Finding Topological Subgraphs is Fixed-Parameter
Tractable

Martin Grohe
Institut fUr Informatik

Humboldt-Universitat zu Berlin

Unter den Linden 6
10099 Berlin, Germany

grohe @informatik.hu-
berlin.de

Daniel Marxt
Institut fir Informatik

Humboldt-Universitat zu Berlin

Unter den Linden 6
10099 Berlin, Germany
dmarx@informatik.hu-
berlin.de

ABSTRACT

We prove that for every fixed undirected graph H, there is an
O(JV(G)|?) time algorithm that, given a graph G, tests if G con-
tains H as a topological subgraph (that is, a subdivision of H is
subgraph of G). This shows that topological subgraph testing is
fixed-parameter tractable, resolving a longstanding open question
of Downey and Fellows from 1992. As a corollary, for every H we
obtain an O(|V(G)|?) time algorithm that tests if there is an immer-
sion of H into a given graph G. This answers another open question
raised by Downey and Fellows in 1992.

Categories and Subject Descriptors

F.2 [Theory of Computing]: Analysis of Algorithms and Problem
Complexity

General Terms
Algorithms

Keywords

topological minors, fixed-parameter tractability

*Research partly supported by Japan Society for the Promotion of
Science, Grant-in-Aid for Scientific Research, by Kayamori Foun-
dation and by Inoue Research Award for Young Scientists.

TResearch supported in part by ERC Advanced grant DMMCA, the
Alexander von Humboldt Foundation, and the Hungarian National
Research Fund (Grant Number OTKA 67651).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

STOC’11, June 6-8, 2011, San Jose, California, USA.

Copyright 2011 ACM 978-1-4503-0691-1/11/06 ...$10.00.

Ken-ichi Kawarabayashi*

National Institute of
Informatics
2-1-2 Hitotsubashi,
Chiyoda-ku
Tokyo 101-8430, Japan
k_keniti@nii.ac.jp

Paul Wollan
Department of Computer
Science

University of Rome, La Sapienza

Via Salaria 113
Rome, 00198 Italy
wollan @di.uniromai.it

1. Introduction

A graph H is a topological subgraph (or topological minor) of
graph G if a subdivision of H is a subgraph of G. Equivalently,
H is a topological subgraph of G if H can be obtained from G by
deleting edges, deleting vertices, and dissolving degree 2 vertices
(which means deleting the vertex and making its two neighbors
adjacent). This notion appears for example in the classical result of
Kuratowski in 1935 stating that a graph is planar if and only if it
does not have a topological subgraph isomorphic to K5 or K3 3.

Given graphs H and G, it is NP-complete to decide if H is a topo-
logical subgraph of G (e.g., a cycle of length |V (G)| is a topological
subgraph of G if and only if G is Hamiltonian). On the other hand,
our main result gives a cubic algorithm for every fixed H:

THEOREM 1.1. For every fixed undirected graph H, there is a
O(|V(G)P) time algorithm that decides if H is a topological sub-
graph of G.

Actually, our algorithm is uniform in H, and this shows that the
problem of testing if H is a topological subgraph of G is fixed-
parameter tractable parameterized by the number of vertices of H.
Recall that a problem is fixed-parameter tractable by some pa-
rameter k if it can be solved in time f(k)-n?() for a function f
depending only on k. Thus Theorem 1.1 answers a longstanding
open question, first raised in 1992 by Downey and Fellows [3] and
then restated at many places, including the open problem list of the
monograph [4]. The problem of testing for topological subgraphs,
which is also known as the subgraph homeomorphism problem,
was already studied in the 1970s by Lapaugh and Rivest [10] (also
see [7]). Fortune, Hopcroft, and Wyllie [6] studied the directed ver-
sion of the problem and showed that there are simple digraphs H
such that the problem of testing whether a given digraph G contains
H as a (directed) topological subgraph is NP-complete. In a major
breakthrough, Robertson and Seymour [11] proved that this cannot
happen for undirected graphs: For every (undirected) graph H there
is a polynomial time algorithm testing whether a given graph G
contains H as a topological subgraph. (We will discuss Robertson
and Seymour’s result in more detail below.) However, the running
time of Robertson and Seymour’s algorithm is |V (G)|V(#)I. This

prompted Downey and Fellows’ questions of whether the problem
is fixed-parameter tractable. Our Theorem 1 answers this question.
We also study the related problem of testing for immersed sub-
graphs. An immersion of a graph H into a graph G is defined like a
topological embedding, expect that the paths in G corresponding to
the edges of H are only required to be edge disjoint instead of inter-
nally vertex disjoint. Formally, an immersion of H into G is a map-
ping o that associates with each vertex v € V(H) a distinct vertex
o(v) € V(G) and with each edge e = vw € E(H) a path o/(e) in G
with endpoints ¢¢(v) and ot(w) in such a way that the paths o(e) for
e € E(H) are mutually edge disjoint. Robertson and Seymour [14]
showed that graphs are well-quasi-ordered under the immersion re-
lation, proving a conjecture of Nash-Williams. Here we obtain the
following algorithmic result as a corollary to Theorem 1.1:

COROLLARY 1.2. For every fixed undirected graph H, there is
a O(|V(G)|) time algorithm that decides if there is an immersion
of H into G.

Again, our algorithm is uniform in H, which implies that the im-
mersion problem is fixed-parameter tractable. This answers another
open question by Downey and Fellows [3, 4]. Corollary 1.2 also
holds for the more restrictive “strong immersion” version, where
o(v) cannot be the internal vertex of o(e) for any v € V(G) and
e € E(G).

Yet another related problem is minor containment testing. We
say that graph H is a minor of G if H can be obtained from G by
deleting vertices, deleting edges, and contracting edges. A cele-
brated result of Robertson and Seymour [11] shows that for every
fixed H, there is a O(|V(G)|?) time algorithm for testing if H is a
minor of G. Their algorithm actually solves a more general rooted
version of the problem. This rooted version contains as a special
case the k-DISJOINT PATHS problem, where given pairs (sq,#1),

.+s (sg, 1) of vertices, the task is to find vertex disjoint paths P,
..., P, such that P; connects s; and #;. It is not difficult to reduce
testing if H is a topological subgraph of G to k-DISJOINT PATHS.
For each vertex v of H, we guess a vertex V' of G, and then for each
edge uv of H, we find a path connecting #’ and v/ in G such that
these |E(H)| paths are pairwise internally disjoint. This approach
yields the |V (G)|20VH)) time algorithm for topological subgraph
testing mentioned above.

Our algorithm for finding topological subgraphs follows the gen-
eral framework of Robertson and Seymour for minor testing, but it
deviates from it significantly. Let us give a very high-level overview
of Robertson and Seymour’s algorithm [11]. If the treewidth of G
is “small,” then standard techniques allow us to solve the problem
in linear time. If the treewidth of G is “large,” then we find an irrel-
evant vertex whose deletion provably does not change the answer
to the problem. By iteratively finding and deleting irrelevant ver-
tices, we eventually arrive to a G whose treewidth is small. To find
an irrelevant vertex if the treewidth of G is large, we use the the
so-called Weak Structure Theorem, which allows us either to find a
large clique minor or to show that the graph has a large “flat wall.”
The case of a large clique minor is easy to handle: if there are no
roots, then it immediately solves the problem (as every small graph
appears in the large clique minor) and even if roots are present, we
can argue that a large part of the clique is irrelevant. The most dif-
ficult part of the algorithm is to deal with the case of a flat wall
and to identify an irrelevant vertex there. Indeed, this case needs
the majority of the work. The analysis of this case requires the
whole series of Graph Minor papers and the structure theorem of
[12]. Very recently, a significantly simpler treatment of this case
was presented in [9].

Let us now give an overview for our algorithm. The case of
small treewidth goes through for topological minor testing without
any difficulty. The new proof in [9] for minor testing in the case
when there is no large clique minor can be adapted for topological
minor testing. Specifically, for the case where there is a large flat
wall, using the unique linkage theorem [13] and its much shorter
proof [9], we can indeed find an irrelevant vertex in the middle of
the large flat wall. This case is similar to that for the minor testing,
however, we may need to change almost all of the branch vertices
of a given topological minor inside the flat wall. This gives rise
to some amount of technical difficulties, which we overcome in
this paper. Let us emphasis that our proof of the correctness for
our algorithm does not depend on the full power of the graph minor
structure theorem [12], while Robertson and Seymour’s analysis for
their algorithm does need the whole series of Graph Minor papers
and the structure theorem of [12]. Utilizing some results in [9], we
are able to avoid the much of the heavy machinery of the graph
minor structure theory.

Let us now look at the case when there is a large clique minor.
Identifying a large clique minor was an easy situation to handle in
the case of finding minors, but it is not obvious how it is of any
use in the case of finding topological subgraphs. The problem is
that the degrees of the vertices matter much more in finding topo-
logical subgraphs than in finding minors. If H is, say, 4-regular
and we have found a large clique minor in a part of G that contains
only degree-3 vertices, then this clique minor does not immedi-
ately solve the problem. Furthermore, as G can contain many ver-
tices of degree at least 4 close to this clique minor and each such
vertex is potentially the image of some vertex of H, there is no
easy argument that shows that some part of the clique is irrelevant.
We circumvent these problems by introducing a new operation that
was not present in the framework of [11]. If a small number of
vertices can separate away a large part of the graph, then we recur-
sively “understand” this part and then replace it with an equivalent
smaller graph. We show that if no such step can be performed, then
we can completely understand how the large clique minor can be
used by a topological subgraph. This new operation and the asso-
ciated recursion changes the high-level structure of our algorithm
considerably: unlike in [11], it is no longer just an iterative removal
of irrelevant vertices.

Similarly to [11], we define and solve a very general rooted ver-
sion of the problem (“finding folios”). It is important to point out
that we are solving this rooted generalization not (only) for the sake
of obtaining maximum generality of the result. In the recursion
steps involving separators, we argue about topological subgraphs
using the separator in a certain way, and the concept of roots is
needed to express these requirements.

Due to the page limitations of this extended abstract, we dis-
cuss in detail only the main algorithmic framework (Section 3), the
case of handling a large clique minor (Section 4), and the reduction
from immersion testing to finding topological subgraphs. These are
the parts that contain the most significant differences compared to
minor testing. While the case of handling a large flat wall also re-
quired overcoming significant technical difficulties, the treatment
of this case appears in the full version.

2. Folios

All graphs in this paper are finite and simple: they do not have
loops or parallel edges (but can have isolated vertices). A rooted
graph is an undirected graph G with a set R(G) C V(G) of vertices
specified as roots and an injective mapping pg : R(G) — N assign-
ing a distinct positive integer label to each root vertex. Isomor-

phism of rooted graphs are defined the obvious way, i.e., roots must
be mapped to roots with the same label. We say that two rooted
graphs Gy and Gy are compatible if pg, (R(G1)) = pg,(R(G2)),
i.e. the same set of positive integers appear on G| and G, (which
means in particular that |[R(G})| = |R(G?))).

We say that rooted graph H is a topological minor of rooted
graph G if there is a mapping ¢ (a model of H in G) that assigns to
each v € V(H) a vertex ¢(v) € V(G) and to each e € E(G) a path
¢(e) in G such that

(1) The vertices ¢(v) (v € V(H)) are distinct.

(2) If u,v € V(H) are the endpoints of e € E(H), then path ¢(e)
connects ¢ (u) and ¢(v).

(3) The paths ¢ (e) (e € E(H)) are pairwise internally vertex dis-
joint, i.e., the internal vertices of ¢(e) do not appear as an
(internal or end) vertex of ¢ (¢’) for any ¢’ # e.

(4) ForeveryveR(H), p(¢(v)) = pa(v).

Even if H is a topological minor of G, they are not necessarily
compatible: G can have more root vertices than H.

The folio of G is the set of all topological minors of G. Clearly,
the folio is closed under isomorphism, i.e., if rooted graphs H and
H' are isomorphic and H is in the folio of G, then H’ is in the folio
as well. If § > 0 is an integer, then the d-folio of G contains every
topological minor H of G with |E(H)|+is(H) < 8, where is(H) is
the number of isolated vertices of H. Obviously, every graph in the
d-folio has at most 25 vertices.

OBSERVATION 2.1. The number of distinct graphs (up to iso-
morphism) in the 8-folio of G can be bounded by a function of &
and |R(G)|.

There are 2(“{(26)‘) possible undirected graphs on R(G). For each
such graph X, we slightly abuse notation by defining G+ X to be
the graph on V(G) having edge set E(G) UE(X). The rooted graph
G+ X has a d-folio, which may or may not be different from the §-
folio of G. The 2("%")_tuple of all these 5-folios will be called the
extended &-folio of G. To extended d-folios are considered equal if
the folios are equal for each choice of the set X.

Given an extended §-folio F, a representative of F is a rooted
graph G whose extended d-folio is . We define the constant L ,
to be the smallest integer such that for every rooted graph G with
at most r roots, the extended §-folio of G has a representative on at
most Lg . vertices. It is clear that Lg , is finite.

LEMMA 2.2. There is a computable function £(8,r) with Ls , <
L(8,r) for every 8,r > 0.

The (extended) §-folio of a graph G with respect to a set Z C
V(G) is the (extended) §-folio of the graph G’, where G’ has the
same set of vertices and edges as G, but R(G') = Z. We will use
this notion to avoid defining new graphs that differ only in the set
of roots. Some straightforward observations:

PROPOSITION 2.3. Let G be a rooted graph and let 6 > 0 be
an integer.

(1) The extended O-folio of G contains only the empty graph.

(2) Let R C Q C V(G) be two sets of vertices. The §-folio of G
with respect to R can be computed from the 8-folio of G with
respect to Q.

(3) Let Ry, ..., R; be subsets of V(G) such that for every subset
O C R(G) of size at most 26 there is a 1 < i <t such that
Q C R;. The &-folio of G can be computed from the 6-folios
of G with respectto Ry, ..., R;.

(4) The extended S-folio of G can be computed from the (6 +
IR(G)|)olio of G.

2.1 Separations and replacements

A separation of a graph G is a pair (A, B) of subgraphs such that
V(G)=V(A)UV(B), E(G) = E(A)UE(B),and E(A)NE(B) =0.
The order of the separation (A, B) is |[V(A) NV (B)|.

Let (A,B) be a separation of rooted graph G such that V(A) N
V(B) CR(G). Let A’ be arooted graph compatible with A. Replac-
ing A with A’ in the separation (A,B) gives the graph G’ defined
as follows. We have V(G') = V(A")U (V(B)\V(A)), G’ has ev-
ery edge of A’ and B\ V(A), and G’ has the following additional
edges: if u € V(A)NV(B) and v € V(B) \ V(A) are adjacent in G,
and u’ € V(A') is a vertex with ps(u) = par ('), then ' and v are
adjacent in G’. Intuitively, we remove A from G, and replace it by
A’ such that the role of V(A) NV (B) is taken by the matching root
vertices of A’. The following lemmas show how the folio changes
after replacement:

LEMMA 2.4. Let (G,G,) be a separation of a rooted graph
G, let S=V(G1)NV(G,), and suppose that S C R(G). Let G be
a rooted graph compatible with Gy such that G| and G| have the
same extended S-folio. Let G' be the graph obtained by replacing
G| with G| in the separation (G,G). Then G and G' have the
same extended 6-folio.

PROOF. Without loss of generality, we can assume that R(G) N
V(Gy) =S: extending G, such that V (G,) fully contains R(G) does
not change the statement of the theorem. Under this assumption, it
is sufficient to prove the weaker statement that G and G’ have the
same (not extended) &-folio (but the condition that G; and G’1 have
the same extended &-folio is not changed). To see this, consider
an arbitrary graph X on R(G). Let X| be the subgraph of X in-
duced by R(G)NV(Gy) = S and let X, = X \ E(X]). Now G+X
has a separation (G; +X;,G, +X;) and G’ + X has a separation
(G} +X1,G,+X;). As G and G| have the same extended §-folio,
graphs G| + X and G’1 + X have the same extended J-folio as well.
Therefore, the weaker statement shows that G+ X and G’ + X have
the same O-folio. As this is true for every X on R(G), it follows
that G and G’ have the same extended &-folio.

Let H be a rooted graph with |E(H)|+is(H) < 6 and let ¢ be a
model of H in G. We need to show that H has a model ¢’ in G'.

We define the graph X* on S = R(G) NV(Gy) such that uv €
X* for some u,v € S if there is an edge e € E(H) such that ¢(e)
has a subpath with endpoints # and v and every internal vertex
in V(G,) \ V(Gy). For every uv € E(X*), let P,, be this subpath.
Given a path P in G with endpoints in V(G|), we denote by [P]g,
the path obtained by replacing subpaths of P that leave V(G;) by
appropriate edges of X*. Similarly, if Q is a path in G| + X*, then
we denote by [Q}G the path of G obtained by replacing each edge
uv of X* by the corresponding path P,,,.

We define a graph H* and a model y of H* in G| +X* as fol-
lows. First, graph H* contains every vertex v € V(H) with ¢(v) €
V(G));if v € R(H), then v is in R(H*) and has the same root num-
ber in H and H*. For such vertices, we set y(v) = ¢(v). We in-
troduce additional vertices and edges to H* as follows. We classify
each edge e = uv € V(H) into one of 6 types, and modify H* ac-
cordingly.

(1) ¢(u),9(v) € V(Gy). For each such edge, there is a corre-
sponding edge ¢* = uv in H*. We define y(e*) = [¢(e)]g, -

(2) ¢(u) €V(Gy), ¢(v) €V(Gy), and ¢ (e) has an internal vertex
in V(Gy). For each such edge, let us introduce a new vertex
vi that has the same root number as the last vertex w of ¢ (e)
(going from u to v) that is in V(Gy). Note that this last vertex
has to be in S C R(G), hence it is a root vertex. Let y(v}) =
w. We introduce an edge ¢* = uv) in H* and set y(e*) =
[P]g,, where P is the subpath of ¢ (e) from u to w.

(3) ¢(u) eV(Gy), ¢(v) €V(G), and ¢ (e) has no internal vertex
in V(G). This is only possible if u € V(G) NV (G3), hence
u is a root. We modify H* by making u a root (if it is not
already a root), having the same root number as ¢ (u).

4) ¢(u),0(v) €V (Gy), and ¢(e) has no internal vertex in V(G1).

No change is done to H*.

(5) o(u),0(v) €V(Gy), and ¢(e) has a single internal vertex w
in V(Gy). This is only possible if w € V(G{) NV (G>), and
hence w is a root. An isolated root vertex i} is introduced to
H*, with the same root number as w. Let y(i}) = w.

6) ¢(u),0(v) €V(Gy), and ¢ (e) has more than one internal ver-
tex in V(Gq). Let u, # v, be the first and last vertices, respec-
tively, on ¢ (e) (going from u to v) that are in V(G;). Note
that u, and v, are in V(G|) NV (G,), hence they are root ver-
tices. Let us introduce root vertices v; and u} in H* that
have the same root numbers as u, and v,, respectively; let
y(u)) =u. and y(v}) = v,. Let us also introduce an edge e*
connecting v} and u};, and let y(e*) = [P]g,, where P is the
subpath of ¢ (e) from u, to ve.

This completes the description of H*. It should be clear that y is
amodel of H* in G| + X*. Furthermore, we claim that |E(H*)| +
is(H*) < |E(H)|+is(H) < §. First, for each edge of H, we intro-
duce at most one edge in H* (for type 3-5 edges, we introduce no
new edge in H*). Moreover, a vertex of H* can be isolated only if
it was isolated in H, or only type 3 edges were adjacent to it, or it
was introduced introduced as a vertex i} corresponding to a type 5
edge e. This means that the number of isolated vertices in H* is at
most is(H) plus the number of type 3—5 edges in H.

As H* is atopological minor of G| +X*, it is a topological minor
of G} +X* as well; let Y’ be a model of H* in G| +X*. We show
that ' can be used to define a model ¢’ of H in G’, what we need
to show. For every v € V(H) with ¢ (v) € V(G), let ¢’ (v) = y/(v)
(as v € V(H*) in this case) and for every v € V(H) with ¢(v) €
V(G2)\V(Gy), let ¢'(v) = ¢(v). The images of the 6 different
type of edges in H are defined as follows.

(1) Let ¢/(e) := [y'(e))"

(2) Let w € S be the last vertex on ¢(e) from u to v. We obtain
¢’ (e) by concatenating [y (uv¥)]S (which goes from v/ (u)
to w) and the subpath of ¢ (e) from w to v.

(3) ¢'(e) :==¢(e).
4) ¢'(e):=¢(e).
() ¢'(e) :=o(e).

(6) The path ¢'(e) is obtained by concatenating the subpath of
¢ (e) from u to uy, the path [y’ (u:v*)]", and the subpath of
¢ (e) from u, to u.

It is not difficult to verify that the paths ¢’(e) defined above are
internally disjoint. What is important to observe is that if a subpath
of ¢(e) is used in the definition above, then every vertex of this
subpath in V(G) NV (G,) corresponds to a root of H*, hence it
cannot conflict with that paths y’'(e). Thus ¢’ is a model of H in
G’, what we had to show. [

Lemma 2.4 implies that a separation allows us to determine the
folio from the folios of two smaller graphs.

PROPOSITION 2.5. Let (Gy,G,) be a separation of a rooted
graph G, let S =V (G)NV(G,), and suppose that S C R(G). The
extended 8-folio of G can be computed from the extended d-folios
of G| and G.

Given a rooted graph G, let w be a weight function that assigns a
positive integer to each vertex of V(G). The w-bounded d-folio of
G contains those members H of the §-folio of G that have a model
¢ satisfying the additional requirement that for every v € R(H), the
degree of v in H is at most w(¢(v)). Note that we do not make
any restriction on the degree of a non-root vertex u of H, even if
¢ (u) happens to be a root vertex of G. The term unbounded 6-folio
is used when we want to emphasize that we are referring to the
original definition of §-folio. The w-bounded extended §-folio is
defined analogously. Given a weight function w on the vertices of
G, we define w(S) = Y, cgw(v) for every S C V(G).

Lemma 2.4 does not remain true for w-bounded folios: it is not
true that G and G’ have the same w-bounded extended 5-folio if G;
and G/ have the same w-bounded extended -folio. The particular
point where the proof would fail is that a type 3 edge can make a
vertex of H a root which was not a root in H, and therefore it is
not true that the model y is w-bounded. However, the proof can be
fixed if we impose the additional assumption that G| and G} have
the same unbounded extended (6 — 1)-folio. This statement will
be used in Section 4 in a situation where the w-bounded 6-folio of
G| is easy to determine and we can use recursion to compute the
unbounded (6 — 1)-folio.

LEMMA 2.6. Let (Gy,G,) be a separation of a rooted graph
G, let S =V(G)NV(G,), and suppose that S C R(G). Let w be
a weight function that assigns a positive integer to each vertex of
V(G). Let G be a rooted graph compatible with G\ such that Gy
and G/1 have the same w-bounded extended d-folio and the same
unbounded extended (8 — 1)-folio. Let G’ be the graph obtained by
replacing Gy with G| in the separation (Gy,G,). Then G and G'
have the same w-bounded extended &-folio.

PROOF. The proof is the same as the proof Lemma 2.4 with one
additional argument. Suppose first that |E(H*)|+is(H*) < 6 — 1.
In this case, we know that H* is in the (6 — 1)-folio of G} +X* as
well, thus the model ' exists and the model ¢’ can be constructed.
Note that R(G) = R(G3), which means that ¢’(v) = ¢ (v) for every
root vertex of H and therefore ¢’ is w-bounded if ¢ is w-bounded.

Suppose now that |E(H")| +is(H*) = 6. We claim that in this
case Y is w-bounded and hence H* is in the w-bounded §-folio
of G; +X* (not only in the unbounded &-folio). The vertices in
V(H*)\ V(H) have degree at most 1, thus the degree bound holds
for such vertices (recall that w(y/(v)) is strictly positive). If a vertex
v € RH*)NV(H) is in R(H), then y(v) = ¢(v) and hence the
degree condition holds. Thus we have potential problems only with
vertices in (R(H*)NV(H)) \ R(H), i.e., vertices that were already
present as non-root vertices in H, but became roots in H*. The only
way such a vertex u could have become a root is if # was incident
to a type 3 edge uv. If u is isolated in H*, then the degree bound
immediately holds. If u is not isolated, then the type 3 edge uv
does not create any edge or any new isolated vertex in H*, thus
there is at least one edge of H that does not contribute towards
|E(H*)| +is(H"), contradicting |E(H*)| +is(H*) = 6. Thus no
such vertex u is possible, and it follows that y is w-bounded. As
Gy and G’1 have the same w-bounded extended §-folio, the model
v’ exists, and the rest of the proof is the same as before. [

PROPOSITION 2.7. Let (G1,G,) be a separation of a rooted
graph G, let S =V (G1) NV (G>), and suppose that S C R(G). Let
w be a weight function that assigns a positive integer to each ver-
tex of R(G). The w-bounded extended &-folio of G can be com-
puted from the w-bounded extended &-folio of G, the unbounded
extended (8 — 1)-folio of Gy, and the unbounded extended 8-folio
of G».

3. Algorithmic framework

The main result of the paper is an algorithm FINDFOLIO that
determines the extended &-folio of the given graph.

FINDFOLIO
Input: Rooted graph G, integer 6.

Output: The extended J-folio of G.

THEOREM 3.1. There is an algorithm satisfying the specifica-
tion of FINDFOLIO that runs in fi(8,|R(G)|) - |V(G)|? steps, for
some computable function f.

For technical reasons, we prove Theorem 3.1 in the following
form:

LEMMA 3.2. There is an algorithm satisfying the specification
of FINDFOLIO on instances with |R(G)| < 16582 that runs in f}](5)-

\V(G)|? steps, for some computable function f].

It is clear that Lemma 3.2 implies Theorem 3.1: by increasing 8 to,
say, |R(G)|, the algorithm of Lemma 3.2 can be used even if |[R(G)|
is arbitrary.

First we design three auxiliary algorithms that either return the
extended §-folio, or some information that is helps our progress: an
irrelevant vertex, a clique minor, or an appropriate separation. We
say that a set X of vertices is irrelevant to the (extended) d-folio of
G, if rooted graphs G and G\ X have the same (extended) &-folio.
We say that a vertex v is irrelevant if the set {v} is irrelevant. Note
that even if every vertex of a set X is irrelevant, the set X need not
be irrelevant.

FINDIRRELEVANTORSEPARATION
Input: Rooted graph G, integer 0, integer L.

Output: - The extended d-folio of G, or
—a vertex v € V(G) irrelevant to the extended
é-folio of G, or
— a separation (Gi,G;) of G with
[V(G1)|,|lV(G2)] > L and having order at
most 462.

We say that By, ..., By are the branch sets of a K-minor, if they
are pairwise disjoint, induce connected subgraphs, and for every
1 <i< j <k, there is an edge with one endpoint in B; and one
endpoint in B;.

FINDIRRELEVANTORCLIQUE
Input: Rooted graph G, integer 8, integer k.
Output: - The §-folio of G, or
—avertex v € V(G) irrelevant to the §-folio of G,
or
— the branch sets By, ..., By of a Ki-minor in G.

FINDIRRELEVANTORCLIQUEX
Input: Rooted graph G, integer 0, integer k.
Output: - The extended d-folio of G, or
—a vertex v € V(G) irrelevant to the extended 6-
folio of G, or
— the branch sets By, ..., By of a Ki-minor in G.

THEOREM 3.3. For some computable function f>, there is an

algorithm satisfying the specification of FINDIRRELEVANTORCLIQUE

that runs in f>(8,|R(G)|,k) - |V (G)| steps.

Theorem 3.3 is proved in the full version of the paper. It is easy to
show that an algorithm for FINDIRRELEVANTORCLIQUE can be
used to obtain an algorithm for FINDIRRELEVANTORCLIQUEX:

Algorithm 1 FINDFOLIO

I: LetL:=48%+1.
2: Let X := 0 {X is irrelevant to the extended &-folio of G}
3: Let Ret = FINDIRRELEVANTORSEPARATION(G \ X, 6,L).
4: if Ret is the extended d-folio F of G\ X then
5: return F
6: if Ret is an irrelevant vertex v then
7. LetX:=XU{v}
8: goto3
9: if Ret is a separation (G, G;) of G\ X then
10: S:=V(G1)NV(Gy)
11: G} := AddRoot(G,S)
12: F = FINDFOLIO(G}, §)
13: if there is a representative G| of F with at most L vertices
then
14: G" = (G},Gy)
15: G :=RemoveRoot(G”,S\ R(G))
16: return FINDFOLIO(G", §)
17: else
18: LetL:=L+1
19: goto 3

COROLLARY 3.4. For some computable function fz’, there is
an algorithm satisfying the specification of FINDIRRELEVANTOR-
CLIQUEX that runs in f5(8,|R(G)|,k) - |V(G)| steps.

Section 4 presents an algorithm for FINDIRRELEVANTORSEP-
ARATION:

THEOREM 3.5. For some computable function f3, there is an
algorithm satisfying the specification of FINDIRRELEVANTORSEP-
ARATION that runs in f3(8,|R(G)|,L) - |V(G)|?* steps.

We prove Theorem 3.5 and Lemma 3.2 by simultaneous induc-
tion. In the rest of this section, we prove Lemma 3.2 for some 8,
assuming that Theorem 3.5 is true for this §; while in Section 4, we
prove Theorem 3.5 for some &, assuming that Lemma 3.2 is true for
0 — 1. It is clear that these two proofs together prove Theorem 3.5
and Lemma 3.2 for every § > 0.

PROOF (OF LEMMA 3.2). Let L* = max{Lg 152,168}. This
constant will be required only for the analysis of the algorithm and
it does not appear explictly in the description of the algorithm.
Algorithm 1 shows the algorithm in pseudocode. The functions
AddRoot(G,S) and RemoveRoot(G, S) return a rooted graph where
S is added to/removed from the set of roots, respectively.

Let L := 48% + 1. We will increase L during the algorithm, but
(as we shall see) L < L* will always hold. Initially we set X := 0;
it will always hold that the set of vertices X is irrelevant to the
extended d-folio of G.

Let us run algorithm FINDIRRELEVANTORSEPARATION of The-
orem 3.5 with G\ X, &, and L. If the output is the extended O-
folio of G\ X, then we are done. If the output is a vertex v ir-
relevant to the extended 8-folio of G\ X, then let X := X U {v}
and call FINDIRRELEVANTORSEPARATION again. It is clear that
the new X is irrelevant to the extended §-folio of G. Suppose that
(after returning some number of irrelevant vertices) FINDIRRELE-
VANTORSEPARATION returns a separation (G,Gz) of G\ X with
[V(G1)|,|V(G2)| > L and having order at most 45. Note that
L > 482, and hence |V (G1)\V(G2)],|[V(G2) \V(Gy)| > 0.

Let G, G, G be the same as G\ X, G|, and Gy, respectively,
with the difference that every vertex of S =V (G)NV(G,) is a
root (in addition to the original roots). Without loss of general-
ity, we can assume that |[R(G)| < |[R(G2)| and hence |[R(G})| <

|R(G)|/24|S| < 1282. Let us call FINDFOLIO recursively to find
the extended 6-folio of G} and then let us try to construct by brute
force a representative G’I’ of this folio having at most L vertices. If
we do not find such a representative, then we increase L by one, and
go back to calling FINDIRRELEVANTORSEPARATION (note that
this is possible only if L < Lg 552 < L, thus we never increase
L above L*). Otherwise, we replace G| with G} in the separation
(G},G)); let G” be the new graph. By Lemma 2.4, G’ and G” have
the same extended &-folio. Let G be the graph obtained from G”
by making those vertices of S non-roots that are non-roots in G (i.e.,
|R(G")] = |R(G))). Itis clear that the extended &-folio of G\ X and
G" are the same. Thus we can finish the algorithm by recursively
calling FINDFOLIO on G (note that |R(G")| < 165).

It is obvious from the description that the answer returned by the
algorithm is correct. Note that [V (G})|,|V(G")| < [V(G)], thus this
recursive procedure always terminates.

We need to show that the number of steps can be bounded by
2(8)-|V(G)]? for some function g. The running time required for
instances with at most L* 4 1 vertices can be bounded by a constant
depending only on 8. We show that there is a function g’ such that
the running time can be bounded by g'(8)(|V(G) —L* — 1)|V(G)|?
for instances with |V(G)| > L* 4+ 1. We prove by induction on
|V (G)| that this holds if g’ (&) is sufficiently large.

Let us bound first the number of steps without the calls to FIND-
IRRELEVANTORSEPARATION and the recursive calls to FINDFo-
L10. Let x be the number of times FINDIRRELEVANTORSEP-
ARATION returned an irrelevant vertex. Then FINDIRRELEVAN-
TORSEPARATION was called at most x + L* times (each call ei-
ther returned an irrelevant vertex or increased L, but L < L* always
hold). Therefore, each line is executed at most x + L* times. Each
step can be done in linear time in the size of the graph, thus we can
bound the running time by ¢ - (x+ 1)|V(G)|? for some constant
c¢1 depending on 8. By Theorem 3.5, each call to FINDIRREL-
EVANTORSEPARATION can be bounded by f3(8,166%,L)|V(G)/?
steps and the maximum possible value of L is a function of &, thus
the total time required for these calls can be bounded by ¢; - (x +
1)|V(G)|? for some constant ¢, depending only on §.

Finally, let us bound the running time of the recursive calls to
FINDFoLIO. If [V(G))| < L*+1 or |[V(G")| < L* +1, then the
number of steps of these calls can be bounded by a constant de-
pending only on §. Let us assume that [V (G})|,|V(G")| > L* +1.
As we noted earlier, [V(G})|,|V(G")| < |V(G)|, thus the induction
hypothesis can be used to bound the running time of these calls.
Therefore, the total running time can be bounded as follows:

(et +e2)(x+ DIVIG) P+ (8)(IV(G))| - L* = 1)|V(G))[?
+8'(8)(IV(G")| —L* = 1)|v(G")]?
<& (8) (x+ 1)+ V(G| -L" = 1+ |V(G")|-L* = 1) [V(G)]?
<g'(8) ((x+ 1)+ V(G| =L" =1+ [V(G) \V(G})| - 1) [V(G)|*
<@ VE@)|-L -)V(G)L.
In the first inequality, we assume that g’(8) > ¢1 + c;. The second
inequality follows from |V (G"')| = |V (G})UV(G,)| and [V (G])| <

L < L*. The last inequality follows from |X|+ |V (G}) UV (G)| =
V(G)l. O

4. Using a large clique minor

In this section, we prove Theorem 3.5 for some &, assuming that
Lemma 3.2 holds for 6§ — 1. We use the following lemma due to
Robertson and Seymour ((5.4) of [11]):

LEMMA 4.1. Let G be a graph and Z CV(G). Let k> (3/2) -
|Z|, and let By,...,By C V(G) be the branch sets of a K-minor
of G. Suppose that there is no separation (G1,G3) of G of order
< |Z| with Z CV(Gy) and B, NV (G}) = 0 for some b € [k|. Then
for every partition (Zy,...,Z,) of Z into nonempty subsets there
are pairwise disjoint connected subgraphs Ty, ..., T, C G such that
V(T,)NZ = Z; forall i € [n].

We say that the §-folio of a graph is generic if it is as large as
possible: it contains every rooted graph H with |E(H)|+is(H) < &
and pg (R(H)) C pG(R(G)). We say that the 6-folio of a graph is
rooted-generic if it contains every such graph H with the additional
condition that every vertex of H is rooted (thus generic implies
rooted-generic, but not necessarily the other way). The notions of
generic and rooted-generic are defined analogously for w-bounded
folios: in this case we require that every graph that can possibly
be present in the w-bounded folio is actually present. That is, we
require only those graphs H to be in the folio that satisfy the addi-
tional condition that for every v € R(H) and u € R(G) having the
same root numbers, we have dy(v) < w(u). We say that the ex-
tended (w-bounded) §-folio is (w-bounded) generic, if this is true
for every choice of the set X. Note that if G has a generic d-folio,
then G+ X has generic d-folio for any graph X on R(G): adding
edges can only add more graphs to the folio. Thus the extended
o-folio of G is generic if and only if the 6-folio is generic. We can
use Lemma 4.1 to obtain sufficient conditions for generic folios:

LEMMA 4.2. Let G be a rooted graph. Let w be a positive in-
teger weight function on V(G). Let k > (3/2) - w(R(G)), and let
Bi,...,By CV(G) be the branch sets of a Ki-minor of G. Suppose
that there is no separation (G1,Gz) of G withw(V(G1)NV(Gy)) <
w(R(G)), R(G) CV(G), and BiNV(Gy) = 0 for some i € [k].

(1) The w-bounded &-folio of G is rooted-generic.
(2) If there are at least 28 vertices v in R(G) with w(v) > 26,
then the w-bounded 8-folio of G is generic.

PROOF. We need to show that every possible candidate H is in
the w-bounded J-folio of G. Suppose therefore that H is a rooted
graph with |[E(H)| +is(H) < 6, R(H) =V (H), and pg(R(H)) C
Pc(R(G)). For every u € V(H), let ¢ (u) be the vertex of G with
the same root number as u and assume that dy (1) < w(¢(u)) for
every u € V(H). We need to show that H is a topological minor of
G, i.e., ¢ can be extended to a model of H in G.

For every v € V(G), let us define w'(v) = dy(u) if v = ¢(u)
for some u € V(H), and let w'(v) = w(v) if there is no such u.
Clearly, w'(v) < w(v) for every v € V(G): the degree condition
holds for every v € R(H) = V(H) in ¢. Let G’ be the graph ob-
tained from G by extending each vertex z € R(G) into a clique
K; of size w(z), i.e., we introduce w'(z) — 1 new vertices that
are adjacent to each other, to vertex z, and to every neighbor of
z. The clique K; contains z and these w'(z) — 1 new vertices. Let
Z:=U,er(G) K- Let us show first that the conditions of Lemma 4.1
hold for Z in G’ Suppose for contradiction that (G/,G}) is a sep-
aration of G’ of order less than |Z| = w'(R(G)) < w(R(G)) with
Z CV(G}) and B, C V(G5) \ V(G)) for some b € [k]. Let §' :=
V(G])NV(G)) be the separator. Without loss of generality, we
may assume that for all z € R(G), either K,NS' =0 or K; C 5. Let
G| =G\ (Z\R(G)) and G, := G, \ (Z\ R(G)). Then (G;,G>)
is a separation of G; let S = V(G) NV (G;) be the separator. Now
it is clear that w(S) = || < |Z] = w/(R(G)) < w(R(G)). How-
ever, we also have R(G) C V(G) and B, NV (G}) = 0, contradict-
ing the assumption of the lemma being proved. Thus we can con-
clude that there is no such separation (G}, G}), and the conditions
of Lemma 4.1 hold for Z and G'.

Let us partition Z’ in such a way that for every edge uv € E(H),
there is a 2-element class of the partition consisting of a vertex
in Ky, and a vertex in Ky(,y. As Ky(,) and Ky, contain ex-
actly dy (1) and dy (v) vertices, respectively, such a partition exists.
Lemma 4.1 gives a set of pairwise disjoint subgraphs, one for each
class of the partition. For every edge uv € E(H), let us denote by
T,y the connected subgraph corresponding to the class consisting
of a vertex of Ky (,) and a vertex of K (,), and let us chose a path
P!, in T, that goes from a vertex of K () to a vertex of Ky (). It
is clear that the collection P’ of |E(H)| paths obtained this way are
pairwise disjoint in G’. Let us define Py, such that whenever P,
contains a vertex of some K7, then we replace it by z; let P be the
collection of these paths P, for every uv € E(H). Observe that the
way G’ was defined ensures that P, is a path in G. We claim that
the paths in P are pairwise internally disjoint in G. As the paths in
P’ are pairwise disjoint, the only possible problem is that for some
w € V(H), vertex ¢ (w) is an internal vertex of some path B, with
w & {u,v}. However, there are dy (w) = |Ky(,,| paths in P whose
endpoint is ¢ (w) and hence the disjointness P’ ensure that there
cannot be more than dy (w) paths using vertex ¢ (w). We finish the
proof of the first statement by extending ¢ into a model of H by
defining ¢ (uv) to be the path P,,.

To prove the second statement, let H be a rooted graph with
|E(H)|+is(H) < 8. Let us obtain H' by making every vertex of
H’ aroot: if v € V(H) is not rooted, then let us assign to it a root
number that appears on a vertex v € R(G) with w(v) > § and is not
already used by a vertex of H. As |V(H)| < 28, the conditions of
the lemma show that we can assign root numbers this way. Since
the w-bounded §-folio of G is rooted-generic, H' is topological mi-
nor of G, which means that H is also a topological minor of G. []

We prove Theorem 3.5, under the assumption that Theorem 3.1
is true for & — 1. Let us define the following constants:

h:=26
5:=48%
k := max{L,106%} + |R(G)|

One possible correct output of FINDIRRELEVANTORSEPARATION
is a separation (G1,Gy) of Gwith |[V(Gy)|,|V(G,)| > Land |V (G{)N
V(Gy)| < s. We refer to this as finding a small separator.

The algorithm for FINDIRRELEVANTORSEPARATION starts by
calling FINDIRRELEVANTORCLIQUEX for G, 8, and k. If FIND-
IRRELEVANTORCLIQUEX returns an irrelevant vertex or the ex-
tended -folio of G, then this is a valid output for FINDIRRELE-
VANTORSEPARATION as well. Suppose therefore that FINDIRREL-
EVANTORCLIQUEX returns a k-clique minor with branch sets B,
..., By. As at most |[R(G)| of these sets intersect R(G), we can as-
sume without loss of generality that By, ..., By are disjoint from
R(G).

The rest of the section discusses two cases depending on the
number of vertices with degree at least L in G'.

4.1 Case 1: Many high-degree vertices

Suppose that there are at least i vertices with degree at least L.
Let U be a set of & such vertices.

Let us enumerate every nonempty subset of size at most 26 of
|IR(G)|; let Ry, ..., R; be these subsets. Let w; be a weight assign-
ment on V(G) such that w(v) = 6 if v € R;UU and w(v) = 1 oth-
erwise. By Proposition 3, the folio of G can be obtained from the
folios G with respect to Ry, ..., R;. Furthermore, the w;-bounded
o-folio of G with respect to R; is obviously the same as the un-
bounded 8-folio with respect to R;.

For every 1 <i <, we compute a separation (Gl1 , G’Z) of G such
that R;UU C V(G}), thereisa 1 <b < Lwith B, CV(G})\V(G!),
and w;(V(G})NV(G})) is as small as possible. Such a separation
(G"1 , G’z) can be done by running, for every 1 < j < L, a weighted
minimum vertex cutset algorithm to find a set of vertices that sepa-
rates R; UU and B;; among these L separations, we define (G’1 , Glz)
to be the one that minimizes w;(V(G{) NV (G5)). Let S; :=V (G)N
V(G).

Note that (G[R; UU],G\ E(G[R; UU]))) is always a separation
that satisfies the requirements, thus we can assume that w;(S;) <
w(R;UU)8(28 +h) = s. As each of By, ..., By, intersects V(G}),
we have [V(G})| > L. This means that if |V (G)| > L also holds,
then separation (G’l , G’z) is a small separation that can be returned
as a valid output of FINDIRRELEVANTORSEPARATION. Thus we
can assume in the following that |V(G})| < L. This implies that
U C S;: if some u € U is not in S;, then every neighbor of u is in
V(G}), and |V(G')| > L follows.

We use Lemma 4.2 to show that the w;-bounded §-folio of Gé
is generic with respect to S;. At most |S;| < w;(R;UU) < §(|R;|+
|U]) < 482 of the sets By, ..., By, intersect S;, thus we can sup-
pose without loss of generality that By, ..., Bgs2 are disjoint from
S;. Suppose that Gé has a separation (Fi, F») contradicting the con-
ditions of Lemma 4.2: S; C V(Fy), B, CV(F)\V(F) for some
1 <b <682, and wi(V(F)NV(F)) < wi(S;). Such a separation
can be extended to a separation (F|,F;) of G with V(G') C V(F/),
V(F/)NV(F,)=V(F)NV(F,) and B, CV(F;)\V(F]). However,
such a separation would contradict the minimality of the choice of
S;. Thus the conditions of Lemma 4.2 hold, and the w;-bounded
o-folio of Gé is generic with respect to S;.

We use Proposition 2.7 to compute the w;-bounded &-folio of
G with respect to R; US;; by Proposition 2.3(2), this can be used
to compute the w;-bounded o-folio of G with respect to R;. As
[V(G})| < L, the extended §-folio of G} with respect to R; US; can
be determined by brute force in time depending only on L. We
can determine the (unbounded) extended (8 — 1)-folio of Gé with
respect to S; by calling FINDFOLIO (recall that we assume in this
section that Lemma 3.2 holds for § — 1 and |S;| <482 < 16(6 —1)2,
satisfying the conditions of Lemma 3.2). We have shown above
that the extended w;-bounded 6-folio of Gé with respect to S; is
generic. Thus we have all the information required by Prop. 2.7 at
our disposal to compute the w;-bounded d-folio of G with respect
to R; US;.

4.2 Case 2: Few high-degree vertices

Let U be the set of all vertices in G’ with degree at least L; we
suppose in this case that [U| < h. To determine the extended §-folio
of G, for every graph X on R(G), we need to determine the 6-folio
of G+ X. Fixing such an X, we set G’ = G+ X and proceed the
following way.

We define a graph F on vertex set V(G') \ U, where two vertices
are adjacent if their distance in G’ \ U is at most 2L. As the max-
imum degree of G’ \ U is at most L' = L+ |R(G)|, the maximum
degree of F is at most (L')2E'+!. We say that a subset C C V(G')\U
of vertices is a cluster if F[C] is connected. The maximum num-
ber of clusters of size at most x that contain a vertex v € V(G') \U
can be bounded by a function of the maximum degree of F' and x.
Therefore, assuming &, |R(G)|, and L are fixed constants, the total
number of clusters of size at most 26 is linear in [V (G')|. Let Cy,
..., C; be an enumeration of the clusters of size at most 26.

For every 1 <i <1, let w; be a weight function on V(G') \ U
defined as w;(v) = & for v € C; and w;(v) = 1 otherwise. For ev-

ery 1 <i<t, let us choose a separation (G,G}) of G'\ U such
that C; C V(G}), there is a branch set B, with B, C V(G}) \V(G!),
and w;(V(G))NV(G})) is minimum possible. It is easy to see that
we can choose the separation such that every connected component
of G} contains a vertex of C;. Let D; =V(G!) and S; = V(G}) N
V(G,). The separation (G'[C;],G"\ E(G'[C}])) and the minimal-
ity of w;(S;) shows that w;(S;) < w;(C;) <28 -6 and hence |S;| <
w;(S;) < 28%. Every branch set of the clique intersects V(G}),
which means that |V(G})| > L. If [V(G")| > L also holds, then G/
has a small separation (G1,G,) with V(Gy) =V (G})Uu, V(Gy) =
V(G4 LU, and V(G)) NV(Ga)| = [V(G}) NV(Gy)] + U] < s,
which we can return. Thus in the following, we can assume that
‘D,‘| < L.

We say that two clusters C;; and C;, are independent if there is
no edge between C;, and C;, in F.

PROPOSITION 4.3. If clusters C;, and C;, are independent, then
D,’l ﬂD[z =0.

PROOF. Let us choose a vertex v € D;; ND;,. As |D; | < L and
the component of G"l1 containing v contains a vertex of C;,, vertex v
is at distance at most L from some vertex of C;; in G’i‘ , and therefore
in G’ \ U. Similarly, v is at distance at most L from some vertex of

Ci, in G\ U. Thus there is an edge in F between a vertex of Cj,
and a vertex of Cj,, a contradiction. []

DEFINITION 4.4. We say that clusters C;, and C;, are equiva-
lent if there is a rooted isomorphism between the graphs G[D;, VU]
and G|Dj, UU] that is the identity on U, maps S;, to Si,, and maps
Ci, to C,.

The following proposition is easy to prove:

PROPOSITION 4.5. The number of equivalence classes of the
clusters can be bounded by a function of 6 and L.

As we shall see, the topological minor is realized by a small num-
ber of clusters and paths connecting them. The following definition
tries to capture which paths are inside a cluster and which paths are
between clusters.

DEFINITION 4.6. Let H be a rooted graph. A scheme of H is a
pair (H',H.) of rooted graphs, where

(1) H' is a subdivision of H (the new vertices are not roots),
(2) H. is a subgraph of H', and
(3) every vertex of V(H.) \ V(H) has degree at most I in H..

For every r-tuple C = (C;,,...,C;,) of clusters, we define C¢ =

i=1Gij» D€ = Ui=1 Di;» and s = i1 Si;- We define two graphs:
G§ =G [UUDC] and G§ = G\ (D \ S€). Note that (G$,GS) is
a separation of G. We also define a weight function wC on V(G)
that is 8 on every vertex of U UCC and 1 on every other vertex.

DEFINITION 4.7. Let H be a rooted graph and let (H',H\) be
a scheme of H. Let C = (Cj,,...,C;.) be an r-tuple of clusters. We
say that this tuple realizes the scheme (H' H,) if H' \ E(H.) has a
model ¢ in G(f such that

(1) every vertex of V(H) is mapped to U UCC,
(2) every vertex of V(H.) is mapped to U USC, and

(3) forevery e € E(H')\ E(HL), the internal vertices of ¢ (e) are
notin UUS™.

Roughly speaking, what we want to show is that H is a topologi-
cal minor of G if and only if there is a tuple of independent clusters
that realizes a scheme of H (Lemmas 4.8 and 4.10). Therefore,
deciding whether H is a topological minor essentially reduces to
finding a tuple of independent clusters that realize a given scheme
of H. As the clusters can be classified into a bounded number of
equivalence classes, the main difficulty is to find independent clus-
ters of given types, which can be solved using standard techniques.

We first prove that if a rooted graph H has a model in G’, then
H has a scheme that is realized by some tuple of clusters. We hope
the proof sheds light on why schemes are defined this way.

LEMMA 4.8. Let H be a rooted graph in the 8-folio of G'. Then
there is a scheme (H',H.) of H with |V (H')| < 48 +282 and a
tuple C = (C,,...,C;,) of pairwise independent clusters with r <
26 that realizes (H',H),).

PROOF. Let ¢ be a model of H in G'. Let C = {¢(v) |v e
V(H)}\U. Each connected component of F[C] is a cluster; let
C = (Ci,,...,Ci,) be these connected components. Clearly, these
clusters are pairwise independent and r < |V(H)| < 268. Due to a
minor technical detail, we need to handle some vertices of sCuu
in a special way. We define X to contain a vertex v € SCUU ifvis
an internal vertex of ¢ (e) for some e € E(H) and both neighbors of
vin ¢(e) are in V(GS).

If for some e € V(H), the path ¢(e) contains m internal ver-
tices in (SC UU)\ X, then let us subdivide e with m new (non-
root) vertices; let H' be the rooted graph obtained this way. As
ISCUU| <282 428, we have |V(H')| < 48 +28%. The model
¢ gives a model ¢’ of H in G the obvious way (every new ver-
tex of the subdivision is mapped to a vertex in (SC UU)\ X). Let
H!, be the subgraph of H’ that contains those vertices v for which
¢'(v) € (SCUU)\ X and those edges e for which ¢'(e) is fully
contained in G .

We claim that (H',H,) is a scheme of H and C realizes this
scheme. Conditions 1 and 2 of Definition 4.6 are easy to verify.
To check condition 3, suppose that vertex v € V(H,) \ V(H) has
degree more than 1. Since vertex v was obtained as the subdivi-
sion of an edge e € E(H), vertex v has degree exactly 2 in H,, and
¢'(v) € (SUU)\ X. Let) and e, be the two edges incident to v
in H.. By definition of H,, ¢’(e;) and ¢’(e;) are fully contained
in GS. Thus the two neighbors of ¢(v) in ¢ (e) are both in V(GY),
implying that ¢ (v) € X, a contradiction.

Finally, we show that ¢’ defines a model of H'\ E(H.) in G¢
satisfying the conditions of Definition 4.7. Let us verify that the
images of the vertices and edges are indeed in Glc. It is clear that
¢'(v) € V(GS) for every v € V(H'). Let us prove that ¢’ () is fully
contained in V(GY) for every e € E(H') \ E(H.). In fact, we show
that ¢’ (e) has no internal vertex in V(GS). Suppose that ¢’ (e) has
an internal vertex uy € V(GS). As e ¢ E(H.), path ¢’ (e) contains a
vertex u; € V(G$)\V(GS) (u; can be an endpoint of ¢’(e)). Going
from u; to uy on ¢’(e), let u be the first vertex of V(G5); clearly,
u€SUU and u # u;. Now u is an internal vertex of ¢'(e), and
the vertex preceding u is not in V(GY). Thus u € (SCUU)\ X,
which means that u should be the image of a vertex of H' in ¢/,
a contradiction. Therefore, ¢’(e) has no internal vertex in V(GS)
and in particular ¢’(e) is fully contained in V(G$) for every e €
E(H')\ E(H.). This means that ¢’ is indeed a model of H' \ E(H,,)
in GIC and we also verified condition 3 of Definition 4.7. Conditions
1 and 2 are straightforward to check. []

We prove now the converse of Lemma 4.8. We show first that
the w;-bounded folio of Gg is rooted-generic (Lemma 4.9). Then

we use this fact to route the edges of H. when constructing a model
of H in G’ (Lemma 4.10).

LEMMA 4.9. Let C = (C;,,...,C;) be a tuple of pairwise inde-
pendent clusters. Either the wC-bounded wC (S€)-folio of Gg with
respect to U U SC is rooted-generic (and we can find a model of ev-
ery graph in the folio), or we can find a separation (G',G}) of G’
with |V (G}, V{Gy)| > L and |V{G,) NV (Gh)| <s.

PROOF. If the conditions of Lemma 4.2 hold for Gg, wc, and set

of roots U U SC, then we are done. Suppose therefore that there is
a separation (F, F;) of Gg violating the conditions of Lemma 4.2.
There is a corresponding separation (G, G5) of G’ with V(Fj)N
V(F) = V(G))NV(GY). V(G)) C V(F). and V(G)) = V().
Let ' = V(F))NV(F) =V(G)) NV(G,), it is clear that |S'| <
wC(UUSC) <s. As B, C V(G,), we also have |V(G)| > L. If
[V(G})| > L, then we can return the small separation (G},G}).
Thus in the following, we can assume that [V (G})| < L. In partic-
ular, this means that U C §': if u € V(G}) \ V(G}) for some u € U,
then every neighbor of u is in V(G/) and |V (G)| > L follows.

Let Sf/_ be the set of those vertices of S'\ U that can be reached

from S;; € V(G})\ U by a path in G} \U. We claim that these
sets are pairwise disjoint for j = 1,...,r. Suppose without loss
of generality that there is a vertex v € S} NS} . This means that
there is a vertex v; € S;, and a vertex v, € S;, that are in the same
connected component K of G} \ U as v. Note that D;, and Dj, are
fully contained in G} \ U, thus there is a vertex ¢; € C;, and a vertex
¢ € Cj, in this connected component K. As clusters C;, and C;, are
independent by assumption, the distance of ¢ and ¢, is at least 2L
in G} \ U, which means that |V (G})| > 2L, a contradiction.
AsU,S;, ..., S; are pairwise disjoint and U C S, the only way
wC(8") < wE(S) is possible if wC (S;/_) <w€ (8i;) for some 1 < j <
r. However, in this case there is a separation (Gil-f7Gi2-f) of G'\
U with V(G{)NV(Gy) = S}, D;; S V(GY), and B, C V(G3) \

V(Gilj) for some branch set Bj,. This contradicts the minimality of
the choice of §;;. [

LEMMA 4.10. Let H be a rooted graph and (H', H},) be a scheme
of H. Let C = (Cy,,...,C;.) be an r-tuple of pairwise independent
clusters that realizes (H' H.). Then we can find either a model of
H in G’ or a separation (G},G}) of G’ with |V(G})],|V(G,)| > L
and |V(G)NV(Gy)| <.

PROOF. Let ¢ be a model of H'\ E(H!) in G, as in Defini-
tion 4.7. Since Glc is a subgraph of G’, ¢ can be considered as a
model of H'\ E(H.) in G'. We try to extend ¢ to a model of H’
in G’ by assigning values to ¢(e) for every e € E(H.). In order
to do this, let us make every vertex of U US€ a root Gg, and let
H!' be obtained from H,, by making every vertex v a root with the
same root number as y(v). We try to find a wC-bounded model
v of H. in Gg. Note that Definition 4.7 ensures that such a y re-
spects the degree condition: for every v € V(H,) NV (H), we have
w(v) € UUSC and hence wC(y(v)) = &, while the degree of ev-
ery v€ V(H,)\V(H) is at most 1 in H,. We use Lemma 4.9 to
find either a small separation (G}, G}), or a model y of H” in GS
with y(v) = ¢(v) for every v € V(H). If Lemma 4.9 gives us a
separation, then we are done. Otherwise, let us set ¢(e) = y(e)
for every e € E(H,). The paths ¢(e) for e € E(H]) are pairwise
internally disjoint: this follows from the fact that if e € E(H.), then
the internal vertices of ¢(e) = y(e) are in V(G5), while for every
e € E(H')\ E(H.), the internal vertices of ¢ (e) are not in V(GS)
(by Definition 4.7(3)). Thus ¢ is indeed a model of H'. [J

Having established the correspondence between topological mi-
nors and tuples of clusters realizing a scheme, we concentrate on
finding such a tuple. We observe that only the equivalence types of
the clusters matter:

PROPOSITION 4.11. Let H be a rooted graph and (H',H.) be
a scheme of H. Let (Cj,,...,C;,) and (C,-/] ,---,Ci) be two r-tuple
of clusters such that (C;,,...,C;) realizes (H',H,) and for every
1 < j <, clusters C;; and C,»rf are equivalent. Then (Cirl,.,.,C,vr)

also realizes (H',Hy).

The following lemma is standard: it shows that finding small
fixed-size “colorful” independent sets in bounded-degree graphs
can be done in linear time.

LEMMA 4.12. Let W be a graph with maximum degree d where
the vertices are labeled with k different labels. We can find in time
f(dk)-([V(W)|+|E(W)|) an independent set of size k where every
vertex has a different label (or correctly state that there is no such
set).

LEMMA 4.13. Given a scheme (H',H.) with |V(H')| <468 +
282, in time f(8,L)|V(G)| (for some function f(8)) we can find a
tuple C = (Cy, . ..,Ci,) of clusters with r <28 that realizes (H', H,)
(if such a tuple exists).

PROOF. Let us enumerate all clusters and sort them into equiv-
alence classes (Where equivalence is understood according to Def-
inition 4.4). Let ¢ be the number of equivalence classes and let us
assign an integer 7(C;) € [t] to each cluster C; based on which class
it belongs to. For every subset 7' C [¢] of size at most 20, we test
whether there is a tuple (G, ... ,C,-m) of pairwise independent clus-
ters with {7(Cj,),...,7(Ci;)} = T. In order to do this, we build a
graph Wr by introducing a vertex with label 7(C;) corresponding to
every cluster C; with 7(C;) € T. Two vertices of Wr are adjacent if
the corresponding clusters are not independent. We claim that the
maximum degree of Wy can be bounded by a function of § and L.
To see this, recall that the maximum degree of G\ U is at most L
and that the maximum distance in G\ U between two vertices of
a cluster C; is O(SL) (as C; induces a connected subgraph of F).
Thus if C; and C; are not independent, then C; is fully contained
in the O(S8L)-neighborhood of every vertex of C;; the number of
such sets can be bounded by a function of § and L. This means
that if we use Lemma 4.12 to find a colorful independent set in Wr,
then the running time is linear in the number of clusters (for fixed
0 and L). If Lemma 4.12 returns an independent set, then we test
if the corresponding pairwise independent tuple C = (Cj, ..., Cj,,)
of clusters realizes (H',H.) (as the size of G§ is bounded by a
function of & and L, this can be done by brute force). If after try-
ing every T C [t] of size at most 28, no tuple realizing (H',H,)
is found, then by Proposition 4.11 we know that there is no tuple
realizing (H',H]). [

In Case 2 (|U| < h), our algorithm for FINDIRRELEVANTORSEP-
ARATION determines the §-folio of G’ = G+ X the following way.
For every candidate H in the §-folio, we enumerate every scheme
(H',H.) of H with |V (H)| < 48 4287 (the number of such schemes
is clearly bounded by a function of §). For each scheme, we use
Lemma 4.13 to check if there is a tuple of clusters that realizes this
scheme. If there is such a tuple, then by Lemma 4.10, we can ob-
tain a model of H in G’ or a small separation; if there is no such
tuple, then the (contrapositive) of Lemma 4.8 shows that H' is not
a topological minor of G’. It is easy to verify that for fixed & and L,
the running time is O(|V (G)|?).

5. Immersion

Let G, H be graphs. An immersion of H in G is a function ¢ with
domain V(H)UE(H), such that:

e o(v) €V(G) forallve V(H), and o(u) # a(v) for all dis-
tinct u,v € V(H),

e for each edge e of H, if e has distinct ends u, v then o(e) is a
path of G with ends o(u), &t(v), and

o for all distinct e, f € E(H),E(o(e)No(f)) =0.

In the definition of strong immersion, we impose on another con-
dition, that

e forallve V(H) and e € E(H), if e is not incident with v in
H then a(v) € V(oa(e)).

In this section, we show that our main theorem, Theorem 1.1
implies that both versions of the immersion containment problem
are fixed-parameter tractable parameterized by the order of |E(H)|.

THEOREM 5.1. For every fixed graph H, there is a O(|V (G)|?)
time algorithm that decides if H is an immersion in G.

PROOF. Letk=|E(H)|+|V(H)|. We construct a new graph G’
from G by subdividing each edge and replacing each original vertex
by k duplicates. Formally, for each e € E(G), there is a vertex ¢’ in
G'; for each vertex v € V(G), there are k vertices vy, ..., v in G,
and if v € V(G) is an endpoint of ¢ € E(G), then vertex ¢’ € V(G')
is adjacent to v, ..., v in G’. Note that the degree of ¢’ is 2k.

Let £ = 2k|V (H)|+2 and let us use the algorithm of Theorem 1.1
to find a K; topological minor in G’. We claim that if there is such
a topological minor model ¢ : V(K;) — V(G'), then H has an im-
mersion in G. To see this, observe first that ¢ (v) is a vertex with
degree at least £ — 1 > 2k, thus ¢(v) = u; for some u € V(G); let
us define o(v) = u in this case. It is clear that o maps at most k
vertices of Ky to the same vertex of G. As ¢/k > |V(H)| holds,
one can select vertices xj, ..., x|y(y) Whose images in ¢ are all
distinct. For any 1 < i, j < [V(H)|, the path ¢ (x;x;) between ¢ (x;)
and ¢(x;) in G’ gives a path o(x;x;) between a(x;) and o(x;) in
a natural way. As the paths ¢ (x;x;) are pairwise internally vertex
disjoint in G/, the paths o/(x;x;) are pairwise edge disjoint in G: a
vertex ¢’ € E(G') can be used by at most one of the paths ¢ (x;x;).
Therefore, ¢ shows that K\V(H)| has an immersion in G, which im-
mediately implies that H has an immersion in G. This means that
we are done in the case when Kj is a topological minor of G'.

Suppose now that K is not a topological minor of G'. We modify
G’ to obtain a new graph G” as follows. For every v € V(G), we
introduce a new copy of Ky and identify v| with a vertex of K. Thus
the number of vertices of G” is [V(G')| +|V(G)|(£ — 1). Similarly,
we obtain H” from H by introducing for each u € V (H) a new copy
of K; and identifying u and a vertex of Ky (so |V (H")| = ¢|V (H))).

We claim that H” is a topological minor of G” if and only if
H has an immersion in G. For the if part, suppose that ¢ is an
immersion of H in G. In this case, it is easy to construct a model
¢ of H' in G": if o(u) = v for some u € V(H) and v € V(G),
then we set ¢ («) = vy, map the clique attached to v in H” to the
clique attached to vy, and transform each path o (uju;) in G into a
corresponding path ¢ (uju3) in G”. We can ensure that the paths in
¢ are internally vertex disjoint: the paths in & are edge disjoint (so
we can ensure that each vertex ¢ € V(G”) is used at most once)
and the k vertices vy, ..., v; in G” are sufficient to accommodate
the at most |E(H)| paths going through v in o.

For the only if part, suppose that ¢ is a model of H” in G".
Consider a vertex u of H” that also appears in H (i.e., it is not a
vertex introduced by a new clique). The degree of u in H” is more

than ¢ — 1 (assuming that H has no isolated vertices) and u is part of
an (-clique in H”. Thus ¢ (u) is a vertex of G” having degree more
than ¢ — 1 and part of a topological minor model of a ¢-clique. We
claim that ¢(u) = v; for some v € V(G). Every model of an (-
clique is fully contained in a biconnected component of G”. As G’
has no ¢-clique topological minor, such a biconnected component
must be one of the Ky-cliques created in the construction of G”.
Furthermore, the new vertices of such a clique have degree exactly
£—1, thus ¢ (u) can be only a vertex v; for some v € V(G). Thus ¢
restricted to H is a topological minor model of H that does not go
inside the cliques, which means that it is a topological minor model
of H in G'. Arguing as in the first part of the proof, it follows that
H has an immersion in G.

Let us estimate the running time of the algorithm. First, we can
assume that |E(G)| < cgy|V(G)| for some constant ¢y depending
only on H: by a classical result of Mader, if the average degree
of G is sufficiently large, then G has a Ky g topological minor,
immediately implying that A has an immersion in G. Therefore,
the number of vertices of G’ is k|V (G)| + |E(G)| = O(]V(G)]) (for
fixed H). The construction of G” increases the number of vertices
by a factor of £, hence |V (G”)| = O(|V(G)]) also holds. Thus both
invocations of Theorem 1.1 need O(|V(G)|?) time. [

A similar reduction works in the case of strong immersion:

THEOREM 5.2. For every fixed graph H, there is a O(|V(G)|?)
time algorithm that decides if H is a strong immersion in G.

6. References

[1] S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard
problems restricted to partial k-trees. Discrete Applied Mathematics,
23(1):11-24, 1989.

[2] H. L. Bodlaender. A linear-time algorithm for finding
tree-decompositions of small treewidth. SIAM J. Comput.,
25(6):1305-1317, 1996.

[3] R. G. Downey and M. R. Fellows. Fixed-parameter intractability. In
Structure in Complexity Theory Conference, pages 36-49, 1992.

[4] R. G. Downey and M. R. Fellows. Parameterized Complexity.

Monographs in Computer Science. Springer, New York, 1999.

J. Flum and M. Grohe. Parameterized Complexity Theory. Springer,

2006.

S. Fortune, J. E. Hopcroft, and J. Wyllie. The directed subgraph

homeomorphism problem. Theor. Comput. Sci., 10:111-121, 1980.

[71 M. R. Garey and D. S. Johnson. Computers and Intractability. W. H.
Freeman and Co., San Francisco, Calif., 1979.

[8] K. Kawarabayashi, Y. Kobayashi, and B. Reed. The disjoint paths
problem in quaratic time. Submitted. Available at
http://research.nii.ac.jp/ k_keniti/quaddpl.pdf.

[9] K. Kawarabayashi and P. Wollan. A shorter proof of the graph minor
algorithm: the unique link-
age theorem. In STOC, pages 687-694, 2010. A full version vailable at

[5

—

[6

—_

http://research.nii.ac.jp/ k_keniti/uniquelink.pdf.

[10] A.S.LaPaugh and R. L. Rivest. The subgraph homeomorphism
problem. J. Comput. Syst. Sci., 20(2):133-149, 1980.

[11] N. Robertson and P. D. Seymour. Graph minors. XIII. The disjoint
paths problem. J. Combin. Theory Ser. B, 63(1):65-110, 1995.

[12] N. Robertson and P. D. Seymour. Graph minors. XVI. Excluding a
non-planar graph. J. Comb. Theory, Ser. B, 89(1):43-76, 2003.

[13] N. Robertson and P. D. Seymour. Graph minors. XXI. Graphs with
unique linkages. J. Comb. Theory, Ser. B, 99(3):583-616, 2009.

[14] N. Robertson and P. D. Seymour. Graph minors XXIII.
nash-williams’ immersion conjecture. J. Comb. Theory, Ser. B,
100(2):181-205, 2010.

[15] P.D. Seymour and R. Thomas. Graph searching and a min-max
theorem for tree-width. J. Comb. Theory, Ser. B, 58(1):22-33, 1993.

[16] J. Thatcher and J. Wright. Generalised finite automata theory with an
application to a decision problem of second-order logic.
Mathematical Systems Theory, 2:57-81, 1968.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

