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Abstract. We study the problem of finding small s–t separators that induce graphs
having certain properties. It is known that finding a minimum clique s–t separator is
polynomial-time solvable (Tarjan 1985), while for example the problems of finding a
minimum s–t separator that induces a connected graph or forms an independent set
are fixed-parameter tractable when parameterized by the size of the separator (Marx,
O’Sullivan and Razgon, ACM Trans. Algor., to appear). Motivated by these results, we
study properties that generalize cliques, independent sets, and connected graphs, and
determine the complexity of finding separators satisfying these properties. We investigate
these problems also on bounded-degree graphs. Our results are as follows:

(1) Finding a minimum c-connected s–t separator is FPT for c = 2 and W [1]-hard for
any c ≥ 3.

(2) Finding a minimum s–t separator with diameter at most d is W [1]-hard for any
d ≥ 2.

(3) Finding a minimum r-regular s–t separator is W [1]-hard for any r ≥ 1.

(4) For any decidable graph property, finding a minimum s–t separator with this prop-
erty is FPT parameterized jointly by the size of the separator and the maximum
degree.

(5) Finding a connected s–t separator of minimum size does not have a polynomial
kernel, even when restricted to graphs of maximum degree at most 3, unless NP ⊆
coNP/poly.

In order to prove (1), we show that the natural c-connected generalization of the well-
known Steiner Tree problem is FPT for c = 2 and W [1]-hard for any c ≥ 3.

1 Introduction

One of the classic topics in combinatorial optimization and algorithmic graph theory deals
with finding cuts and separators in graphs. Recently, the study of this type of problems from a
parameterized complexity point of view has attracted a large amount of interest [5, 7, 13, 17–19,
23–27]. Given a graph G and two vertices s and t of G, a subset of vertices S ⊆ V (G) \ {s, t}
is an s–t separator if s and t appear in different connected components of the graph G− S. In
separation problems, we are typically looking for small separators S. A natural extension of
the problem is to demand G[S], i.e., the subgraph induced by S, to satisfy a certain property.
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(For convenience, when the graph G[S] has a certain property, we will say that the set S itself
also has this property. For example, we say that a set S ⊆ V (G) is 2-connected if G[S] is
2-connected.) A classical result in this direction by Tarjan [28] shows that finding small clique
separators is polynomial-time solvable. To our knowledge, this is the only known polynomial-
time solvable problem of this type. Therefore, we explore here the problem from the viewpoint
of parameterized complexity.

Parameterized complexity associates with every instance of a problem a non-negative integer
k, called the parameter. Unless specifically stated otherwise, the parameter k in this paper will
always be the size of the separator we are looking for. We use n and m to denote the number
of vertices and edges, respectively, in the input graph G. A parameterized problem is fixed-
parameter tractable (or FPT) if every instance (x, k) can be solved in time f(k) · |x|O(1) for
some function f that only depends on k [11], where |x| is the size of the instance. By showing
that a parameterized problem is W[1]-hard, we can give strong evidence that it is unlikely to
be FPT; we refer to [11] for more background on parameterized complexity.

For any graph class G, let us consider the following parameterized problem.

G-Separator
Input: A graph G, two vertices s and t of G, and an integer k.
Parameter: k.
Question: Does G have an s–t separator S of size at most k such that
G[S] ∈ G?

If G is the class of complete graphs, then G-Separator is polynomial-time solvable by
the above-mentioned result of Tarjan [28]. Furthermore, Marx et al. [24, 25] showed that the
problem is fixed-parameter tractable for many natural classes G. We say that G is hereditary
if, for every graph in G, each of its induced subgraphs also belongs to G.

Theorem 1 ([24, 25]). For any decidable and hereditary graph class G, the G-Separator
problem can be solved in time fG(k) · (n+m).

For example, by letting G be the class of all graphs without edges, Theorem 1 shows that
finding an independent set of size at most k separating s and t is FPT. The proof is based on a
combinatorial statement called Treewidth Reduction Theorem, which shows (roughly speaking)
that all the inclusionwise minimal s–t separators lie in a bounded-treewidth part of the graph
and hence they can be found efficiently. Note that if G is hereditary, then we can always assume
that the separator is inclusionwise minimal (otherwise we can remove vertices from it without
leaving G).

Theorem 1 naturally raises the question what the parameterized complexity of the G-
Separator problem is for graph classes G that are not hereditary. Perhaps the most natural
candidate is the class of connected graphs. The Connected Separator problem of deciding
whether a graph G has a connected s–t separator of size at most k has been studied by Marx et
al. [25]. Although it is not immediately clear how to apply the Treewidth Reduction Theorem
to this problem, Marx et al. [25] managed to extend their framework from [24] to prove the
following result.

Theorem 2 ([25]). The Connected Separator problem can be solved in time f(k)·(n+m).

Our results. Motivated by the results in [24, 25], we study the problem of finding small s–t
separators satisfying different non-hereditary properties. Let us focus on the three tractable
classes mentioned above (connected graphs, complete graphs, edgeless graphs) and try to in-
vestigate further related classes.
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As Connected Separator is FPT, it is natural to explore what happens if we require
higher-order connectivity. It turns out that finding a c-connected s–t separator of size at most
k remains FPT also for c = 2, but becomes W [1]-hard for any c ≥ 3. In order to prove this, we
show that the natural c-connected generalization of the well-known Steiner Tree problem
is FPT for c = 2 and W [1]-hard for any c ≥ 3. This result could be of independent interest.
We find it somewhat surprising that the complexity jump occurs when moving from c = 2 to
c = 3 (compare this with the results of [9] where the complexity jump occurs when moving
from requiring connectivity to requiring 2-connectivity).

We can generalize the class of complete graphs by considering the class of graphs with
diameter at most d. We show that the problem of finding an s–t separator of size at most k
that induces a graph with diameter at most d in G is W [1]-hard for any d ≥ 2. This is in stark
contrast with the case d = 1, as the problem of finding a clique separator of size at most k is
known to be solvable in polynomial time [28].

Edgeless graphs can be thought of as 0-regular graphs. This motivates exploring the problem
of finding an r-regular s–t separator. We show that, unlike the case where r = 0, which is FPT
by Theorem 1, it is W [1]-hard to decide if a graph G has an r-regular s–t separator of size at
most k for any r ≥ 1.

All the above results are on general graphs, i.e., graph G can be arbitrary. It comes as
no surprise that the problem is much easier restricted to bounded-degree graphs. In particu-
lar, finding a small connected separator is FPT due to the fact that a bounded-degree graph
contains only a bounded number of small connected sets. More interestingly, we show in Sec-
tion 4 that for every (not necessarily hereditary) decidable graph class G, the G-Separator
problem can be can be solved in time hG(k,∆(G)) · m log n, where ∆(G) denotes the maxi-
mum degree of G. We prove this by showing that the following problem can be solved in time
f(|V (H)|, ∆(G)) ·m log n: Given two graphs G and H and two vertices s and t of G, decide
whether G has an s–t separator S such that G[S] is isomorphic to H. This means that we
can solve the G-Separator problem by simply trying all members H of G having at most k
vertices.

Finally, we investigate the existence of polynomial kernels for the problem of finding small
s–t separators. A parameterized problem is said to admit a kernel if there is a polynomial-
time algorithm that transforms each instance of the problem into an equivalent instance whose
size and parameter value are bounded from above by g(k) for some (possibly exponential)
function g. It is known that a parameterized problem is FPT if and only if it is decidable
and admits a kernel [11]. In the desirable case that g(k) is a polynomial in k, we say that the
problem admits a polynomial kernel. Many problems have been shown to admit polynomial
kernels, including classes of problems that are covered by some kernelization meta-theorems [3,
15]. Recently developed methods for proving non-existence of polynomial kernels, up to some
complexity theoretical assumptions [2, 4, 16], significantly contributed to the establishment of
kernelization as an important and rapidly growing subfield of parameterized complexity.

Although the Connected Separator problem is FPT by Theorem 2 and therefore admits
a kernel [11], we show in Section 5 that this problem does not admit a polynomial kernel, even
when restricted to input graphs of maximum degree at most 3, unless NP ⊆ coNP/poly. This
means that techniques other than kernelization (e.g., treewidth reduction) seem to be essential
for the efficient solution of the problem even on bounded-degree graphs.

2 Finding s–t Separators with Higher Connectivity

Theorem 2 states that the problem of finding a connected s–t separator of size at most k
is FPT. In this section, we study the parameterized complexity of finding s–t separators of
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higher connectivity. A graph G is c-connected if |V (G)| > c and G−X is connected for every
X ⊆ V (G) with |X| < c. For any integer c ≥ 1, the c-Connected Separator problem
takes as input a graph G, two vertices s and t of G, and an integer k (the parameter), and
asks whether there is an s–t separator of size at most k that induces a c-connected graph.
Theorem 2 states that this problem is FPT when c = 1. Interestingly, it turns out that the
problem remains FPT for c = 2, but becomes W [1]-hard for any c ≥ 3.

The algorithm in [25] for finding a minimum connected s–t separator uses an FPT algorithm
for Steiner Tree as a subroutine. Let us recall the definition of the Steiner Tree problem.

Steiner Tree
Input: A graph G, a set T ⊆ V (G) of terminals, and an integer k.
Parameter: k.
Question: Does G have a connected subgraph H on at most k vertices such
that T ⊆ V (H)?

The Steiner Tree problem is well-known to be NP-complete [22]. Dreyfuss and Wagner [12]
showed that the problem is FPT; in fact, they showed that the problem is FPT even when |T |
is chosen as the parameter instead of k. The following problem, defined for any integer c ≥ 1,
is a natural generalization of the Steiner Tree problem:

c-Connected Steiner
Input: A graph G, a set T ⊆ V (G) of terminals, and an integer k.
Parameter: k.
Question: Does G have a c-connected subgraph H on at most k vertices such
that T ⊆ V (H)?

A solution H to an instance (G,T, k) of the c-Connected Steiner problem is minimal if
no proper subgraph of H is a solution, and H is minimum if there is no solution H ′ with
|V (H ′)| < |V (H)|. The c-Connected Steiner problem is FPT when c = 1, as the problem is
then equivalent to Steiner Tree. We show below that the c-Connected Steiner problem
remains FPT when c = 2, but becomes W [1]-hard for higher values of c.

Let us first describe two very simple polynomial-time reductions that imply NP-completeness
of the problems studied in this section. We will also use these two reductions in Section 5 to
show that none of these problems admits a polynomial kernel. For any c ≥ 1, the c-Connected
Steiner problem is NP-complete, as any instance of Steiner Tree can be transformed into
an equivalent instance of c-Connected Steiner by adding c− 1 universal vertices to the ter-
minal set T . Similarly, the c-Connected Separator problem is NP-complete for any c ≥ 1,
since we can transform any instance of c-Connected Steiner into an equivalent instance
of c-Connected Separator by making two new vertices s and t adjacent to each of the
terminals.

Menger’s Theorem provides an equivalent definition of c-connectivity (see [10]): a graph is c-
connected if any two of its vertices can be joined by c internally vertex-disjoint paths. Therefore,
a different way of generalizing Steiner Tree would be to require the weaker condition saying
that H contains c internally vertex-disjoint paths between any two terminals. The following
lemma shows that for c = 2 this is almost the same problem, as any minimal solution satisfying
the weaker requirement satisfies the stronger requirement as well:

Lemma 1. Let H be a graph and T ⊆ V (H) a set of vertices such that there are two internally
vertex-disjoint paths between any t1, t2 ∈ T . If H has no proper subgraph (containing T ) having
this property, then H is 2-connected.
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Proof. Since there are two internally vertex-disjoint paths between any t1, t2 ∈ T , all vertices
of T belong to the same 2-connected component H ′ of H. Suppose H has no proper subgraph
that contains T as well as two internally vertex-disjoint paths between any two vertices of T .
Then we must have H ′ = H, implying that H is 2-connected. ut

We note that for c ≥ 3, the analog of Lemma 1 is not true. Thus the weaker requirement
would result in a different problem, but we do not investigate it further in the current paper.

Our algorithm for 2-Connected Steiner crucially depends on the following structural
property of any minimal solution:

Lemma 2. Let (G,T, k) be an instance of the 2-Connected Steiner problem. If H is a
minimal solution, then H − T is a forest.

Proof. Suppose H is a minimal solution. We show that every cycle in H contains at least one
vertex of T , which implies that H −T is a forest. For contradiction, let C be a cycle in H that
contains none of the terminals. We will identify an edge e of C such that it remains true in
H − e that there are two internally vertex-disjoint paths between any two terminals. Then, by
Lemma 1, H − e has a 2-connected subgraph which is a solution, contradicting the minimality
of H.

Let us define a shortcut of C to be a path P in H of length at least 2 between two vertices a
and b of C, such that none of the internal vertices of P are in C. We claim that every terminal
t ∈ T lies on some shortcut of C. To see this, consider an arbitrary edge e1 in H incident with
t and an arbitrary edge e2 of C. As H is 2-connected, there is a cycle in H containing both e1
and e2, and this cycle gives us the required shortcut.

Now let M be a shortest subpath of C such that there is a shortcut P ∗ of C between the
endpoints a and b of M . Let M be the other path between a and b on the cycle C. Let a′ be
the neighbor of a on M (possibly a′ = b). We claim that after removing the edge aa′ from
H, the obtained graph H − aa′ still contains two internally vertex-disjoint paths between each
pair of terminals.

By the well-known properties of the 2-connected components of graphs, the relation “being
in the same 2-connected component” (or equivalently, the relation “there is a cycle containing
both edges”) defined on the edges of H − aa′ is an equivalence relation. Every edge of M is
in the same equivalence class of this relation: M together with P ∗ forms a cycle containing
all these edges. In other words, all edges of M belong to the same 2-connected component of
H − aa′. We claim that every terminal also belongs to this 2-connected component. Let t ∈ T .
As observed above, there is a shortcut Pt going through t. Let Mt be the subpath of the cycle
C between the endpoints of Pt avoiding aa′. The paths Pt and Mt together form a cycle Ct.
This cycle Ct contains at least one edge of M , since Mt cannot be a proper subpath of M
by the minimality of M . Thus the edges of Ct, and consequently terminal t, are in the same
2-connected component as the edges of M . We deduce that all terminals in T belong to the
same 2-connected component of H − aa′. Hence, there are two internally vertex-disjoint paths
in H − aa′ between any two terminals t1, t2 ∈ T , yielding the desired contradiction to the
assumption that H is a minimal solution. ut

Lemma 2 tells us that we have to find an appropriate forest that connects to the terminals
in an appropriate way. Fixed-parameter tractability results for finding trees (or more generally,
bounded-treewidth graphs) under various technical constraints can usually be obtained using
standard application of dynamic programming. A technique that has proved to be particularly
useful for proving FPT results of this type is color coding, introduced by Alon, Yuster and
Zwick [1]. A k-perfect family of hash functions is a family H of functions from {1, . . . , n} to
{1, . . . , k} such that for each S ⊆ {1, . . . , n} with |S| = k there exists an h ∈ H such that
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h(s) 6= h(s′) for every s, s′ ∈ S, s 6= s′. The following result is due to Alon, Yuster and
Zwick [1].

Theorem 3 ([1]). For any n, k ∈ N, a k-perfect family of hash functions from {1, . . . , n} to
{1, . . . , k} consisting of 2O(k) · log n hash functions can be constructed in 2O(k) · n log n time.

A combination of dynamic programming and color coding yields the following lemma. The
proof is a standard application of dynamic programming on the trees, but we provide a proof
for completeness.

Lemma 3. Let F be a forest, G an undirected graph, and c : V (F ) × V (G) → Z+ a cost
function. In time f(|V (F )|) · nO(1), one can find a mapping φ : V (F ) → V (G) such that
φ(u)φ(v) ∈ E(G) for every uv ∈ E(F ) and the total cost

∑
v∈V (F ) c(v, φ(v)) is minimized.

Proof. It will be convenient to consider the forest F as a rooted tree where a subset D ⊆ E(F )
of edges are marked “special”, meaning that they are not part of the forest. Let us fix an
ordering of the children of each vertex. Let Fv be the subtree rooted at vertex v, and let Fv,i
be the subtree consisting of v, the first i children of v, and all the descendants of these i
children. Our approach for discovering F in G follows the color coding strategy, which involves
coloring the graph with |V (F )| colors — that is, each vertex in G is assigned one element from
C = {c1, . . . , c|V (F )|}. A coloring is good if it assigns a distinct color to each vertex of F in G.
We describe a procedure for finding the optimal F given a good coloring of G. By Theorem 3,
there is a family of 2O(|V (F )|) · log n colorings such that one of them is guaranteed to be good,
and such a family can be constructed in time 2O(|V (F )|) · n log n. Therefore, by trying every
coloring of the family, the running time of the procedure described below increases by a factor
of 2O(|V (F )|) · log n.

For x ∈ V (F ), y ∈ V (G), and C ′ ⊆ C, let A[x, y, C ′] denote the minimum cost of a mapping
φ of Fx into G such that φ(x) = y and the images of V (Fx) use only the colors in C ′, each of
them exactly once. Similarly, for x ∈ V (F ), y ∈ V (G), C ′ ⊆ C, and i ∈ Z+, let B[x, y, C ′, i]
denote the minimum cost of a mapping φ of Fx,i into G such that φ(x) = y and the images of
V (Fx,i) use only the colors C ′, each of them exactly once. If x has no children or i = 0, then
these values are trivial to determine. Otherwise, if x1, . . . , x` are the children of x, then we
can use the recurrences

A[x, y, C ′] = B[x, y, C ′, `]
B[x, y, C ′, i] = min{B[x, y, C ′ \ Ci, i− 1] +A[xi, yi, Ci] | Ci ⊆ C ′, xxi 6∈ D ⇒ yyi ∈ E(G)}

The first recurrence requires no explanation. In the second equation, we guess all possibilities
for the set Ci of colors used by the subtree rooted at xi and a suitable yi = φ(xi), i.e., yi should
be adjacent to y, unless xxi happens to be in the set D of “special” edges that we consider as
removed.

The cost of an optimal mapping φ : V (F ) → V (G) equals min{A[r, y, C] | y ∈ V (G)},
where r is the root of the forest F . It is easy to modify the algorithm in such a way that it
finds not only the cost of an optimal mapping φ, but also the mapping itself. The algorithm
clearly runs in f(|V (F )|) · nO(1) time. ut

The structural observation of Lemma 2 and the algorithm of Lemma 3 allow us to estab-
lish the fixed-parameter tractability of the 2-Connected Steiner problem, which could be
interesting in its own right. Furthermore, it will be used as a subroutine in our FPT-algorithm
for finding a 2-connected s–t separator of size at most k.

Theorem 4. The 2-Connected Steiner problem is FPT.
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Proof. Let (G,T, k) be a yes-instance of the 2-Connected Steiner problem and let H be a
minimal solution. By Lemma 2, H−T is a forest. We try all graphs H on at most k vertices that
are candidates for being isomorphic to the solution H; that is, H is 2-connected, T ⊆ V (H),
and H − T is a forest. The number of such graphs is a function of k only. For each such H,
we define a cost function c such that for x ∈ V (H − T ) and y ∈ V (G), we have c(x, y) = 0 if
NH(x) ∩ T ⊆ NG(y) ∩ T and c(x, y) =∞ otherwise. In other words, we allow mapping x to y
only if every terminal neighbor of x in H is also a neighbor of y in G. Let us use the algorithm
of Lemma 3 to find a mapping φ of H − T into G minimizing the cost. If the cost of φ is 0,
then φ can be extended to a mapping of H into G, showing that H is a subgraph of G, which
gives us a solution. Otherwise, we proceed with the next candidate H. If the algorithm finds
no solution after processing all candidates, we can safely return “no”. ut

In order to prove that 2-Connected Separator is FPT, we will make use of the Treewidth
Reduction Theorem due to Marx, O’Sullivan and Razgon [24, 25]. In fact, instead of using the
Treewidth Reduction Theorem itself, we use a lemma (a slight reformulation of Lemma 2.11
in [25]) that forms its crucial ingredient. In order to state it, we need an additional definition.
Let G be a graph and C ⊆ V (G). The graph torso(G,C) has vertex set C, and vertices a, b ∈ C
are connected by an edge if ab ∈ E(G) or if there is a path in G connecting a and b whose
internal vertices are not in C.

Lemma 4 ([25]). Let s and t be two vertices of a graph G, let k be an integer, and let C be the
union of all minimal s–t separators in G of size at most k. Then there is an f(k) · (n+m) time
algorithm that returns a set C ′ ⊇ C disjoint from {s, t} such that the treewidth of torso(G,C ′)
is at most g(k).

Note that even if G has a 2-connected s–t separator S of size at most k, G might not have
a minimal s–t separator of size at most k that is 2-connected, since 2-connectivity is not a
hereditary property. However, G does contain a minimal s–t separator that can be extended
to a 2-connected set of size at most k. We call a set S′ ⊆ V (G) k-biconnectable if there is a
2-connected set S ⊆ V (G) of size at most k such that S′ ⊆ S.

Observation 5 Let G be a graph. A set S′ ⊆ V (G) is k-biconnectable if and only if (G,S′, k)
is a yes-instance of the 2-Connected Steiner problem.

The set C ′ in Lemma 4 contains every minimal s–t separator S′ that is k-biconnectable,
but there is no guarantee that S′ can be extended to a 2-connected set within C ′. The next
lemma shows that we can extend C ′ to a larger set C ′′ such that every k-biconnectable s–t
separator S′ ⊆ C ′ can be extended to a 2-connected s–t separator S ⊆ C ′′ of size at most k.

Lemma 5. Let s and t be two vertices of a graph G, and let k be an integer. There is a set
C ′′ ⊆ V (G) such that the treewidth of torso(G,C ′′) is bounded by a constant depending only
on k and the following holds: if G has a 2-connected s–t separator of size at most k, then G
also has a 2-connected s–t separator S of size at most k such that S ⊆ C ′′. Moreover, such a
set C ′′ can be found in time h(k) · nO(1).

Proof. Let C ′ ⊆ V (G) be the set of Lemma 4 that contains every minimal s–t separator of G
of size at most k, such that the treewidth of torso(G,C ′) is bounded by g(k) for some function
g depending only on k. We add the vertices s and t to C ′; note that this only increases the
treewidth of the graph torso(G,C ′) by at most 2, so the treewidth of this graph is still bounded
by a function of k. Let K1, . . . ,Kq be the connected components of G−C ′, and let Ni be the
neighborhood of Ki in C ′ for 1 ≤ i ≤ q. By the definition of torso, each Ni forms a clique in
torso(G,C ′). Since each clique of a graph must appear in a single bag of any tree decomposition
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of that graph, we have |Ni| ≤ tw(torso(G,C ′)) + 1, so the size of each Ni is bounded by a
function of k only.

Our algorithm for constructing C ′′ iterates over all i ∈ {1, . . . , q}, all non-empty subsets
X ⊆ Ni, and all graphs Fi,X on at most k− |X| vertices. For each choice of i, X and Fi,X , the
algorithm considers each of the 2|X|(k−|X|) graphs Gi,X that can be obtained from G[V (Ki)∪X]
and Fi,X by adding a subset of edges from the set E′ ⊆ {xy | x ∈ X, y ∈ V (Fi,X)}. For
each Gi,X , we run the algorithm of Theorem 4 to check if there is a solution Hi,X for the
2-Connected Steiner problem with instance (Gi,X , X ∪ V (Fi,X), k). If so, we take Hi,X to
be the minimum such solution; otherwise we let Hi,X = ∅. For each Hi,X , we mark all the
vertices of Hi,X that belong to Ki. Finally, we define C ′′ to be the set consisting of all the
vertices of C ′ plus all the vertices that were marked during this entire process.

In order to prove the correctness of this algorithm, let us consider a 2-connected s–t sep-
arator S of size at most k in G such that |S \ C ′′| is as small as possible. We need to show
that |S \ C ′′| = 0. For contradiction, we assume that |S \ C ′′| ≥ 1. Let Ki be a connected
component of G − C ′ such that Ki contains a vertex of S \ C ′′, let X = S ∩ Ni, and let
Fi,X = G[S \ (V (Ki)∪X)]. Note that X 6= ∅. Also note that X ∪V (Fi,X) is a k-biconnectable
set in the graph G[V (Ki)∪X∪V (Fi,X)]. Hence, by Observation 5, (G[V (Ki)∪X∪V (Fi,X)], X∪
V (Fi,X), k) is a yes-instance of 2-Connected Steiner. Since X 6= ∅, in some iteration of the
algorithm, we considered a graph Gi,X that is isomorphic to G[V (Ki) ∪ X ∪ V (Fi,X)] and
hence found a minimum solution Hi,X of 2-Connected Steiner for exactly the instance
(G[V (Ki)∪X ∪ V (Fi,X)], X ∪ V (Fi,X), k). Let S′ = V (Hi,X)∪X ∪ V (Fi,X). By construction,
S′ is 2-connected. Note that S∩C ′ is an s–t separator, since otherwise there would be a minimal
s–t separator of size at most k in G that contains a vertex outside C ′, contradicting Lemma 4.
Since S ∩ C ′ ⊆ S′, the set S′ is an s–t separator. It is clear that S′ ⊆ C ′′, which means that
|S′ \ C ′′| = 0. Hence |S′ \ C ′′| < |S \ C ′′|, contradicting the minimality of S.

For each i ∈ {1, . . . , q}, we test at most |Ni|k sets X ⊆ Ni, and for each of these sets X,

we test at most 2k
2

different graphs Gi,X . For each graph Gi,X , we mark at most k vertices of

Ki, so the total number of vertices in Ki that are marked is at most k · 2k2 · |Ni|k. Recall that
the size of each Ni is bounded by a function of k only, which implies that the same holds for
|C ′′ ∩ V (Ki)| and consequently for the treewidth of torso(Ki, C

′′ ∩ V (Ki)). It follows that the
difference between the treewidth of torso(G,C ′′) and the treewidth of torso(G,C ′) is a constant
depending on k (see also Lemma 2.9 in [25]), implying that the treewidth of torso(G,C ′′)
is bounded by a function of k. Finding the set C ′ can be done in time f(k) · (m + n) by
Lemma 4. For each choice of i, the possible number of different graphs Gi,X , and consequently

the number of instances of 2-Connected Steiner we have to solve, is at most k · 2k2 · |Ni|k.
Since 2-Connected Steiner is FPT by Theorem 4, the overall running time of the algorithm
is h(k) · nO(1) for some function h that depends only on k. ut

Theorem 6. The 2-Connected Separator problem is FPT.

Proof. Let (G, s, t, k) be an instance of 2-Connected Separator. We start by constructing
the set C ′′ ⊆ V (G) of Lemma 4. Let G∗ = torso(G,C ′′). We assign a color to each edge uv in
G∗: we color uv black if uv is also an edge in G, and we color uv red otherwise. By Lemma 5,
G contains a 2-connected s–t separator S of size at most k if and only if G∗ contains an s–t
separator S∗ of size at most k such that deleting the red edges from G∗[S∗] results in a 2-
connected graph. The theorem now follows from Courcelle’s Theorem [8] and the fact that this
problem can be expressed in monadic second-order logic (see [25]). ut

We now show that the c-Connected Steiner problem becomes hard when the connec-
tivity of the solution is required to be at least 3. In the proof of Theorem 7 below, as well as
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in the hardness proofs in the next section, we give parameterized reductions from the Mul-
ticolored Clique problem. This problem takes as input a graph G, an integer k, and a
partition of V (G) into k independent sets C1, . . . , Ck called color classes. The objective is to
decide whether there exists a subset S ⊆ V (G) such that |S| = k, G[S] is a complete graph,
and |S ∩ Ci| = 1 for all 1 ≤ i ≤ k; such a set S is called a multicolored clique. This problem is
known to be W [1]-hard when parameterized by k [14].

Theorem 7. c-Connected Steiner is W [1]-hard for any c ≥ 3.

Proof. We first show that the theorem holds for c = 3. We reduce from Multicolored
Clique. Note that Multicolored Clique remains W [1]-hard when we assume that k ≥ 3,
and we make this assumption in the proof below. Let (G, k) be an instance of Multicolored
Clique with color classes C1, . . . , Ck. Starting from G, we construct a graph G′ as follows. We
first subdivide every edge uv ∈ E(G) exactly once by adding a vertex xuv, deleting the edge
uv, and adding the edges uxuv, vxuv. We then add a number of terminals as follows. For every
1 ≤ i < j ≤ k, we add a terminal gi,j and make it adjacent to all vertices xuv with u ∈ Ci and
v ∈ Cj . For every 1 ≤ i ≤ k, we add a terminal gi and make it adjacent to all vertices in Ci.
We then add two terminals a1, a2 and make both them adjacent to gi for every 1 ≤ i ≤ k. We
also add two terminals b1, b2 and make both of them adjacent to gi,j for every 1 ≤ i < j ≤ k.
This finishes the construction of the graph G′. We define T to be the set of all terminals in G′,
and we define k′ = 2k+ k(k− 1) + 4. We show that (G, k) is a yes-instance of Multicolored
Clique if and only if (G′, T, k′) is a yes-instance of 3-Connected Steiner.

First suppose that G has a multicolored clique X, and let ci = X ∩Ci for every 1 ≤ i ≤ k.
Let S ⊆ V (G′) be the set containing each of the k vertices in X, each of the k(k−1)/2 vertices
in the set {xcicj | ci, cj ∈ X}, and each of the k+k(k−1)/2+4 terminals in G′. We claim that
G′[S] is a 3-connected subgraph of G′ on at most k′ vertices that contains all the terminals.
Note that |S| = 2k + k(k − 1) + 4 = k′. It remains to show that G′[S] is 3-connected. For
convenience, we define A = {a1, a2}∪{gi | 1 ≤ i ≤ k}, B = {b1, b2}∪{gi,j | 1 ≤ i < j ≤ k} and
C = S \ (A ∪ B) = X ∪ {xcicj | ci, cj ∈ X}. Recall that we may assume the number of color
classes Ci to be at least 3. Hence there is a matching MA ⊆ E(G′) containing at least three
edges with one endpoint in A and one endpoint in C, as well as a matching MB ⊆ E(G′) with at
least three edges between B and C. In order to show that S induces a 3-connected subgraph in
G′, it suffices to show that for every pair of distinct vertices s, s′ ∈ S, the graph G′[S]−{s, s′}
is connected. This clearly is the case if {s, s′} = {a1, a2} and if {s, s′} = {b1, b2}. Suppose
that {s, s′} 6= {a1, a2} and {s, s′} 6= {b1, b2}. Then each of the graphs G′A = G′[A \ {s, s′}],
G′B = G′[B \ {s, s′}] and G′C = G′[C \ {s, s′}] is connected. Moreover, due to the existence of
the matchings MA and MB in G′, there is at least one edge between G′A and G′C and at least
one edge between G′B and G′C . This implies that the graph G′[S]− {s, s′} is connected.

For the reverse direction, suppose G′ has a 3-connected subgraph G′[S] on at most k′

vertices that contains all the terminals. The 3-connectedness of G′[S] implies that every vertex
in S has degree at least 3 in G′[S]. Hence each of the terminals, apart from a1, a2, b1, b2, must
have at least one neighbor in S that is not a terminal. Recall that |S| ≤ k′ = 2k+k(k− 1) + 4,
and that there are k+ k(k− 1)/2 + 4 terminals in G′. Hence S contains at most k+ k(k− 1)/2
vertices that are not terminals. This implies that each terminal, apart from a1, a2, b1, b2, has
exactly one neighbor in S that is not a terminal. For each of the terminals gi, let ci be this
neighbor, and for each gi,j , let xi,j be this neighbor. S contains no other vertices than the ones
mentioned above. Since every vertex in S must have degree at least 3 in G′[S] and each of the
vertices xi,j has degree exactly 3 in G′, we know that both non-terminal neighbors of xi,j in
G′ belong to S, for every 1 ≤ i < j ≤ k. This means that, for every 1 ≤ i < j ≤ k, vertex xi,j
is adjacent to ci and cj . We conclude that the vertices {c1, . . . , ck} form a multicolored clique
in G.
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We can easily modify the above reduction in order to show that c-Connected Steiner is
W [1]-hard for any fixed c ≥ 4. After constructing G′ as described in the reduction for c = 3,
we simply add a clique of c − 3 additional terminals to G′, make each of them universal by
making them adjacent to all vertices in G′, and increase the parameter k′ by c− 3. The result
follows from the observation that the connectivity of a graph increases by exactly 1 each time
a universal vertex is added to the graph. ut

Since we can transform an instance of c-Connected Steiner into an equivalent instance
of c-Connected Separator by making two new vertices s and t adjacent to each of the
terminals, Theorem 7 readily implies the following result.

Theorem 8. c-Connected Separator is W [1]-hard for any c ≥ 3.

3 More W [1]-Hardness Results on General Graphs

We say that a graph G is r-regular if the degree of every vertex in G is exactly r. For every
r ≥ 0, let r-Regular Separator denote the problem of deciding whether an input graph G
has an s–t separator S of size at most k such that G[S] is r-regular. Since the class of 0-regular
graphs is hereditary, Theorem 1 implies that 0-Regular Separator, i.e., the problem of
finding an s–t separator that is an independent set of size at most k, is FPT. We show that
r-Regular Separator is W [1]-hard for every r ≥ 1. Note that the class of r-regular graphs
is not hereditary for any r ≥ 1.

Theorem 9. r-Regular Separator is W [1]-hard for any r ≥ 1.

Proof. Let r ≥ 1 be an integer. We show that r-Regular Separator is W [1]-hard by a
reduction from Multicolored Clique. Let (G, k) be an instance of Multicolored Clique
with color classes C1, . . . , Ck. We create a graph G′ as follows. We start with a copy of the
complement of G. For every color class Ci, we add a clique Xi on r vertices, and we make each
vertex in Xi adjacent to every vertex in Ci. Let X =

⋃k
i=1Xi. Finally, we add two vertices s

and t, and make both these vertices adjacent to every vertex in X. We show that (G, k) is a
yes-instance of Multicolored Clique if and only if G′ has an r-regular s–t separator of size
at most (r + 1)k.

Suppose G had a multicolored clique C = {c1, . . . , ck}, where ci ∈ Ci for every 1 ≤ i ≤ k.
Note that the set C forms an independent set in G′. Consider the set C ∪X. Since every path
from s to t in G′ contains a vertex of X, the set C ∪X separates s from t. Moreover, C ∪X
has size (r + 1)k and induces an r-regular subgraph in G′. For the reverse direction, suppose
there exists an s–t separator S of size at most (r+1)k in G′ such that G′[S] is r-regular. Every
vertex in X is adjacent to both s and t, so we must have X ⊆ S. Since G′[S] is r-regular and
every vertex in X has degree r − 1 in G′[X] by construction, every vertex xi ∈ X has exactly
one neighbor ci in S \X, which means that ci ∈ Ci. Moreover, the vertices {c1, . . . , ck} must
form an independent set in G′, implying that {c1, . . . , ck} is a multicolored clique in G. ut

The diameter of a graph G is the maximum distance between any two vertices in G, where
the distance between two vertices u and v is defined as the number of edges in a shortest
path from u to v. As mentioned earlier, the problem of finding an s–t separator that forms
a clique is well-known to be solvable in polynomial time [28]. Since cliques induce subgraphs
of diameter 1, it is natural to consider the problem of finding an s–t separator that induces
a subgraph of diameter 2, or, more generally, of any fixed diameter d ≥ 2. Note that for any
d ≥ 2, the class of graphs with diameter d is not hereditary; consider for example a chordless
cycle on 2d+ 1 vertices. The class of graphs with diameter 1, however, is hereditary.
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Fig. 1. The graph H constructed from an instance (G, k) of Multicolored Clique, as described in
the case d ≥ 3 in the proof of Theorem 10. Edges between color classes have note been drawn.

The d-Diameter Separator problem is to decide if an input graph G has an s–t separator
S of size at most k such that G[S] has diameter d. We now show that d-Diameter Separator
is W [1]-hard for any d ≥ 2. The reductions in the proof of Theorem 10 below also show that
the problem of finding an s − t separator S of size at most k such that G[S] has diameter at
most d is W [1]-hard for any d ≥ 2.

Theorem 10. d-Diameter Separator is W [1]-hard for any d ≥ 2.

Proof. In order to keep the reductions as clear as possible, we first consider the case d ≥ 3,
after which we deal with the slightly trickier case d = 2.

Case 1: d ≥ 3.

Let (G, k) be an instance of the Multicolored Clique problem with color classes C1, . . . , Ck.
For any fixed d ≥ 3, we construct an instance (H, l) of d-Diameter Separator from (G, k)
in the way described below, where we distinguish between odd and even values of d.

If d = 2p + 1 for some p ≥ 1, we create the graph H as follows. Start with a copy of G,
and add two vertices s and t. For every 1 ≤ i ≤ k, add a path Pi on p vertices. Let vi and v′i
be the degree 1 vertices of Pi (vi = v′i if p = 1). Make vi adjacent to both s and t, and make
v′i adjacent to every vertex in Ci. Finally, we set l = (p + 1)k. See Figure 1 for a schematic
representation of the graph H; for clarity, edges between the color classes have not been drawn.
We show that G has a multicolored clique of size k if and only if H has an s–t separator of
size l that induces a subgraph of diameter d in H.

Suppose G has a multicolored clique X = {c1, . . . , ck}, where ci ∈ Ci for every 1 ≤ i ≤ k.
Let S be the set containing the vertices of X, as well as the vertices of every path Pi. Since S
contains each of the vertices vi, and those vertices are the only neighbors of s and t in H, S
clearly is an s–t separator. For any 1 ≤ i < j ≤ k, the unique shortest path between vi and vj
in H[S] uses all the vertices of the paths Pi and Pj , as well as the vertices ci and cj . Hence the
distance between vi and vj in H[S] is 2p+ 1. For every other pair of vertices in S, the distance
in H[S] is smaller. Hence S induces a subgraph of diameter 2p+ 1 = d in H. Finally, the size
of S is (p + 1)k = l, since it contains p vertices for each of the k paths Pi, as well as each of
the k vertices of X.

For the reverse direction, suppose that there exists an s–t separator S of size at most l
such that H[S] has diameter d. Note that any s–t separator must contain each of the vertices
vi, since these vertices are adjacent to both s an t. Hence S contains each of the vertices vi.
Since H[S] has diameter d, we know that, in particular, H[S] is connected. By construction,
this implies that S must contain all the vertices of each of the paths Pi, which amounts to pk
vertices in total. It also implies that S ∩ Ci 6= ∅ for every 1 ≤ i ≤ k. The assumption that S
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has size l = (p+ 1)k implies that S contains exactly one vertex from each of the color classes
Ci. For every 1 ≤ i ≤ k, let ci be the only vertex in S ∩Ci, and let X = {c1, . . . , ck}. Suppose
that X has two vertices ci and cj that are not adjacent. Then the distance between vi and vj
is greater than 2p+ 1 in H[S], contradicting the assumption that H[S] has diameter d. Hence
the vertices of X form a multicolored clique in G.

If d = 2p for some p ≥ 2, then we create H as we did for odd values of d, with two
small modifications: each path Pi has p − 1 vertices instead of p vertices (and now vi = v′i if
p = 2), and every edge between any two color classes, i.e., every edge of the copy of G in H,
is subdivided exactly once. We set l = pk +

(
k
2

)
.

Suppose G has a multicolored clique X = {c1, . . . , ck}, where ci ∈ Ci for every 1 ≤ i ≤ k.
For every two vertices ci and cj in X, let yij be the vertex in H that subdivided the edge

cicj , and let Y be the set containing all
(
k
2

)
of these vertices yij . We define S to be the set

containing the vertices of X ∪ Y , as well as the vertices of every path Pi. It is clear that S is
an s–t separator. For any 1 ≤ i < j ≤ k, the unique shortest path between vi and vj in H[S]
uses all the vertices of the paths Pi and Pj , as well as the vertices ci, xij , and cj . Hence the
distance between vi and vj in H[S] is 2p. For every other pair of vertices in S, the distance in
H[S] is smaller. Hence S induces a subgraph of diameter 2p = d in H. Finally, the size of S is
(p+ 1)k = l, since it contains p− 1 vertices for each of the k paths Pi, as well as each of the k
vertices of X, and each of the

(
k
2

)
vertices of Y .

Now suppose that there exists an s–t separator S of size at most l such that H[S] has
diameter d. Similar to the case for odd d, we know that S contains all the vertices of each
of the paths Pi, which amounts to (p − 1)k vertices in total. We also know that S ∩ Ci 6= ∅
for every 1 ≤ i ≤ k. This leaves a budget of at most

(
k
2

)
vertices. The assumption that H[S]

has diameter d and the restrictions imposed by the budget imply that S contains exactly one
vertex, say ci, from every color class Ci, as well as the vertex yij for every two vertices ci and
cj belonging to S. By the construction of H, it follows that the vertices {c1, . . . , ck} form a
clique in G.

Case 2: d = 2.

Let (G, k) be an instance of the Multicolored Clique problem with color classes C1, . . . , Ck.
We construct an instance (H, l) of Diameter-2 Separator from (G, k) as follows (see also
Figure 2, where a schematic drawing of the graph H is given). We start with a copy of G. For
every color class Ci, we introduce a pair of vertices ui and vi, and for every pair of color classes
Ci and Cj , we introduce four vertices wij , xij , yij and zij . Finally, we introduce vertices s, t
and g. For every 1 ≤ i ≤ k, we make the vertices ui and vi adjacent to all the vertices in Ci, and
g is made adjacent to all the vertices in every color class. We add an edge between each pair
of vertices in the set C = {wij , xij , yij , zij | 1 ≤ i, j ≤ k} ∪ {g}, i.e., we make C into a clique.
The vertices ui, vi, and all the vertices in C are made adjacent to both s and t. Finally, for all
1 ≤ i < j ≤ k, we introduce the edges wijui, wijuj , xijui, xijvj , and yijvi, yijuj , zijvi, zijvj .

To complete the construction, we set l = 3k+4
(
k
2

)
+1. We now show that G has a multicolored

clique of size k if and only if there exists an s–t separator of size l that induces a subgraph of
diameter 2 in H.

Suppose G has a multicolored clique X = {c1, . . . , ck}, where ci ∈ Ci for every 1 ≤ i ≤ k.
Notice that the vertices of {ui, vi | 1 ≤ i ≤ k} ∪C form an s–t separator. To complete this set
into an s–t separator of diameter 2, we include g and the vertices of X. Let S denote the s–t
separator thus obtained. Let u and v be two distinct vertices in S. The following case analysis
shows that there is either an edge between u and v, or they have a common neighbor in S.

– If u ∈ C and v ∈ C, then (u, v) ∈ E(H) since C is a clique.
– If u ∈ X and v ∈ X, then (u, v) ∈ E(H) since X is a multicolored clique.
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Fig. 2. The graph H constructed from an instance (G, k) of Multicolored Clique, as described in
the case d = 2 in the proof of Theorem 10. Many vertices and edges have been omitted for clarity; the
bold edges indicate that g is adjacent to all the vertices in every color class.

– If u ∈ C and v ∈ X, then g is a common neighbor of u and v.
– If u = ui and v = vi, then ci is a common neighbor of u and v.
– If u ∈ C and v ∈ {ui, vi}, then either u and v are adjacent, or, for any j 6= i, one of the

vertices wij , xij , yij , zij is a common neighbor of u and v.
– If u ∈ {ui, vi} and v ∈ {uj , vj}, then one of the vertices wij , xij , yij , zij is a common

neighbor of u and v.
– If u = ci and v ∈ {uj , vj}, then cj is a common neighbor of u and v.

Hence G[S] has diameter 2. Notice that S has size 3k + 4
(
k
2

)
+ 1 = l.

For the reverse direction, suppose S is an s–t separator of size l such that H[S] has diameter
2. Notice that {ui, vi | 1 ≤ i ≤ k}∪C ⊆ S, since each of these vertices is adjacent to both s and
t. Notice further that |{ui, vi | 1 ≤ i ≤ k} ∪C| = 2k+ 4

(
k
2

)
+ 1. Since S is a separator of size l,

this means that we have a budget of k vertices remaining. The graph H[S] has diameter 2, so
ui and vi have a common neighbor in S, and consequently S∩Ci 6= ∅, for every 1 ≤ i ≤ k. The
fact that the remaining budget is k implies that contains exactly one vertex from each color
class Ci. Let ci denote the vertex in S ∩ Ci, and let X = {c1, . . . , ck}. We now argue that X
forms a clique in G. For contradiction, suppose there exists a pair (i, j) such that cicj /∈ E(H).
All neighbors of vj in the separator S belong to the set C ∪ {cj}, and ci is not adjacent to
any of those vertices. Note, in particular, that ci is adjacent to g, but vj is not. Hence ci and
vj have no common neighbor in S, contradicting our assumption that S is an s–t separator
inducing a subgraph with diameter 2. We conclude that C is a multicolored clique in G, which
completes the proof of the theorem. ut

4 Finding s–t Separators in Graphs of Bounded Degree

Theorem 1 states that G-Separator is FPT for any decidable and hereditary graph class
G. In the previous sections, we identified several non-hereditary graph classes G for which G-
Separator isW [1]-hard on general graphs. In this section, we prove that for any decidable (but
not necessarily hereditary) graph class G, the G-Separator problem is FPT parameterized
jointly by the size of the separator and the maximum degree. We point out that there are
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several graph classes G for which G-Separator is NP-complete on graphs of bounded degree;
the class of connected graphs is just one example (see Theorem 15 in Section 5).

In order to obtain the main result of this section, we study the following problem:

Pattern Separator
Input: Two graphs G and H, and two vertices s and t of G.
Question: Does G have an s–t separator S such that G[S] is isomorphic to
H?

We show that Pattern Separator is FPT parameterized jointly by the number of vertices
in the “pattern” graph H and the maximum degree of G. Note that this is obviously the case
if H is connected, as any vertex in a graph with maximum degree ∆ is contained in at most
∆|V (H)| connected vertex subsets of size |V (H)|. The situation is less obvious when we allow
H to be disconnected. We will use a variant of the color coding technique of Alon, Yuster
and Zwick [1] to reduce the Pattern Separator problem to the problem of finding an s–t
separator that has a certain hereditary property, which enables us to invoke Theorem 1.

For the remainder of this section, let G and H be two graphs, let s and t be two vertices
of G, and let H1, . . . ,Hc be the connected components of H. We use n and m to denote the
number of vertices and edges in G, respectively. Let ψ be a (not necessarily proper) coloring
of G. A subset of vertices V ′ ⊆ V (G) is colorful if ψ colors no two vertices of V ′ with the same
color. For any subset C ′ of colors, we say that V ′ ⊆ V (G) is C ′-colorful if |V ′| = |C ′| and every
vertex in V ′ receives a different color from C ′.

Definition 1. Let ψ : V (G)→ {1, 2, . . . , c, c+ 1} be a (c+ 1)-coloring of G. We say that ψ is
H-good if G has an s–t separator S satisfying the following properties:

(i) each connected component of G[S] is colored monochromatically with a color from {1, . . . , c};
(ii) no two connected components of G[S] receive the same color;

(iii) the connected component of G[S] with color i is isomorphic to Hi;
(iv) every vertex in NG(S) receives color c+ 1.

It immediately follows from Definition 1 that (G,H, s, t) is a yes-instance of Pattern
Separator if and only if G has an H-good coloring. The main idea of our algorithm is that
finding a separator S satisfying these requirements essentially boils down to finding a separator
that is a colorful independent set, which is fixed-parameter tractable by the results of [24, 25].
The following lemma plays a crucial role in our algorithm for Pattern Separator.

Lemma 6. Given a (c+1)-coloring ψ of G, we can decide in g(|V (H)|) · (n+m) time whether
ψ is H-good.

Proof. We describe an algorithm for deciding whether a given (c + 1)-coloring ψ of G is H-
good. Let B be the set of vertices in G with color c + 1. For every connected component X
of the graph G−B that is not monochromatic, we recolor all the vertices of V (X) with color
c + 1 in G, and set B = B ∪ V (X). After this step, every connected component of G − B is
monochromatic. For every 1 ≤ i ≤ c, let Gi be the subgraph of G induced by the vertices with
color i. For every value of i from 1 up to c, we check, for each connected component X of the
graph Gi, whether X is isomorphic to Hi. If not, we color all the vertices of V (X) with color
c+ 1 in G, and set Gi = Gi−V (X). If at any point we find that Gi does not have any vertices,
then ψ cannot satisfy condition (iii) in Definition 1, so we output “no”. Suppose that, after
this step, each connected component of Gi is isomorphic to Hi, for every 1 ≤ i ≤ c. We then
repeatedly contract edges with both endpoints in the same subgraph Gi, until we obtain a
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graph G′ in which the vertices with colors 1, . . . , c form an independent set. Also note that G′

contains at least one {1, . . . , c}-colorful independent set S∗, as otherwise the algorithm would
have returned “no” already.

Claim 1: Coloring ψ is H-good if and only if G′ has an s–t separator S′ such that S′ is a
{1, . . . , c}-colorful independent set.

We prove Claim 1 as follows. Suppose ψ is H-good, and let S be an s–t separator of G satisfying
the four properties in Definition 1. Due to properties (i) and (iv) in Definition 1, each of the
connected components of the subgraph G[S] was contracted to a single vertex when the graph
G′ was obtained from G. For 1 ≤ i ≤ c, let si be the vertex in G′ that corresponds to the
connected component of G[S] that is isomorphic to Hi. Due to properties (i) and (ii), the set
S′ = {s1, . . . , sc} is {1, . . . , c}-colorful, and property (iv) ensures that S′ is an independent set
in G′. Since S is an s–t separator in G, every path from s to t in G contains a vertex of S. We
only contracted edges in G to obtain G′, so every path from s to t in G′ contains a vertex of
S′, implying that S′ is an s–t separator in G′.

For the reverse direction, suppose G′ has an s–t separator S′ such that S′ is a {1, . . . , c}-
colorful independent set. Consider the unique vertex si ∈ S′ with color i. By the construction of
G′, si corresponds to a connected component of the subgraph Gi in G, and such a component is
isomorphic to Hi; thus property (iii) is satisfied. Property (ii) follows from the assumption that
S′ is colorful. Recall that every connected component of the subgraph G − B that contained
more than one color from 1, . . . , c was recolored with color c + 1 in the very first step of the
algorithm. Since after that step we only contracted edges in G to obtain G′, property (i) is
satisfied. Recall that all the vertices in G′ with a color in {1, . . . , c} form an independent set.
Hence for each of those vertices, and the ones in S′ in particular, all neighbors have color c+1.
This means that every vertex in NG(S) must have had color c + 1 as well, implying property
(iv). This finishes the proof of Claim 1.

The graph G′ can be obtained from G in O(n+m) time. Due to the above claim, it remains
to show that we can decide in g(|V (H)|)·(n+m) time whether the graph G′ has an s–t separator
S′ such that S′ is a {1, . . . , c}-colorful independent set. We call such a set S′ a solution below.
Note that the property “being a {1, . . . , c}-colorful independent set” is not hereditary, since
only sets of cardinality c can have this property. The next claim shows that we can reduce the
problem of finding a solution in G′ to the problem of finding a small s–t separator that does
satisfy a certain hereditary property.

Claim 2: Graph G′ has a solution if and only if G′ has an s–t separator S′′ of size at most c
such that S′′ is an independent set that is C ′-colorful for some C ′ ⊆ {1, . . . , c}.

We prove Claim 2 as follows. If G′ has an s–t separator S′ such that S′ is a {1, . . . , c}-colorful
independent set, then we can simply take S′′ = S′. For the reverse direction, suppose G′ has
an s–t separator S′′ of size at most c such that S′′ is an independent set that is C ′-colorful for
some C ′ ⊆ {1, . . . , c}. Recall that all the vertices with colors 1, . . . , c form an independent set
in G′, and that G′ contains at least one {1, . . . , c}-colorful independent set S∗. Hence we can
extend S′′ into a solution S′ by adding to S′′ exactly those vertices of S∗ that have a color
from {1, . . . , c} \ C ′. This finishes the proof of Claim 2.

Note that the s–t separator S′′ in Claim 2 has the property “being an independent set of
size at most c all whose vertices have a different color from {1, . . . , c}”. This is a hereditary
property. Consequently, we can decide if such a separator S′′ exists in g(|V (H)|) · (n+m) time
by Theorem 1, as Marx et al. [25] point out that Theorem 1 remains true for graphs having
a fixed finite number of colors (since c + 1 ≤ |V (H)| + 1, the number of colors in the graphs
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we consider does not depend on n). Claims 1 and 2 imply that S′′ exists if and only if ψ is
H-good, which completes the proof. ut

We now use a variant of the color coding technique to show that Pattern Separator is
FPT parameterized jointly by the number of vertices in H and the maximum degree of G.

Theorem 11. Pattern Separator can be solved in f(|V (H)|, ∆(G)) ·m log n time.

Proof. Let (G,H, s, t) be an instance of Pattern Separator. We define k = |V (H)| and
∆ = ∆(G). Suppose (G,H, s, t) is a yes-instance, and let S be an s–t separator of G such that
G[S] is isomorphic to H. Let H1, . . . ,Hc be the connected components of H, and let Si ⊆ S
be such that G[Si] is isomorphic to Hi for 1 ≤ i ≤ c. Since |S| = |V (H)| = k, and every
vertex in S has at most ∆ neighbors, |NG[S]| ≤ (∆ + 1)k. As a result of Theorem 3, we can
construct a (∆+ 1)k-perfect family Ψ of hash functions from {1, . . . , n} to {1, . . . , (∆+ 1)k},
consisting of 2O((∆+1)k) · log n hash functions. We will interpret each hash function in Ψ as a
(∆+ 1)k-coloring of G. We construct a larger family of colorings Ψ ′ by adding to Ψ , for every
coloring ψ ∈ Ψ , all colorings that can be obtained from ψ by permuting the colors. Since the
total number of colors in any coloring in Ψ is at most (∆+ 1)k, the new family Ψ ′ has at most
((∆+ 1)k)! · 2O((∆+1)k) · log n colorings.

In order to use Lemma 6, we need to transform the (∆ + 1)k-colorings in Ψ ′ into (c + 1)-
colorings. For every coloring ψ′ ∈ Ψ ′, we define a (c + 1)-coloring ψ′′ by assigning color 1
to every vertex v ∈ V (G) for which 1 ≤ ψ′(v) ≤ |V (H1)|, color i to every v for which 1 +∑i−1
j=1 |V (Hj)| ≤ ψ′(v) ≤

∑i
j=1 |V (Hj)| for every 2 ≤ i ≤ c, and color c+1 to every v for which

|V (H)| + 1 ≤ ψ′(v) ≤ (∆ + 1)k. Let Ψ ′′ be the family of all colorings ψ′′ thus constructed.
We claim that Ψ ′′ contains an H-good coloring. By the definition Ψ , there exists a ξ ∈ Ψ that
colors every vertex in NG[S] with a different color. Since Ψ ′ contains all colorings that can
be obtained from ξ by permuting the colors, there exists a coloring ξ′ ∈ Ψ ′ that satisfies the
following properties: 1 ≤ ξ′(v) ≤ |S1| for every v ∈ S1, 1 +

∑i−1
j=1 |Sj | ≤ ξ′(v) ≤

∑i
j=1 |Sj |

for every v ∈ Si, and |S| + 1 ≤ ξ′(v) ≤ (∆ + 1)k for every v ∈ NG(S). Let ξ′′ ∈ Ψ ′′ be the
(c+ 1)-coloring obtained from ξ′ in the way described above. It follows from Definition 1 that
ξ′′ is H-good.

From the above it is clear that, given an instance (G,H, s, t) of Pattern Separator
where G has maximum degree at most ∆, we can construct a family Ψ ′′ of (c + 1)-colorings
of G such that Ψ ′′ contains an H-good coloring if and only if (G,H, s, t) is a yes-instance.
The size of Ψ ′′ is bounded by ((∆ + 1)k)! · 2O((∆+1)k) · log n, and Ψ ′′ can be constructed in
((∆+ 1)k)! · 2O((∆+1)k) · n log n time by Theorem 3. Finally, we can check for each coloring in
Ψ ′′ whether or not it is H-good in g(k) · (n + m) time by Lemma 6 for some function g that
does not depend on n. This yields an overall running time of f(k,∆) ·m log n for some function
f that only depends on k and ∆. ut

We now use Theorem 11 to show that the G-Separator problem is FPT parameterized
jointly by the size of the separator and the maximum degree of the input graph G.

Theorem 12. For any decidable class G, the G-Separator problem can be solved in hG(k,∆(G))·
m log n time.

Proof. Let (G, s, t, k) be an instance of G-Separator. We generate all graphs H on at most

k vertices that belong to G. Note that there are at most 2k
2

such graphs H, and since G is
decidable, we can generate all of them in fG(k) time for some function fG . For each of the
generated graphs H, we solve Pattern Separator with the graphs G and H as input. This
can be done in f(k,∆(G)) ·m log n time for each graph H due to Theorem 11. It is clear that
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(G, s, t, k) is a yes-instance of G-Separator if and only if one of the constructed graphs H
yields a yes-instance of Pattern Separator. The overall running time of this algorithm is
hG(k,∆(G)) ·m log n for some function hG that only depends on k and ∆(G). ut

5 No Polynomial Kernel for Connected Separator

As mentioned in Section 1, Marx et al. [25] showed that the Connected Separator problem
is FPT. In Section 2, we proved that the same holds for the problems 2-Connected Separa-
tor and 2-Connected Steiner. In this section, we first show that none of these problems
admits a polynomial kernel, unless NP ⊆ coNP/poly. We then prove that, under the same as-
sumption, Connected Separator does not even admit a polynomial kernel when restricted
to graphs of maximum degree at most 3.

Let us first introduce some additional terminology and describe two recently established
techniques for proving the non-existence of polynomial kernels. For a parameterized problem
Q ⊆ Σ∗ × N, its unparameterized version Q̃ is the set {x1k | (x, k) ∈ Q}, where 1 /∈ Σ.

Definition 2. An or-composition algorithm for a parameterized problem Q ⊆ Σ∗ × N is an
algorithm that receives as input a sequence ((x1, k), . . . , (xr, k)), with (xi, k) ∈ Σ∗ × N+ for
each 1 ≤ i ≤ r, and outputs a pair (x′, k′), such that

– the algorithm uses time polynomial in
∑r
i=1 |xi|+ k;

– k′ is bounded by a polynomial in k; and
– (x′, k′) ∈ Q if and only if there exists an i ∈ {1, . . . , r} with (xi, k) ∈ Q.

A parameterized problem Q is said to be or-compositional if there exists an or-composition
algorithm for Q.

Combining results by Bodlaender et al. [2] and Fortnow and Santhanam [16] yields the fol-
lowing theorem, which provides the first framework for proving the non-existence of polynomial
kernels.

Theorem 13 ([2],[16]). Let Q be a parameterized problem and let Q̃ be the corresponding
unparameterized decision problem. If Q̃ is NP-complete and Q is or-compositional, then Q has
no polynomial kernel, unless NP ⊆ coNP/poly.

A second framework for proving the non-existence of polynomial kernels was introduced by
Bodlaender, Thomassé and Yeo [4]. A polynomial parameter transformation from a parameter-
ized problem P to a parameterized problem Q is a polynomial-time function that transforms
each instance (x, k) of P into an instance (x′, k′) of Q, such that (x, k) is a yes-instance if and
only if (x′, k′) is a yes-instance, and k′ ≤ p(k) for some polynomial p.

Theorem 14 ([6]). Let P and Q be parameterized problems, and let P̃ and Q̃ be the unpa-
rameterized versions of P and Q, respectively. Suppose that P̃ is NP-complete and Q̃ is in NP.
If there is a polynomial parameter transformation from P to Q and Q has a polynomial kernel,
then P also has a polynomial kernel.

In Section 2, we gave two simple polynomial-time reductions to show that each of the
problems Connected Separator, 2-Connected Separator and 2-Connected Steiner
is NP-complete. By observing that these two reductions are in fact polynomial parameter
transformations, Theorem 14 readily implies the following result.

Proposition 1. None of the problems Connected Separator, 2-Connected Separator
and 2-Connected Steiner admits a polynomial kernel, unless NP ⊆ coNP/poly.
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In the remainder of this section, we show that Connected Separator does not admit a
polynomial kernel, even when restricted to graphs with maximum degree at most 3, unless NP
⊆ coNP/poly. In order to be able to invoke Theorem 13, we first show that the problem remains
NP-complete under this restriction (Theorem 15 below). In fact, we prove that Connected
Separator is NP-complete if we assume the input graph not only to have maximum degree
at most 3, but also to possess some additional structure. This structure is then exploited in
the proof of Theorem 16, where we show that Connected Separator is or-compositional.
We first introduce some additional terminology and prove a useful lemma.

Let v be a vertex of a graph G with degree at least 4, and let {w1, . . . , wp} denote the
neighbors of v in G. When we say that we blow up vertex v, we first delete v from G, and then
add a cycle Cv with vertex set {c1, . . . , cp} as well as the edge ciwi for every 1 ≤ i ≤ p. For
any graph G and integer `, we define the graph G` as the graph that can be obtained from G
by first subdividing every edge of G exactly ` times, and then blowing up every vertex that
has degree at least 4. For every edge uv ∈ E(G), we refer to the set Xuv of vertices that were
inserted to subdivide the edge uv as white vertices in G`. For every vertex v ∈ V (G) of degree
at least 4 in G, we refer to the vertices of Cv as black vertices in G`. Every vertex in G that has
degree at most 3 is not blown up, and therefore appears as a vertex in G`. For convenience, we
define Cw = {w} for every w ∈ V (G) of degree at most 3, and we say that w is a black vertex
in G`.

Lemma 7. Let G be a graph with maximum degree ∆, and let s and t be two vertices of degree
2 in G. Let ` = ∆k + 1. Then G has a connected s–t separator of size at most k if and only if
G` has a connected s–t separator of size at most (k − 1)`+∆k.

Proof. Since s and t have degree 2 in G, they are not blown up when creating G` from G.
Hence s and t appear as black vertices of degree 2 in G`.

Suppose G has a connected s–t separator S of size at most k. Let T be a spanning tree of
the graph G[S]. Let S′ ⊆ V (G`) be the set containing all the vertices of Cu for every vertex
u ∈ S, as well as all the vertices of Xuv for every edge uv ∈ E(T ). Since T contains at most k
vertices and therefore at most k − 1 edges, S′ contains at most ∆k black vertices and at most
(k − 1)` white vertices, so |S′| ≤ (k − 1)`+∆k. It follows from the construction of G` that S′

is a connected s–t separator in G`.
For the reverse direction, suppose G` has a connected s–t separator S′ of size at most

(k− 1)`+∆k. We assume that S′ is minimal, i.e., no proper subset S′′ ⊂ S′ is a connected s–t
separator in G′. We show that, for every edge uv in G, S′ either contains none of the vertices
of Xuv, or contains all the vertices of Xuv, as well as the two black vertices (one from Cu

and one from Cv) that are adjacent to Xuv. For contradiction, suppose that this is not the
case for some edge uv ∈ E(G). Then S′ contains a white vertex x that has degree 1 in G`[S

′],
which implies that S′ \ {x} is also a connected s–t separator, contradicting the minimality of
S′. Let X be the set of edges uv in G for which all vertices of Xuv are contained in S′, i.e.,
X = {uv ∈ E(G) | Xuv ⊆ S′}. Suppose that |X| ≥ k. Then S′ contains at least k` white
vertices, i.e., |S′| ≥ k` = (k − 1)`+ `. Since ` = ∆k + 1, this contradicts the assumption that
|S′| ≤ (k − 1)` + ∆k. Hence X contains at most k − 1 edges. Let S ⊆ V (G) be the set of
endpoints of the edges in X. Since S′ is a connected set in G′, the graph G[S] is connected.
Moreover, since every connected graph on at most k − 1 edges contains at most k vertices, S
contains at most k vertices. From the construction of G` and the fact that S′ is an s–t separator
in G`, it follows that S is an s–t separator in G. ut

Theorem 15. The Connected Separator problem is NP-complete on graphs of maximum
degree at most 3, in which the vertices s and t have degree 2.
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Fig. 3. The graph G′ constructed from an instance (G,T, k) of Steiner Tree, where N = V (G) \ T .
The graph G′[T ∪N ] is isomorphic to G. The vertices of X ′ and Y ′ are colored grey. The unique path
Q from s to t that contains no vertices from (T ∪N) \ {t1} is indicated using bold (red) edges.

Proof. We first show that Connected Separator is NP-complete when s and t have degree
2, before using Lemma 7 to prove that the problem remains NP-complete with the additional
restriction that the maximum degree of the input graph is at most 3. Let (G,T, k) be an
instance of Steiner Tree, where T = {t1, . . . , tp}. We define N = V (G) \ T to be the set
of non-terminals in G. We assume that T is an independent set in G, and point out that the
problem remains NP-complete under this assumption [21]. We also assume that p = 2q for
some integer q; if this is not the case, then we simply add an independent set X of new vertices
to G such that |T ∪ X| = 2q for some integer q, making each of them a false twin of t1 by
adding edges between every vertex in X and every vertex in NG(t1).

We transform (G,T, k) into an instance (G′, s, t, k) of Connected Separator as follows;
see Figure 3 for a helpful illustration. To construct G′, we start with a copy of G. For con-
venience, we use T and N to refer to the vertices in G′ corresponding to the terminals and
non-terminals of G, respectively. We add independent sets of vertices X = {x1, . . . , xp} and
Y = {y1, . . . , yp}, as well as the edges tixi and tiyi for every 1 ≤ i ≤ p. We then subdivide
every edge of the form tixi exactly k times, and we use X ′ to denote the set of vertices of
degree 2 that are inserted to subdivide these edges. We do the same for every edge of the form
tiyi, and define the set Y ′ accordingly. We add a vertex s, and connect s to the vertices in X
using a binary tree of depth q, whose root is s and whose leaves are exactly the vertices of
X. Let VX be the set of vertices contained in the binary tree, along with the vertices of X ′.
We now add a vertex t, and connect t to the vertices of Y in the same way. The set VY is
defined analogously to VX . This finishes the construction of G′. Note that the sets VX , T ∪N
and VY form a partition of V (G′). We show that (G′, s, t, k) is a yes-instance of Connected
Separator if and only if (G,T, k) is a yes-instance of Steiner Tree.

Suppose there exists a subset N ′ ⊆ N such that |T ∪ N ′| ≤ k and the graph G[T ∪ N ′]
is connected. Every path from s to t contains at least one vertex of T , so T ∪ N ′ forms a
connected s–t separator in G′. Since |T ∪N ′| ≤ k, (G′, s, t, k) is a yes-instance of Connected
Separator.

For the reverse direction, suppose there exists a connected s–t separator of size at most k
in G′. Let S be such a separator, and assume that S is minimal, i.e., no proper subset S′ ⊂ S is
a connected s–t separator in G′. Due to the minimality of S, we know that S does not contain
a vertex x that has degree 1 in G′[S] and degree 2 in G′, as then S \ {x} would also be a
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connected s–t separator. All vertices in X ′ have degree 2 in G′, and are thus only contained in
S if both neighbors are contained in S. Since X ′ consists of paths on k vertices of degree 2 in
G′, S ∩X ′ 6= ∅ would imply that S contains at least k + 2 vertices. This would contradict the
assumption |S| ≤ k, so we conclude that S ∩X ′ = ∅. By symmetric arguments, we also have
that S ∩ Y ′ = ∅.

Let Q (respectively R) be the unique path in G′ from s to t that contains no vertices
from (T ∪ N) \ {t1} (respectively (T ∪ N) \ {tp}); the path Q is indicated using bold (red)
edges Figure 3. Any s–t separator contains at least one vertex of every path between s and
t. In particular, S contains at least one vertex from Q and at least one vertex from R. Let
q ∈ S ∩ V (Q) and r ∈ S ∩ V (R). Suppose, for contradiction, that q ∈ VX \ X ′. Since S is a
connected s–t separator, the graph G[S] contain a path from q to r. By the construction of
G′, such a path must contain at least k vertices of X ′, as well as q and r. This contradicts
the assumption that |S| ≤ k. This contradiction implies that S ∩ VX \X ′ = ∅. Then we also
have S ∩X ′ = ∅ by the minimality of S, so q ∈ T . Using symmetry, we also find that r ∈ T .
Considering other pairs Q′, R′ of internally vertex-disjoint paths from s to t, we can use similar
arguments to show that S ∩ (VX ∪ VY ) = ∅, and that S contains every vertex of T . Since
|S| ≤ k, at most k−|T | vertices of S belong to N . Let N ′ = S ∩N , i.e., S = T ∪N ′. Since S is
a connected s–t separator, G[T ∪N ′] is connected. Hence (G,T, k) is a yes-instance of Steiner
Tree.

We have showed that Connected Separator is NP-complete when s and t have degree 2.
We now reduce this problem to the Connected Separator problem on graphs with maximum
degree at most 3 as follows. Let (G′, s, t, k) be an instance of Connected Separator, where
s and t have degree 2 in G′. Let ∆ be the maximum degree in G′, and let ` = ∆k + 1.
We create a new instance (G′′, s, t, k′) of Connected Separator by defining G′′ = G` and
k′ = (k − 1)`+∆k. Since we do not blow up vertices of degree less than 4 when transforming
G′ into G′′, s and t exist and have degree 2 in G′′. By Lemma 7, G′′ has a connected s–t
separator of size at most k′ if and only if G′ has a connected s–t separator of size at most k.
The observation that G′′ has degree at most 3 completes the proof. ut

Theorem 16. The Connected Separator problem, restricted to graphs with maximum de-
gree at most 3, is or-compositional.

Proof. As we showed in Theorem 15, Connected Separator is NP-complete on graphs of
maximum degree at most 3, in which both input vertices s and t have degree 2. In fact, we may
assume s and t to be adjacent to the vertices of T by means of binary trees, since no vertex
of VX ∪ VY was blown up in the construction of G` in the proof of Theorem 15. We may also
assume that the graph G − {s, t} is connected, since otherwise we have a trivial no-instance,
which may be safely discarded from the sequence of instances in the input of the composition
algorithm. We say that an instance (G, s, t, k) of Connected Separator is pretty when it
satisfies all the structural properties described above.

Let ((G1, s1, t1, k), . . . , (Gr, sr, tr, k)) be a sequence of pretty inputs of the Connected
Separator problem. For every 1 ≤ i ≤ r, let s′i, s

′′
i and t′i, t

′′
i be the neighbors of si and

ti, respectively. We create an instance (G, s, t, k) of Connected Separator as follows. To
construct G from the graphs G1, . . . , Gr, we delete, for every 1 ≤ i ≤ r− 1, the vertices ti and
si+1, add edges t′is

′
i+1 and t′′i s

′′
i+1, and subdivide both these edges k + 1 times. Let Z ′i and Z ′′i

denote the set of vertices that are used to subdivide the edges t′is
′
i+1 and t′′i s

′′
i+1, respectively.

We write Vi to denote the set of vertices in G corresponding to the graph Gi; in particular,
Vi = V (Gi) \ {si, ti} for every 2 ≤ i ≤ r− 1. Finally, let s = s1 and t = tr. See Figure 4 for an
illustration of the graph G.

We now show that (G, s, t, k) is a yes-instance of Connected Separator if and only if
there exists an i ∈ {1, . . . , r} such that (Gi, si, ti, k) is a yes-instance. If Gi has a connected
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Fig. 4. The graph G constructed in the or-composition in the proof of Theorem 16.

si− ti separator S of size at most k for some i, then it is clear from the construction of G that
S is also an s1 − tr separator. Hence we only need to prove that if (G, s, t, k) is a yes-instance
of Connected Separator, then (Gi, si, ti, k) is a yes-instance for some integer i.

Suppose G has a connected s–t separator S of size at most k. Assume that S is minimal,
i.e., no proper subset S′ ⊂ S is a connected s–t separator in G. As mentioned before, any
vertex of degree 2 in G is, due to the minimality of S, only contained in S if both neighbors
are contained in S. Hence, since |Z ′i| = |Z ′′i | = k + 1 and |S| ≤ k, we can conclude that
S ∩ (Z ′i ∪ Z ′′i ) = ∅ for 1 ≤ i ≤ r − 1. Suppose that S contains a vertex vi ∈ Vi and a vertex
vj ∈ Vj such that i < j. Since S is connected, S must contain all the vertices of Z ′i+1 or Z ′′i+1.
Since |Z ′i+1| = |Z ′′i+1| = k+1, this contradicts the assumption that S has size at most k. Hence
S ⊆ Vi for exactly one integer i with 1 ≤ i ≤ r − 1. It is clear that S is connected in Gi and
that S ∩ {si, ti} = ∅. We claim that S is an si − ti separator in Gi. For contradiction, suppose
there exists an si − ti path P in Gi − S. Let u and v denote the neighbors of si and ti in P ,
respectively. The subpath of P from u to v, together with a path from s1 to u and a path from
v to tr, forms a path from s1 to tr in G− S. This contradicts the assumption that S is an s–t
separator in G.

The instance (G, s, t, k) can clearly be constructed from the given sequence of instances
in time polynomial in

∑r
i=1 |V (Gi)| + k, and the parameter in (G, s, t, k) is the same as the

parameter in each of the given instances (Gi, si, ti, k). Hence Connected Separator is or-
compositional. ut

Combining results of Bodlaender et al. [2] and Fortnow and Santhanam [16] on the non-
existence of polynomial kernels, together with Theorems 15 and 16, yields the following result.

Theorem 17. The Connected Separator problem, restricted to graphs of maximum degree
at most 3, has no polynomial kernel, unless NP ⊆ coNP/poly.

6 Conclusions

Motivated by recent results due to Marx et al. [24, 25], we studied the parameterized complexity
of the G-Separator problem for certain non-hereditary graph classes G. On the negative side,
we showed that the problem is W [1]-hard when G is the class of c-connected graphs for any
c ≥ 3, the class of r-regular graphs for any r ≥ 1 or the class of graphs of diameter at most d
for any d ≥ 2. On the positive side, we showed that the problem is FPT when G is the class
of 2-connected graphs. Marx et al. [25] showed that the same holds when G is the class of
connected graphs. Are there other interesting non-hereditary graph classes G for which the
G-Separator problem is FPT?
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