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Abstract

In the minimum sum coloring problem we have to assign positive integers to the vertices of a graph
in such a way that neighbors receive different numbers and the sum of the numbers is minimized.
Szkalicki [9] has shown that minimum sum coloring is NP-hard for interval graphs. Here we present a
simpler proof of this result.
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1 Introduction

Kubicka [5] and Supowit [8] independently introduced the concept of chromatic sum. If the vertices of a
graph are properly colored using positive integers, then the sum of the coloring is the sum of the numbers
assigned to the vertices. The chromatic sum of a graph is the smallest sum that a proper coloring can have.
In the minimum sum coloring problem we have to find a coloring that minimizes the sum. Chromatic
sum has important applications in VLSI routing [9, 8] and scheduling [1].

The combinatorial properties of the chromatic sum and the complexity of minimum sum coloring
received a lot of attention in the literature. It was shown by Kubicka and Schwenk [6] that minimum
sum coloring is NP-hard in general, but can be solved in polynomial time for trees. The problem remains
NP-hard when restricted to bipartite graphs [2], planar graphs [4, 7] and interval graphs [9]. The proof
in [9] for the NP-hardness of minimum sum coloring on interval graphs is quite involved, the aim of this
note is to give a simpler proof of this result.

2 The reduction

A graph G is a circular arc graph if it is the intersection graph of arcs on a circle, that is, the vertices of
G can be placed in one-to-one correspondence with a set of arcs in such a way that two vertices in G are
adjacent if and only if the corresponding two arcs intersect each other. Our reduction is from circular arc
coloring, whose NP-hardness was established in [3].

Theorem 2.1. Minimum sum coloring restricted to interval graphs s NP-hard.
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Figure 1: The interval graph G” for k = 4 and C = 3. The white rectangles show the n + k intervals of
G’, the light gray rectangles are the intervals in T, the dark gray rectangles are the intervals in L;, R;.

Proof. Given a circular arc graph G and an integer k, it has to be decided whether G can be colored with
k colors. A circular arc representation of G can be found in polynomial time [10]. It can be assumed that
the arcs are open: two arcs that share only an end point do not intersect each other. Let x be an arbitrary
point on the circle that is not the end point of any of the arcs. It can be assumed that x is contained in
exactly k arcs: if x is contained only in the arcs a1, ..., ag, then we can add k — k' sufficiently small arcs
that intersect only aq, ..., ag/. Clearly, this cannot increase the chromatic sum above k. The number of
arcs in the circular arc graph will be denoted by n. Let C := 2k(n + k).

Let ay, ..., ai be the arcs that contain z. Split each arc a; into two parts ¢; and r; at point x. Let
x be the clockwise (resp. counter-clockwise) end point of ¢; (resp. r;). Now this graph G’ is an interval
graph, since x is contained in neither interval. Therefore G’ has an interval representation where the left
end point of each interval ¢; is 0, the right end point of each r; is K, and no interval extends to the left
of 0 or to the right of K. We can modify the left end point of ¢; to —iC' and the right end point of r; to
K +14C, this does not change the interval graph. It is clear that if G is k-colorable, then G’ is k-colorable
as well. The converse it not necessarily true: G is k-colorable only if G’ has a k-coloring where ¢; and r;
receive the same color for every 1 <1 < k.

We add new intervals as follows (see Fig. 1). For every 2 < i < k, add a set L; of C(i — 1) intervals
containing ¢ — 1 copies of the intervals (—iC + j, —iC' + j + 1) where 0 < j < C' — 1. Similarly, the set
R; contains ¢ — 1 copies of the intervals (K + (1 — 1)C + j, K+ (1 —1)C +j+ 1) where 0 < j < C — 1.
Moreover, add a set T that contains C' copies of the interval (—kC, K + kC). We claim that the resulting
interval graph G’ has chromatic sum less than

k k+C
B:=2) Ci(i—1)/2+ Y i+C
=2 i=k+1

if and only if the original circular arc graph G can be colored with k colors.

Assume that G can be colored with k colors, then it has a coloring where arc a; receives color 4. Thus
the interval graph G’ has a k-coloring where ¢; and r; receive color ¢. We show that this coloring of G’
can be extended to a coloring of G” with sum less than B. The n + k intervals of G’ use only colors not
greater than k, hence their total sum is at most k(n + k) < C. For every 2 < i < k, the intervals in L,
can be colored using the first 7 — 1 colors, since these colors are not used by the intervals £;, £;41, ...,
l);. Therefore the sum of the intervals in L; is CZ;;ll j = Cli(i — 1)/2. The situation is similar with the



intervals in R;. The C intervals in T" can be colored using colors &k + 1, k42, ..., k+ C, hence their sum
is Zf:;gu i. Thus the total sum is less than B, as required.

Now assume that G' has a coloring with sum less than B. It can be assumed that the intervals in T'
use the last C colors: if color ¢; is used by an interval in T, and a color ¢ > ¢; is used by one or more
intervals not in T, then exchanging colors ¢; and ¢y does not increase the sum (notice that ¢; cannot be
used by more than one interval in T'). Since Lj U {{;} needs at least k colors, thus T uses only colors
above k.

We claim that the intervals outside T" use only the first k& colors. If they use at least k 4 1 colors, then
the intervals in 7" can use only colors above k + 1, hence their sum is at least Zf:,g:gl 1=C+ Zfikil i
The total sum of the intervals in L; (and similarly, in R;) is at least C'i(¢ —1)/2 in any coloring. Therefore
the sum is at least B, a contradiction.

The sum of the intervals in T is at least Zf;’,grl 1 if they use only colors above k, and the sum of each
L; and R; is at least C'i(i — 1)/2. Therefore the total sum of the intervals in Loy, ..., Lg, Ro, ..., Rg, T
is at least B — C in every coloring. Furthermore, this means that if L; has sum at least Ci(i —1)/2+ C
(i.e., the sum exceeds the optimum of L; by at least C), then the total sum is at least B. Therefore L;
has to use the first ¢ — 1 colors, it is easy to see that if L; skips a color ¢ < i — 1, then the sum of L;
increases by at least C. This means that Ly forces 5 to use color k. Now £;_; cannot use color k (because
of ¢;) and cannot use a color below k — 1 (because of Lj_1), hence it has color k¥ — 1. Continuing for

i=k—2, k—3,...,1, it follows that ¢; has color i. By a similar argument, interval r; also has color i.
Thus the color of ¢; and r; is the same, implying that the circular arc graph G has a k-coloring, what we
had to show. ]
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