earlier subproblems. In our
algorithm, we define types of partial solutions, but we
do not claim in any way that we find an optimal partial
solution for each type. What we show is that the
operation of combining partial solutions gives optimal
partial solutions for certain types, including the type
that represents the whole problem. More precisely, the

types that are guaranteed to be solved optimally depend
on the tree decomposition given by Theorem 1.2. As
this is a purely existential statement, we do not know
during the execution of the algorithm which are the
types that are guaranteed to be solved optimally, with
the exception of the one representing the whole, which
is always solved optimally.

Let us emphasize that, even though treewidth ap-
pears in a crucial way in the analysis of our algorithm, it
is never explicitly used by the algorithm. In particular,
we do not find tree decompositions or solve any problem
using dynamic programming on a given tree decomposi-
tion. The tree decomposition is used only in the analy-
sis of the algorithm to argue that we get optimal partial
solutions for certain types. This way of using a tree de-
composition without actually having the decomposition
at hand is very similar to how consistency-based algo-
rithms solve CSP instances of bounded width, see, e.g.,
[3, 6].

We would like to dispel a possible source of confu-
sion. Based on Theorem 1.2 and the way we construct
the collection S using O(

√
k) segments of T4, the reader

might have the impression that the optimum solution
can be obtained from T4 by O(

√
k) changes. If this

were true, then any O(
√
k)-change optimal tour would

be globally optimal, and then we could obtain an opti-
mum solution in a much simpler way, without the com-
plicated process of combining partial solutions. How-
ever, we show an example where even an Ω(k)-change
optimal tour is not globally optimal. Intuitively, even
though the locally optimal tour can be considered “sim-
ilar” to an optimal tour, the similarity can be more sub-
tle than what can be expressed by a simple change of
ordering.

As noted earlier, Subset TSP in the metric arising
from a planar graph is a generalization of the problem
of finding a minimum-length tour of points in the plane.
Our algorithm can therefore be applied to this problem.
Note that a 4-opt solution for such a Euclidean instance
is automatically non-self-crossing. For such an instance,
we do not have a good bound on the number of iterations
of local search required to achieve a 4-opt solution and
therefore on the running time (although reportedly local
search tends to terminate quickly in practice). However,
the running time of our algorithm if given a 4-opt

solution matches the 2O(
√
k log k) running time of [32]

up to the constant hidden by the big-O.
The paper is organized as follows. Section 2 intro-

duces notation and contains some preliminary results on
non-self-crossing tours, local search, and tree decompo-
sitions. The main algorithm is described in Section 3.
The proof of Theorem 1.2 appears in Section 4.
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(a) Replacing a terminal t with a degree-1 terminal t′.

(b) This figure shows that we may assume that a realization
uses each edge at most once in each direction. By requiring
that each edge is one of several parallel edges, we can therefore
assume that a realization uses each edge at most once.

Figure 1: Two transformations

2 Preliminaries

We present some of the background and technical tools
necessary for our algorithm in this section. We formally
discuss the fact that tours can be represented in two
different ways (ordering of the terminals or a closed walk
in the graph), define local optimality, and introduce
treewidth.

2.1 Tours and realizations An S-tour is a graph
with vertex set S whose edges form a simple cycle
visiting all vertices. Let G be a graph whose vertex set
includes S. We refer to the vertices of S as terminals.
A realization of an S-tour in G is a walk that visits the
terminals in the same cyclic order as the S-tour.

It is convenient to impose the requirement on G
that each terminal is adjacent in G to exactly one
other vertex. If some terminal t has more than one
neighbor, replace it with an artificial node t′ and
attach t to t′ via a zero-weight edge (see Figure 1a).
Under this requirement, we can restrict our attention
to realizations in which each terminal occurs exactly
once.

It is also convenient to require that each edge of G
is one of four parallel edges. Under this requirement,
we can restrict our attention to realizations in which
each edge occurs at most once. (The argument uses
the modification shown in Figure 1b.) In fact, when
considering a pair of tours, we can assume in addition
that the tours are edge-disjoint.

Now let us also assume G is planar embedded. Let
a1va2 and b1vb2 be two-edge paths sharing the same
middle vertex v. We say these two paths form a crossing

v

(a) A crossing.

(b) Uncrossing a self-crossing walk.

Figure 2: Crossing and uncrossing

at v if in the cyclic order of edges about v, the edges
alternate between edges from {a1v, a2v} and edges from
{b1v, b2v} (see Figure 2a). We say a walk is self-crossing
if it contains subpaths that form a crossing. Given a
closed walk that is self-crossing, one can obtain a closed
walk that is non-self-crossing and uses the same edges
by repeating the step illustrated in Figure 2b. Note that
when this step is applied to the realization of an S-tour,
the result might be a realization of a different S-tour.
We say an S-tour is non-self-crossing with respect to a
graph G if the S-tour has a non-self-crossing realization
in G.

Now let G have nonnegative edge-weights. For a set
A of edges with weights, w(A) denotes the total weight.
Define the metric d(·, ·) by letting d(s, s′) to be the s-
to-s′ distance in G. Given the graph G and any S-tour
T , we can find a realization W of minimum weight by
finding shortest paths between vertices of S consecutive
in the S-tour. Then we can uncross this this realization
to obtain a non-self-crossing closed walk W ′. However,
after uncrossing, the walk W ′ might visit the vertices
of S in a different order than T . Nevertheless, based
on W ′ we can define an S-tour T ′ such that W ′ is a
realization of T .

Proposition 2.1. Given a graph G and an S-tour T ,
we can find in polynomial time a non-self-crossing S-
tour T ′ with cost not more than the cost of T .

2.2 Locally optimal tours Given two S-tours T1

and T2, the distance between T1 and T2 is defined as
|E(T1) \ E(T2)| = |E(T2) \ E(T1)|. We say that an
S-tour T is c-opt if there is no tour T ′ at distance at
most c with w(T ′) < w(T ). For a fixed constant c,
one can use brute force to check in polynomial time
if a tour is c-opt, and if not, find a tour with strictly



smaller weight. By repeatedly searching the distance-
c neighborhood and replacing the current solution if a
better solution is found, eventually one arrives to a c-opt
solution. The sequence of improvements until we reach
a c-opt solution can be very long, but if the weights are
positive integers, then we can bound the length of the
sequence by the maximum weight of a tour.

Proposition 2.2. Let G be a weighted graph where ev-
ery weight is a positive integer not larger than W . Then
a c-opt S-tour can be found in time (|S|c)c|V (G)|O(1)W .

Note that finding a better solution in the c-change
neighborhood is W[1]-hard [28] parameterized by c, thus
it seems that c has to appear in the exponent of the
running time.

In our algorithm, we need to work with non-self-
crossing S-tours. After each step of the iterative
improvement, we can find a non-self-crossing S-tour
of the same cost using Proposition 2.1. Therefore, by
interleaving the local improvement and the uncrossing
step, we get the following algorithm:

Proposition 2.3. Let G be a weighted planar embed-
ded graph where every weight is a positive integer not
larger than W . Then a non-self-crossing c-opt S-tour
can be found in time (|S|c)4|V (G)|O(1)W .

2.3 Treewidth We recall the most important no-
tions related to treewidth in this section.

Definition 2.1. A tree decomposition of a graph G is
a pair (T,B) in which T is a tree and B = {Bt|t ∈ V (T )}
is a family of subsets of V (G) such that

1.
⋃

t∈V (T )Bi = V ;

2. for each edge e = uv ∈ E(G), there exists an
t ∈ V (T ) such that both u and v belong to Bt; and

3. the set of nodes {t ∈ V (T ) | v ∈ Bt} forms a
connected subtree of T for every v ∈ V (G).

To distinguish between vertices of the original graph G
and vertices of T in the tree decomposition, we call
vertices of T nodes and their corresponding Bi’s bags.
The width of the tree decomposition is the maximum
size of a bag in B minus 1. The treewidth of a graph
G, denoted by tw(G), is the minimum width over all
possible tree decompositions of G.

A tree decomposition is nice [25] if it has the
following property: every node t ∈ V (T ) is either

• a leaf node (t has no children and |Bt| = 1),
• a join node (t has two children t′, t′′ and Bt′ = Bt′′),

• a forget node (t has a single child t′ and Bt ⊆ Bt′ ,
|Bt| = |Bt′ | − 1), or

• an introduce node (t has a single child t′ and Bt ⊇
Bt′ , |Bt| = |Bt′ |+ 1).

It is known that every tree decomposition can be turned
into a nice tree decomposition of the same width in
polynomial time. We often assume that the tree is
rooted.

We need the following bound on the treewidth of
planar graphs:

Theorem 2.1. ([31]) The treewidth of a planar graph
on k vertices is O(

√
k).

Tutte proved that any 2-connected graph has a de-
composition into 3-connected components. This result
can be stated in modern terms using tree decomposi-
tions the following way. First, we need the definition of
torso. Let (T,B) be a tree decomposition. The torso
at t is defined as the supergraph of G[Bt] obtained by
adding a clique on Bt ∩Bt′ for every neighbor t′ of t in
T . The following theorem states that every graph can
be decomposed into 3-connected components. We will
use this statement in the proof of Theorem 1.2, when
we focus on 3-connected parts of a certain graph.

Theorem 2.2. (cf. [11, Section 12, Ex. 20] [16])
Every 2-connected graph has a tree decomposition
(T,B), where

• |Bt ∩Bt′ | = 2 for every tt′ ∈ E(T ),

• for every t ∈ V (T ), the torso at t is either 3-
connected or is a complete graph of size at most
3.

A 2-separator is a set Z = {x, y} of vertices whose
removal splits the graph into at least two components.
Note that if (T,B) is the tree decomposition of a 2-
connected graph given by Theorem 2.2, then Bt′ ∩ Bt′′

is a 2-separator for every t′t′′ ∈ E(T ), and conversely,
every 2-separator can be obtained this way.

The following statement appears implictly in earlier
work: it allows us to bound treewidth by bounding the
treewidth of 3-connected components. We provide a
short proof for completeness.

Proposition 2.4. Let (T,B) be a tree decomposition
of a graph G such that the torso at every t ∈ V (T ) has
treewidth at most w. Then G has treewidth at most w.

Proof. Let t be a node of T such that |Bt| > w + 1.
Let G∗t be the torso at t. By assumption, G∗t has a tree
decomposition (T ∗t ,B∗t ) of width at most w, which is
also a tree decomposition of G[Bt]. We modify (T,B)
to obtain another decomposition (T ′,B′) of G. We



construct T ′ by removing node t, adding the tree T ∗t ,
and then connecting T ∗t to T \ t the following way. For
a neighbor t′ of t in T , let Zt = Bt ∩ Bt′ ; note that Zt

induces a clique in G∗t . It is well-know that every clique
is covered by some bag of the tree decomposition; let
t∗ ∈ V (T ∗t ) be such that Zt ⊆ Bt. Then we make
t′ adjacent to t∗. Repeating this process for every
neighbor t′ of t, we indeed get a tree decomposition
(T ′,B′) of G. For every t∗ ∈ T ∗t , the size of Bt∗ is at
most w + 1, thus (T ′,B) has one fewer bags with size
greater than w + 1. Therefore, repeating this process
for every such bag gives the desired tree decomposition.
�

3 Algorithm

We describe our main algorithm in Section 3.1. The
algorithm takes a set of “admissible types” as an input.
In Section 3.2, we define a particular set of admissible
types and we prove (using Theorem 1.2) that the
algorithm finds an optimum solution if this set is given
in the input.

3.1 Building partial solutions Let (S, d(·, ·)) be a
submetric space of the metric space defined by distances
in a planar graph with edge-weights. Let G be the
complete edge-weighted graph with vertex set S where
the weight of ss′ is d(s, s′). We assume |S| ≥ 3.

A partial solution H is a subgraph of G that is either
the vertex-disjoint union of paths or a cycle containing
all k = |S| vertices. We denote by s(H) the nonisolated
vertices of H, which we refer to as the set of vertices
visited by the partial solution. We denote by ε(H) the
endpoints of the paths (of length at least 1) in H; if
H is a cycle visiting all vertices, then ε(H) = ∅. The
weight w(H) of a partial solution H is the total weight
of the edges in H. Given a partial solution H, we
define a matching m(H) on the set ε(H) as follows:
x, y ∈ ε(H) are matched in m(H) if H contains a path
with endpoints x and y. Clearly, m(H) is a perfect
matching of ε(H). The type of the solution is the pair
(s(H),m(H)).

Note that the type does not describe which path
visits which vertices, it describes only the total set of
vertices visited and the endpoints of the paths (see
Figure 3). The number of edges of the subproblem can
be deduced from the type: it is exactly s(H) minus
the number of edges in m(H). Observe that for every
partial solution with at most two edges, there is no other
partial solution with the same type. However, this is
not true for partial solutions with 3 edges: the partial
solution consisting of the path v1v2v3v4 and the partial
solution consisting of the path v1v3v2v4 have the same
type ({v1, v2, v3, v4}, {v1v4}).
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Figure 3: Two partial solutions of type
({1, 2, 3, 4, 5, 6, 8}, {12, 45}).
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Figure 4: The union of a partial solution of type
({1, 2, 4, 5, 6, 8}, {12, 45}) and a partial solution of type
({2, 4, 7}, {24}) has type ({1, 2, 4, 5, 6, 7, 8}, {15}).

We say that two partial solutions H1 and H2 are
mergeable if they are edge disjoint and their union
H1 ∪ H2 is also a partial solution (see Figure 4).
The following lemma shows that the definition of type
contains all the information that we need to know when
merging partial solutions.

Lemma 3.1. Let H1 and H2 be two mergeable partial
solutions. Let H ′1 and H ′2 be two partial solutions that
have the same type as H1 and H2, respectively. Then
H ′1 and H ′2 are mergeable and H1 ∪ H2 has the same
type as H ′1 ∪H ′2.

Proof. We first show that H ′1 and H ′2 are edge disjoint.
Suppose that there is an edge xy ∈ E(H ′1)∩E(H ′2). This
means that x, y ∈ s(H ′1)∩s(H ′2) = s(H1)∩s(H2). That
is, x and y have degree at least 1 in both H1 and H2.
As H1 and H2 are edge disjoint, it follows that x and y
have degree at least 2 in H1∪H2. As H1∪H2 is a partial
solution, x and y have degree exactly 2 in H1 ∪H2, and
hence have degree exactly 1 in both H1 and H2. That
is, x, y ∈ ε(H1) ∩ ε(H2) = ε(H ′1) ∩ ε(H ′2). Now the facts
x, y ∈ ε(H ′1) and xy ∈ E(H ′1) imply that xy ∈ m(H ′1) =
m(H1). Similarly, we get that xy ∈ m(H ′2) = m(H2).
As H1 and H2 are edge disjoint, the paths of H1 and H2

with endpoints x and y form a cycle in H1 ∪H2. This
is only possible if H1 ∪ H2 is a cycle containing every
vertex, which means that m(H1) and m(H2) contain
only the single edge xy. Then m(H ′1) and m(H ′2) also
contain only the single edge xy and it follows that H ′1



and H ′2 contain only the single edge xy. Therefore,
s(H ′1) = s(H ′2) = s(H1) = s(H2) = {x, y} and hence
s(H1 ∪H2) = {x, y}, contradicting that H1 ∪H2 visits
every vertex and the assumption |S| ≥ 3.

Clearly, s(H1 ∪ H2) = s(H1) ∪ s(H2) = s(H ′1) ∪
s(H ′2) = s(H ′1 ∪ H ′2). It is easy to see that the
components of H1∪H2 are described by the components
of the graph m(H1)∪m(H2) in the sense that for every
path of H1∪H2, there is a path of m(H1)∪m(H2) with
the same endpoints and vice versa. (If H1∪H2 is a cycle
visiting every vertex, then m(H1) ∪ m(H2) is a single
cycle). In other words, m(H1 ∪ H2) is the matching
defined by the endpoints of the paths in m(H1)∪m(H2).
As m(H ′1) ∪m(H ′2) = m(H1) ∪m(H2), we can deduce
that the components of H ′1∪H ′2 are paths with the same
pair of endpoints as in H1 ∪H2. Therefore, H ′1 ∪H ′2 is
also a partial solution and m(H ′1 ∪H ′2) = m(H1 ∪H2).
�

Our algorithm starts with an initial set P of partial
solutions (e.g., those containing only a single edge) and
then creates new partial solutions by taking the union of
mergeable pairs. For each type, we keep only one partial
solution: the one with the smallest weight found so far.
By considering the mergeable pairs in increasing order
of the number of edges (see later for details), one can
show that the running time is polynomial in the number
of types. However, the number of types is bounded from
below by the number of subsets of S, which is 2k, and
the number of matchings, which is 2Ω(k log k), thus there

is no hope of obtaining a 2O(
√
k log k) time algorithm if

we consider every possible type.
In order to decrease the running time, we restrict

our attention to a subset of all possible types. Let T
be a set of types, which we call the admissible types.
Our algorithm merges two partial solutions only if the
type of the resulting new partial solution is admissible.
Since the running time can be bounded by the number
of admissible types, it suffices to show that we can
construct a set T of admissible types that is sufficiently

small to keep the running time 2O(
√
k log k), but at

the same time sufficiently large to guarantee that an
optimum solution is found. Section 3.2 presents a way
of construction such a collection.

The algorithm BuildSolutions is presented for-
mally in Algorithm 1. Given a set T of admissible types
and a set P of admissible partial solutions, the algo-
rithm repeatedly merges partial solutions to obtain new
partial solutions having admissible types. From each ad-
missible type, the algorithm keeps only the best solution
of that type found so far. The algorithm performs the
merges in a specific order to avoid the situation where
two partial solutions H1 and H2 are merged, but later

a there emerges another partial solution H ′1 of the same
type as H1 and having smaller weight. For increasing
values of i, the algorithm considers merges where H1

and H2 have less than i edges, but H1 ∪H2 has at least
i edges. This ensures that after the first time a partial
solution H is used in a merge, no new partial solution
with the same type as H is created. The result H1∪H2

of the merge is introduced into P if either P has no
partial solution of this type, or the partial solution of
this type in P has strictly larger weight. At the end
of the algorithm, if P contains a solution of type (S, ∅)
(that is, a cycle visiting every vertex), then the algo-
rithm returns it. Note that, depending on the set T ,
the algorithm might not be able to create such a solu-
tion and even if it creates one, there is no guarantee
that it is a minimum weight cycle visiting every vertex.
The size of P is always at most |T |. For each value of i,
the algorithm performs at most |P|2 merge operations.
We therefore obtain the following.

Proposition 3.1. The number of steps of
BuildSolutions is polynomial in |T | and k.

3.2 Admissible types We construct a set T of
admissible types in the following way. First, we compute
a non-self-crossing 4-opt tour T4 using the algorithm
of Proposition 2.1. A continuous sequence of vertices
visited by T4 will be called a segment of T4. Let
D := max{4, dα

√
ke + 1} = O(

√
k), where α is the

constant in Theorem 1.2. The type τ = (S′,M) appears
in T if and only if

• S′ can be formed as the union of at most D
segments of T4, and

• M has at most D edges.

The hidden constant in the big-O notation comes from

Theorem 1.2. It is clear that |T | = kO(
√
k) = 2O(

√
k log k)

and T can be constructed in time polynomial in T
and k. We initialize P by introducing every partial
solution with only one edge (there are

(
k
2

)
of them).

For notational convenience, we also add the empty
partial solution of type (∅, ∅) into P. We run the
algorithm BuildSolutions on the sets T and P.
The correctness of the algorithm crucially relies on
Theorem 1.2, stated in the introduction. We are now
ready to show that OptimalTSP (Algorithm 2) finds
an optimum solution, proving Theorem 1.1. The proof
shows that partial solutions corresponding to the tree
decomposition given by Theorem 1.2 have to eventually
appear in P.



Algorithm 1 BuildSolutions(T ,P)

Input:
T : set of admissible types
P: initial set of admissible partial solutions

1: for i = 2 to k
2: for every pair H1, H2 ∈ P with |E(H1)|, |E(H2)| < i
3: if H1 and H2 are mergeable and |E(H1 ∪H2)| ≥ i
4: let τ = (S′,M) be the type of H1 ∪H2

5: if τ ∈ T and P contains no partial solution of type τ
6: P := P ∪ {H1 ∪H2}
7: if there is a H ∈ P having type τ and w(H) > w(H1 ∪H2)
8: P := (P \ {H}) ∪ {H1 ∪H2}
9: return the partial solution in P having type (S, ∅) (if exists)

Algorithm 2 OptimalTSP(G,S)

Input:
G: a planar graph.
S: k-element subset of V (G).

1: Compute the metric d(·, ·) on S.
2: Find a non-self-crossing 4-opt tour T4.
3: Let D := max{4, dα

√
ke+ 1}. {α is the constant in Theorem 1.2}

4: Let T contain every type τ = (S′,M) where
– S′ is the union of at most D segments of T4, and
– M is a matching of at most D edges.

5: Let P contain
– the empty partial solution, and
– the

(
k
2

)
partial solutions with one edge each.

6: return BuildSolutions(T ,P).

For the reader’s convenience, we restate the theo-
rem:

Subset TSP on a planar n-vertex graph with

k terminals can be solved in time (2O(
√
k log k)+

W ) ·nO(1) if the weights are integers no greater
than W .

Proof. of Theorem 1.1. We show that the algorithm
OptimalTSP solves the problem. The bound on the
running time is straightforward: the non-self-crossing
4-opt solution T4 can be found in time kO(1) ·W using

Proposition 2.3, the set T has size 2O(
√
k log k), and the

number of steps of BuildSolutions is polynomial in T
and k. To argue that the algorithm finds an optimum
solution, let Topt be the optimum solution and let α
be the constant in Theorem 1.2. Let (T,Bt) be a
rooted nice tree decomposition of T4 ∪ Topt (the graph
representing the combination of the two tours) having
width at most α

√
k. For every node t, let Vt be the

union of Bt′ for every descendant t′ of t (including t
itself). We define Pt = Topt[Vt] and P−t as Pt minus the
edges induced by Bt. Observe that P−t is also a partial

solution.

Claim 3.2. For every t ∈ V (T ), the partial solutions
Pt and P−t are admissible.

Proof. Let St and S−t be the set of nonisolated vertices
of Pt and P−t , respectively. Note that these sets are
subsets of Vt, but can be proper subsets as, e.g., a vertex
v ∈ Bt can have both of its neighbors in Topt outside
Vt, making v isolated in Pt. The set St induces a set
of d disjoint paths on T4. We claim that each of the 2d
endpoints of these paths is either in Bt or is a neighbor
of Bt in T4. Indeed, if a vertex v is in Vt\N [Bt], then its
neighbors are in Vt\Bt, and all these vertices are visited
by Pt, thus v cannot be an endpoint. Therefore, we
can bound the number 2d of endpoints by |Bt| plus the
number of neighbors of Bt in T4. More tightly, observe
that if v ∈ Bt is an endpoint of a path in G[St] and v1, v2

are the neighbors of v in T4, then v1 and v2 cannot be
both endpoints. Thus we can be bound the number 2d
of endpoints by 2|Bt|, that is, St induces a set of at most
d ≤ |Bt| ≤ α

√
k + 1 ≤ D paths in T4. This means that

Pt is admissible. The same argument shows that P−t is



admissible as well. y

By the way we initialized P, every partial solution with
at most one edge is in P. Moreover, in iteration i = 2
of BuildSolutions, we merge these partial solutions
every possible way and therefore every partial solution
with at most two edges is in P. (This is no longer
true for partial solutions consisting of 3 edges: the
partial solution consisting of the path v1v2v3v4 and
the partial solution consisting of the path v1v3v2v4

have the same type, hence they cannot both appear
in P). Furthermore, as D ≥ 4 (defined in Step 3 of
Algorithm 2), every partial solution with at most 2
edges is admissible.

Claim 3.3. For every t ∈ V (T ),

• after iteration i = |E(Pt)|, there is a Qt ∈ P with
the same type as Pt and w(Qt) ≤ w(Pt),

• after iteration i = |E(P−t )|, there is a Q−t ∈ P with
the same type as P−t and w(Q−t ) ≤ w(P−t ).

Proof. Note that if a partial solution with i edges
appears in P at the end of iteration i, then it remains
in P until the end of BuildSolutions: in iterations
larger then i, only types corresponding to more than
i edges are updated. We prove the statement by
induction on the tree decomposition. Let us assume
that the statement is true for every child t′ of t. We
consider the different cases corresponding to the type of
the node t.

• Node t is a leaf node. In this case Vt = Bt has size
1, thus Pt and P−t has no edges. As P contains the
empty solution, the statement holds.

• Node t is an introduce node with child t′. Let
Bt \ Bt′ = {v}. Observe that P−t = P−t′ , thus
the statement for P−t follows from the induction
hypothesis. Similarly, if v is isolated in Pt, then
Pt = Pt′ and the statement follows. Suppose now
that v has 1 or 2 edges incident to it in Pt; let
Hv be the partial solution containing only these
(at most two) edges. Note that Pt = Pt′ ∪ Hv.
As Hv has at most two edges, Hv is in P at the
end of iteration i = 2 by our observation before.
If |E(Pt)| = |E(Pt′)|, then Pt = Pt′ and the
statement follows from the induction hypothesis.
Otherwise, after iteration i = |E(Pt′)| < |E(Pt)|,
there is a partial solution Qt′ in P having the same
type as Pt′ and w(Qt′) ≤ w(Pt′). By Lemma 3.1,
Qt′ and Hv are mergeable and Qt′ ∪ Hv has the
same type as Pt′ ∪ Hv = Pt. Since Qt′ and Hv

are mergeable and they both appear in P at the
beginning of iteration i = |E(Pt)|, there is a set

Qt ∈ P at the end of iteration i = |E(Pt) that has
the same type as Qt′ ∪ Hv (and therefore as Pt)
and has w(Qt) ≤ w(Qt′ ∪Hv) ≤ w(Pt′) +w(Hv) =
w(Pt). The existence of such a Qt is exactly what
we had to show.

• Node t is a forget node with child t′. Let Bt′ \Bt =
{v}. Observe that Pt = Pt′ , thus the statement for
Pt follows from the induction hypothesis. Similarly,
if v is isolated in P−t , then P−t = P−t′ and the
statement follows. Suppose now that v has 1 or 2
edges incident to it in P−t ; let Hv be the partial
solution containing only these edges. We have
P−t = P−t′ ∪ Hv. From this point, we can argue
as in the case of introduce nodes.

• Node t is a join node with children t′ and t′′.
Observe that Pt is the disjoint union of Pt′ and
P−t′′ (this explains the reason for defining the partial
solutions P−t : we want to express Pt as the disjoint
union of two partial solutions). If Pt is the same as
Pt′ or P−t′′ , then the statement for Pt follows from
the induction hypothesis. Otherwise, |E(Pt)| >
|E(Pt′)|, |E(P−t′′)|. By the induction hypothesis,
after iteration i = |E(Pt′)| < |E(Pt)|, there is
a solution Qt′ ∈ P having the same type as Pt′

and w(Qt′) ≤ w(Pt′); and after iteration i =
|E(P−t′′)| < |E(Pt)|, there is a solution Q−t′′ ∈ P
having the same type as P−t′′ and w(Q−t′′) ≤ w(P−t′′).
By Lemma 3.1, Qt′ and Q−t′′ are mergeable and
Qt′ ∪ Q−t′′ has the same type as Pt′ ∪ P−t′′ =
Pt. Therefore, Qt′ and Q−t′′ appear in P at the
beginning of iteration i = |E(Pt)| and, as they are
mergeable, there is a set Qt ∈ P at the end of
iteration i = |E(Pt)| that has the same type as
Qt′ ∪Q−t′′ (a hence as Pt′ ∪ P−t′′ = Pt) and satisfies
w(Qt) ≤ w(Qt′ ∪Q−t′′) ≤ w(Pt′) +w(P−t′′) = w(Pt),
what we had to show.

For the statement on P−t , observe that P−t is the
disjoint union of P−t′ and P−t′′ . The argument is then
the same as for Pt.

y

If r is the root of the tree decomposition, then Pr =
Topt. Thus Claim 3.3 for Pr implies that at the end of
BuildSolutions, the set P contains a solution having
the same type as Topt (that is, type (V (G), ∅)) and
weight not more than the weight of Topt. This means
that the algorithm returns an optimum tour. �

3.3 A remark on locally optimal solutions The
proof of Theorem 1.1 shows that the vertices visited by
every Pt appear on O(

√
k) consecutive segments of T4.
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x2xn−1
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Figure 5: An example of an Ω(k)-opt tour that is not
globally optimal.

But this does not imply that each path in Pt is the union
of O(

√
k) consecutive segments of T4. It may very well

happen that Pt consists of two paths that together visit
a consecutive segment of T4, but one path visits the odd
vertices on the segment and the other path visits the
even vertices of the segment; therefore, each path may
visit Ω(k) segments of T4. It is not true in any sense
that Topt is constructed from O(

√
k) segments of T4 or

that Topt is within the O(
√
k)-change neighborhood of

T4. Our algorithm is more subtle than that: essentially,
we try to construct O(

√
k) paths that together cover

O(
√
k) segments of T4.
To show that we indeed need this subtle way of

constructing Topt, we present an example where even
an Ω(k)-opt tour is not globally optimal. For an odd
integer n, let us define the following weighted planar
graph on n vertices x1, . . . , xn (see Figure 5):

• For 1 ≤ i ≤ n−1, there is an edge xixi+1 of weight
1.

• For 1 ≤ i ≤ n−2, there is an edge xixi+2 of weight
1.

• There is an edge x1xn of weight 0.

Note that the exact values 0 and 1 do not play an
important role here; the example would work with any
α < β. Clearly, there is a tour of weight n−1. Consider
now the tour T that visits the vertices in the order
x1, x3, . . . , xn, xn−1, xn−3, . . . , x2, x1; clearly, this tour
has weight n.

We claim that T is Ω(n)-opt. Let T ′ be a tour
with weight smaller than n, that is, of weight exactly
n− 1. This is only possible if T ′ uses the edge x1xn of
weight 0. We show that for every 2 ≤ i ≤ n − 2, the
symmetric difference of T and T ′ includes at least one
edge incident to xi or xi+1. Suppose not, and consider
the cut between {x1, . . . , xi} and {xi+1, . . . , xn} (see

Figure 5). Tour T ′ contains the edge x1xn of this cut
and all the other edges of this cut are incident to either
xi or xi+1. If the symmetric difference of T and T ′ does
not contain edges incident to xi and xi+1, then we know
that T ′ contains the edges xi−1xi+1 and xixi+2, but it
does not contain the edge xixi+1. Therefore, T ′ contains
exactly 3 edges of this cut, which is a contradiction, as
every cycle contains an even number of edges of each
cut.

Therefore, the symmetric difference contains an
edge incident to {xi, xi+1} for every 2 ≤ i ≤ n − 2,
hence the symmetric difference has Ω(n) edges. That
is, the distance of T and T ′ is Ω(n). As this is true for
every tour T ′ with smaller cost than T , it follows that
T is Ω(n)-opt, yet not globally optimal.

4 Treewidth of the union of a 4-opt tour and
an optimal tour

We prove Theorem 1.2 in this section. We introduce a
notion of representations, argue that a certain structure
called the “grid” cannot appear in a minimal represen-
tation, and then show that the lack of a grid implies the
required treewidth bound.

4.1 Representations Our main combinatorial re-
sult is understanding how a locally optimal tour inter-
acts with a globally optimal tour in a planar graph.
There are some number of technical issues that arise,
e.g., it is possible that a vertex of the planar graph is
visited several times by both tours. We solve these is-
sues in a clean, yet somewhat abstract way: instead of
arguing about closed walks in the planar graph G, we
argue about cycles in an abstract representation.

Definition 4.1. Let T1 and T2 be two S-tours that are
non-self-crossing with respect to G. A representation
with respect to G of the pair (T1, T2) of tours is a triple
(G′, C ′1, C

′
2) where

• G′ is a planar embedded 4-regular graph whose
vertex set contains S,

• for any terminals t, t′, the t-to-t′ distance in G′ is
at least the t-to-t′ distance in G,

• for i = 1, 2, C ′i is a simple cycle of G′ visiting S in
the same order as Ti,

• for i = 1, 2, the weight of C ′i is the same as Ti, and
• C ′1 and C ′2 are edge-disjoint.

First we show that any pair of non-self-crossing
tours have a representation in the sense of Definition 4.1.

Lemma 4.2. Any pair (T1, T2) of S-tours that are non-
self-crossing with respect to a planar embedded graph G
has a representation.



Figure 6: Replacing a high-degree vertex in the proof of
Lemma 4.2.

Proof. We assume without loss of generality that G
satisfies the two requirements discussed in Section 2.1:
each terminal is adjacent to exactly one other vertex,
and each edge of G is one of four parallel edges. Let
C1 and C2 be the non-self-crossing realizations of T1

and T2 in G. Under the second requirement, we can
assume that C1 and C2 are edge-disjoint. Under the
first requirement, therefore, we can assume that each
terminal has four incident edges of C1 ∪ C2.

We transform G into a four-regular graph G’, in
several steps. First we delete edges not belonging to C1

or C1, and delete those vertices that have no incident
edges of C1 or C2.

Next, we transform those vertices having degree
greater than four. Each such vertex v is replaced with
a subgraph as follows (see Figure 6). For each edge
e incident to v, an artificial vertex ve is placed at the
endpoint of e, and for each pair e, e′ of edges that are
consecutive in some Ci, a zero-weight path from ve to
ve′ is constructed. The paths are embedded in such a
way that intersections of different pairs of paths do not
coincide. Additional artificial vertices are created at
these intersections to restore planarity. We have thus
replaced a vertex v of degree greater than four with
vertices of degree two (the vertices ve) and vertices of
degree four (the intersection points).

Since each terminal has degree four, it is unaffected
by this transformation. Finally, in the graph as a whole,
each vertex v of degree two is spliced out, and the two
incident edges e1 and e1 are replaced with a single edge
whose weight is the sum of the weights of e1 and e2.
The resulting graph is four-regular. By assumption, the
realizations C1 and C2 are non-self-crossing, hence every
artificial vertex introduced at a crossing has two edges
coming from C1 and two edges coming from C2. The
cycles C1, C2 have been replaced with cycles C ′1, C

′
2 of

the same total weight. �

The following proposition states a simple property
of minimal representations, illustrated in Figure 7.

Proposition 4.1. For any pair T1, T2 of S-tours, if R
is a representation of (T1, T2) with respect to G that has
the minimum number of vertices, then every vertex of
V (G) \ S is a crossing.

a b

cd

v

a b

cd

w(va) w(bv)

w(vs) w(vc)

w(va) + w(vb)

w(vc) + w(vd)

Figure 7: Proposition 4.1: eliminating a vertex that is
not a crossing.

4.2 Grids and local improvement The grid is the
embedded 16-vertex graph shown in Figure 8a (in this
paper we consider only this specific grid and not grids
of other sizes). Let (G′, C ′1, C

′
2) be a representation. If

φ is an isomorphism between a subgraph H of G′ not
containing any terminals and the grid such that the
horizontal edges (solid) belong to C ′i and the vertical
edges (dashed) belong to C ′3−i, we say (H,φ) is a
C ′i-occurence of the grid in G′. Moreover, let C ′i be
the cycle (either C ′1 or C ′2) containing the horizontal
edges. Then the edges of C ′i not mapped to the grid
form paths connecting the nodes that map to L =
{(1, 1), (1, 4), (2, 1), (2, 4), (3, 1), (3, 4), (4, 1), (4, 4)}.
The type of the C ′i-occurence of the grid is the perfect
matching on L defined as{
{φ(u), φ(v)} :

there is a u-to-v path using edges
of C ′i not mapped to the grid.

}
For example, Figure 8b illustrates an occurence with
type

{{(1, 1), (2, 1)}, {(3, 4), (4, 4)},
{(1, 4), (3, 1)}, {(2, 4), (4, 1)}},

which we call type S, and Figure 8c illustrates an
occurence of type

{{(1, 1), (4, 1)}, {(2, 1), (3, 1)},
{(1, 4), (2, 4)}, {(3, 4), (4, 4)}},

which we call type C. The mirror image of a type
is the type obtained by swapping (i, 1) and (i, 4) for
i = 1, 2, 3, 4.

Lemma 4.3. Every type is S type or C type or the
mirror image of one of these.
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Figure 8: A grid with two different type of cycles.
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(b) Isolation
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(d) Partial S

Figure 9: Matching the vertices on the boundary of the grid.

Proof. The proof consists of a case analysis based on
two observations. The type cannot correspond to a C ′i
containing a cycle that does not include each of the
four horizontal lines of the grid; such a cycle is called
a subtour (see Figure 9a). If there is a simple cycle
consisting of some non-grid edges of C ′i together with
some grid edges, then the subset of vertices of L that
the simple cycle strictly encloses must be paired among
themselves, and similarly for the subset of vertices not
enclosed by the simple cycle. In particular, each of these
subsets must have even cardinality. We say that such a
subset is isolated (see Figure 9b).

Assume without loss of generality that (4, 4) is
paired with a vertex in a higher-numbered row of
the grid than (4, 1) is paired with, else consider the
reflection in the rest of the proof.

By the assumption, (4, 4) cannot be paired with
(1, 4). It cannot be matched with (4, 1), for this would
create a subtour. It cannot be mapped to (3, 1), (2, 4),
or (1, 1), for each of these would isolate a subset of
odd cardinality. If it were mapped to (2, 1), the subset
{(3, 1), (4, 1)} would be isolated, so (4, 1) would be
paired with (3, 1), contradicting our assumption. Thus
(4, 1) must be mapped to (3, 4).

Next, (4, 1) is paired with something in row 1 or
row 2. It cannot be paired with (2, 1), else (3, 1)
would be isolated. It cannot be paired with (1, 4), else
{(1, 1), (2, 1), (3, 1)} would be isolated. It must therefore
be paired with (1, 1) or with (2, 4).

First suppose (4, 1) is paired with (1, 1). That
isolates {(1, 1), (2, 1)}, so these two must be paired,
which leaves (1, 4) and (2, 4) so these must be paired.
This is the C type.

Now suppose (4, 1) is paired with (2, 4). Then
(1, 1) cannot be paired with (3, 1), else (2, 1) would be
isolated, and cannot be paired with (1, 4), else a subtour
would be formed, so it is paired with (2, 1). That leaves
(1, 4) and (1, 3) to be paired, and this is the S type. �

Lemma 4.4. Let (S, d(·, ·)) be a metric space such that
there is a planar graph G for which d(·, ·) gives the
distances between vertices in S. Let T4 be an S-tour
that is 4-opt with respect to d(·, ·) and non-self-crossing
with respect to G. There is an optimal tour Topt and
a representation (G′, C ′1, C

′
2) of (T4, Topt) that contains

no grid.

Proof. Among all optimal non-self-crossing tours, let
Topt be the one for which the size of the smallest repre-
sentation of (T4, Topt) is minimized, and let (G′, C ′1, C

′
2)

be that representation. Assume for a contradiction that
there is a grid.

Let (H,φ1) and (H,φ2) be, respectively, a C ′1-
occurence and a C ′2-occurence of the grid in the rep-
resentation. By Lemma 4.3, each occurence has type S
or C or a mirror image of one of these. We need to con-
sider four combinations of types: C+C, S+C, S+S, and
S+(mirror image of S), ruling out each of these possibil-



ities. That the other combinations cannot occur follows
by symmetry.

In each case, the proof is as follows. We show that
by moving some edges of the grid from C ′1 to C ′2 and
others from C ′2 to C ′1, we end up with a different pair of
edge-disjoint cycles C ′′1 and C ′′2 . Since the same set of
edges are used, the transformation does not increase the
total weight: the weight of C ′′1 ∪C ′′2 equals the weight of
C ′1 ∪ C ′2. The original cycle C ′1 corresponds to a 4-opt
tour T4, and C ′2, corresponds to a minimum-weight tour
Topt. Because the grid itself contains no terminals and
the part of C ′1 outside the grid consists of four paths,
T4 can be transformed via a 4-change to a tour whose
weight is no greater than that of C ′′1 . (It might not be
transformed to C ′′1 itself since C ′′1 might not consist of
terminal-to-terminal shortest paths.) Since T4 is a 4-opt
tour, therefore, the weight of C ′′1 is no less than that of
C ′1. Therefore, the weight of C ′′2 is no more than that

of C ′2, so C ′′2 corresponds to an optimal tour T̂opt.
Note that (G′, C ′′1 , C

′′
2 ) is a representation for

(T4, T̂opt). We claim that this representation has at least
one vertex v of the grid that is not a crossing. It follows
from Proposition 4.1 that the representation is not a
smallest representation of (G′, C ′′1 , C

′′
2 ), a contradiction.

It remains only to show, for each of the type
combinations C+C, S+C, S+S, and S+(mirror image
of S), how the cycles are transformed. These are shown
in Figures 10-13. �

4.3 Bounding treewidth We show next that a rep-
resentation not having a grid has treewidth O(

√
k) and

then we use this to argue that the union of the two S-
tours in Theorem 1.2 has bounded treewidth. Let us
note that we cannot obtain this bound by simply using
the fact that a planar graph not containing a grid mi-
nor has bounded treewidth. Our grid (see Figure 8a) is
defined as a subgraph, not as a minor, and moreover it
has the additional property that it is specified which of
the edges come from which of the cycles.

Lemma 4.5. Consider a representation R =
(G′, C1, C2) of (T1, T2) chosen to minimize the number
of vertices of the representation. If the representation
contains no grid, then its treewidth is O(

√
k).

Proof. First, we observe some immediate consequences
of minimality.

Claim 4.6. Every face of length less than 4 is incident
to S.

Proof. Consider first a face F of length 2 not incident
to S (see Figure 14). The boundary of F contains

x1 y1

y2x2

x yF

x1 y1

y2x2

e1

e2
w(x1x) + w(e1) + w(yy1)

w(x2x) + w(e2) + w(yy2)

Figure 14: Claim 4.6: eliminating a face of length 2.

one edge from each of C1 and C2: otherwise, there
would be a cycle of length 2 in C1 or C2. As F
is not incident to S, the two edges e1 ∈ E(C1) and
e2 ∈ E(C2) of the face connect two vertices x, y 6∈ S,
which are crossings by Prop. 4.1. Suppose that x1xyy1

is a subpath of C1 containing e1 and x2xyy2 is a subpath
of C2 containing e2. We modify the representation by
removing both e1 and e2, adding an edge x1y1 of weight
w(x1x) + w(e1) + w(yy1) to C1, and adding an edge
x2y2 of weight w(x2x) + w(e2) + w(yy2) to C2. From
the fact that both x and y are crossings, it follows that
the modified representation is also planar. The other
properties of representations can be also verified easily.

Consider now a face F of length 3 not incident
to S. By Prop. 4.1, every vertex of F is a crossing.
Therefore, the edges of F are alternatingly from C1 and
C2, implying that the length of F cannot be odd. y

Claim 4.6 states that facial cycles of length less than 4
intersect S, but this does not immediately imply that
this is true for every cycle of length less than 4. The
following claim proves this stronger statement.

Claim 4.7. Every cycle of length less than 4 contains
a vertex of S.

Proof. Let C be a cycle of length less than 4. Let I be
the set of vertices strictly enclosed by C and let O be the
set of vertices not enclosed by C. If I = ∅, then consider
a face enclosed by C. The vertices of this face are on
C, thus it has at most 3 vertices and then Claim 4.6
implies that C intersects S. Therefore, we can assume
that I is nonempty and, by a similar argument, that O
is nonempty. This means that each of C1 and C2 has at
least two edges between I and C, and between O and
C. Thus the total degree of the vertices of C is at least
2|C|+ 8 ≤ 4|C|, which contradicts |C| ≤ 3. y

We say that a face is good if it has length 4, no terminal
is incident to it, and its boundary consists of edges
alternatingly from C1 and C2; otherwise, we say that
the face is bad. We use Claim 4.6 and Euler’s Formula
to give an O(k) bound on the number of bad faces; in
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Figure 10: Modification for C+C types
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Figure 11: Modification for C+S types

fact, we prove the somewhat stronger statement that
the total size of bad faces is bounded by O(k).

Claim 4.8. Let B be the set of vertices incident to bad
faces. Then |B| = O(k).

Proof. Let n, f , and e be the number of vertices, faces,
and edges of R, respectively. As R is 4-regular, we
have e = 2n. From Euler’s Formula, we have n + f =
e + 2 = 2n + 2, hence f = n + 2. Let F be the set
of all faces, and let F<4 and F≥4 be the set of faces
of length less than 4 and at least 4, respectively. By
Claim 4.6, every face of size less than 4 is incident to a
vertex in S. As each vertex of S is incident to at most
4 faces, it follows that |F<4| = O(k). Let `(F ) be the
length of a face and let us define the excess of a face F
as x(F ) := max{`(F ) − 4, 0}. We can bound the total

excess as∑
F∈F

x(F ) =
∑

F∈F≥4

(`(F )− 4)

=
∑

F∈F≥4

`(F )− 4|F≥4|

≤
∑
F∈F

`(F )− 4(|F| − |F<4|)

= 2e− 4f + 4|F<4| = 4n− 4f +O(k)

= 4(f − 2)− 4f +O(k) = O(k).

As `(F ) ≤ x(F ) + 4 ≤ 5x(F ) for a face of length
strictly greater than 4, the total length of such faces is
at most 5

∑
F∈F x(F ) = O(k). By Claim 4.6, the total

length of faces of length less than 4 is O(k) (as each
vertex of S can be incident to at most 4 such faces and
each such face has at most 3 vertices). Moreover, if a
face of length 4 is not incident to S, then all its vertices
are crossings, hence its edges are alternatingly from C1

and C2. It follows that the total length of bad faces of
length 4 is O(k). We can conclude that the size of B is
indeed O(k). y

Next we show that a good face together with 8 other
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Figure 12: Modification for S+S types
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Figure 13: Modification for S+(mirror image of S) types

good faces surrounding it form a grid. While this sounds
obvious, it requires a tedious case analysis to show that
the vertices of the grid are distinct, and we need the
technical condition that no 2-separator is present in the
face.

Claim 4.9. Let F be a good face whose vertices do not
contain a 2-separator and are at distance at least 3 from
B. Then there is a grid.

Proof. Let the vertices of F be (2, 2), (2, 3), (3, 3), (3, 2)
as in Figure 8a: the edge between (2, 2) and (2, 3) is from
C1, etc. We define (2, 1) as the neighbor of (2, 2) in C1

different from (2, 3), and define the vertices (1, 2), (1, 3),
(2, 4), (3, 1), (3, 4), (4, 2), (4, 3) in a similar way. Note
that (2, 2) is a crossing by Proposition, thus the edges
incident to (2, 2) are indeed ordered as in Figure 8a.
Furthermore, these vertices are not in B, hence are
incident only to good faces. It follows that there is
an edge of C2 between (2, 1) and (3, 1), an edge of C1

between (1, 2) and (1, 3), and so on. The vertices (1, 2),
(2, 2), (2, 1) are part of a good face; we define (1, 1)

as the fourth vertex of that face. The vertices (1, 4),
(4, 1), (4, 4) are defined similarly. By the way we defined
the vertices, any two vertices adjacent in Figure 8a are
adjacent in R and each of the nine faces in Figure 8a
is a face in R. However, we have to prove that all the
defined vertices are distinct.

We will be repeatedly using the following argument.
Let C be any cycle of the representation and let I be
the set of vertices strictly enclosed by C. Let J1 and J2

be the subset of edges of C1 and C2, respectively, that
are between I and C. Then both |J1| and |J2| are even.

Let us define

X1 = {(2, 2), (2, 3), (3, 2), (3, 3)},
X2 = {(1, 2), (1, 3), (2, 1), (2, 4), (3, 1), (3, 4), (4, 2), (4, 3)},
X3 = {(1, 1), (1, 4), (4, 1), (4, 4)}.

It is clear that the vertices of X1 are distinct. Let us
show that every vertex of X2 is distinct from the vertices
inX1; by symmetry, it is sufficient to show this for (2, 1).
We consider the following cases:



• (2, 1) = (2, 2): they are adjacent by definition, a
contradiction.

• (2, 1) = (2, 3): by definition, (2, 1) is a neighbor of
(2, 2) different from (2, 3), a contradiction.

• (2, 1) = (3, 2): then they form a cycle of length 2,
contradicting Claim 4.7.

• (2, 1) = (3, 3): then (2, 1) = (3, 3), (2, 2), and (2, 3)
form a cycle of length 3, contradicting Claim 4.7.

Let us show that every vertex x ∈ X2 is distinct from
every other vertex of X2; by symmetry, it is sufficient
to show this for x = (2, 1). Let e be the edge between
(2, 1) and (2, 2). If we know that there is another edge
between x and one of (2, 2), (2, 3), or (3, 2), then (2, 1)
is part of a cycle of length at most 3, a contradiction.
Therefore, we have to consider only the two cases where
there is an edge between (2, 1) and (3, 3), that is, (2, 1)
is the same as (3, 4) or (4, 3).

• (2, 1) = (3, 4): Let C be the cycle formed by
(2, 1) = (3, 4), (2, 2), (2, 3), (3, 3) (see Figure 15).
Assume without loss of generality that C encloses
F and define I and J1 as above. No edge of J1 is
incident to (2, 1) or (2, 2), as all edges of C1 incident
to these vertices are in C. As F is enclosed by C
and (3, 2) is not on C, we have that (3, 2) ∈ I and
hence the edge between (3, 2) and (3, 3) is in J1.
The face (2, 3), (2, 4), (3, 4), (3, 3) is not enclosed
by C (it is adjacent to F via an edge of C), hence
(2, 4) 6∈ I and the edge between (2, 3) and (2, 4)
is not in J1. Therefore, we have shown that J1

contains only a single edge, a contradiction.
• (2, 1) = (4, 3): we show that {(2, 2), (3, 3)} is

a 2-separator. Consider the cycle C formed by
(2, 1) = (4, 3), (2, 2), (2, 3), (3, 3) (see Figure 15).
Assume without loss of generality that C encloses
F . There is a vertex strictly enclosed by C (e.g.,
(3, 2)) and there is a vertex not enclosed by C (e.g.,
(2, 4), which is distinct from any of the vertices of
C, otherwise they would form a cycle of length at
most 3). Therefore, C separates the vertices strictly
enclosed by C and the vertices not enclosed by
C. We claim that {(2, 2), (3, 3)} already separates
those vertices. Let us observe that both neighbors
of (2, 1) = (4, 3) that are not on C, namely (3, 1)
and (4, 2), are strictly enclosed by C, as they are
incident to faces that are enclosed by C (note also
that we already know that (3, 1) and (4, 2) are
distinct). Similarly, both neighbors of (2, 3) not
on C, namely (1, 3) and (2, 4), are not enclosed
by C. Therefore, we cannot use (2, 1) or (2, 3) to
go between the inside and the outside of C, hence
{(2, 2), (3, 3)} is a 2-separator, a contradiction.

Let us show next that every vertex of X3 is distinct

from every vertex of X1; by symmetry, it is sufficient
to show this for (1, 1). Vertex (1, 2) is a neighbor of
(1, 1) in C1. For x ∈ {(2, 2), (2, 3)}, both neighbors of
x in C1 are of the form (2, i) for some 1 ≤ i ≤ 4. For
x ∈ {(3, 2), (3, 3)}, both of its neighbors in C1 are of the
form (3, i) for some 1 ≤ i ≤ 4. Therefore, if (1, 1) is in
X1, then (1, 2) coincides with a vertex of the form (2, i)
or (3, i), which we have ruled out earlier.

Finally, let us show that every vertex of X3 is
distinct from every vertex x ∈ X2 ∪ X3; by symmetry,
it is sufficient to show this for (1, 1) ∈ X3. If x is
one of (1, 2), (1, 3), (1, 4), (2, 1), (3, 1), (4, 1), then
there is a cycle of length at most 3 going through x,
a contradiction. Therefore, we have to consider only
the following cases:

• (1, 1) = (2, 4). Consider the cycle C formed by
(1, 1) = (2, 4), (1, 2), (1, 3), (1, 4). Assume without
loss of generality that C encloses F and let I and
J1 be defined as above. No edge of J1 is incident to
(1, 2) or (1, 3), as all edges of C1 incident to these
vertices are in C. As F is enclosed by C, we have
that (2, 3) ∈ I and hence the edge between (2, 3)
and (2, 4) is in J1. The face (1, 3), (1, 4), (2, 4),
(2, 3) is enclosed by C (it is incident to (2, 3) ∈ I)
and in fact it is the only face incident to (1, 4) that
is enclosed by C. It follows that no edge of J1 is
incident to (1, 4). Therefore, we have shown that
J1 contains only a single edge, a contradiction.

• (1, 1) = (4, 2). Symmetric to the previous case.
• (1, 1) = (3, 4). Consider the cycle C formed

by (1, 1) = (3, 4), (1, 2), (1, 3), (1, 4), (2, 4) (see
Figure 15). Assume without loss of generality that
C encloses F and let I and J2 as defined above. One
can observe that J2 contains exactly three edges:
the edge between (1, 2) and (2, 2), the edge between
(1, 3) and (2, 3), and the edge between (1, 1) and
(2, 1). Thus |J2| is odd, a contradiction.

• (1, 1) = (4, 3). Symmetric to the previous case.
• (1, 1) = (4, 4). Consider the cycle formed by

(1, 1) = (4, 4), (1, 2), (1, 3), (1, 4), (2, 4), (3, 4)
(see Figure 15). Assume without loss of generality
that C encloses F and let I and J1 be defined as
above. One can observe that J1 contains exactly
three edges: the one between (2, 3) and (2, 4), the
one between (3, 3) and (3, 4), and the one between
(4, 3) and (4, 4). Thus |J1| is odd, a contradiction.

Therefore, we have shown that all the 16 defined vertices
are distinct and they indeed form a grid. y

By Theorem 2.1, a planar graph with O(k) vertices
has treewidth O(

√
k). Unfortunately, we are not able to

give an upper bound ofO(k) on the number of vertices of
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Figure 15: Cases in the proof of Claim 4.9.

R. Instead, we prove that every 3-connected component
(see Theorem 2.2) has O(k) vertices and then invoke
Proposition 2.4 to conclude that the treewidth of R is
O(
√
k).
Let (T,B) be the tree decomposition of R given by

Theorem 2.2. For every t ∈ V (T ), let G∗t be the torso at
t. We observe that G∗t is also planar: whenever we add
an edge xy to G[Bt] to obtain G∗t , the 2-connectivity
of R implies that there is a path from x to y with all
internal vertices outside Bt.

Claim 4.10. Every bag Bt has size O(k).

Proof. For any neighbor t′ of t in T , let us define Tt′

to be the component of T \ t containing t′ and let
Vt′ =

⋃
t′′∈V (Tt′ )

Bt′′ , the set of vertices appearing in

the bags of Tt′ . Let Zt′ = Bt∩Bt′ = {x, y}. If Zt′ = Vt′ ,
then we may remove t′ and the component of T \ t
containing t′ from the tree decomposition.

Suppose now that Vt′ \ Zt′ is not empty. Observe
that each of C1 and C2 has at least two edges between
Vt′ \ Zt′ and Zt′ , and two edges between Zt′ and

V (R) \ Vt′ . This is only possible if each of C1 and C2

has exactly one edge connecting each of x and y with
Vt′ \Zt′ , that is, for i = 1, 2, cycle Ci has a path Pi from
x to y with internal vertices in Vt′ \ Zt′ , and no other
edges incident to Vt′ \ Zt′ .

We claim that Vt′ \ Zt′ contains at least one vertex
of S. If not, then Vt′ \ Zt′ can be removed from the
realization and replaced by adding, for i = 1, 2, an edge
xy to Ci whose length is the same as the length of Pi. By
the existence of the paths discussed above, the resulting
realization is planar. It follows that Vt′ \ Zt′ contains
at least one vertex of S, thus t can have at most k
neighbors in T . Let X be the union of Bt′ ∩ Bt taken
over all neighbors t′ of t in T ; we have |X| ≤ 2k.

Let Y be the set of vertices of Bt that are at distance
at most 4 from B∪X (distance is measured in R and not
in the torso). As R is 4-regular, |Y | ≤ 45|B∪X| = O(k).
Thus if Bt = Y , then |Bt| = O(k), and we are done.
Otherwise, let v be a vertex that is at distance at least
5 from B∪X and let F be a face incident to v (the face
F is good, as v is not in B). Note that F cannot contain



a 2-separator: by the remark after Theorem 2.2, the 2-
separators are of the form Bt′ ∩ Bt′′ for two distinct
nodes t′ and t′′, i.e., they have to contain vertices from
bags other than Bt and all such vertices are in X.
Therefore, the conditions of Claim 4.9 hold, and there
exists a grid, a contradiction. y

Finally, we can complete the proof of Lemma 4.5.
By Claim 4.10, every bag has size O(k). As every torso
G∗t is planar, Theorem 2.1 implies that every torso G∗t
has treewidth O(

√
k). By Proposition 2.4, it follows

that R has treewidth O(
√
k). �

Now we are ready to prove the main combinatorial
result, Theorem 1.2.

Proof. of Theorem 1.2. Let us invoke Lemma 4.4 on
the metric d and the 4-opt solution T4; let Topt be
the resulting optimal solution and (G′, C ′1, C

′
2) be the

minimal representation of (T4, Topt) containing no grid.

By Lemma 4.5, the treewidth of G′ is O(
√
k).

We construct a graph G′′ from G′ by replacing each
vertex v ∈ V (G′) with two adjacent vertices v1, v2,
and for every edge xy ∈ E(G′), we make every vertex
in {x1, x2} adjacent to every vertex in {y1, y2}. If
G′ has a tree decomposition of width w − 1 (that is,
maximum bag size w), then it is clear that G′′ has a
tree decomposition of width 2w − 1 (that is, maximum
bag size 2w). Therefore, the treewidth of G′′ is also
O(
√
k).
We claim that T4 ∪ Topt is a minor of G′′, hence

the treewidth bound of O(
√
k) follows also for T4∪Topt.

We define the cycle C ′′4 by replacing every v ∈ V (C4)
with v1. We define cycle C ′′opt by replacing every v ∈
V (Copt) \ S with v2 and replacing every v ∈ S with v1.
Now it is easy to see that C ′′4 ∪ C ′′opt is a subdivision of
T4 ∪ Topt, hence T4 ∪ Topt is a minor of G′′. �
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