
Degrees and Gaps: Tight Complexity Results of
General Factor Problems Parameterized by
Treewidth and Cutwidth
Dániel Marx #

CISPA Helmholtz Center for Information Security,
Saarland Informatics Campus, Saarbrücken, Germany

Govind S. Sankar #

Indian Institute of Technology Madras, Chennai, India

Philipp Schepper #

CISPA Helmholtz Center for Information Security,
Saarland Informatics Campus, Saarbrücken, Germany
Saarbrücken Graduate School of Computer Science,
Saarland Informatics Campus, Germany

Abstract
In the General Factor problem, we are given an undirected graph G and for each vertex v ∈ V (G)
a finite set Bv of non-negative integers. The task is to decide if there is a subset S ⊆ E(G) such that
degS(v) ∈ Bv for all vertices v of G. Define the max-gap of a finite integer set B to be the largest
d ≥ 0 such that there is an a ≥ 0 with [a, a + d + 1] ∩ B = {a, a + d + 1}. Cornuéjols showed in 1988
that if the max-gap of all sets Bv is at most 1, then the decision version of General Factor is
polynomial-time solvable. This result was extended 2018 by Dudycz and Paluch for the optimization
(i.e. minimization and maximization) versions. We present a general algorithm counting the number
of solutions of a certain size in time (M + 1)twnO(1), given a tree decomposition of width tw, where
M is the maximum integer over all Bv. By using convolution techniques from van Rooij (2020), we
improve upon the previous (M + 1)3twnO(1) time algorithm by Arulselvan et al. from 2018.

We prove that this algorithm is essentially optimal for all cases that are not trivial or polynomial
time solvable for the decision, minimization or maximization versions. Our lower bounds show that
such an improvement is not even possible for B-Factor, which is General Factor on graphs
where all sets Bv agree with the fixed set B. We show that for every fixed B where the problem
is NP-hard, our (max B + 1)twnO(1) algorithm cannot be significantly improved: assuming the
Strong Exponential Time Hypothesis (SETH), no algorithm can solve B-Factor in time
(max B + 1 − ϵ)twnO(1) for any ϵ > 0. We extend this bound to the counting version of B-Factor
for arbitrary, non-trivial sets B, assuming #SETH.

We also investigate the parameterization of the problem by cutwidth. Unlike for treewidth,
having a larger set B does not appear to make the problem harder: we give a 2cutwnO(1) algorithm
for any B and provide a matching lower bound that this is optimal for the NP-hard cases.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases General Factor, General Matching, Treewidth, Cutwidth

Digital Object Identifier 10.4230/LIPIcs.ICALP.2021.95

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2105.08980

Funding Research supported by the European Research Council (ERC) consolidator grant No. 725978
SYSTEMATICGRAPH.

EA
T

C
S

© Dániel Marx, Govind S. Sankar, and Philipp Schepper;
licensed under Creative Commons License CC-BY 4.0

48th International Colloquium on Automata, Languages, and Programming (ICALP 2021).
Editors: Nikhil Bansal, Emanuela Merelli, and James Worrell; Article No. 95; pp. 95:1–95:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marx@cispa.saarland
mailto:govindbose@gmail.com
https://orcid.org/0000-0002-7443-9599
mailto:philipp.schepper@cispa.saarland
https://orcid.org/0000-0002-5810-7949
https://doi.org/10.4230/LIPIcs.ICALP.2021.95
https://arxiv.org/abs/2105.08980
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

95:2 Tight Complexity Results of General Factor Problems

1 Introduction

Matching problems for graphs are widely studied in computer science [1, 7, 11, 18, 19, 24,
27, 31, 32, 34]. The most prominent ones are Perfect Matching (PerfMatch) and
Maximum-Weight Matching. Both problems have long known polynomial-time algorithms
[19, 32] and various generalizations were investigated in the graph-theory literature. These
range from simple extensions such as the k-factor problem for a positive integer k (every
vertex has to be incident to exactly k edges) [2, 27], to more complex ones, where the
vertices are assigned intervals [34]. These problems are generally solved by a reduction to
PerfMatch by replacing the vertices of the original instance with suitable gadgets. Lovász
introduced a general version of these problems which we call General Factor [31]:

▶ Definition 1.1 (General Factor (GenFac)). Let G = (V, E) be an undirected node
labeled graph where the label of a vertex v is a set Bv ⊆ N. We say S ⊆ E is a solution if
degS(v) ∈ Bv for all v ∈ V . GenFac is the problem of deciding whether G has a solution.

The minimization and maximization versions of GenFac are the problems of finding the
size of the solution with smallest and largest cardinality, respectively.

Polynomial-Time Solvable Cases. For several cases (e.g. k-factor, sets are intervals) reduc-
tions to PerfMatch are known, leading directly to polynomial-time algorithms. Cornuéjols
analyzed the complexity of the general problem to identify properties of the sets that make
the problem easier to solve [7]. For this he introduced the gap of a set: A gap is a finite
sequence of consecutive integers not contained in the set but whose boundaries are contained
in the set (cf. Definition 2.2). For example, the set {1, 5, 6, 8} has gaps of size 3 and 1. For a
set S, max-gap S denotes the size of its largest gap. Cornuéjols showed that if the max-gaps
of all sets are at most 1, then the problem is polynomial-time solvable. Later this result was
extended to the maximization and minimization (optimization) versions of GenFac.

▶ Theorem 1.2 ([7, 18]). The decision, maximization, and minimization version of GenFac
can be solved in polynomial time on arbitrary graphs if for all nodes v, max-gap Bv ≤ 1.

On the other side Cornuéjols proved GenFac to be NP-complete if there are nodes with a
gap of size two, namely {1} and {0, 3}, by a reduction from exact 3-cover. More generally, it
can be deduced from the work of Feder [22] that GenFac becomes NP-complete whenever
every set Bv is restricted to be the same fixed set B having gap size at least two.

Treewidth. This paper is part of a long sequence of works studying problems parameterized
by treewidth and related metrics like cutwidth or cliquewidth. Treewidth received significant
attention as many NP-hard problems like Colouring, Independent Set, or Dominating
Set (see [4] for a survey) are polynomial-time solvable on bounded-treewidth graphs. Cour-
celle’s Theorem [8, 9] shows that a large class of graph problems can be solved in linear time
on graphs of bounded treewidth. Recent developments on the algorithmic side include various
techniques such as Cut & Count [15, 33], rank-based dynamic programming [3, 14, 23] and
fast subset convolution [37, 38]. On the negative side, there have been a large number of
results showing lower bounds based on complexity assumptions such as the Exponential
Time Hypothesis (ETH) and the Strong Exponential Time Hypothesis (SETH)
[5, 12, 29, 30]. For many such problems, their optimal algorithms utilize some form of dy-
namic programming, where a “state” is stored for every node in the tree decomposition. The
number of such states determines the running time of the algorithms, seemingly suggesting

D. Marx, G. S. Sankar, and P. Schepper 95:3

that this number is a natural barrier to the running time of any algorithm. Typically, the
conditional lower bounds confirm this intuition by showing that no algorithm can break this
barrier.

New Faster Algorithms. One of the first algorithmic results for GenFac parameterized
by treewidth was given by Arulselvan et al. [1]. They present an algorithm for a restricted
version of the problem where the sets contain zero and an interval of integers. This algorithm
can be easily extended to handle arbitrary instances while preserving the running time of
(M + 1)3twnO(1) where M is the maximum over all sets assigned to the vertices. Their
algorithm is based on the standard dynamic programming approach when parameterizing by
treewidth, i.e. it considers all possible states for each node of the tree decomposition. The
number of states in the dynamic programming is about (M + 1)tw+1: one needs to keep
track of the degree of the partial solution at each of the at most tw + 1 vertices of a bag
of the tree decomposition, and this degree can be between 0 and M . Therefore, a natural
question is whether the algorithm can be improved to obtain an (M + 1)twnO(1) running
time, matching the number of states. Such improvements are known for other problems,
for example for Dominating Set and #PerfMatch in [38]. We base our algorithm on
the same dynamic programming idea, but instead of processing all combination of states
at join nodes, we make use of the technique of van Rooij [37] to compute fast convolutions,
avoiding this bottle-neck of the computation. The algorithm can be easily generalized to the
optimization and counting versions as well; to unify the results, we present the algorithm in
a way that counts all solutions of a certain given size.

▶ Theorem 1.3. Given a GenFac instance G and a tree decomposition of width tw. Let
M = maxv∈V (G) max Bv. Then for all s, we can count the solutions of size exactly s in time
(M + 1)twnO(1).

As we shall see, this algorithm is essentially optimal for every fixed B where B-Factor is
NP-hard. Note that in order to obtain this optimal running time, we have to use a well-known,
but non-trivial technique; beyond that, our algorithm does not provide new insights into the
problem. Due to space constraints, we omit the algorithm here and refer the reader instead
to the full version.

Tight Lower Bounds for the Decision Version. To investigate how the properties of the
sets Bv influence the complexity of the problem, we give conditional lower bounds based
on SETH for the restrictive B-Factor problem, where all sets have to be the same fixed
set B. By a careful design our lower bounds also hold for a parameterization by pathwidth.
Note that if the set is not fixed, Arulselvan et al. showed that GenFac is W[1]-hard when
parameterizing only by treewidth [1]. Thus, it is reasonable to focus only on the cases with
fixed sets to prove tight lower bounds.

▶ Theorem 1.4 (Lower Bound for Decision Version). Let B ⊆ N be a fixed, finite set with
0 /∈ B and max-gap B > 1. If, given a path decomposition of width pw, B-Factor can be
solved in time (max B + 1 − ϵ)pwnO(1) for some ϵ > 0 even on graphs with degree at most
2 max B, then SETH is false.

The same result immediately follows for treewidth as for all graphs the pathwidth forms an
upper-bound for the treewidth [13]. Hence, our algorithm is optimal not only for GenFac
but also for B-Factor parameterized by treewidth and does not allow major improvements.

ICALP 2021

95:4 Tight Complexity Results of General Factor Problems

Tight Lower Bounds for the Optimization Version. It suffices to consider the maximization
version with max-gap B > 1 and 0 ∈ B for the optimization version. The other cases are
either polynomial-time solvable (max-gap B ≤ 1 or 0 ∈ B for Min-B-Factor) [18] or the
hardness directly follows from the lower bound for the decision version. Observe that the
assumption 0 ∈ B does not make the problem trivially solvable. For these cases, we give
essentially the same lower bound as for the decision version. Again the bound rules out that
we can improve the given algorithm substantially; the running time is essentially optimal.

▶ Theorem 1.5 (Lower Bound for Maximization Version). Let B ⊆ N be a fixed, finite set with
max-gap B > 1. If, given a path decomposition of width pw, Max-B-Factor can be solved
in time (max B + 1 − ϵ)pwnO(1) for some ϵ > 0 even on graphs with degree at most 2 max B,
then SETH is false.

Counting. It is well known that PerfMatch can be solved in polynomial time [19].
Surprisingly, Valiant showed in [35] that counting the number of perfect matchings of a
graph is as hard as counting satisfying assignment of a boolean formula. This is curious as
(presumably) no polynomial-time algorithm for the decision version of the latter problem
exists. The observation then led to the definition of the complexity class #P containing
the counting problems whose corresponding decision version lies in NP. Indeed, this feature
that some structures are easy to find but hard to count appears in our work as well. Apart
from #PerfMatch, which itself is #{1}-Factor, our results imply that #B-Factor
is #P-hard for any finite, fixed B. This contrasts with the decision version, where the
problem is easy when max-gap B ≤ 1. Over and above showing #P-hardness, we show a
tight lower bound for #B-Factor, assuming #SETH, the counting version of SETH. There
have been several results [10, 11, 17] based on #SETH and #ETH. Some of our constructions
were inspired by one such work by Curticapean and Marx [11], where they show a lower
bound of (2 − ϵ)pwnO(1) for #PerfMatch on graphs assuming #SETH. We prove a wide
generalization of this result by providing a tight lower bound for every #B-Factor problem.
As for the optimization and decision version, our algorithm shows the tightness of this lower
bound.

▶ Theorem 1.6 (Lower Bound for Counting Version). Let B ⊆ N be a nonempty, fixed, and
finite set such that B ̸= {0}. If, given a path decomposition of width pw, #B-Factor can
be solved in time (max B + 1 − ϵ)pwnO(1) for some ϵ > 0 even on graphs with degree at most
2 max B + 6, then #SETH is false.

We also investigate #Max-B-Factor, the problem of counting maximum-sized solutions.
The following argument shows that #{max B}-Factor can be reduced to #Max-B-Factor
without increasing pathwidth, hence Theorem 1.6 gives a lower bound of (max B + 1 −
ϵ)pwnO(1). Consider an instance of #{max B}-Factor on a graph G of pathwidth pw. In
polynomial time, check if G has some {max B}-Factor [7]. If it does not, then output 0.
If it does, then solve #Max-B-Factor on G. As now every maximum-sized B-factor is
actually a {max B}-factor, this indeed solves the #{max B}-Factor problem.

▶ Corollary 1.7. Let B ⊆ N be a fixed, finite set such that B ̸= {0}. If, given a path
decomposition of width pw, #Max-B-Factor can be solved in time (max B + 1 − ϵ)pwnO(1)

for some ϵ > 0 even on graphs with degree at most 2 max B + 6, then SETH is false.

We leave open the question of a tight lower bound for the minimization version.

D. Marx, G. S. Sankar, and P. Schepper 95:5

Parameterizing by Cutwidth. As previously mentioned, pathwidth and treewidth are not
the only parameters used in parameterized complexity. Cutwidth, cliquewidth, genus, and
crossing number are only a few more examples of a vast class of possible parameters. For
cutwidth, we consider linear layouts of graphs with n vertices, which are just enumerations
v1, . . . , vn of all graph vertices. Then the cut after vertex vi consists of all edges in G with
one end in {v1, . . . , vi} and the other end in {vi+1, . . . , vn}. The cutwidth of a linear layout
is the maximum over the size of the cut after every vi. The cutwidth cutw of a graph is the
minimum over the cutwidths of all possible linear layouts. As tw ≤ pw ≤ cutw, it is not
completely surprising that we get different upper bounds for cutwidth. But now a simple
dynamic program suffices to prove the upper bound for this case. Further, the running time
of the algorithm is independent from the maximum of the set B.

▶ Theorem 1.8. Given a linear layout of a GenFac instance G with width cutw, for all s

we can count the number of solutions of size exactly s in time 2cutwnO(1),.

This again matches the number of states for each cut of the linear layout. Like before, we
omit the algorithm here and refer the reader to the full version. Note that the running times
appearing in Theorems 1.3 and 1.8 cannot be directly compared: the base is lower when
parameterized by cutwidth, but cutwidth can be larger than treewidth.

By a modified high-level construction, we show matching lower bounds based on SETH
for the decision and optimization versions, and, based on #SETH, for the counting version.

▶ Theorem 1.9 (Lower Bounds for Cutwidth). Let B ⊆ N be a fixed, nonempty set of finite
size. If, given a linear layout of width cutw, the following problems can be solved in time
(2 − ϵ)cutwnO(1) for any ϵ > 0 even on graphs with degree at most 2 max B + 6, then SETH
(resp. #SETH) fails: (1) B-Factor and Min-B-Factor if 0 /∈ B and max-gap B > 1,
(2) Max-B-Factor if max-gap B > 1, and (3) #B-Factor if B ̸= {0}.

2 Preliminaries

We introduce homogeneous graphs to formally define B-Factor.

▶ Definition 2.1 (Homogeneous Graphs and B-Factor). Let B ⊆ N be some fixed, finite set.
We say a node-labeled graph is B-homogeneous if for each node v ∈ V it holds that Bv = B.
Then B-Factor is the restriction of GenFac to B-homogeneous graphs.

This definition directly transfers to the optimization and counting version. We now formally
introduce the max-gap of integer sets along with some other properties.

▶ Definition 2.2. Let B ⊆ N be finite. We define max-gap B as the largest non-negative
integer d such that there is an a ∈ B with [a, a + d + 1] ∩ B = {a, a + d + 1}.

In this paper we regularly insert graphs into other graphs. To make this operation formal,
we make use of dangling edges: these are edges that have only one endpoint. We denote a
dangling edge with endpoint v by (?, v). For the sake of completeness we now formally define
this procedure of replacing the relations, i.e. the insertion of a graph into another graph.

▶ Definition 2.3 (Insertion). Let G = (V, E) be a graph and v ∈ V be of degree k, with incident
edges e1 = (v1, v), . . . , ek = (vk, v) that are ordered in some fixed way. Let H = (W, F) be
a graph with dangling edges d1 = (?, u1), . . . , dk = (?, uk) where the ui are not necessarily
pairwise distinct. Inserting H in G at v gives us a new graph G′ = (V ′, E′) where:

V ′ = (V ∪ W) \ {v} and E′ = (E ∪ F) \ {e1, . . . , ek, d1, . . . , dk} ∪ {(v1, u1), . . . , (vk, uk)}

ICALP 2021

95:6 Tight Complexity Results of General Factor Problems

All lower bounds we prove in this paper are based on the Strong Exponential Time
Hypothesis. But instead of using the original statement we use a formulation which is more
useful to work with.

▶ Conjecture 2.4 (Strong Exponential Time Hypothesis (SETH) [6, 25]). For all
δ > 0, there is a k ≥ 3 such that satisfiability of k-CNF formulas on n variables requires
more than (2 − δ)n time.

About Relations. A relation R : {0, 1}k → {0, 1} can also be seen as a set R′ ⊆ {0, 1}k such
that x ∈ R′ iff R(x) = 1. We can also identify R with a set R′′ ⊆ 2[k], where each element of
R′′ contains the positions of the 1s of an accepted input. Precisely, x′ = {i | x[i] = 1} ∈ R′′ iff
R(x) = 1. We switch between these definitions depending on the context. Recall, a relation
is symmetric if its output only depends on the Hamming weight of its input.

To simplify notation, we introduce the following generic classes of symmetric relations.

▶ Definition 2.5. For a vector x ∈ {0, 1}k, we define hw(x) as the number of 1s in x, i.e.
the Hamming weight of x. We define the following for S ⊆ N, and i, j ∈ N:

HW(j)
∈S := {x ∈ {0, 1}j | hw(x) ∈ S} EQj := HW(j)

∈{0,j} HW(j)
=i := HW(j)

∈{i}

EQj is the equality relation on j inputs. We use HW∈S to denote HW(j)
∈S when the arity j of

the relation is implicit. We also use this as the set of the relations HW(j)
∈S for all j ∈ N. We

transfer this abuse of notation to HW=i.

Note that assigning the relations HW∈B to a vertex corresponds to assigning the set B to the
vertex. Which notation is used depends on the context we are in.

3 Lower Bound when Parameterizing by Pathwidth

We show the lower bounds in two steps. The first step is a reduction from CNF-SAT to
the intermediate problem B-Factor with Relations. In the second step, we reduce to
the actual version of B-Factor for which we want to show the lower bound. As the lower
bounds are for pathwidth they immediately hold for treewidth as it can be upper-bounded
by pathwidth for all graphs.

▶ Definition 3.1 (B-Factor with Relations (B-FactorR)). Let B ⊆ N be fixed of finite
size. G = (VS ∪̇ VC , E) is an instance of B-Factor with Relations if all nodes in VS

are labeled with set B and all nodes v ∈ VC are labeled with a relation Rv that is given as a
truth table such that the following holds:
1. Let I(v) be the set of edges incident to v in G. Then Rv ⊆ 2I(v).
2. There is an even cv > 0 such that for all x ∈ Rv we have hw(x) = cv.
A set Ê ⊆ E is a solution for G if (1) for v ∈ VS: deg

Ê
(v) ∈ B and (2) for v ∈ VC :

I(v) ∩ Ê ∈ Rv. B-FactorR is the problem of deciding if such an instance has a solution.
We call VS the set of simple nodes and VC the set of complex nodes.

Using this intermediate problem, we can formally state the first part of the reduction. The
lower bound needs a careful formulation: when we reduce B-FactorR to B-Factor by
inserting gadgets realizing the relations at the complex nodes, the size and pathwidth of the
graph can increase significantly. Therefore, we state a stronger lower bound that can tolerate
additional terms to take care of such increases. The key point is that this increase is mainly
influenced by the total degree of the complex nodes in a bag of the path decomposition.

D. Marx, G. S. Sankar, and P. Schepper 95:7

.

.

.

.r1t

r1i

J1
1,1

r2t

r21

J1
1,g

J1
i′,1

J1
i′,g

J1
t,1

J1
t,g

Jm+1
1,1

Jm+1
t,g

rm2

rm1

...

...

...

...

rm+1
1

r02 rm+1
2

rm+1
i

rm+1
t

r0i

r0t

r11

r12 r22

r2i rmi

rmt

r20 rm0r10

r1t+1 r2t+1 rmt+1

r01

Figure 1 An example illustrating the construction from the proof of Theorem 3.2. The simple
nodes are represented by circles while the complex nodes are represented by boxes.

▶ Theorem 3.2. Let B ⊆ N be a fixed set of finite size with B ̸= {0}. Given a B-FactorR in-
stance along with a path decomposition of width pw such that ∆∗ = maxbag X

∑
v∈X∩VC

deg(v).
Assume B-FactorR can be solved in (max B + 1 − ϵ)pw+fB(∆∗)nO(1) time on graphs with
n vertices for some ϵ > 0 and some function fB : N → R+ that may depend on the set B.
Then SETH fails.

High Level Idea. We follow the ideas of previous lower bound reductions from [30] and
combine them with the concept of using relations from [11]. From now on let M := max B.
Let ϕ be the given CNF formula with n variables and clauses C1, . . . , Cm. Instead of encoding
each variable separately, we group q variables together and encode (partial) assignments to
these groups. For each partial assignment, we define a vector in [0, M]g, where g is chosen
such that 2q ≤ (M + 1)g. For each group we define a layer with g parallel rows, where
each row corresponds to one dimension of the vector. The layers consist of an alternation
of g parallel simple nodes and a complex node that is related to a clause. All simple nodes
are connected to their neighboring complex nodes by M parallel edges. The vector from
above then corresponds to the number of selected edges from a simple node to the following
shared complex node. The complex nodes check whether the assignment represented by the
selected edges of a layer satisfies the related clause. For each clause we connect the related
complex nodes by a path. This path is used to propagate the information whether the clause
is already satisfied by some partial assignment or whether it still needs to be satisfied. We
ensure that each clause is initially not satisfied and eventually all clauses must be satisfied.

ICALP 2021

95:8 Tight Complexity Results of General Factor Problems

Constructing the B-FactorR Instance. See Figure 1 for an example of the following
construction. Split the variables of ϕ into t := ⌈n/q⌉ groups F1, . . . , Ft of size at most q,
where q is chosen later. For each of the t groups we encode the 2q partial assignments by
vectors from [0, M]g for some g chosen later. Instead of using all (M + 1)g possible encodings
we only use those vectors where the total weight of the coordinates is equal to gM/2 (we
will choose g as a multiple of 4, hence gM/2 is an even number). It can easily be shown that
there are more than (M + 1)g/(gM + 1) vectors with exactly this weight. Thus, after setting
q = ⌊log((M + 1)g) − log(gM + 1)⌋, we can map each of the 2q assignments of a group Fi to
a distinct vector [0, M]g with weight exactly gM/2. We say that an partial assignment τ

to a group Fi satisfies a clause Cj if at least one literal in the clause is satisfied under the
assignment τ . Note, that a group Fi does not have to cover all variables of Cj to satisfy the
clause.

We define the graph now as follows:
1. For all i ∈ [t], ℓ ∈ [g], and j ∈ [m]: create a simple node Jj

i,ℓ.
2. For all i ∈ [t] and j ∈ [m]: create complex nodes rj

i with relation Rj
i to be defined later.

3. For all i ∈ [t]: create complex nodes r0
i and rm+1

i with relation R0.
4. For all j ∈ [m]: create complex nodes rj

0 (resp. rj
t+1) with relation HW=0 (resp. HW=1).

5. For all i ∈ [t], ℓ ∈ [g], and j ∈ [m]: make Jj
i,ℓ adjacent to rj

i−1 and rj
i by M parallel edges

each. We call these edges backwards and forwards edges, respectively.
6. For all i ∈ [t] and j ∈ [m], make rj

i additionally adjacent to rj
i−1 and rj

i+1 by one edge
each. The degree of the nodes is now 2gM + 2.

We call the set of nodes {rj
i , Jj

i,ℓ}j,ℓ the ith layer. The set {Jj
i,ℓ}j forms the ℓth row of the

ith layer. For a fixed j ∈ [m], the set of nodes {rj
i }i is called the jth column.

The idea is now the following: For each partial assignment τ to a group Fi, we define a
vector vτ ∈ [0, M]g of weight gM/2 as its encoding.1 Then vτ [ℓ] corresponds to the number
of selected forward edges of the simple nodes in the ℓth row of the ith layer. The vertical
edges encode whether a clause was already satisfied. That is, if the edge between rj

i and
rj

i+1 is selected, then there is some group Fk with k ≤ i where the corresponding assignment
satisfies the clause Cj . By the relation of the nodes rj

0 every clause is initially not satisfied.
But the relation of the rj

t+1 nodes ensures that every clause is eventually satisfied.

Defining the Relations. R0 accepts exactly those inputs of Hamming weight exactly gM/2,
an even number by assumption, where the selected edges for each row must precede the
unselected edges, i.e. the first k edges are selected, the next M − k are not selected.

The relation Rj
i ⊆ {0, 1}2Mg+2 of node rj

i is defined as follows:
For ℓ ∈ [g], let xℓ (resp. yℓ) be the number of selected incident edges to Jj

i,ℓ (resp. Jj+1
i,ℓ).∑

ℓ∈[g] xℓ = gM/2 =
∑

ℓ∈[g] yℓ.
⟨x1, . . . , xg⟩ describes a valid encoding, i.e. it corresponds to a partial assignment for Fi.
xℓ + yℓ = M . Further, the xℓ (resp. yℓ) selected edges precede the M − xℓ (resp. M − yℓ)
unselected edges of the M parallel edges going to a simple node.
If the ingoing top edge is selected, then the outgoing bottom edge is also selected.
If the ingoing top edge is not selected:

If Cj does not contain a variable of Fi, then the outgoing bottom edge is not selected.
If Cj contains at least one variable of Fi, then the outgoing bottom edge is selected if
and only if the selected edges correspond to a valid partial assignment satisfying Cj .

1 Note that for different groups the encoding of the same partial assignment do not need to be the same.

D. Marx, G. S. Sankar, and P. Schepper 95:9

Final Modifications. Due to parity issues, we can only realize relations where the Hamming
weight of the accepted inputs is an even constant for each relation. Thus, we slightly have to
modify this construction. We leave the exact details to the full version.

▶ Lemma 3.3. ϕ is satisfiable if and only if there is a solution to the B-FactorR instance.

To obtain a tight lower bound, we need to analyze the pathwidth of our construction and
have to bound the degree of the complex nodes.

▶ Lemma 3.4. The graph has O(tgm) simple and O(tm) complex nodes. The degree of the
complex nodes is bounded by 2gM + 4. The degree of the simple nodes is bounded by 2M .
We can efficiently construct a path decomposition of width tg + O(1) where at most three
complex nodes are simultaneously in one bag.

Now we have everything ready to prove the lower bound for the intermediate problem B-
FactorR based on the previous construction. Recall, we defined ∆∗ as the maximum total
degree of the complex nodes appearing in one bag, that is ∆∗ = maxbag X

∑
v∈X∩VC

deg(v).

Proof of Theorem 3.2 (Sketch). As (M + 1)g ≈ 2q and t ≈ n/q, we intuitively get

(M + 1 − ϵ)tgnO(1) = ((M + 1 − ϵ)g)
n
q nO(1) ≪ ((M + 1)g)

n
q nO(1) = (2q)

n
q nO(1) = 2nnO(1),

showing that the reduction and the assumed algorithm would solve the SAT instance too
fast. Note that due to rounding and other issues the calculation has to be done way more
carefully and is thus deferred to the full version. ◀

4 Decision Version

In this section we prove the lower bound for the decision version of B-Factor by a reduction
from the intermediate B-FactorR problem. For this we formally define the concept of
realizations and show that we can realize all relations of a B-FactorR instance. Replacing
the nodes and their relations by these realizations yields the final lower bound.

▶ Definition 4.1 (Realization). Let R ⊆ {0, 1}k be a relation. Let G be a node-labeled graph
with dangling edges D = {d1, . . . , dk} ⊆ E(G). We say that graph G realizes R if for all
D′ ⊆ D: D′ ∈ R if and only if there is a solution S ⊆ E(G) with S ∩ D = D′. We say that G

B-realizes R if G is B-homogeneous. The endpoints of the dangling edges are called portals.

The crucial part of the reduction is the proof of the following theorem. We postpone its
proof and first show the lower bound.

▶ Theorem 4.2. Let B ⊆ N be a fixed set of finite size with max-gap B > 1 and 0 /∈ B.
There is a f : N → N such that the following holds. Let R ⊆ {0, 1}e be an even relation (i.e.
hw(x) is even for all x ∈ R). Then we can B-realize R by a simple graph with f(e) vertices
of degree at most max B + 2, the portal nodes are pairwise distinct.

Now we can prove the lower bound under SETH. We assume that B ⊆ N is a fixed, finite set
such that 0 /∈ B and max-gap B > 1.

Proof of Theorem 1.4 (Sketch). Replace every complex node v and its relation Rv in the B-
FactorR instance H by its B-realization of size at most f(deg(v)) according to Theorem 4.2.
This increases the size of the graph at most by a factor of f(∆∗). As we can bound the
pathwidth of the inserted graphs by their size, we modify each bag of the path decomposition

ICALP 2021

95:10 Tight Complexity Results of General Factor Problems

of H by replacing all complex nodes with the nodes of their realization. Thus, the pathwidth
of the new graph is bounded by pwH +∆∗f(∆∗). Assuming the faster algorithm, this already
contradicts SETH by Theorem 3.2. ◀

From now on let B ⊆ N be our fixed, finite set with min B ≥ 1 and max-gap B = d > 1 such
that [a, a + d + 1] ∩ B = {a, a + d + 1} for some a ≥ 1. We first realize three quite basic
relations which we use later to realize the more complex relations.

▶ Lemma 4.3. We can B-realize each of the relations HW(2)
=2, EQd+1, and EQ2 by a simple

graph with O(poly(max B)) vertices of degree at most max B.

Proof.
1. Define a min B + 1-clique with new vertices. Split an arbitrary edge (u, v) into two

dangling edges (?, u) and (?, v). The construction of the clique and the fact that we chose
min B as degree forces the two dangling edges to be selected in any solution.

2. We start with two new vertices u, v and connect each to a many common HW(2)
=2 nodes.

We add d + 1 dangling edges to u and zero to v. Finally the nodes are replaced by their
realization. Observe that u has a forced edges and d + 1 dangling edges. Thus we must
select none or all of the dangling edges since [a, a + d + 1] ∩ B = {a, a + d + 1}.

3. Define a d + 2-clique with EQd+1 nodes. Split an arbitrary edge (u, v) into two dangling
edges (?, u) and (?, v). Replace the nodes by their realization.
Either both dangling edges are selected in which case all nodes have d + 1 incident edges
in the solution, or neither is selected in which case every node has zero incident edges in
the solution. ◀

The following lemma helps us to keep the later constructions simple. Instead of constructing
the relations for arbitrary degree, only the very low degree cases are necessary.

▶ Lemma 4.4. If we can realize HW(a)
=1 for a ∈ {1, 2, 3} by a simple graph with at most N

vertices of degree at most D, then we can realize HW(k)
=1 for all k ≥ 1 by a simple graph using

O(kN) nodes of degree at most D.

Proof. We construct the graph for the realization inductively starting with the basis for
k = 1, 2, 3. See Figure 2 for an example.

For the inductive step from k to k + 1 we start with a node u with relation HW(k)
=1 . Connect

one dangling edge of u to a new node v with HW(2)
=1. Connect the other dangling edge of v to

a node w with relation HW(3)
=1. Observe that the final graph has k + 1 dangling edges.

Assume one dangling edge of u is selected, then the edge between u and v is not selected
but the edge from v to w is. Hence, no dangling edge of w can be selected. The analogue
holds if one of the dangling edges of w is selected. It cannot be the case that more than one
or zero dangling edges are selected, as then the relation of one of the three nodes u, v, or w

would not be satisfied. ◀

Due to parity issues, the construction of the realizations depends on the set B. Each of the
possible cases (B contains only even numbers, only odd number, or even and odd numbers)
is treated separately. We focus on the all even case and refer the reader to the full version
for the other cases.

▶ Lemma 4.5. If B contains only even numbers, we can B-realize the following relations by
simple graphs:
1. EQk for even k ≥ 2 using O(k poly(max B)) vertices of degree at most max B.
2. HW(k)

=1 together with HW(ℓ)
=1 for all k, ℓ ≥ 1 using O((k + ℓ) poly(max B)) vertices of degree

at most max B + 2.

D. Marx, G. S. Sankar, and P. Schepper 95:11

HW
(5)
=1HW

(4)
=1HW

(3)
=1

Figure 2 Example of the inductive construction from Lemma 4.4 for HW(6)
=1 using HW(3)

=1 and HW(2)
=1.

o1

oe

v1

vr

a0

a1

HW=1

HW=1

EQ

Figure 3 An example illustrating the construction from the proof of Theorem 4.2 for the relation
R with R(000011) = R(110011) = R(111001) = R(111100) = 1 and zero otherwise.

Proof.
1. For k = 2 we can use the construction of Lemma 4.3. For the other case we first realize

EQ4. Then we use a chain of these relations to realize EQk for even k ≥ 6.
Start with a EQd+1 node u and make it adjacent to d+1−4

2 many EQ2 nodes (note that an
even B can have only gaps of odd size, hence d is odd). Then we add four dangling edges
to u. hence the construction actually works. The graph is simple as the dangling edges
in the realization of EQ2 are different.

2. To use Lemma 4.4 for the general construction, observe that the number of HW=1 nodes
used in the construction is odd. Hence, we will always realize two nodes. For this we
show how to realize HW(k)

=1 together with HW(ℓ)
=1 for all k, ℓ ∈ {1, 2, 3}.

Start with two vertices u, v. Make u and v adjacent to max B − 1 common HW(2)
=2 nodes.

We add k dangling edges to u and ℓ dangling edges to v. As B does not contain max B −1,
the correctness follows. ◀

Now we have everything ready to prove that even relations can be realized.

Proof of Theorem 4.2. See Figure 3 for an example of the following construction. We use
essentially the construction from Lemma 3.3 in [11]. Let R = {x1, . . . , xr} ⊆ {0, 1}e be the
even relation for some r. Let further P = {(1 + e mod 2), 0}.
1. Create nodes o1, . . . , oe with relation HW=1.
2. Create vertices aj for all j ∈ P with relation HW=1.
3. For all i ∈ [r]:

a. Let Oi = {n
(i)
1 , . . . , n

(i)
hi

} = {k ∈ [e] | xi[k] = 0} for hi = e − hw(xi).
b. Create the node vi with relation EQ and connect it to o

n
(i)
j

for all j ∈ [hi].
c. Connect vi to all aj .

4. Replace all nodes by their realization.

There are |P | + e many HW=1 nodes. Since |P | = 1 + (1 + e mod 2), we can replace
pairs of these nodes by their realization. Every vi is connected to |P | + |Oi| nodes, where
|Oi| = e − hw(xi). Thus, vi has even degree as the relation R is even, i.e. hw(x) is even.
Hence, we can replace these nodes by their realization according to the previous lemmas.

ICALP 2021

95:12 Tight Complexity Results of General Factor Problems

To show that the construction actually realizes the relation, assume the selected dangling
edges corresponds to some element x ∈ R, let it w.l.o.g. be x1. Then we can select all edges
incident to x1, the dangling edges, and the extension of this to all nodes as a solution. As
x1 is adjacent to all aj they are in a valid state. Further x1 is adjacent to those ok where
x1[k] = 0 and hence every ok is incident to exactly one edge in the solution.

Now assume we are given a solution. As the nodes aj have exactly one incident edge in
the solution, there is exactly one node vi where all incident edges are in the solution. Let
O be the set of nodes ok to which vi is adjacent. By construction vi corresponds to some
x ∈ R with x[k] = 0 iff k ∈ O. As all selected dangling edges must be in the solution, let O′

be the set of nodes incident to the selected dangling edges. But as we are given a solution
we get O ∪̇ O′ = {o1, . . . , oe}. Hence, the dangling edges correspond to x. ◀

5 Optimization Version

In the previous section we have seen the realization of the relations for the decision version.
As we are interested in the largest solution for Max-B-Factor, we also allow 0 ∈ B since
this does not make the problem trivially solvable. This makes it necessary to change the
definition of a realization, as the pure existence of a solution is not sufficient anymore. We
change it such that if the relation is satisfied (i.e. the dangling edges are selected in a good
way), then there is a large solution. Otherwise, there must be a gap by which any solution is
smaller compared to the solutions in the good cases. We call this gap the penalty (of the
realization).

▶ Definition 5.1 (Realization). Let R ⊆ {0, 1}k be a relation. Let G be a node labeled graph,
with dangling edges D = {d1, . . . , dk}. We say that graph G realizes R with penalty β if we
can efficiently construct/find a target value α > 0 such that for all D′ ⊆ D:

If D′ ∈ R, then there is a solution S ⊆ E(G) with S ∩ D = D′ and |S| = α.
If D′ /∈ R, then for all solutions S ⊆ E(G) with S ∩ D = D′ we have |S| ≤ α − β.

We say that G B-realizes R if G is additionally B-homogeneous. We call the endpoints of
the dangling edges portal nodes.

In the main part of this section we show how to realize the relations of B-FactorR. The
following theorem corresponds to Theorem 4.2 for the decision version.

▶ Theorem 5.2 (Realization of Relations). Let B ⊆ N be a fixed, finite set with max-gap B > 1
and 0 ∈ B. There is a f : N2 → N such that the following holds. Let R ⊆ {0, 1}e be a relation
with a constant cR ∈ 2N such that for all x ∈ R we have hw(x) = cR.

We can B-realize the relation R with arbitrary penalty β > 0 by a simple graph with
f(e, β) vertices of degree at most max B + 2.

It remains to compute the target value by which we decide if the B-FactorR instance has a
solution or not.

▶ Lemma 5.3. Let G be a B-FactorR instance from Section 3. Let G′ be a B-Factor
instance resulting from G by replacing every complex nodes with degree δ by its realization
with penalty 2δ. Then, there is an efficiently computable constant α such that G has a
solution if and only if the largest solution for G′ has size α.

Proof (Sketch). The target value α is essentially the sum of the target values αv for the
realizations of the complex nodes v ∈ VC . But we have to take care that the edges between
complex nodes are not counted twice. ◀

D. Marx, G. S. Sankar, and P. Schepper 95:13

Now we are ready to prove the conditional lower bound for Max-B-Factor when 0 ∈ B.

Proof of Theorem 1.5. Use Lemma 5.3 to construct the final graph and the target value.
Then the proof goes analogous to the proof for the decision version (cf. Theorem 1.4). ◀

High Girth Graphs. We know that there is a gap of size at least two between a and a + d + 1
in B. This allows us to define relatively simple conditions of the form “if one incident edge
of a vertex with degree a + d + 1 is not selected, then another edge is also not selected”. In
other words, this propagates the penalty to a neighboring vertex. We combine this with high
girth graphs to introduce an arbitrary large penalty for not selecting an edge.

The construction of r regular graphs with girth g is a long studied problem in graph
theory. Erdős and Sachs proved the existence of such graphs for all combinations of r and g.

▶ Lemma 5.4 (Theorem 1 in [20]). For all r ≥ 2 and g ≥ 3, there is a r-regular graph Gr,g

of girth g with at most 4grg vertices.

Finding the smallest graph for each r, g is a non-trivial task and known as the (r, g)-cage
problem. For several cases (e.g. r is a prime power) constructions are known reducing the
number of vertices in the graph. See [16, 21, 26, 28] for more results.

Realizing Relations. From now on let d := max-gap B > 1 such that [a, a + d + 1] ∩ B =
{a, a + d + 1} for some a ≥ 0. As we allow 0 ∈ B, we can always find a trivial solution. Thus,
we cannot force edges as we did for the decision version. Instead we construct a gadget where
we can select many edges when the “forced” edges are selected. Otherwise we ensure that
the solution is small. We use the graphs with high girth for this.

▶ Lemma 5.5. There is a f : N → N such that the following holds. We can B-realize HW(2)
=2

(with distinct portal vertices) with arbitrary penalty β by simple graphs using at most f(β)
vertices of degree at most max B.

Proof. We use Lemma 5.4 to get an a + d + 1-regular graph Ga+d+1,β of girth at least β.
Split an arbitrary edge (u, v) into two dangling edges for u and v each and assign the set B

to every vertex.
The graph has the claimed properties: If both dangling edges are selected, then we can

use the set of all edges in the graph as a solution since a + d + 1 ∈ B.
It remains to check the case when at least one dangling edge is not selected, let it w.l.o.g.

be the one incident to u. Assume S is the optimal solution. We show that this solution does
not contain more than |Ea+d+1,β | − β edges.

By assumption degS(u) ≤ a. Hence, there must be at least one other incident edge to u

that is not in the solution, because a + d − 1 ≥ a + 1 /∈ B. Then we can apply this argument
always to the next vertex. Observe that this sequence can only stop if we reach another
vertex w we have already visited because for this vertex we already know that two incident
edges were not selected in the solution. The length of this path, i.e. the number of not
selected edges from w to w, is at least the girth of the graph. Hence the number of edges
that are not selected in the solution is at least the girth of the graph which is at least β. ◀

The remaining part follows mainly the constructions from the decision version. However, as
we care about the size of the solution a more careful construction and analysis is needed.
The detailed construction of the realization is given in the full paper.

ICALP 2021

95:14 Tight Complexity Results of General Factor Problems

6 Counting Version

From a certain perspective the optimization version can be seen as a relaxation of the decision
version: The assumption min B > 0 is dropped while still assuming max-gap B > 1. For the
counting version we now even drop this last assumption such that there might be no gap at
all in B. Thus the only polynomial-time solvable cases for the counting version are B = {0}
and B = ∅ with one and zero solutions, respectively. This implies that we additionally must
realize equality relations. Surprisingly this also reduces to realizing HW(1)

=1 nodes in the end,
i.e. forcing edges.

We use the Holant framework and lemmas and definitions analogous to those from [11].
A signature graph Ω is a graph with weights we for all edges e and all vertices are labeled by
signatures fv : {0, 1}I(v) → Q, which are rational functions on the incidence vector I(v) of
the edges incident to v. We define Holant(Ω) to be the quantity∑

x∈{0,1}E(Ω)

∏
e∈x

we

∏
v∈V (Ω)

fv(x|I(v)).

The Holant framework can be seen as a natural generalization of GenFac. If each signature
fv is a symmetric Boolean function and each edge weight is 1, then it is exactly #GenFac.
If additionally each vertex has signature HW∈B , this corresponds to #B-Factor.

▶ Definition 6.1 (Holant(F)). If F is a set of rational functions, we say that Holant(F) is
the set of all Holant problems where the signature graph has signatures only from F .

▶ Definition 6.2 (Gate). A gate is a signature graph Γ, possibly containing a set D ⊆ E(Γ)
of dangling edges, all of which have edge weight 1. The signature realized by Γ is the function
SIG(Γ) : {0, 1}D → Q that maps an assignment of dangling edges x ∈ {0, 1}D to

SIG(Γ, x) =
∑

y∈{0,1}E(Γ)\D

 ∏
e∈E(Γ)

w(e)
∏

v∈V (Γ)

fv

(
(x ∪ y)|I(v)

)
Note that unless mentioned otherwise, we restrict ourselves to signature graphs with unit
edge weights and hence they are usually omitted.

In essence, gates in the Holant framework play the role of realizations in the previous
sections. Given these definitions, we are now ready to state our main theorem, which can
then be used to prove Theorem 1.6. Observe for this that the reduction in Theorem 3.2 is
parsimonious.

▶ Theorem 6.3. For all fixed, finite B ⊆ N with B ̸= {0} there is a f : N → N such
that the following holds. Let G = (VS ∪̇ VC , E) be an instance of #B-FactorR with a
path decomposition of width pw such that ∆∗ = maxbag X

∑
v∈X∩VC

deg(v). Then there is a
f(∆∗)nO(1) time Turing reduction from #B-FactorR to #B-Factor such that for every
constructed instance of #B-Factor pathwidth and cutwidth increase at most by f(∆∗).

We can think of #B-FactorR as a Holant problem where the allowed signatures are either
HW∈B or restricted even relations. We first use a lemma from [11] to realize these relations
through nodes with signature HW=1. Since their constructions are in the perfect matching
setting, they can equivalently be seen as gates that use vertices with signature HW=1. After
using this lemma to reduce from #B-FactorR to a Holant problem, we give a chain of
reductions (see Figure 4) that ends at #B-Factor and preserves the pathwidth up to an
additive constant.

▶ Lemma 6.4 (Informal, Lemma 3.3 from [11]). Every even relation can be realized through a
graph whose vertices have signature HW=1 and whose edges have weights in {−1, 1

2 , 1}.

D. Marx, G. S. Sankar, and P. Schepper 95:15

#B-FactorR Holant(HW∈B , HW=1)

Holant(HW∈B , HW∈{0,1})maxB − 1 /∈ B

Holant(HW∈B , HW
(1)
=1)Holant(HW∈B , HW

(2)
=2)Holant(HW∈B)

Holant(HW∈B , HW=1)
with edge weights

maxB − 1 ∈ B

Figure 4 The chain of reductions that starts with B-FactorR and ends at #B-Factor (i.e.
Holant(HW∈B)). Arrows show the direction of Turing or many-one reductions.

Main Ideas. The next step is to remove the edge weights. We do this through polynomial
interpolation, which was first used by Valiant [36]. The idea is that we can recover a
polynomial P (·) if we know the value of P (x) for sufficiently many x. We represent the
solution of one problem as the value of a polynomial P (·) and the second problem as a
function f(P) of the polynomial itself. Then, we recover the value of the second problem by
using an oracle of the first problem, giving a Turing reduction from the second problem to
the first.

For the removal of the edge weight it suffices by the polynomial interpolation to consider
edge weights that are a power of two. Assume for simplicity, we just have edge weight 2.
Replace such edges by two parallel edges of unit weight. This leaves the output unchanged,
as we duplicated the number of solutions, which compensates for the unit edge weight.

The main difficulty is to realize HW=1 nodes using HW∈B nodes. To replace the HW=1 nodes,
we distinguish between the case where max B − 1 is in B or not. In the latter case, the
construction from the decision version works. But in the former case we use an argument
similar to the procedure for the final step. The last step replaces HW(2)

=2 nodes by HW∈B nodes.
For this we “separate” the case where the forced edges are selected and where they are not.
We define a pathlike gadget with many solutions if the dangling edges are not selected and
significantly fewer otherwise. Each vertex on this long path is connected to many fresh
vertices. We choose their number to be higher than the maximum element of B. Then, if an
incident edge of the path is already selected, there are fewer solutions as if the edge is not
selected. Combining this with the interpolation we arrive at a point, where all nodes have
relation HW∈B .

We now describe one case in the final step in the chain of reductions, where we realize
HW(2)

=2 nodes by HW∈B nodes. For the remaining cases and steps, we refer the reader to the
full version of this paper.

For the interpolation we make use of the following result which is proven in the full
version.

▶ Proposition 6.5. Suppose we have two non-zero sequences {An}n∈N, {Bn}n∈N that are
related as[

An

Bn

]
= M

[
An−1
Bn−1

]
= MnU , where U =

[
A0
B0

]

and M is a symmetric and invertible 2 × 2 matrix such that U is not an eigenvector of M .
Then { Bn

An
}n∈N is a sequence which does not contain any repetitions.

▶ Lemma 6.6. Let B ⊆ N be a fixed finite set. There is a polynomial-time Turing reduction
from Holant(HW∈B , HW(2)

=2) to Holant(HW∈B) increasing pathwidth and cutwidth only by a fixed
constant and leaving the max degree unaffected, or increasing it to 2 max B + 6.

ICALP 2021

95:16 Tight Complexity Results of General Factor Problems

m−2︷ ︸︸ ︷ m−2︷ ︸︸ ︷ m−2︷ ︸︸ ︷ m−2︷ ︸︸ ︷

Figure 5 The gadget for case 1: Black nodes are HW∈B nodes.

Proof. If 0 /∈ B, we can use the construction from Lemma 4.3 to get a HW(2)
=2 node. For the

case when 0 ∈ B, we do a case-by-case analysis depending on B. In either case, we attach a
subgraph with a constant pathwidth and cutwidth to vertices. This does not affect either of
them by more than 2 max B + 6, a fixed constant.

Case 1: B contains 1. Define m ≥ 2 to be the smallest integer not in B. Consider the
gadget in Figure 5. Suppose there are d such vertices with m − 2 pendant nodes each. Let all
of them have the relation HW∈B . Let P1(d) be the number of solutions of the gadget where
the dangling edge is selected in the solution. Similarly define P0(d) when the dangling edge
is not selected. We claim that the gadget described can be effectively used to force edges, i.e.
a HW(1)

=1 node. Two such gadgets will give us a HW(2)
=2 node. Suppose any graph G contains t

such gadgets. We have

Holant(G) =
t∑

i=0
Ai(P0(d))t−i(P1(d))i = (P0(d))t

t∑
i=0

Ai

(
P1(d)
P0(d)

)i

where Ai is the number of ways of extending the solution in G when i of the gadgets choose
to match their dangling edge. Through standard interpolation techniques, we can recover
the Ais, and thus At will give us the solution where each gadget behaves like a HW(1)

=1. Now,
we can replace HW(2)

=2 nodes in the Holant(HW∈B , HW(2)
=2) instance with pairs of HW(1)

=1 nodes.
To argue that we can do the interpolation, we need to show that P1(d)

P0(d) will take at least t

unique values, and that these are computable in polynomial time. Since we can define such a
gadget for any integer d we have

P0(d) = kP0(d − 1) + kP1(d − 1) and P1(d) = kP0(d − 1) + (k − 1)P1(d − 1)

for k = 2m−2. We now apply Proposition 6.5 with M =
[

k k
k k−1

]
and U =

[
k
k

]
.

This completes the realization for the case when B contains 1. The remaining cases when
B does not contain 1 but some odd number and when B only consists of even numbers can
be found in the full version. ◀

Proof of Theorem 6.3 (Sketch). Given any instance of #B-FactorR, we can sequentially
apply the reductions from Figure 4 to get a polynomial number of instances of #B-Factor
such that the pathwidth is affected only by some function of ∆∗. ◀

7 Lower Bound when Parameterizing by Cutwidth

The algorithmic result from Theorem 1.8 shows that the pathwidth lower bound breaks when
parameterizing by cutwidth. Nevertheless, we can show that this “improved” running time is
the best we can hope for assuming SETH and #SETH. For this we use the same high level
ideas Curticapean and Marx presented in Figure 6 of [11] where they reduce from #SAT to
computing the Holant and then reduce to counting perfect matchings. But the construction

D. Marx, G. S. Sankar, and P. Schepper 95:17

HW=1HW=1HW=1 HW=1

HW=0HW=0HW=0HW=0

HW∈{0,2}

HW∈{0,2} HW∈{0,2}

r11

r1n rmn
rm+1
n

R+

R−

r10

r1n+1

rm0

rmn+1

R+

rm1
r01 rm+1

1

HW∈{0,2}

r0n

R0

R0

rj0

rjn+1

r0i rm+1
irji

Figure 6 The example graph for a formula containing the clause (x1 ∨ x̄3 ∨ x4).

can also be seen as a modification of our reduction for the pathwidth lower bound. We again
first reduce to the intermediate problem B-FactorR and then to B-Factor. By this we
can reuse the results of realizing relations that we have seen in the previous sections.

▶ Theorem 7.1. Let B ⊆ N be a fixed set of finite size. Given a CNF-formula ϕ with n

variables and m clauses. We can construct a (simple) B-FactorR instance G with O(nm)
vertices, bounded degree and a linear layout of width cutw ≤ n + O(1) in time linear in the
output size. Further, the number of solutions for ϕ is equal to the number of solutions for G.

Recall, that for the pathwidth lower bound we grouped variables together. This was
needed to keep the pathwidth of the construction low. But this increased the cutwidth of
the graph. Now, we do not group variables together but encode each variable on its own.
See Figure 6 for an example of the construction we describe formally in the following.

Let x1, . . . , xn be the variables and C1, . . . , Cm the clauses of ϕ. For each i ∈ [n] and
every j ∈ [m] we create a vertex rj

i . We assign the relation R+ to rj
i if xi appears positively

in Cj , R− if it appears negatively, and otherwise R0, where R0, R+, and R− are defined
later. Additionally add vertices r0

i and rm+1
i with relation HW∈{0,2} for all i ∈ [n]. We say

that the vertices r0
i , . . . , rm+1

i form the ith row, i.e. the row of variable xi. Create new nodes
rj

0 and rj
n+1 and assign the relations HW=0 and HW=1 to them for all j ∈ [m], respectively. We

say the vertices {rj
i }i form the jth column. We connect two nodes rj

i and rj′

i′ by an edge
if |i − i′| ≤ 1 and |j − j′| ≤ 1 for all i, i′ ∈ [0, n + 1] and j, j′ ∈ [0, m + 1], i.e. if they are
neighbors in the grid.

The idea is the same as for the pathwidth construction, except that selecting the edges of
the ith row corresponds to setting the variable xi to true. The edges between the nodes of
a column represent if a clause is already satisfied. The relation HW=0 ensures that we start
with an initially unsatisfied clause. At each node rj

i we check whether the assignment to this
variable xi satisfies the clause Cj and then force the output edge (i.e. the bottom edge) to be
selected. Otherwise we propagate the current state (i.e. the selection of edges). Eventually
we reach rj

n+1 with relation HW=1 where the edge has to be selected and thus the clause must
be satisfied.

ICALP 2021

95:18 Tight Complexity Results of General Factor Problems

The relations R0, R+, and R− accept exactly those inputs that satisfy all of the following
conditions:
1. The left edge is selected if and only if the right edge is selected.
2. If the top edge is selected, the bottom edge is selected.
3. Only for R+: If the top edge is unselected and the left edge is selected, then the bottom

edge is selected.
4. Only for R−: If the top edge is unselected and the left edge is not selected, then the

bottom edge is selected.

For the proofs of the lower bounds, i.e. Theorem 1.9, we follow the ideas from the
pathwidth lower bounds in Section 3. Thus we also have to modify the graph a bit such that
we obtain a B-FactorR instance and can replace all relations by their realizations. The
details can be found in the full version of the paper.

References

1 Ashwin Arulselvan, Ágnes Cseh, Martin Groß, David F. Manlove, and Jannik Matuschke.
Matchings with lower quotas: Algorithms and complexity. Algorithmica, 80(1):185–208, 2018.
doi:10.1007/s00453-016-0252-6.

2 Claude Berge. Graphs and Hypergraphs. North-Holland mathematical library, Amsterdam,
1973.

3 Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic
single exponential time algorithms for connectivity problems parameterized by treewidth. In
Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska, and David Peleg, editors, Automata,
Languages, and Programming - 40th International Colloquium, ICALP 2013, Riga, Latvia,
July 8-12, 2013, Proceedings, Part I, volume 7965 of Lecture Notes in Computer Science, pages
196–207. Springer, 2013. doi:10.1007/978-3-642-39206-1_17.

4 Hans L. Bodlaender and Arie M. C. A. Koster. Combinatorial optimization on graphs of
bounded treewidth. Comput. J., 51(3):255–269, 2008. doi:10.1093/comjnl/bxm037.

5 Liming Cai and David W. Juedes. On the existence of subexponential parameterized algorithms.
J. Comput. Syst. Sci., 67(4):789–807, 2003. doi:10.1016/S0022-0000(03)00074-6.

6 Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The complexity of satisfiability
of small depth circuits. In Jianer Chen and Fedor V. Fomin, editors, Parameterized and Exact
Computation, 4th International Workshop, IWPEC 2009, Copenhagen, Denmark, September
10-11, 2009, Revised Selected Papers, volume 5917 of Lecture Notes in Computer Science,
pages 75–85. Springer, 2009. doi:10.1007/978-3-642-11269-0_6.

7 Gérard Cornuéjols. General factors of graphs. J. Comb. Theory, Ser. B, 45(2):185–198, 1988.
doi:10.1016/0095-8956(88)90068-8.

8 Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs.
Information and Computation, 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

9 Bruno Courcelle. The monadic second-order logic of graphs III: tree-decompositions, minor
and complexity issues. RAIRO Theor. Informatics Appl., 26:257–286, 1992. doi:10.1051/
ita/1992260302571.

10 Radu Curticapean. Parity separation: A scientifically proven method for permanent weight
loss. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi,
editors, 43rd International Colloquium on Automata, Languages, and Programming, ICALP
2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 47:1–47:14. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.ICALP.2016.47.

11 Radu Curticapean and Dániel Marx. Tight conditional lower bounds for counting perfect
matchings on graphs of bounded treewidth, cliquewidth, and genus. In Robert Krauthgamer,
editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1650–1669. SIAM,
2016. doi:10.1137/1.9781611974331.ch113.

https://doi.org/10.1007/s00453-016-0252-6
https://doi.org/10.1007/978-3-642-39206-1_17
https://doi.org/10.1093/comjnl/bxm037
https://doi.org/10.1016/S0022-0000(03)00074-6
https://doi.org/10.1007/978-3-642-11269-0_6
https://doi.org/10.1016/0095-8956(88)90068-8
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1051/ita/1992260302571
https://doi.org/10.1051/ita/1992260302571
https://doi.org/10.4230/LIPIcs.ICALP.2016.47
https://doi.org/10.1137/1.9781611974331.ch113

D. Marx, G. S. Sankar, and P. Schepper 95:19

12 Marek Cygan, Holger Dell, Daniel Lokshtanov, Dániel Marx, Jesper Nederlof, Yoshio Okamoto,
Ramamohan Paturi, Saket Saurabh, and Magnus Wahlström. On problems as hard as
CNF-SAT. ACM Trans. Algorithms, 12(3):41:1–41:24, 2016. doi:10.1145/2925416.

13 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

14 Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Fast hamiltonicity checking via bases of
perfect matchings. J. ACM, 65(3):12:1–12:46, 2018. doi:10.1145/3148227.

15 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth
in single exponential time. In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium on
Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011,
pages 150–159. IEEE Computer Society, 2011. doi:10.1109/FOCS.2011.23.

16 Xavier Dahan. Regular graphs of large girth and arbitrary degree. Comb., 34(4):407–426,
2014. doi:10.1007/s00493-014-2897-6.

17 Holger Dell, Thore Husfeldt, Dániel Marx, Nina Taslaman, and Martin Wahlen. Exponential
time complexity of the permanent and the Tutte polynomial. ACM Trans. Algorithms,
10(4):21:1–21:32, 2014. doi:10.1145/2635812.

18 Szymon Dudycz and Katarzyna Paluch. Optimal general matchings. In Andreas Brandstädt,
Ekkehard Köhler, and Klaus Meer, editors, Graph-Theoretic Concepts in Computer Science -
44th International Workshop, WG 2018, Cottbus, Germany, June 27-29, 2018, Proceedings,
volume 11159 of Lecture Notes in Computer Science, pages 176–189. Springer, 2018. Full
version: arXiv:1706.07418. doi:10.1007/978-3-030-00256-5_15.

19 Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–467, 1965.
doi:10.4153/CJM-1965-045-4.

20 Paul Erdős and Horst Sachs. Reguläre Graphen gegebener Taillenweite mit minimaler Knoten-
zahl. Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe, 12(251-257):22,
1963.

21 Geoffrey Exoo and Robert Jajcay. Recursive constructions of small regular graphs of given
degree and girth. Discret. Math., 312(17):2612–2619, 2012. doi:10.1016/j.disc.2011.10.
021.

22 Tomás Feder. Fanout limitations on constraint systems. Theor. Comput. Sci., 255(1-2):281–293,
2001. doi:10.1016/S0304-3975(99)00288-1.

23 Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. Efficient computation of representative
sets with applications in parameterized and exact algorithms. In Chandra Chekuri, editor,
Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 142–151. SIAM, 2014. doi:
10.1137/1.9781611973402.10.

24 Arne Hoffmann and Lutz Volkmann. On unique k-factors and unique [1, k]-factors in graphs.
Discret. Math., 278(1-3):127–138, 2004. doi:10.1016/S0012-365X(03)00248-6.

25 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput. Syst.
Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

26 Wilfried Imrich. Explicit construction of regular graphs without small cycles. Comb., 4(1):53–59,
1984. doi:10.1007/BF02579157.

27 Sanjana Kolisetty, Linh Le, Ilya Volkovich, and Mihalis Yannakakis. The complexity of finding
S-factors in regular graphs. Electron. Colloquium Comput. Complex., 26:40, 2019. URL:
https://eccc.weizmann.ac.il/report/2019/040.

28 Felix Lazebnik, Vasiliy A Ustimenko, and Andrew J Woldar. A new series of dense graphs of
high girth. Bulletin of the American mathematical society, 32(1):73–79, 1995.

29 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the exponential
time hypothesis. Bull. EATCS, 105:41–72, 2011. URL: http://eatcs.org/beatcs/index.
php/beatcs/article/view/92.

ICALP 2021

https://doi.org/10.1145/2925416
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1145/3148227
https://doi.org/10.1109/FOCS.2011.23
https://doi.org/10.1007/s00493-014-2897-6
https://doi.org/10.1145/2635812
http://arxiv.org/abs/1706.07418
https://doi.org/10.1007/978-3-030-00256-5_15
https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.1016/j.disc.2011.10.021
https://doi.org/10.1016/j.disc.2011.10.021
https://doi.org/10.1016/S0304-3975(99)00288-1
https://doi.org/10.1137/1.9781611973402.10
https://doi.org/10.1137/1.9781611973402.10
https://doi.org/10.1016/S0012-365X(03)00248-6
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1007/BF02579157
https://eccc.weizmann.ac.il/report/2019/040
http://eatcs.org/beatcs/index.php/beatcs/article/view/92
http://eatcs.org/beatcs/index.php/beatcs/article/view/92

95:20 Tight Complexity Results of General Factor Problems

30 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs of
bounded treewidth are probably optimal. ACM Trans. Algorithms, 14(2):13:1–13:30, 2018.
doi:10.1145/3170442.

31 László Lovász. The factorization of graphs. II. Acta Mathematica Hungarica, 23(1-2):223–246,
1972.

32 Silvio Micali and Vijay V. Vazirani. An O(sqrt(|v|) |E|) algorithm for finding maximum
matching in general graphs. In 21st Annual Symposium on Foundations of Computer Science,
Syracuse, New York, USA, 13-15 October 1980, pages 17–27. IEEE Computer Society, 1980.
doi:10.1109/SFCS.1980.12.

33 Michal Pilipczuk. Problems parameterized by treewidth tractable in single exponential time:
A logical approach. In Filip Murlak and Piotr Sankowski, editors, Mathematical Foundations
of Computer Science 2011 - 36th International Symposium, MFCS 2011, Warsaw, Poland,
August 22-26, 2011. Proceedings, volume 6907 of Lecture Notes in Computer Science, pages
520–531. Springer, 2011. doi:10.1007/978-3-642-22993-0_47.

34 Yossi Shiloach. Another look at the degree constrained subgraph problem. Inf. Process. Lett.,
12(2):89–92, 1981. doi:10.1016/0020-0190(81)90009-0.

35 Leslie G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci., 8:189–201,
1979. doi:10.1016/0304-3975(79)90044-6.

36 Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM J. Comput.,
8(3):410–421, 1979. doi:10.1137/0208032.

37 Johan M. M. van Rooij. Fast algorithms for join operations on tree decompositions. In
Fedor V. Fomin, Stefan Kratsch, and Erik Jan van Leeuwen, editors, Treewidth, Kernels,
and Algorithms - Essays Dedicated to Hans L. Bodlaender on the Occasion of His 60th
Birthday, volume 12160 of Lecture Notes in Computer Science, pages 262–297. Springer, 2020.
doi:10.1007/978-3-030-42071-0_18.

38 Johan M. M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith. Dynamic programming on
tree decompositions using generalised fast subset convolution. In Amos Fiat and Peter Sanders,
editors, Algorithms - ESA 2009, 17th Annual European Symposium, Copenhagen, Denmark,
September 7-9, 2009. Proceedings, volume 5757 of Lecture Notes in Computer Science, pages
566–577. Springer, 2009. doi:10.1007/978-3-642-04128-0_51.

https://doi.org/10.1145/3170442
https://doi.org/10.1109/SFCS.1980.12
https://doi.org/10.1007/978-3-642-22993-0_47
https://doi.org/10.1016/0020-0190(81)90009-0
https://doi.org/10.1016/0304-3975(79)90044-6
https://doi.org/10.1137/0208032
https://doi.org/10.1007/978-3-030-42071-0_18
https://doi.org/10.1007/978-3-642-04128-0_51

	1 Introduction
	2 Preliminaries
	3 Lower Bound when Parameterizing by Pathwidth
	4 Decision Version
	5 Optimization Version
	6 Counting Version
	7 Lower Bound when Parameterizing by Cutwidth

