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Abstract. We give an update on the status of open problems from the
book “Parameterized Complexity” by Downey and Fellows.

1 Introduction

Downey and Fellows’ 1999 monograph [14] contains a list of open problems
which strongly influenced the development of Parameterized Complexity in the
following decade. Here we survey the current status of these problems.

Downey and Fellows partitioned their list of problems into two parts: “A
Lineup of FPT Suspects” and “A Lineup of Tough Customers.” While within
the time some of the FPT suspects appeared to be tough customers and, vice
versa, some of the tough customers turned to be not that tough, in our survey
we decided to keep the original order and partition.

We do not provide definitions of classes FPT, XP, and W-hierarchy, referring
to the book of Downey and Fellows [14], as well to more recent monographs of
Flum and Grohe [18], and Niedermeier [37].

It is worthwhile to look back on this list now, more than 10 years later of its
publication, and to try to see what we can learn from its history. An immediate
and somewhat surprising observation is that with the exception of two problems,
all the questions were resolved in the positive by fixed-parameter tractability re-
sults, even many of those which were classified as “tough customers” by Downey
and Fellows. One can say that the algorithmic side of fixed-parameter tractabil-
ity developed much more dramatically since 1999 than the complexity side. In
the past 10 years, several fundamental and powerful techniques were introduced
into the positive toolkit of fixed-parameter tractability (e.g., bidimensionality,
iterative compression, algebraic techniques, inclusion-exclusion, various forms of
randomization, etc.). On the other hand, while W[1]-hardness proofs got more
streamlined over the years and we have now a better understanding of how to
obtain hardness results for certain types of problems (e.g., for planar or bounded-
treewidth problems), we do not have such a richness of standard techniques as
in the case of algorithmic results. For most W[1]-hardness proofs, we still have



to roll up our sleeves and reduce from Maximum Clique by constructing ap-
propriate gadgets. If this trend continues, then we can expect to see further
exciting developments in parameterized algorithmic techniques for several years.
Apparently, the tools and theory of fixed-parameter tractability are even more
deep and diverse than what Downey and Fellows expected in 1999 (and possi-
bly what we see now). It is conceivable that it many cases, the main roadblock
to understanding the complexity of a problem is not our limited ability to do
W[1]-hardness proofs, but the fact that the right algorithmic technique for the
problem is still waiting to be discovered.

2 A Lineup of FPT Suspects

Topological Containment FPT
Instance: An undirected graph G
Parameter: A graph H
Question: Is H topologically contained in G?

Graph H is topologically contained in G if a subdivision of H is a subgraph
of G. The problem is in XP because one can guess all possible mapping of
vertices of H into G and then for each guess apply the disjoint path algorithm of
Robertson and Seymour [39]. The problem was shown to be in FPT by Grohe,
Kawarabayashi, Marx, and Wollan in 2011 [23]. For every fixed undirected graph
H, they gave anO(|V (G)|3) time algorithm for testing if a given graphG contains
H topologically.

Immersion Order Test FPT
Instance: An undirected graph G
Parameter: A graph H
Question: Does H has an immersion in G?

An immersion of graph H into graph G is a mapping of vertices of H into
vertices of G such that edges of H correspond to edge-disjoint paths of G. The
problem is in FPT and solvable in O(|V (G)|3) time by reduction to Topolog-
ical Containment [23].

Directed Feedback Vertex Set FPT
Instance: A directed graph G
Parameter: A positive integer k
Question: Is there a set S of k vertices such that each directed cycle of G
contains a member of S?



The problem was shown to be in FPT by Chen, Liu, Lu, O’Sullivan, and
Razgon in 2008 [6, 7]. The running time of the algorithm is 4kk!nO(1). It remains
open if there exist a single exponential algorithm for Directed Feedback
Vertex Set even on planar graphs. The existence of polynomial kernel is also
open. The undirected variant of the problem, Feedback Vertex Set, received
much more attention: the problem was proved to be in FPT by a simple combi-
natorial algorithm already in [13], it is known to be solvable in single exponential
time [10, 25], and admits a polynomial kernel [43].

Planar Directed Disjoint Paths Open
Instance: A directed planar graph G and k pairs 〈r1, s1〉, . . . , 〈rk, sk〉 of
vertices of G
Parameter: k
Question: Does G have k vertex-disjoint paths P1, . . . , Pk with Pi running
from ri to si?

The problem is open. Problem is in XP: Schrijver [41] showed that the prob-
lem is polynomial-time solvable for every fixed k. We remark that the paper of
Schrijver is self-contained and in particular it does not use results from Graph
Minors theory. The NP-hardness of the problem follows from the fact that even
the undirected problem is NP-hard on planar graphs. For general graphs, the
directed problem is NP-hard already for k = 2 [19].

Planar t-Normalized Weighted Satisfiability FPT
Instance: A planar t-normalized formula X
Parameter: A positive integer k
Question: Does X have a satisfying assignment of weight k?

A Boolean formula is t-normalized if it is of the form
∧∨∧

. . . of literals
with t− 1 alternations of the

∧
and

∨
quantifiers. For example, a 2-normalized

formula is a CNF formula.

A CNF formula is planar if the bipartite graph of the formula (where one class
is the set of clauses, the other class is the set of variables) is planar. However, it
is not clear what the definition of a planar t-normalized formula should be and
it is not defined in [14]. One obvious definition could be that the Boolean circuit
describing the formula is planar. The problem with this definition is that “planar
CNF formula” and “planar 2-normalized formula” are two different notions: the
latter variant is more restrictive, as the Boolean circuit contains an output gate
that is connected to all clauses. This suggests another, less restrictive, definition:
a t-normalized formula is planar if the Boolean circuit describing the formula
with the output gate removed is planar.



The problem is FPT even with the less restrictive definition of planarity. This
follows from the fact that, for every fixed k and t, there is a first-order formula
(over an appropriate planar structure) that expresses the existence of a weight-k
satisfying assignment. Therefore, a powerful general result of Frick and Grohe
[20] implies a linear-time algorithm for every fixed k and t. To construct this
formula, one needs to express that there exists k variables such that the output
gate (or more precisely, every input of the output

∧
gate) is satisfied. As the

formula is t-normalized, at most t quantifiers are needed to express that a gate
is satisfied.

We sketch how a direct solution can be obtained by the standard layering and
bounded-treewidth techniques on planar graphs (“Baker’s shifting strategy”).
The all-zero assignment determines a “standard” value vg for every gate g. The
key observation is that the only way g can have the opposite of vg in some
assignment if g is at distance at most t from a variable with value 1. This means
that if we partition the graph into layers, then in every assignment of weight k,
all but at most (2t+1)k layers have the property that every gate has the standard
value. By starting at some layer i ≤ (2t + 1)k and forcing every (2t + 1)k + 1-
st layer to take the standard value, the problem falls apart into independent
subproblems, each having at most (2t+1)k layers. Graphs with bounded number
of layers are known to have bounded treewidth, hence the subproblems can be
solved using standard techniques. Finally, our observation above implies that if
there is a solution, then at least one choice of starting layer i is consistent with
this solution, hence our algorithm finds a solution when considering this choice
of i.

Planar Multiway Cut W[1]-hard
Instance: A weighted undirected planar graph G with terminals
{x1, . . . , xk} and a positive integer M
Parameter: k
Question: Is there a set of edges of total weight ≤ M whose removal
disconnects each terminal from all others?

The problem is known to be in XP: it can be solved in time nO(k) [27, 9] and

more recently in time 2O(k) · nO(
√
k) [31]. The problem was shown to be W[1]-

hard in 2011 [34]. Furthermore, assuming the Exponential Time Hypothesis [28],

there is no f(k)no(
√
k) time algorithm for the problem.

For general graphs, the problem is NP-hard already for k = 3 [9]. When
parameterized by the total weight of the solution, the problem is FPT on gen-
eral graphs [35, 5, 24, 8] (the number of terminals can be arbitrary). The vertex-
removal variant where the parameter is the total weight of the vertices to be
deleted is also in FPT: the most recent algorithm of Cygan et al. [8] achieves
the same running time for both versions.



3 A Lineup of Tough Customers

Fixed Alphabet Longest Common Subsequence (LCS) W[1]-hard
Instance: k sequences Xi over an alphabet Σ of fixed size and a positive
integer m
Parameter: k
Question: Is there a string X ∈ Σ∗ of length m that is a subsequence of
each of the Xi?

Note that the characters in the subsequence X need not be consecutive in
Xi. A simple O(nk+1) time dynamic programming algorithm shows that the
problem is in XP. When the size of the alphabet Σ is not bounded or when the
parameter is k + |Σ|, the problem was known to be W[t]-hard for every t ≥ 1
already in 1995 [3, 4]. Pietrzak in 2003 [38] showed that the problem is W[1]-hard
parameterized by k, even if the alphabet is binary.

Bounded Hamming Weight Discrete Logarithm Open
Instance: An n-bit prime p, a generator g of F ∗p , an element a ∈ F ∗p
Parameter: A positive integer k
Question: Is there a positive integer x whose binary representation has at
most k 1’s (that is, x has a Hamming weight of k) such that a = gx?

Here F ∗p is the multiplicative group of non-zero integers modulo p. Element
g ∈ F ∗p is a generator of group F ∗p if for every element a, there exists an integer
x with a = gx. Note that there is a unique 1 ≤ x ≤ p − 1 with a = gx, but the
problem definition does not insist that x should be less than p. To show that the
problem is in XP, we need to argue that the representation of x is at most kn
bits long (hence there are at most (kn)k different possibilities for x to try). See
[17] for discussion and related problems.

The famous Discrete Logarithm problem is to find the unique 1 ≤ x ≤
p−1 with a = gx; the hardness of some cryptosystems are based on the assumed
hardness of this problem. Because the problem definition does not require x ≤ p,
it is not completely obvious how the two problems relate to each other.

Crossing Number FPT
Instance: An undirected graph G
Parameter: A positive integer k
Question: Is the crossing number of G is at most k?

The crossing number of a graph is the minimum number of edge crossings
in a planar drawing of the graph (with the usual technical assumptions, such as



no three edges cross at the same point). A graph is a planar graph if and only
if its crossing number is 0. The problem asks if G can be drawn with at most k
edge crossings. The problem was solved by Grohe in 2001 [22, 21], who showed
that the problem is solvable in time O(|V (G)|)2 for every fixed k. A linear-time
algorithm is claimed in [30].

Downey and Fellows formulate the Crossing Number problem as “Can
G be embedded in the plane with at most k edges crossing?”, which can be
interpreted as finding an embedding in which at most k edges participate in
crossings. This is different from the classical definition of crossing number, but
could be an interesting problem on its own right. A related problem is deciding
if a graph is in the class “Planar+ke”, meaning that it can be made planar
by removing at most k edges. A linear-time algorithm is claimed also for this
problem by Kawarabayashi and Reed [30]. Note that having at most k edges
participating in crossings and removing k edges to make the graph planar are
two different problems: if a graph has an embedding where k edges participate
in crossings, then the graph can be made planar by removing less than k edges
(as there is no need to remove all the edges participating in crossings).

Minimum Degree Graph Partition FPT
Instance: An undirected graph G
Parameter: Positive integers k and d
Question: Can V (G) be partitioned into disjoint subsets V1, . . . , Vm so
that for 1 ≤ i ≤ m, |Vi| ≤ k and at most d edges have exactly one endpoint
in Vi?

Langston and Plaut [32] observed in 1998 that the graphs having such par-
titions for a fixed k and d are closed under taking immersions. Robertson and
Seymour [40] proved that immersion is a well-quasi-ordering, which means that
classes of graphs closed under immersion can be characterized by a finite number
of forbidden immersed graphs. Together with the fact that the disjoint path al-
gorithm of Robertson and Seymour [39] implies, for every fixed H, a polynomial-
time algorithm for testing if H is immersed in G, it follows that the problem is in
XP jointly parameterized by k and d. The result in 2011 that immersion testing
is FPT [23] immediately implies that Minimum Degree Graph Partition is
in (nonuniform) FPT.

Lokshtanov and Marx [33] showed in 2011 that the problem is in FPT pa-
rameterized by k or by d by establishing a more general result. In the (µ, p, q)-
Partition problem, the task is to find a partition of the vertices where each
cluster C satisfies the requirements that at most q edges leave C and µ(C) ≤ p.
It was shown in [33] that when µ is one of the following functions—number of
nonedges in the cluster, maximum degree of nonedges in the cluster, number of
vertices in the cluster—(µ, p, q)-Partition can be solved in time 2O(p)nO(1) and
in time 2O(q)nO(1), i.e., the problem is fixed-parameter tractable parameterized
by p or by q.



Short Cheap Tour FPT
Instance: A graph G, integer S, and edge weighting w:E(G)→ Z
Parameter: A positive integer k
Question: Is there a tour through at least k nodes of G of cost at most
S?

As observed by Fellows [16] in 2001, the problem is FPT by a simple reduction
to finding a minimum weight cycle of length exactly k, which can be solved by
color coding [2]. We sketch the reduction. Let G′ be a complete graph on the
same set of vertices as G, and let the weight of edge uv be the length of the
shortest path between u and v in G. It is easy to see that G has a tour visiting
at least k nodes of cost at most S if and only if G′ has a cycle of length exactly
k of cost at most S.

The variant of the problem where we ask that the cost of the tour is exactly
S is W[1]-hard [12].

Polymatroid Recognition Open
Instance: A k-polymatroid M
Parameter: A positive integer k
Question: Is M hypergraphic?

Let E be a finite set. A polymatroid is a function ρ : 2E → Z with the
following properties:

1. ρ(∅) = 0,

2. ρ(A) ≤ ρ(B) for every A ⊆ B ⊆ E, and

3. ρ(A) + ρ(B) ≥ ρ(A ∩B) + ρ(A ∪B).

A k-polymatroid is a polymatroid with ρ(e) ≤ k for every e ∈ E. Given a
hypergraph H with vertex set V and edge set E, the hypergraphic polymatroid
of H is a function χH : 2E → Z defined by

χH(A) = |A| − κ(H|A),

where A is the set of vertices contained in the edge set A, and κ(H|A) is the
number of components of the hypergraph H restricted to A (see [45] for more
details). A polymatroid is hypergraphic, if it is the hypergraphic polymatroid of
a hypergraph.

A word of caution should be said on how the polymatroid is given in the
input. One possibility is that it is given by an oracle, but then the problem does
not fit the framework of complexity theory defined by problems as languages
(but it is still an interesting question if f(k) · nO(1) oracle calls are sufficient for
the problem).



Chain Minor Ordering Open
Instance: A finite poset Q
Parameter: A finite poset P
Question: Is P a chain minor of Q?

Let P = (V,<) be a poset. A chain is a sequence of elements x1 < x2 <
. . . < xn. We say that P = (V,<) is a chain minor P ′ = (V ′, <) if there is a
partial mapping ρ : V ′ → V with the following property: for every chain C of
P , there is a chain C ′ of P ′ such that ρ restricted to C ′ is an isomorphism of
chains from C ′ to C. Gustedt [26] showed that the problem is in XP and that
the chain minor relation is a well-quasi-ordering. The problem remains open.

Short Generalized Hex Open
Instance: An undirected graph G with two distinguished vertices v1 and
v2
Parameter: A positive integer k
Question: Does player one have a winning strategy of at most k moves in
Generalized Hex?

In Generalized Hex two players play on a graph with white and black pebbles.
Player one plays with white and player two with black pebbles. Player one starts
by placing a white pebble on a vertex of G. Then alternately players make moves,
at each move a pebble is placed on an occupied vertex. Player one wins if he can
construct a path of white vertices from v1 to v2.

To the best of our knowledge, the problem remains open. Downey and Fellows
[14] proposed that the problem is a good candidate for AW[*]-completeness.
Towards this goal, Allan [42] showed that the problem is in AW[*].

Jump Number FPT
Instance: A poset P
Parameter: A positive integer k
Question: Is the jump number of P at most k?

Given a finite partially ordered set (or poset) P = (V,<P ), let L = (V,<L)
be a linear extension of P , that is a total order on the same ground set V of P ,
such that each couple of elements u, v ∈ V for which u <P v implies u <L v. A
consecutive pair (vi, vi+1) of elements in L is a jump or setup of L if vi 6<P vi+1.
The jump number of P is the minimum number of jumps in L, where minimum
is taken over all the linear extensions L of P .

The problem was shown to be in XP by El-Zahar and Schmerl [15] in 1984.
McCartin showed in 2001 [36] that the problem is in FPT.



Polynomial Product Identity Open
Instance: Two sets of k multivariate polynomials pi and qi for i = 1, . . . , k
Parameter: k
Question: Does the following identity hold?

k∏
i=1

pi =

k∏
i=1

qi?

The polynomials in the input are given by listing the monomials with nonzero
coefficients. Note that there is no bound on the number of variables or on the
degree of the polynomials. By multiplying out each product, we get at most nk

monomials and we can compare the two sides to test for equality. Therefore the
problem is in XP.

As discussed in [29, Section 4.3], the Schwartz-Zippel Lemma provides a way
of solving the problem in randomized polynomial time and therefore it is in ran-
domized FPT. Thus the problem is unlikely to be W[1]-hard. It could still be a
nontrivial question if the problem is in deterministic FPT. Answering this ques-
tion may tell us something interesting about the tradeoff between randomness
and running time.

Shortest Vector Open
Instance: A basis X = {x1, x2, . . . , xn} ⊂ Zn for a lattice L
Parameter: A positive integer k
Question: Is there a non-zero vector x ∈ L, such that ‖x‖2 ≤ k?

Here ‖x‖ denotes the Euclidean (`2) norm of x = (a1, . . . , ab), defined as√∑n
i=1 a

2
i . The problem was shown to be NP-hard hard under randomized re-

duction by Ajtai in 1998 [1], settling a longstanding open problem. The problem
is in XP: every vector x with ‖x‖2 ≤ k contains at most k nonzero coordinates.
It could be interesting to investigate the problem for other `p norms as well.

Even Set Open
Instance: An undirected red/blue bipartite graph G = (R,B, E)
Parameter: A positive integer k
Question: Is there a non-empty set of at most k vertices R ⊆ R, such that
each member of B has an even number of neighbors in R?

Open. The exact version of the problem, where |R| = k, is W[1]-hard [11].
Vardy [44] proved the NP-completeness of the problem in 1997, settling a long-



standing open problem. There are other equivalent ways of stating the problem,
showing that this problem appears naturally in many contexts:

– Given a hypergraph H, is there a nonempty set S of at most k vertices, such
that |e ∩ S| is even for every hyperedge e?

– Given a matrix A over the two-element field GF [2], is there a nonzero vector
x having at most k nonzero coordinates and satisfying Ax = 0?

– Given a binary linear code defined by a matrix A over GF [2], are there two
codewords with Hamming-distance at most k?

– Given a binary matroid represented by a matrix A over GF [2], does it have
a cycle of length at most k?
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