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Abstract
In the list homomorphism problem, the input consists of two graphs G and H, together with a list
L(v) ⊆ V (H) for every vertex v ∈ V (G). The task is to find a homomorphism φ : V (G)→ V (H)
respecting the lists, that is, we have that φ(v) ∈ L(v) for every v ∈ V (H) and if u and v are
adjacent in G, then φ(u) and φ(v) are adjacent in H. If H is a fixed graph, then the problem
is denoted by LHom(H). We consider the reflexive version of the problem, where we assume
that every vertex in H has a self-loop. If is known that reflexive LHom(H) is polynomial-time
solvable if H is an interval graph and it is NP-complete otherwise [Feder and Hell, JCTB 1998].

We explore the complexity of the problem parameterized by the treewidth tw(G) of the input
graph G. If a tree decomposition of G of width tw(G) is given in the input, then the problem can
be solved in time |V (H)|tw(G) ·nO(1) by naive dynamic programming. Our main result completely
reveals when and by exactly how much this naive algorithm can be improved. We introduce a
simple combinatorial invariant i∗(H), which is based on the existence of certain decompositions
and incomparable sets, and show that this number should appear as the base of the exponent in
the best possible running time. Specifically, we prove for every non-interval reflexive graph H

that
If a tree decomposition of width tw(G) is given in the input, then the problem can be solved
in time i∗(H)tw(G) · nO(1).
Assuming the Strong Exponential-Time Hypothesis (SETH), the problem cannot be solved
in time (i∗(H)− ε)tw(G) · nO(1) for any ε > 0.

Thus by matching upper and lower bounds, our result exactly characterizes for every fixed H the
complexity of reflexive LHom(H) parameterized by treewidth.
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1 Introduction

It is well known that most NP-hard algorithmic graph problems can be solved significantly
more efficiently on graphs of bounded treewidth than on general graphs. A large number
of NP-hard problems are known to be fixed-parameter tractable (FPT) parameterized by
treewidth, that is, if the input instance contains a tree decomposition of width w of the
graph, then the problem can be solved in time f(w) · nO(1) for some computable function f
depending only on the width w. In recent years, there have been significant research efforts
to understand how complexity depends on treewidth and to determine the best possible
function f(w) that can appear in the running time. On the algorithmic side, new algorithms
with improved running times were obtained for a number of problems [6, 1, 25, 16]. On
the complexity side, conditional lower bounds were given that, in many cases, match the
running time of the best known algorithms, thereby giving a tight understanding of the
complexity of the problem parameterized by treewidth [21, 20, 6, 22, 5]. These lower bounds
are usually based on the Exponential-Time Hypothesis (ETH), which can be informally
stated as n-variable 3-Sat cannot be solved in time 2o(n), or on the Strong Exponential-Time
Hypothesis (SETH), which can be informally stated as n-variable m-clause Cnf-Sat cannot
be solved in time (2− ε)n ·mO(1) for any ε > 0.

As an exemplary result, let us consider the c-Coloring problem, where the task is
to color the vertices of the graph with c colors such that adjacent vertices receive distinct
colors. Using standard dynamic programming techniques, c-Coloring can be solved in
time ctw(G) · nO(1) if a tree decomposition of width tw(G) is given in the input. A result of
Lokshtanov et al. [20] showed that this running time is essentially optimal.

I Theorem 1 (Lokshtanov, Marx, and Saurabh [20]). Let c ≥ 3 be a fixed integer. Assuming
the SETH, the c-Coloring problem on a graph G with n vertices, given with its tree
decomposition of width tw(G), cannot be solved in time poly(n) · (c− ε)tw(G) for any ε > 0.

Homomorphisms. Given graphs G and H, a homomorphism from G to H is a mapping
φ : V (G) → V (H) such that if uv is an edge of G, then φ(u)φ(v) is an edge of H. (In
particular, if H has no loops, then this implies φ(u) 6= φ(v) whenever u and v are adjacent.)
For every fixed graph G, we can define the Hom(H) problem, where, given a graph G, the
task is to find a homomorphism from G to H. Now c-Coloring is equivalent to Hom(Kc),
where Kc is the clique on c vertices: it is easy to see that G is c-colorable if and only if
it has a homomorphism to Kc. Thus the Hom(H) family of problems form a far-reaching
generalization of the vertex coloring problem. A classic result of Hell and Nešetřil [17]
characterized the complexity of Hom(H): it is polynomial-time solvable if H is bipartite and
it is NP-complete for every nonbipartite H (see also [4, 18]).

What can we say about the complexity of Hom(H) parameterized by treewidth? It seems
to be a natural goal to try to obtain, for every H, the best possible base cH of the exponent
that can appear in the running time ctw(G)

H · nO(1). If H is the clique Kc, then we know
from Theorem 1 that cH = c, but what can we say about other graphs H? While this is a
very natural question, it appears to be very difficult and deep as well: while the hardness
of c-Coloring is well understood and can be easily exploited in hardness proofs such as
Theorem 1, the hardness of Hom(H) for nonbipartite H comes from a somewhat mysterious
combination of combinatorics and algebra [17, 4, 18, 23].

While we are unable at the moment to characterize the exact complexity of Hom(H)
parameterized by treewidth, we resolve a related question that is still of interest, but
apparently more tractable. The problem we study differs from the original question in two
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ways. First, we are considering the list version of the problem: in an input instance of the list
homomorphism LHom(H) problem, each vertex v of G is equipped with a list L(v) ⊆ V (H)
and the task is to find a homomorphism φ from G to H that respects these lists, that is,
φ(v) ∈ L(v) for every v ∈ V (G). List versions of homomorphism and coloring problems are
well studied [24, 7, 8, 13, 15, 12, 11, 14, 10, 9]. Typically, list versions are more robust than
the ordinary versions and hardness proofs are simpler to prove for them. Feder et al. [10]
characterized the polynomial-time solvable cases of LHom(H): now it is not sufficient that
H is bipartite, it has to be the complement of a circular arc graph, otherwise the problem
is NP-complete. Second, we consider the reflexive version of the homomorphism problem,
which means that we assume that every vertex of H has a self-loop attached to it. Thus even
if u and v are adjacent in G, it is still possible that φ(u) = φ(v) in a homomorphism φ from
G to H. In particular, now there is always a homomorphism φ from every G to H: let us
chose an arbitrary fixed vertex u ∈ V (H) and let φ(v) = u for every v ∈ V (G). However, it
remains a nontrivial question whether there is a homomorphism from G to H that respects
the lists L(v) of the vertices of G. Feder and Hell [9] showed that reflexive LHom(H) is
polynomial-time solvable if H is an interval graph, and NP-complete otherwise. In general,
the reflexive problem appears to have simpler structure and cleaner properties than the
irreflexive version, where bipartiteness and parity issues introduce technical complications.
We believe that it is reasonable to start with the reflexive problem as a prototype result.

Results. Our main result is exactly characterizing, for every fixed H, the complexity of
reflexive list homomorphism parameterized by treewidth. Similarly to the c-Coloring
problem, standard dynamic programming techniques give an algorithm with running time
|V (H)|tw(G) · nO(1) if a tree decomposition of width tw(G) is given (slightly more generally,
we can also say that if every list L(v) has size at most c, then the problem can be solved in
time ctw(G) ·nO(1)). However, unlike in the case of the c-Coloring problem, this algorithm is
not necessarily optimal: for some H, we can actually do better. We identify two algorithmic
ideas that can give improved algorithms:

Incomparable sets. Suppose that the list L(v) for some v ∈ V (G) contains two vertices
a, b ∈ V (H), such that every neighbor of a (including a itself) is also a neighbor of b.
It is easy to see that if there is a homomorphism φ from G to H with φ(v) = a, then
this can be modified to have φ(v) = b and it remains a valid homomorphism. In other
words, vertex a in the list L(v) is not necessary for the solution and can be removed
from the list. Thus after a simple preprocessing step, we can assume that every L(v) is
an incomparable set, that is, N [a] ⊆ N [b] does not hold for any two distinct a, b ∈ L(v).
This means that if we denote by i(H) the maximum size of an incomparable set in H,
then it can be assumed that every list has size at most i(H) and hence the problem can
be solved in time i(H)tw(G) · nO(1). As i(H) can be much less than |V (H)|, this running
time can be significantly faster than |V (H)|tw(G) · nO(1).
Decompositions. We identify a certain kind of decomposition that can be used to
simplify the problem. Formally, a decomposition is a partition (S,N,R) of the vertices of
H such that |S| ≥ 2, |N ∪R| > 0, N separates S and R, N induces a clique, and every
vertex of S is adjacent to every vertex of N . As we show later, such a decomposition
allows us to reduce LHom(H) to instances of LHom(H1) and LHom(H2), where H1 and
H2 are strict induced subgraphs of H.

We show that, in a formal sense, these two algorithmic ideas are sufficient to solve the
problem as fast as possible. First, if the graph H is undecomposable (that is, does not
have a decomposition as above), then the best possible running time is indeed of the form
i(H)tw(G) · nO(1). More generally, we define i∗(H) to be the maximum of i(H∗), taken over
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every undecomposable, connected, non-interval induced subgraph H∗ of H. Our main result
shows that i∗(H)tw(G) · nO(1) is the exact complexity of the problem.

I Theorem 2. Let H be a connected reflexive non-interval graph with k = i∗(H), and G be
a graph with n vertices and treewidth tw(G).
(a) The LHom(H) problem with instance (G,L) can be solved in time poly(n+ |H|) · ktw(G)

for any lists L, provided that G is given with its tree decomposition of width tw(G).
(b) There is no algorithm that solves LHom(H) for every G and L in time f(H) · poly(n+
|H|) · (k − ε)tw(G) for any computable function f and any ε > 0, unless the SETH fails.

Note that if H is a reflexive interval graph, then LHom(H) is polynomial-time solvable [9]
and if H is disconnected, then it is easy to reduce the problem to the components of H.
Thus Theorem 2 gives a complete characterization of the complexity of the problem for every
fixed H.

Let us discuss the significance of a complete classification result such as Theorem 2.
As the LHom(H) problem is an infinite family of problems, it is not clear at all what is
the full range of algorithmic ideas that can help solve the problem faster than the naive
|V (H)|tw(G) · nO(1) time algorithm. Even after realizing that this naive algorithm can be
beaten in some cases (e.g., by discovering the importance of incomparable sets or some
form of decompositions), we cannot be sure that some completely different algorithm cannot
solve some cases even faster, or can be applied to an even wider class of target graphs H.
But in order to prove a complete classification result of the form of Theorem 2, one has
to discover each and every relevant algorithmic idea. Our main result not only provides a
set of algorithmic tools, but proves in a formal sense (assuming the SETH) that no other
algorithmic idea can improve on these results. Thus we completely map the complexity
landscape of the LHom(H) problem, determining the complexity of every case of LHom(H)
with surprising tightness and revealing every combinatorial insight that can be exploited
algorithmically.

Lower bound proofs. The complexity result of Theorem 2b needs to exploit three properties
of the induced subgraph H∗: it is not an interval graph, it is undecomposable, and has a
large incomparable set. There are well-known characterization results that show that every
non-interval graph contains certain obstructions (induced cycles or asteroidal triples) and
the NP-hardness proofs of Feder and Hell [9] show how these obstructions can be used to
reduce 3-Coloring to LHom(H). However, here we need something much stronger: if
there is an incomparable set I of size c = i∗(H), then we want to reduce c-Coloring to
LHom(H) and use the lower bound in Theorem 1. The natural idea is to represent the c
colors of the c-Coloring problem by the c vertices appearing in the incomparable set I.
Then the main challenge is to construct gadgets that express the 6= relation, that is, ensure
that two adjacent vertices are not assigned the same vertex of I, but every other combination
is allowed. We show with a very delicate and technical proof that the incomparable set
can be connected to the interval graph obstruction with a set of walks satisfying certain
properties, and these walks, together with the obstruction, can be used to create the required
gadgets. It turns out that, surprisingly, the only situation when we cannot find such walks is
precisely when a decomposition exists. Thus if we assume that the graph is non-interval,
has a large incomparable set, and has no decomposition, then we can construct the gadgets
required for the reduction.

Exploiting decompositions. We finish the introduction with a brief explanation of how a
decomposition (S,N,R) can be exploited (a more detailed algorithm description appears in
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Section 3.1). As discussed above, we can assume that every L(v) is an incomparable set in
H. In particular, this means that if some a ∈ S appears in L(v), then L(v) does not contain
any vertex of N (as every vertex of N fully contains the neighborhood of every vertex in S).
Let X ⊆ V (G) be the set of vertices whose lists contain at least one vertex of S. The set X
induces some number of connected components in G; let C be a connected component of
G[X].

The first crucial observation is that in every solution φ, one of the following two cases
has to happen on C: either (1) φ(c) ∈ S for every c ∈ C, or (2) φ(c) 6∈ S for every c ∈ C.
Otherwise, there would be two adjacent vertices c1, c2 ∈ C with φ(c1) ∈ S and φ(c2) 6∈ S.
However, as N separates S and R in H, this is only possible if φ(c2) ∈ N , contradicting our
earlier assumption. Thus as a first step, we check if there is a homomorphism φC from G[C]
to H1 := H[S] that respects the list. If there is no such homomorphism, then we can rule
out the possibility that case (1) happens on C and remove the vertices of S from the lists of
the vertices in C. Suppose now that there is such a homomorphism φC .

The second crucial observation is that if case (1) happens on C, then we might as well
assume that the solution φ restricted to C is exactly the same as φC : it is easy to see that
φ(v) ∈ N should hold for every v ∈ N(C), and every vertex of N is adjacent to every vertex
of S, hence no conflict can arise if we change φ to be the same as φC on C. Let us select an
arbitrary vertex a ∈ S and let us change the list of every v ∈ C to be L′(v) = (L(v)\S)∪{a},
that is, the single vertex a will represent the vertices L(v)∩S. We claim that this modification
does not change the solvability of the instance: if the original instance has a solution where
case (1) happens on C, then we can modify it to have a’s on every vertex of C; and if we
obtain a solution of the new instance with a’s on C, then we can obtain a solution of the
original instance by using φC on C.

We repeat these steps for every connected component C of G[X]. Then we obtain an
instance where the selected vertex a ∈ S is the only vertex of S that appears anywhere on the
lists. This means that effectively we have an instance where we need to find a homomorphism
to H2 := H \ (S \ {a}). As |S| ≥ 2, H2 has strictly fewer vertices than H. Thus the existence
of the decomposition (S,N,R) allowed us to reduce the problem to instances of LHom(H1)
and LHom(H2) where H1 and H2 have fewer vertices than H.

2 Preliminaries

Throughout the paper we consider reflexive graphs only, i.e., we assume that for every vertex
v, vv is an edge (a loop). Let H = (V,E) be a reflexive graph. By N [v] we denote the set
{u : uv ∈ E}. Note that v ∈ N [v]. By N(v) we denote N [v] \ {v}. For a set X of vertices,
by N [X] we denote

⋃
v∈X N [v], while N(X) denotes N [X] \X. For a set X and a vertex

v, by NX [v] we denote N [v] ∩X. In an analogous way we define NX(v) and NX(Y ) and
NX [Y ] for a set Y . For two disjoint sets A,B ⊆ V , such that no vertex from A is adjacent
to a vertex from B, an A-B-separator is a set S, such that there is no path from any vertex
a ∈ A to any vertex b ∈ B in the graph H − S. An A-B-separator S is minimal if no S′ ( S

is an A-B-separator. If A is a singleton, say A = {a}, we write a-B-separator instead of
{a}-B separator (analogously if B is a singleton).

For two graphs G and H, a mapping f : V (G)→ V (H) is a homomorphism if for every
edge xy of G it holds that f(x)f(y) is an edge of H. If f is a homomorphism from G to
H, we denote it shortly by f : G → H. We write G → H to say that there exists some
homomorphism from G to H. For a fixed graph H, by Hom(H) we consider an algorithmic
problem of deciding if there is a homomorphism from a given graph G to H.

STACS 2018
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In the list homomorphism problem we are given two graphs G,H and a mapping
L : V (G) → 2V (H) (where the sets L(v) for v ∈ V (G) are called H-lists or just lists),
and we ask for a homomorphism f : G→ H, such that f(x) ∈ L(x) for every x ∈ V (G). We
denote this by f : (G,L) → H. We often write (G,L) → H to denote that there is a list
homomorphisms from G to H with lists L. Moreover, as we only deal with list homomorph-
isms, we write f : G→ H to denote f : (G,L)→ H, if the lists are clear from the context.
For a fixed graph H, by LHom(H) we denote the algorithmic problem, whose input is a
graph G with lists L, and we ask whether there exists a list homomorphism (G,L)→ H.

We observe that if H has several connected components, then there is a polynomial-time
reduction from LHom(H) to the problems LHom(H ′) for the connected components H ′ of
H. Thus we always assume that H is connected.

2.1 Interval graphs and obstructions
Interval graphs are one of the most studied classes of geometric intersection graphs. A
graph H is an interval graph if it admits an interval representation, where each vertex is
represented by some closed interval of the real line and two vertices are adjacent if and only
if their corresponding intervals intersect. Note that interval graphs are usually defined to be
irreflexive, but in our case we consider reflexive graphs.

Before we analyze structural properties of interval graphs, we need a few more definitions.
An asteroidal triple is an independent set of three vertices a, b, c, such that for every {i, j, `} =
{a, b, c} there is an i-j-path Wi,j , whose every vertex is non-adjacent to `. Note that by our
convention Wj,i is Wi,j reversed.

I Theorem 3 (Lekkeikerker and Boland [19]). A graph is an interval graph if and only if does
not contain an asteroidal triple or an induced cycle of length at least 4.

There is a deep connection between the list homomorphism problem and reflexive interval
graphs, as shown in the following dichotomy theorem of Feder and Hell [9].

I Theorem 4 (Feder and Hell [9]). Let H be a reflexive graph. If H is an interval graph,
then the LHom(H) problem is polynomially solvable, otherwise it is NP-complete.

In this paper we will focus on graphs H, for which LHom(H) is NP-complete, so we will
assume that H is non-interval and thus contains at least one of structures mentioned in
Theorem 3.

Observe that for an asteroidal triple a, b, c, we may w.l.o.g. assume that each path Wa,b

is induced. We define the asteroidal subgraph of an asteroidal triple a, b, c, as the subgraph
of H induced by Wa,b ∪Wb,c ∪Wa,c.1 For a vertex a (b, c, resp.), we say that the path Wb,c

(Wa,c, Wa,b, resp.) is opposite.
Moreover, note that an induced cycle with at least 6 vertices contains an asteroidal

subgraph. So an equivalent statement of Theorem 3 says that every non-interval graph H
contains an induced 4-cycle, an induced 5-cycle, or an asteroidal subgraph. An induced
subgraph of H isomorphic to one of these three structures is called an obstruction in H.

A vertex o ∈ O is a corner if:
O is isomorphic to a 4-cycle or a 5-cycle, or
O is an asteroidal subgraph for an asteroidal triple containing o.

Two vertices o, o′ of an obstruction O are opposite if:

1 We will often identify graphs with their vertex sets.
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both are corners, or
O is an asteroidal subgraph and o belongs to the path opposite to o′.

2.2 Dominating vertices and incomparable sets
For two vertices u, v of H, we say that v dominates u or, equivalently, u is dominated by
v, if N [u] ⊆ N(v). Observe that this implies that u and v are adjacent. We say that a set
X dominates a set Y if every x ∈ X dominates every y ∈ Y . If u is not dominated by v, it
means that there is a vertex u′ ∈ N [u] (possibly u′ = u), which is not a neighbor of v. Two
vertices u and v are incomparable if u does not dominate v and v does not dominate u. A
set S of vertices is incomparable if all its members are pairwise incomparable. By i(H) we
denote the size of the largest incomparable set in H.

2.3 Avoiding walks
A walk is a sequence of vertices P = p1, p2, . . . , p`, such that pipi+1 is an edge for every
i = 1, 2, . . . , `− 1. For the walk P , its length denotes the number `− 1. For two vertices a, b,
we say that P = p1, p2, . . . , p` is an a-b-walk if p1 = a and p` = b. We denote this shortly by
P : a→ b. By P̄ we denote the reversed walk, i.e., P̄ = p`, p`−1, . . . , p2, p1.

For two walks A = a1, a2, . . . , a` and B = b1, b2, . . . , b`′ such that a` = b1, we let A ◦ B
denote the concatenation of A and B, i.e., the walk a1, a2, . . . , a`, b2, b3, . . . , b`′ . Note that
|A ◦ B| = |A|+ |B| − 1.

For two walks P = p1, p2, . . . , p` and Q = q1, q2, . . . q` of equal length, we say that P
avoids Q if pi is non-adjacent to qi+1 for every i = 1, 2, . . . , `− 1. We conclude this section
with two simple observations concerning walks and avoidance.

I Observation 5. For walks A : a → b, B : b → c and A′ : a′ → b′,B′ : b′ → c′, if A avoids
A′ and B avoids B′, then A ◦ B avoids A′ ◦ B′. J

I Observation 6. Let P = p1, p2, . . . , p` and Q = q1, q2, . . . q` be two walks, such that P
avoids Q. Then Q̄ avoids P̄. J

3 Algorithm

In this section we prove the algorithmic part of our main result, i.e., Theorem 2a). Let us
start with the following simple observation.

I Observation 7. Let u, v be vertices of H, such that v dominates u. Let f : G→ H be a
homomorphism, such that f(x) = u for some vertex x of G. Then f ′ defined by f ′(x) := v

and f ′(y) := f(y) for every y ∈ V (G) \ {x} is also a homomorphism from G to H. J

Thus we can assume that in our instance (G,L) of LHom(H) the set L(x) is incomparable
for every vertex x of G (otherwise we can safely remove a dominated vertex).

3.1 Decomposition
For a graph H, let T (H,n, t) denote an upper bound for the time complexity of an algorithm
solving the LHom(H) problem on a graph with n vertices and treewidth t. The following
lemma is the main tool in the proof of Theorem 2a). The proof is omitted in this extended
abstract.
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I Lemma 8 (Decomposition lemma). Let H = (V,E) be a reflexive graph, whose vertex set
can be partitioned into three subsets S,N,R, such that:
1. |S| ≥ 2,
2. N is a clique with at least one vertex,
3. N separates S and R,
4. all edges between S and N are present in H.
Let H1 be the subgraph of H induced by S, and H2 be the subgraph of H obtained by
contracting S to a single vertex. Moreover, suppose that there are constants c, d, such that
T (H1, n, t) = O(ct · nd) and T (H2, n, t) = O(ct · nd). Then T (H,n, t) = O(ct · nd).

A graph H which satisfies the assumptions of Lemma 8 is called decomposable and we
say that (S,N,R) is a decomposition of H, or that H decomposes into H1 and H2. We refer
to S as dominated part and the set N as dominating clique separator. A graph which is not
decomposable is called undecomposable.

Observe that with H we can associate a decomposition tree T , whose nodes are labeled
with induced subgraphs of H. The root, denoted by node(H) corresponds to the whole graph
H. If H is undecomposable, then the decomposition tree has just one node. If H decomposes
into H1 and H2, then node(H) has two children, node(H1) and node(H2), respectively. We
construct a decomposition tree recursively. Clearly, each leaf of the decomposition tree is an
undecomposable induced subgraph of H. Note that a decomposition tree may not be unique,
as a graph may have more than one decomposition. However, the number of leaves is always
O(|H|), so the total number of nodes is also O(|H|).

3.2 Solving LHom(H) problem
Now we are ready to present an algorithm for determining if (G,L)→ H.

Proof of Theorem 2a). We assume that the graph G has n vertices and is given along with
its tree decomposition of width tw(G). We also define

i∗(H) := max{i(H ′) : H ′ is undecomposable connected non-interval induced subgraph of H}.

Observe that if H ′ is an induced subgraph of H, then i∗(H ′) ≤ i∗(H), and thus i(H) = i∗(H)
for undecomposable H.

It can be shown that in time polynomial in H we can check if H is undecomposable, or
find a decomposition. If H is undecomposable, we run a standard dynamic programming on
a tree decomposition of G (see [3, 2]). For each bag of the tree decomposition we store all
partial list homomorphisms from the graph induced by this bag to H. By Observation 7,
the size of each list L(x) for x ∈ V (G) is at most i(H), thus the complexity of the dynamic
programming algorithm is bounded by O(nd · i(H)tw(G)) = O(nd · i∗(H)tw(G)) for some
constant d.

So suppose H is decomposable. Let T be a decomposition tree of H, note that it can
be constructed in polynomial time, has O(|H|) nodes, and its every leaf corresponds to an
induced subgraph of H with strictly fewer vertices. Indeed, if H decomposes into H1 and
H2, then they are both induced subgraphs of H and |H1|, |H2| < |H|. Therefore, for any leaf
H ′ of T , we can solve every instance of LHom(H ′) with n vertices and treewidth at most
tw(G) in time O(nd · i∗(H)tw(G)) (note that this is also true if H ′ is an interval graph, as
then we can use a polynomial algorithm). Now, applying Lemma 8 in a bottom-up fashion,
we conclude that we can solve LHom(H) in time O(nd · i∗(H)tw(G)), which completes the
proof of Theorem 2a). J
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4 Hardness

In this section we prove Theorem 2b), i.e., the lower bound for an algorithm deciding the
existence of a list homomorphism (G,L)→ H. We will prove the following theorem.

I Theorem 9. Let H be a connected, reflexive, undecomposable graph with i(H) ≥ 3.
Assuming the SETH, there is no algorithm that solves LHom(H) for every G and L in time
f(H) · poly(|G|+ |H|) · (i(H)− ε)tw(G) for any ε > 0 and any computable function f .

Let us first show that Theorem 9 is equivalent to Theorem 2b).

Theorem 9 → Theorem 2b). Suppose Theorem 9 holds and Theorem 2b) fails. So there
is a graph H (may be decomposable) and an algorithm A that solves LHom(H) in time
f(H) · poly(|G|+ |H|) · (i∗(H)− ε)tw(G) for every input G,L. Let H ′ be an undecomposable
connected non-interval induced subgraph of H, such that i(H ′) = i∗(H). As every instance
of LHom(H ′) can be seen as an instance of LHom(H), the algorithm A can be used to solve
LHom(H ′) in time f ′(H ′) · poly(|G|+ |H ′|) · (i(H ′)− ε)tw(G), thus contradicting Theorem 9.

Theorem 2b) → Theorem 9. Suppose Theorem 2b) holds and Theorem 9 fails. So
there is an undecomposable graph H and an algorithm A that solves LHom(H) in time
f(H) · poly(|G|+ |H|) · (i(H)− ε)tw(G) for every input G,L. But since H is undecomposable,
we have i∗(H) = i(H), so algorithm A contradicts Theorem 2b).

4.1 Using an obstruction to express basic relations
Let O be an obstruction in H with non-adjacent corners α, β and let k ≥ 2 be an integer.
First, we show how express k-wise relations ORk = {α, β}k \αk and NANDk = {α, β}k \βk.
More formally, we define a graph F (ORk) (F (NANDk), resp.), called an ORk-gadget
(NANDk-gadget, resp.) with H-lists L and k specified vertices x1, x2, . . . , xk, such that:

for every i ∈ [k] it holds that L(xi) = {α, β},
the relation

⋃
f : F (ORk)→H{f(x1)f(x2) . . . f(xk)} is exactly ORk (respectively,⋃

f : F (NANDk)→H{f(x1)f(x2) . . . f(xk)} is NANDk).
The construction of these gadgets is simple and it is omitted in this extended abstract.
Another useful property of obstructions is shown in the following lemma.

I Lemma 10 (Moving inside the obstruction). Let O be an obstruction with distinct corners
a, c. Moreover, let b, d be distinct vertices of O, such that b is a corner and d is either a corner,
or a vertex non-adjacent to b. Then there are walks Aa,b,A′a,b : a→ b and Bc,d,B′c,d : c→ d,
such that Aa,b avoids Bc,d and B′c,d avoids A′a,b. Moreover, all four walks use only vertices
of O and can be constructed in polynomial time.

Proof. If O is an induced 4-cycle or an induced 5-cycle, the walks are easy to construct. So
consider the case that O is an asteroidal subgraph for an asteroidal triple o1, o2, o3.

Case 1. First, let us deal with case when both b, d are corners. Then we have {a, b, c, d} ⊆
{o1, o2, o3}. If a = b and c = d then the problem is trivial. If a = b and c 6= d,
then we set Aa,b = A′a,b = a, a, . . . , a and Bc,d = B′c,d = Wc,d (the walk opposite
to a). The case when a 6= b and c = d is similar. So we assume that a 6= b and
c 6= d. If a = d and c 6= b (the case when a 6= d and c = b is similar), we set
Aa,b = A′a,b =Wa,b ◦ b, b, . . . , b and Bc,d = B′c,d = c, c, . . . , c ◦Wc,a. If a = d and c = b, we
set Aa,b = A′a,b = a, a, . . . , a ◦Wa,c ◦ c, c, . . . , c and Bc,d = B′c,d =Wc,b ◦ b, b, . . . , b ◦Wb,a.
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Case 2. Next, consider the case when b is a corner and d is not. We know that d ∈ Wb′,b′′ ,
where b′, b′′ are corners and b′ 6= b. Let W ′ be the subpath of Wb′,b′′ , starting in b′ and
ending in d. Recall that Wb′,b′′ is induced, so even if b = b′′, there is no edge from W ′
to b. We set

Aa,b = Ca,b ◦ b, b, . . . , b A′a,b = C′a,b ◦ b, b, . . . , b

Bc,d = Dc,b′ ◦ W ′ B′c,d = D′c,b′ ◦ W ′,

where Ca,b, C′a,b : a→ b and Dc,b′ ,D′c,b′ : c→ b′ are appropriate walks given by Case 1. J

4.2 Constructing distinguishing walks

As we have seen, we can easily use the structure of an obstruction to enforce non-trivial
relations that could be used to show hardness. For the rest of the proof we will show that we
can attach vertices of an incomparable set to the vertices of an obstruction using walks with
certain avoidance properties, which will later be exploited to prove hardness.

For a walk P = v1, v2, . . . , vn, by P̃ we denote the walk P with its first vertex removed,
i.e., P̃ = v2, . . . , vn. The following structural lemmas will be later used to obtain the main
gadget used in our hardness proof.

I Lemma 11. Let H be a connected undecomposable non-interval reflexive graph, and O be
an obstruction in H with non-adjacent corners α, β. Let S be a set of incomparable vertices
in H such that |S| ≥ 2. Let a and b be arbitrary distinct vertices in S. Then there is a
partition (X,Y ) of S such that vertices a and b are in X, and there are walks Dv for each
v ∈ S of length at least 1, satisfying the following properties:
1. For each v ∈ S, the first vertex of Dv is v, and its last vertex is either α (Dv is said to

be an α-walk) or β (Dv is said to be a β-walk).
2. Da is an α-walk and Db is a β-walk.
3. Let u, v ∈ S such that Du is an α-walk and Dv is a β-walk. Then

a. if u, v ∈ X, or if u ∈ Y and v ∈ X ∪ Y , then Du avoids Dv,
b. if u ∈ X, v ∈ Y , then D̃u avoids D̃v.

4. For any v ∈ Y and u ∈ X, there is no edge joining v and the second vertex of Du.
5. For every v ∈ Y , the second vertex of Dv is in Y .

Recall that it is possible that we have two walks Dx,Dy constructed in Lemma 11, such
that Dx is an α-walk, Dy is a β-walk, but Dx does not avoid Dy (this may happen for
x ∈ X and y ∈ Y ). This is an undesired situation for us, but luckily such walks have a
well-defined structure. In the next lemma we will construct a small gadget to patch this
situation, and then we will combine them to construct the main tool in our hardness proof,
i.e., a distinguisher gadget.

I Lemma 12. Let H,S, X, Y , and Dv, where v ∈ S, be as in Lemma 11. Let NX = {dx
2 : x ∈

X}, i.e., the set of vertices that appear as a second vertex of a walk Dx where x ∈ X

and NY = {dy
2 : y ∈ Y }. Then there is a graph F with H-lists and two specified vertices

p1, p2 ∈ V (F ) such that
1. L(p1) = S and L(p2) = NX ∪NY ,
2. for any list homomorphism ϕ : F → H, if ϕ(p1) ∈ X, then ϕ(p2) /∈ Y ,
3. for every v ∈ S, there is ψ : F → H, such that ψ(p1) = v and ψ(p2) = dv

2.
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4.3 Constructing a distinguisher gadget
The main tool in our hardness proof is a gadget called a distinguisher. Let H be an
undecomposable reflexive non-interval graph with obstruction O with non-adjacent corners
α, β. For an incomparable set S of H and two vertices a, b ∈ S, a distinguisher is a graph
Da/b with two specified vertices x, y and H-lists L, such that:
1. L(x) = S and L(y) = {α, β},
2. there is a list homomorphism φa : Da/b → H, such that φa(x) = a and φa(y) = α,
3. there is a list homomorphism φb : Da/b → H, such that φb(x) = b and φb(y) = β,
4. for any c ∈ S \ {a, b} there is φc : Da/b → H, such that φc(x) = c and φc(y) ∈ {α, β},
5. there is no list homomorphism φ : Da/b → H, such that φ(x) = a and φ(y) = β.

I Lemma 13 (Construction of distinguisher). Let H = (V,E) be an undecomposable reflexive
non-interval graph with obstruction O with two non-adjacent corners α, β. Let S be a
maximum incomparable set in H. Then for every ordered pair (a, b) of distinct elements of S
there exists a distinguisher Da/b.

Proof. Call Lemma 11 for H,S, a, b to obtain a partition (X,Y ) of S and walks Dv for every
v ∈ S. Let s be the length of each of these walks. By dv

j we denote the j-th vertex of Dv.
Let P be a path with s vertices p1, p2, . . . , ps. We set L(pj) =

⋃
v∈S{dv

j}. Observe that
by Lemma 11 we have s ≥ 2.

Next, call Lemma 12 to obtain a graph FP and unify its p1-vertex with p1 of P and its
p2-vertex with p2 of P . Observe that this unification preserves lists. Finally, we set x = p1
and y = ps. Let us verify that the graph constructed in such a way is indeed a distinguisher.
The first property holds by the definition of the walks Dv for v ∈ S. To show properties 2,3,
and 4, consider v ∈ S and set φv(pi) = dv

i for all i ∈ [s]. This mapping can be extended to
the vertices of FP by property 3 of Lemma 12.

Finally, let us show that property 5 holds as well. Assume for the sake of contradiction
that a list homomorphism φ : Da/b → H, such that φ(x) = a and φ(y) = β, exists. Observe
that φ(p1), φ(p2), . . . , φ(ps) is an a-β walk of length s in H, such that for every i ∈ [s] we
have φ(pi) ∈

⋃
v∈S{dv

2}. For all i ∈ [s], let Di denote a walk from {Dv : v ∈ S}, whose i-th
vertex is φ(pi) (if there is more than one such a walk, choose an arbitrary one). Observe that
D1 = Da is an α-walk. Let i be a minimum integer, such that Di is a β-walk. This value is
well-defined, as Ds is a β-walk. Thus there is an edge between the (i− 1)th vertex of the
α-walk Di−1 and the i-th vertex of the β-walk Di, so Di−1 does no avoid Di. Let u, v be
vertices such that Di−1 = Du and Di = Dv. If u, v ∈ X, or u ∈ Y and v ∈ X ∪ Y , then we
have a contradiction with property 3a in Lemma 11.

Thus assume that u ∈ X and v ∈ Y . If i ≥ 3, then again we have a contradiction with
property 3b in Lemma 11. Thus the only case left is i = 2. By property 2. in Lemma 12
we observe that dv

2 /∈ Y , and thus, by property 5 in Lemma 11, we conclude that v /∈ Y , a
contradiction. This completes the proof. J

4.4 Hardness proof
We are ready to prove to prove Theorem 9. Recall that Theorem 9 implies Theorem 2b).

Proof of Theorem 9. Let O be an obstruction in H and let α, β be non-adjacent corners of
O. Let S = {v1, v2, . . . , vk} be a maximum incomparable set in H. Note that we can assume
that k ≥ 3, since the corners of O are pairwise incomparable.

Suppose we are given a graph G along with its tree decomposition of width tw(G). The
main idea of our hardness proof is to construct a graph G∗ with H-lists L such that:
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(G∗, L)→ H if and only if G is k-colorable (in our construction the colors used on G will
correspond to vertices from S),
the number of vertices of G∗ is g(H) · (|V (G)|+ |E(G)|) for some function g of H,
the treewidth of G∗ is at most g(H) + tw(G),
G∗ can be constructed in time poly(|V (G)|) · g′(H) for some function g′.

Invoking Theorem 1, this will prove Theorem 9. The construction is performed in four steps.

Step 1. Constructing an indicator gadget. Fix i ∈ [k]. For j ∈ [k] \ {i}, we use Lemma
13 to construct a distinguisher gadget Dvi/vj

with two specified vertices xi,j and yi,j . The
number of constructed gadgets is thus k−1. We identify vertices xi,j for all j ∈ [k], let us call
this identified vertex xi. Moreover, introduce a new vertex ci. Now, using the construction
from Section 4.1 we introduce an ORk gadget and identify its specified vertices with distinct
vertices from Xi := {ci} ∪

⋃
j∈[k]\{i}{vi,j} (there are k vertices in this set). Let us call this

graph Ii (‘I’ stands for indicator).
The construction forces that in every list homomorphism f : Ii → H, at least one vertex

from Xi is mapped to β. Observe that:
for every f : Ii → H, if f(xi) = vi, then f(ci) = β.
for every j 6= i, there exist f ′, f ′′ : Ii → H, such that f ′(xi) = f ′′(xi) = vj and f ′(ci) = α

and f ′′(ci) = β.

Step 2. Constructing a half-edge gadget. Let us construct k indicator gadgets I1, I2, . . . ,

Ik. We identify the vertices x1, x2, . . . , xk, and call this vertex x. Call the resulting gadget a
half-edge. By the construction of indicators, we observe that for a half-edge F , the following
hold:

for every f : F → H, if f(x) = vi, then f(ci) = β,
for every i ∈ [k], and every tuple X ∈ {α, β}k, such that Xi = β, there exists f : F → H

such that f(x) = vi and f(cj) = Xj .

Step 3. Constructing an edge gadget. An edge gadget consists of two half-edge gadgets
F, F ′ (we will use primes to denote the vertices in F ′). Moreover, for every i ∈ [k], we
introduce a NAND2 gadget on vertices ci and c′i, which enforces that at least one of them
is mapped to α. We call the resulting graph an edge gadget. For an edge gadget FF we
observe the following:

for any f : FF → H, if f(x) = vi, then f(x′) 6= vi. Assume for contradiction that f(x) =
f(x′) = vi. Then by the construction of a half-edge, we observe that f(ci) = f(c′i) = β.
However, this is impossible by the definition of NAND2 gadget.
for any distinct i, j ∈ [k] there is g : FF → H such that g(x) = vi, and g(x′) = vj .
By the construction of a half-edge gadget, there is f : F → H, such that f(x) = vi,
f(ci) = β, and f(ci′) = α for every i′ 6= i (in particular, for i′ = j). Analogously, there
is f ′ : F ′ → H, such that f ′(x′) = vj , f ′(cj) = β and f ′(cj′) = α for every j′ 6= j . We
obtain g by combining f and f ′, and extending this partial homomorphism to vertices
of NAND2-gadgets. By the definition of these gadgets, it is possible, as for every i′ we
have f(ci′) = α or f ′(ci′) = α.

Observe that the construction so far was performed for H only. Let g(H) be the number of
vertices in an edge gadget.
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Step 4. Constructing G∗ and H-lists L. We start constructing G∗ by including the vertex
set V (G) of G to G∗(initially they are isolated vertices). For every edge uv of G, we introduce
an edge gadget, where x is unified with u and x′ is unified with v. By the construction of
edge gadget, we observe that for every v ∈ V (G) we have L(v) = S. Moreover, (G∗, L) is a
Yes-instance of LHom(H) if and only if G is k-colorable (we interpret mapping u to vi ∈ S
as coloring u with color i). Recall that the size of each edge gadget is g(H), thus the number
of vertices of G∗ is at most (|V (G)|+ |E(G)|) · g(H).

To see that the treewidth of G∗ is at most tw(G) + g(H), consider a tree decomposition
T of G with width tw(G). For every edge uv of G, we choose one bag Xuv of T , such
that u, v ∈ Xuv. Define a set X ′uv as the union of Xuv and the set of vertices of the edge
gadget corresponding to the edge uv. We extend T to a tree decomposition T ∗ of G∗, by
introducing a bag X ′uv for every edge uv of G and making it adjacent (in T ∗) to Xuv only. It is
straightforward to verify that T ∗ is a tree decomposition of G∗ of width at most tw(G)+g(H).
Moreover, it is clear that G∗ and L can be constructed in time g′(H) · poly(|V (G)|) for some
function g′. Thus, by Theorem 1, our claim holds. J
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