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Classes of graphs

Classes of graphs can be described by
1 what they do not have,

(excluded structures)
2 how they look like

(constructions and decompositions).

In general, the second description is more useful for algorithmic
purposes.
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Classes of graphs

Example: Trees
1 Do not contain cycles (and connected)
2 Have a tree structure.

Example: Bipartite graphs
1 Do not contain odd cycles,
2 Edges going only between two classes.

Example: Chordal graphs
1 Do not contain induced cycles,
2 Clique-tree decomposition and simplicial

ordering.
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Main message

In many cases, we can obtain statements of the following form:

If a graph excludes X , then it can be built
from components that obviously exclude
(larger versions of) X .
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Main message

Consequence:

If we exclude simpler objects, then the building
blocks are simpler and more constrained.

If we exclude more complicated objects, then the
building blocks are more complicated and more
general.
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Excluding minors
The monumental work of Robertson and Seymour developed a deep
theory of graphs excluding a fixed minor H.

Definition
Graph H is a minor of G (H ≤ G ) if H can be obtained from G by
deleting edges, deleting vertices, and contracting edges.

deleting uv

vu w

u v
contracting uv

Example: K3 ≤ G if and only if G has a cycle.
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Excluding minors

Theorem [Wagner 1937]

A graph is planar if and only if it excludes K5 and K3,3 as a minor.

K5 K3,3

How do graphs excluding H (or H1, . . . , Hk) look like?
What other classes can be defined this way?

The work of Robertson and Seymour gives some kind of
combinatorial answer to that and provides tools for the related
algorithmic questions.
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Graphs on surfaces
The notion of planar graphs can be generalized to graphs drawn on
other surfaces.

torus Möbius strip

Klein bottle genus 5
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Excluding minors

Graphs drawn on a fixed surface Σ form a class of graphs excluding
a minor:

Fact
For every surface Σ, there is a kΣ ≥ 1 such that graphs drawn on Σ
do not contain KkΣ

as a minor.

Can we describe somehow H-minor-free graphs using graphs
drawn on surfaces?
Is it true for every H that H-minor-free graphs can be drawn
on some fixed surface?

NO (clique sums), NO (apices), NO (vortices)

YES (in a sense — Robertson-Seymour Structure Theorem)
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Excluding minors

Graphs of the following form do not have K6-minors, but their
genus can be arbitrary large:

Connecting bounded-genus graphs can increase genus without
creating a clique minor.

We need to introduce an operation of connecting graphs in a way
that does not create large clique minors.

Two ways of explaining this operation:
clique sums and
torsos of tree decompositions.
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Clique sums
Definition
Let G1 and G2 be two graphs with two cliques K1 ⊆ V (G1) and
K2 ⊆ V (G2) of the same size. Graph G is a clique sum of G1 and
G2 if it can be obtained by identifying K1 and K2, and then
removing some of the edges of the clique.

G1 G2

Observation
If Kk 6≤ G1,G2 and G is a clique sum of G1 and G2, then Kk 6≤ G .

Thus we can build Kk -minor-free graphs by repeated clique sums.
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Excluding K5

Theorem [Wagner 1937]

A graph is K5-minor-free if and only if it can be built from planar
graphs and V8 by repeated clique sums.

V8 V8
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Tree decompositions

Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.

dcb

a

e f g h

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f
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Torso

Torso of a bag: we make the intersections with the adjacent bags
cliques.
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Excluding K5 — restated

Theorem [Wagner 1937]

A graph is K5-minor-free if and only if it can be built from planar
graphs and from V8 by repeated clique sums.

Equivalently:

Theorem [Wagner 1937]

A graph is K5-minor-free if and only if it has a tree decomposition
where every torso is either a planar graph or the graph V8.

V8 V8
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Apex vertices

The graph formed from a grid by attaching a universal vertex is
K6-minor-free, but has large genus.

A planar graph + k extra vertices has no Kk+5-minor.
Instead of bounded genus graphs, our building blocks should
be “bounded genus graphs + a bounded number of apex
vertices connected arbitrarily.”
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Vortices
One can show that the following graph has large genus, but cannot
have a K8-minor.

We define a notion of “vortex of width k” for structures like this
(details omitted).
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k-almost embeddable

Definition
Graph G is k-almost embeddable in surface Σ if

there is a set X of at most k apex vertices and
a graph G0 embedded in Σ, such that
G \ X can be obtained from G0 by attaching vortices of width
k on disjoint disks D1, . . . , Dk .

18



Graph Structure Theorem

Decomposing H-minor-free graphs into almost embeddable parts:

Theorem [Robertson-Seymour]

For every graph H, there is an integer k and a surface Σ such that
every H-minor-free graph

can be built by clique sums from graphs that are k-almost
embeddable in Σ,

(or equivalently)
has a tree decomposition where every torso is k-almost
embeddable in Σ.

Originally stated only combinatorially, algorithmic versions are
known.
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Excluding cliques

A k-almost embeddable graph on Σ cannot have a clique minor
larger than f (k ,Σ).

The decomposition approximately characterizes graphs excluding a
clique as a minor:

No Kk -minor =⇒
tree decomposition
with torsos k ′-almost
embeddable in Σ

tree decomposition
with torsos k ′-almost
embeddable in Σ

=⇒ no Kk ′′-minor
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Algorithmic applications
General message: if something works for planar graphs, then we
might generalize it to bounded genus graphs and H-minor-free
graphs.

Approximation schemes: 2O(1/ε) · nO(1) time algorithm for
Maximum Independent Set on H-minor-free graphs.

Parameterized algorithms and bidimensionality: 2O(
√

k) · nO(1)

time algorithm for Maximum Independent Set on
H-minor-free graphs.

The understanding of graphs excluding minors is essential for
finding minors:

Theorem [Robertson and Seymour]

H-minor testing can be solved in time f (H) · n3.

Algorithmic applications relying on (variants of) minor testing, e.g.,
k-Disjoint Paths.
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Planar

Bounded Genus

H-Minor-Free

[figure by Felix Reidl]
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Excluding planar graphs
If we exclude simpler H, we expect the building blocks to be
simpler.

Theorem [Robertson and Seymour]

For every planar graph H, there is a constant kH such that every
H-minor-free graph

can be built from graphs of size at most kH by clique sums,
(or equivalently)

has a tree decomposition where every bag has size at most kH .

In a different language:

Width of a tree decomposition:
maximum bag size (minus one).

Treewidth of a graph:
minimum width of a decomposition.

Excluding a planar minor implies bounded treewidth.
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Excluded Grid Theorem

Excluded Grid Theorem [Diestel et al. 1999]

If the treewidth of G is at least k4k2(k+2), then G has a k × k grid
minor.

(A kO(1) bound was just announced [Chekuri and Chuznoy 2013]!)
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Excluded Grid Theorem

Excluded Grid Theorem [Diestel et al. 1999]

If the treewidth of G is at least k4k2(k+2), then G has a k × k grid
minor.

A large grid minor is a “witness” that treewidth is large, but the
relation is approximate:

No k × k grid minor =⇒ tree decomposition
of width < f (k)

tree decomposition
of width < f (k)

=⇒ no f (k)× f (k) grid
minor
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Excluding trees

As every forest is planar, the following holds for every forest F :

no F -minor =⇒ tree decomposition
of width < f (F )

tree decomposition
of width < f (F )

=⇒ Does not exclude any
tree as minor!

This is not a good (approximate) structure theorem.
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Excluding trees
Path decomposition: the tree of bags is a path.
Pathwidth: defined analogously to treewidth.
Example: A complete binary tree on k levels has pathwidth k − 1.

Theorem [Diestel 1995]

If F is a forest, then every F -minor-free graph has pathwidth at
most |V (F )| − 2.

no F -minor =⇒ path decomposition
of width < f (F )

path decomposition
of width < f (F )

=⇒ No (f (F ) + 1)-level
complete binary tree
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Excluding minors
We have seen that a graph excluding a fixed minor can be built
from simple building blocks:

Excluding a tree

=⇒
small blocks, in a pathlike way

Excluding a planar graph

=⇒
small blocks, in a treelike way

Excluding a clique
=⇒

k-almost embeddable blocks,
in a treelike way

Next: Notions of containment stricter than minors.
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Topological subgraphs
Definition
Subdivision of a graph: replacing each edge by a path of length 1
or more.
Graph H is a topological subgraph of G (or topological minor
of G , or H ≤T G ) if a subdivision of H is a subgraph of G .

≤T
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Topological subgraphs
Definition
Subdivision of a graph: replacing each edge by a path of length 1
or more.
Graph H is a topological subgraph of G (or topological minor
of G , or H ≤T G ) if a subdivision of H is a subgraph of G .

Equivalently, H ≤T G means that H can be obtained from G by re-
moving vertices, removing edges, and dissolving degree-two vertices.

a c

dissolving b

b

a c

28



Topological subgraphs
Definition
Subdivision of a graph: replacing each edge by a path of length 1
or more.
Graph H is a topological subgraph of G (or topological minor
of G , or H ≤T G ) if a subdivision of H is a subgraph of G .

Simple observations:
H ≤T G implies H ≤ G .
The converse is not true: a 3-regular graph excludes K1,4 as a
subdivision, but can contain large clique minors.
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Topological subgraphs
Definition
Subdivision of a graph: replacing each edge by a path of length 1
or more.
Graph H is a topological subgraph of G (or topological minor
of G , or H ≤T G ) if a subdivision of H is a subgraph of G .

Finding subdivisions:

Theorem [Robertson and Seymour]

We can decide in time nf (H) if H ≤T G .

Theorem [Grohe, Kawarabayashi, M., Wollan 2011]

We can decide in time f (H) · n3 if H ≤T G .

28



A classical result

Theorem [Kuratowski 1930]

A graph G is planar if and only if K5 6≤T G and K3,3 6≤T G .

Theorem [Wagner 1937]

A graph G is planar if and only if K5 6≤ G and K3,3 6≤ G .

K5 K3,3

Remarkable coincidence!
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Structure theorems for excluding subdivisions

We can build H-subdivision-free graphs from two types of blocks:

Theorem [Grohe and M. 2012]

For every H, there is an integer k ≥ 1 such that every
H-subdivision-free graph has a tree decomposition where the torso
of every bag is either

Kk -minor-free or
has degree at most k with the exception of at most k vertices
(“almost bounded degree”).

Note: there is an f (H) · nO(1) time algorithm for computing such a
decomposition.
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Planar

Bounded Genus

H-Minor-Free

H-Topological- Minor-Free

[figure by Felix Reidl]
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Algorithmic applications

Theorem [Grohe and M. 2012]

For every H, there is an integer k ≥ 1 such that every
H-subdivision-free graph has a tree decomposition where the torso
of every bag is either

k-almost embeddable in a surface of genus at most k or
has degree at most k with the exception of at most k vertices
(“almost bounded degree”).

General message:
If a problem can be solved both

on (almost-) embeddable graphs and
on (almost-) bounded degree graphs,

then these results can be raised to
H-subdivision-free graphs

without too much extra effort.
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Graph Isomorphism
Theorem [Luks 1982] [Babai, Luks 1983]

For every fixed d , Graph Isomorphism can be solved in
polynomial time on graphs with maximum degree d .

Theorem [Ponomarenko 1988]

For every fixed H, Graph Isomorphism can be solved in
polynomial time on H-minor-free graphs.

Theorem [Grohe and M. 2012]

For every fixed H, Graph Isomorphism can be solved in
polynomial-time on H-subdivision-free graphs.

Note:
Requires a more general “invariant acyclic tree-like
decomposition.”
Running time is nf (H).

33



Graph Isomorphism
Theorem [Luks 1982] [Babai, Luks 1983]

For every fixed d , Graph Isomorphism can be solved in
polynomial time on graphs with maximum degree d .

Theorem [Ponomarenko 1988]

For every fixed H, Graph Isomorphism can be solved in
polynomial time on H-minor-free graphs.

Theorem [Grohe and M. 2012]

For every fixed H, Graph Isomorphism can be solved in
polynomial-time on H-subdivision-free graphs.

Note:
Requires a more general “invariant acyclic tree-like
decomposition.”
Running time is nf (H).

33



Containment notions

Excluding H as a minor
almost embeddable parts

Excluding H as a subdivision
almost embeddable and
almost bounded-degree parts

34



Odd minors
Definition
Graph H is an odd minor of G (H ≤odd G ) if G has a 2-coloring
and there is a mapping φ that maps each vertex of H to a tree of
G such that

φ(u) and φ(v) are disjoint if u 6= v ,
every edge of φ(u) is bichromatic,
if uv ∈ E (H), then there is a monochromatic edge between
φ(u) and φ(v).

Example: K3 is an odd minor of G if and only if G is not bipartite.
35



Odd minors
Finding odd minors:

Theorem [Kawarabayashi, Reed, Wollan 2011]

There is an f (H) · nO(1) time algorithm for finding an odd H-minor.

Structure theorem:

Theorem [Demaine, Hajiaghayi, Kawarabayashi 2010]

For every H, there is a k ≥ 1 such that every odd H-minor-free
graph has a tree decomposition where the torso of every bag is

k-almost embeddable in a surface of genus at most k or
bipartite after deleting at most k vertices (“almost bipartite”).

Consequence:

Theorem [Demaine, Hajiaghayi, Kawarabayashi 2010]

For every fixed H, there is a polynomial-time 2-approximation
algorithm for chromatic number on odd H-minor-free graphs.
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Odd subdivisions

Definition
Odd subdivision of a graph: replacing each edge by a path of odd
length (1 or more).

If G contains an odd H-subdivision, then H ≤T G and H ≤odd G .
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Odd subdivisions
A structure theorem for excluding an odd H-subdivision should be
more general than

the structure theorem for excluded subdivisions
(k-almost embeddable, almost bounded degree) and
the structure theorem for excluded odd minors
(k-almost embeddable, almost bipartite).

Theorem [Kawarabayashi 2013]

For every H, there is an integer k ≥ 1 such that every odd
H-subdivision-free graph has a tree decomposition where the torso
of every bag is either

k-almost embeddable in a surface of genus at most k ,
has degree at most k with the exception of at most k vertices
(“almost bounded degree”), or
bipartite after deleting at most k vertices (“almost bipartite”).
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Odd subdivisions

Theorem [Kawarabayashi 2013]

For every H, there is an integer k ≥ 1 such that every odd
H-subdivision-free graph has a tree decomposition where the torso
of every bag is either

k-almost embeddable in a surface of genus at most k ,
has degree at most k with the exception of at most k vertices
(“almost bounded degree”), or
bipartite after deleting at most k vertices (“almost bipartite”).

Theorem [Kawarabayashi 2013]

For every H, there is a polynomial-time algorithm that, given an
odd H-subdivision-free graph G , finds a coloring of G with
2χ(G ) + 6(V (H)− 1) colors.
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Containment notions

Excluding H as a minor
almost embeddable parts

Excluding H as a subdivision
almost embeddable and
almost bounded-degree parts

Excluding H as an odd minor
almost embeddable and
almost bipartite parts

Excluding H as an odd subdivision
almost embeddable,
almost bounded-degree, and
almost bipartite parts
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Immersions

Definition
Graph H has an immersion in G (H ≤im G ) if there is a mapping
φ such that

For every v ∈ V (H), φ(v) is a distinct vertex in G .
For every xy ∈ E (H), φ(xy) is a path between φ(x) and φ(y),
and all these paths are edge disjoint.

≤im

Note: H ≤T G implies H ≤im G .
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Excluding immersions
As excluding Kk -immersions implies excluding Kk -subdivisions, we
get:

Theorem [Grohe and M. 2012]

For every H, there is an integer k ≥ 1 such that every
H-immersion-free graph has a tree decomposition where the torso
of every bag is either

k-almost embeddable in a surface of genus at most k or
has degree at most k with the exception of at most k vertices
(“almost bounded degree”).

However, embeddability does not seem to be relevant for
immersions: the following graph has large clique immersions.

Can we omit the first case?
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Excluding immersions

Theorem [Wollan]

If Kk has no immersion in G , then G has a “tree-cut
decomposition” of adhesion at most k2 such that each “torso” has
at most k vertices of degree at least k2.

Tree cut decomposition: a partition of the vertex set in tree-like
way.

≤ k2
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Summary

General form of statements:

If a graph excludes X , then it can be built from components
that obviously exclude (larger versions of) X .

Trade-ff between the excluded object and the simplicity of the
building blocks:

If we exclude more complicated objects, then the building
blocks are more complicated and more general.

The building blocks were small, planar, almost embeddable,
almost bounded-degree, almost bipartite.
The algorithmic applications depend on how simple the
building blocks are.
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