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Abstract

Kernelization algorithms are polynomial-time reductions
from a problem to itself that guarantee their output to
have a size not exceeding some bound. For example, d-Set
Matching for integers d ≥ 3 is the problem of �nding a
matching of size at least k in a given d-uniform hypergraph
and has kernels with O(kd) edges. Recently, Bodlaender
et al. [ICALP 2008], Fortnow and Santhanam [STOC
2008], Dell and Van Melkebeek [STOC 2010] developed a
framework for proving lower bounds on the kernel size for
certain problems, under the complexity-theoretic hypothesis
that coNP is not contained in NP/poly. Under the same
hypothesis, we show lower bounds for the kernelization of
d-Set Matching and other packing problems.

Our bounds are tight for d-Set Matching: It does not
have kernels with O(kd−ε) edges for any ε > 0 unless the
hypothesis fails. By reduction, this transfers to a bound of
O(kd−1−ε) for the problem of �nding k vertex-disjoint cliques
of size d in standard graphs. It is natural to ask for tight
bounds on the kernel sizes of such graph packing problems.
We make �rst progress in that direction by showing non-
trivial kernels with O(k2.5) edges for the problem of �nding
k vertex-disjoint paths of three edges each. This does not
quite match the best lower bound of O(k2−ε) that we can
prove.

Most of our lower bound proofs follow a general scheme

that we discover: To exclude kernels of size O(kd−ε) for a

problem in d-uniform hypergraphs, one should reduce from

a carefully chosen d-partite problem that is still NP-hard.

As an illustration, we apply this scheme to the vertex cover

problem, which allows us to replace the number-theoretical

construction by Dell and Van Melkebeek [STOC 2010] with

shorter elementary arguments.

1 Introduction

Algorithms based on kernelization play a central role
in �xed-parameter tractability and perhaps this kind
of parameterized algorithms has the most relevance to
practical computing. Recall that a problem is �xed-
parameter tractable parameterized by some parameter
k of the instance if it can be solved in time f(k) ·
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nO(1) for some computable function f depending only
on the parameter k (see [DF99, FG06, Nie06]). A
kernelization algorithm for a problem P is a polynomial-
time algorithm that, given an instance x of the problem
P with parameter k, creates an equivalent instance x′

of P such that the size of x′ is bounded from above
by a function f(k). For example, the classical result
of Nemhauser and Trotter [NT74] can be interpreted
as a kernelization algorithm that, given an instance of
Vertex Cover, produces an equivalent instance on at
most 2k vertices, which implies that it has at most

(
2k
2

)
edges. A kernelization algorithm can be thought of as
preprocessing that creates an equivalent instance whose
size has a mathematically provable upper bound that
depends only on the parameter of the original instance
and not on the size of the original instance. Practical
computing often consists of a heuristic preprocessing
phase to simplify the instance followed by an exhaustive
search for solutions (by whatever method available).
Clearly, it is desirable that the preprocessing shrinks the
size of the instance as much as possible. Kernelization is
a framework in which the e�ciency of the preprocessing
can be studied in a rigorous way.

One can �nd several examples in the parameter-
ized complexity literature for problems that admit a ker-
nel with relatively small sizes, i.e., for problems where
f(k) is polynomial in k. There are e�cient techniques
for obtaining such results for particular problems (e.g.,
[Tho10, Guo09, CFJ04, LMS11, FFL+09]). Some of
these techniques go back to the early days of param-
eterized complexity and have been re�ned for several
years. More recently, general abstract techniques were
developed that give us kernelization results for several
problems at once [FLST10, BFL+09].

Bodlaender et al. [BDFH09] recently developed
a framework for showing that certain parameterized
problems are unlikely to have kernels of polynomial
size, and Fortnow and Santhanam [FS08] proved the
connection with the complexity-theoretic hypothesis
coNP 6⊆ NP/poly. In particular, for several ba-
sic problems, such as �nding a cycle of length k, a
kernelization with polynomial size would imply that
coNP ⊆ NP/poly. The framework of Bodlaender et
al. [BDFH09] has lead to a long series of hardness results
showing that several concrete problems with various



parameterizations are unlikely to have kernels of poly-
nomial size [CFM11, BTY09, DLS09, FFL+09, KW10,
KW09, KMW10, BJK11b, BJK11a, MRS11].

More recently, Dell and Van Melkebeek [DvM10]
re�ned the complexity results of [FS08, BDFH09] to
prove conditional lower bounds also for problems that
do admit polynomial kernels. For example, they show
that Vertex Cover does not have kernels of size
O(k2−ε) unless the hypothesis coNP 6⊆ NP/poly, which
is the same as above, fails. Similar lower bounds are
given for several other graph covering problems where
the goal is to delete the minimum number of vertices
in such a way that the remaining graph satis�es some
prescribed property. Many of the lower bounds are tight
as they match the upper bounds of the best known
kernelization algorithms up to an arbitrarily small ε
term in the exponent.

In the present paper, we also obtain kernel lower
bounds for problems that have polynomial kernels, but
the family of problems that we investigate is very dif-
ferent: packing problems. Covering and packing prob-
lems are dual to each other, but there are signi�cant
di�erences in the way they behave with respect to
�xed-parameter tractability. For example, techniques
such as bounded search trees or iterative compression
are mostly speci�c to covering problems, while tech-
niques such as color coding are mostly speci�c to pack-
ing problems. Feedback Vertex Set is the prob-
lem of covering all cycles and has kernels with O(k2)
edges [Tho10, DvM10], while its packing version is the
problem of �nding k vertex-disjoint cycles and is un-
likely to have polynomial kernels [BTY09]. Therefore,
the techniques for understanding the kernelization com-
plexity of covering and packing problems are expected
to di�er very much. Indeed the proofs in [DvM10] for
the problem of covering sets of size d cannot be straight-
forwardly adapted to the analogous problem of packing
sets of size d.

Our contributions are twofold. First, we obtain
lower bounds on the kernel size for packing sets and
packing disjoint copies of a prescribed subgraph H. An
example of the latter is the problem of �nding k vertex-
disjoint d-cliques in a given graph. For packing sets, our
lower bound is tight, while determining the best possible
kernel size for graph packing problems with every �xed
H remains an interesting open question. Fully resolving
this question would most certainly involve signi�cantly
new techniques both on the complexity and the algorith-
mic side. To indicate what kind of di�culties we need
to overcome for the resolution of this question, we show
kernels with O(k2.5) edges for the problem of packing k
vertex-disjoint paths on four vertices.

Secondly, the techniques used in our lower bounds

are perhaps as important as the concrete results them-
selves. We present a simple and clean way of obtain-
ing lower bounds of the form O(kd−ε). Roughly speak-
ing, the idea is to reduce from an appropriate d-partite
problem by observing that if we increase the size of the
universe by a factor of t1/d, then we can conveniently
pack together t instances. A similar e�ect was achieved
in [DvM10], but it used a combinatorial tool called the
Packing Lemma, whose proof uses nontrivial number-
theoretical arguments. As a demonstration, we show
that our scheme allows us to obtain the main kernel-
ization results of [DvM10] with very simple elementary
techniques. Furthermore, this scheme proves to be very
useful for packing problems, even though in one of our
lower bounds it was easier to invoke the Packing Lemma.
It seems that both techniques will be needed for a com-
plete understanding of graph packing problems.

1.1 Results. The matching problem in d-uniform
hypergraphs, d-Set Matching, is to decide whether
a given hypergraph has a matching of size k, i.e., a set
of k pairwise disjoint hyperedges. Correspondingly, the
Perfect d-Set Matching problem is to �nd a perfect
matching, i.e., a matching with k = n/d where n is the
number of vertices. Fellows et al. [FKN+08] show that
d-Set Matching has kernels with O(kd) hyperedges.

Theorem 1.1 ([FKN+08]). The problem d-Set
Matching has kernels with O(kd) hyperedges.

In Appendix A, we sketch a straightforward but in-
structive proof of this fact using the sun�ower lemma
of Erd®s and Rado [ER60]. Our main result is that the
kernel size above is asymptotically optimal under the
hypothesis coNP 6⊆ NP/poly.

Theorem 1.2. Let d ≥ 3 be an integer and ε a positive
real. Then Perfect d-Set Matching does not have
kernels of size O(kd−ε) unless coNP ⊆ NP/poly.

Since Perfect d-Set Matching is a special case of
d-Set Matching, the lower bound applies to that
problem as well and it shows that the upper bound in
Theorem 1.1 is asymptotically tight.

A particularly well-studied special case of set
matching is when the sets are certain �xed subgraphs
(e.g., triangles, cliques, stars, etc.) of a given graph.
We use the terminology of Yuster [Yus07], who surveys
graph theoretical properties of such graph packing prob-
lems. Formally, an H-matching of size k in a graph G is
a collection of k vertex-disjoint subgraphs of G that are
isomorphic to H. The problem H-Matching is to �nd
an H-matching of a given size in a given graph. Both
problems are NP-complete whenever H contains a con-
nected component with more than two vertices [KH78]
and is in P otherwise.



The kernelization properties of graph packing
problems received a lot of attention in the litera-
ture (e.g., [Mos09, FHR+04, PS06, FR09, WNFC10,
MPS04]). H-Matching can be expressed as a d-Set
Matching instance with O(kd) edges (where d :=
|V (H)|) and therefore Theorem 1.1 implies a kernel of
size O(kd). In the particularly interesting special case
when H is a clique Kd, we use a simple reduction to
transfer the above theorem to obtain a lower bound for
Kd-Matching.

Theorem 1.3. Let d ≥ 4 be an integer and ε a positive
real. Then Kd-Matching does not have kernels of size
O(kd−1−ε) unless coNP ⊆ NP/poly.

An upper bound of size O(kd) follows forKd-Matching

from Theorem 1.1. This does not quite match our
conditional lower bounds of O(kd−1−ε), and it is an
interesting open problem to make the bounds tight.

The H-Factor problem is the restriction of H-
Matching to the case k = n/d, i.e., the goal is to �nd
an H-matching that involves all vertices. Unlike the
case of matching d-sets, where we had the same bounds
for Perfect d-Set Matching and d-Set Matching,
we cannot expect that the same bounds hold always for
H-Matching and H-Factor. The reason is that for
H-Factor there is a trivial O(k2) upper bound on the
kernel size for every graph H: an n-vertex instance has
size O(n2) and we have k = Θ(n) by the de�nition of
H-Factor. We show that this bound is tight for every
NP-hard H-Factor problem. Thus, we cannot reduce
H-Factor to sparse instances. The proof of this result
is based on the Packing Lemma of [DvM10].

Theorem 1.4. Let H be a connected graph with d ≥ 3
vertices and ε a positive real. Then H-Factor does not
have kernels of size O(k2−ε) unless coNP ⊆ NP/poly.

Obviously, Theorem 1.4 gives a lower bound for the
more general H-Matching problem. In particular, it
proves the missing d = 3 case in Theorem 1.3.

Obtaining tight bounds for H-Matching seems to
be a challenging problem in general. As Theorem 1.3
shows in the case of cliques, the lower bound of O(k2−ε)
implied by Theorem 1.4 is not always tight. We
demonstrate that the upper bound of O(k|V (H)|) is not
always tight either. A simple argument shows that if H
is a star of arbitrary size, then a kernel of size O(k2) is
possible, which is tight by Theorem 1.4. Furthermore,
if H is a path on 3 edges, then a surprisingly nontrivial
extremal argument gives us the following.

Theorem 1.5. P3-Matching has kernels with O(k2.5)
edges.

The examples of cliques, stars, and paths show that the
exact bound on the kernel size of H-Matching for a

particular H could be very far from the weak O(k|V (H)|)
upper bound or the weak O(k2−ε) lower bound (Theo-
rem 1.4). Full understanding of this question seems to
be a very challenging, yet very natural problem. Our
proof of Theorem 1.5 might indicate what kind of com-
binatorial problems we have to understand for a full
solution.

After obtaining our results, we learnt that Hermelin
and Wu [HW11] also achieved kernel lower bounds for
packing problems using the paradigm of Lemma 2.1.
In particular, their bound for d-Set Matching is
O(kd−3−ε) and it is O(kd−4−ε) for Kd-Matching.

2 Techniques

The OR of a language L is the language OR(L) that
consists of all tuples (x1, . . . , xt) for which there is an
i ∈ [t] with xi ∈ L. Instances x = (x1, . . . , xt) for
OR(L) have two natural parameters: the length t of
the tuple and the maximum bitlength s = maxi |xi| of
the individual instances for L. The following lemma
captures the method that was used in [DvM10] to prove
conditional kernel lower bounds.

Lemma 2.1. Let Π be a problem parameterized by k
and let L be an NP-hard problem. Assume that there
is a polynomial-time mapping reduction f from OR(L)
to Π and a number d > 0 with the following property:
given an instance x = (x1, . . . , xt) for OR(L) in which
each xi has size at most s, the reduction produces an
instance f(x) for Π whose parameter k is at most
t1/d+o(1) · poly(s).

Then L does not have kernels of size O(kd−ε) for
any ε > 0 unless coNP ⊆ NP/poly.

Bodlaender et al. [BDFH09] formulated this method
without the dependency on t. This su�ces to prove
polynomial kernel lower bounds since d can be cho-
sen as an arbitrarily large constant. It was observed
in [DvM10] that the proofs in [BDFH09, FS08] can be
easily adapted to obtain the formulation above, and that
it can be generalized to an oracle communication set-
ting.

We now informally explain a simple scheme for
proving kernel lower bounds of the form O(kd−ε) for
a parameterized problem Π. Lemma 2.1 requires us to
devise a reduction from OR(L) (for some NP-hard lan-
guage L) to Π whose output instances have parameter k
at most t1/d · poly(s). We carefully select a problem L
whose de�nition is d-partite in a certain sense, and we
design the reduction from OR(L) to Π using the gen-
eral scheme described. Most problem parameters can be
bounded from above by the number of vertices; there-
fore, what we need to ensure is that the number of ver-
tices increases roughly by at most a factor of t1/d.



For simplicity of notation, we informally describe
the case d = 2 �rst. We assume that L is a bipartite
problem, meaning that each instance is de�ned on two
sets U and W , and �nothing interesting is happening
inside U or inside W .� We construct the instance of
Π by taking

√
t copies of U and

√
t copies of W . For

every copy of U and every copy of W , we embed one of
the t instances appearing in the OR(L) instance. This
way, we can embed

√
t ·
√
t = t instances, as required.

The fact that L is a bipartite problem helps ensuring
that two instances of L sharing the same copy of U or
the same copy of W do not interfere. A crucial part
of the reduction is to ensure that every solution of the
constructed instance can use at most one copy of U and
at most one copy ofW . If we can maintain this property
(using additional arguments or introducing gadgets),
then it is usually easy to show that the constructed
instance has a solution if and only if at least one of
the
√
t ·
√
t instances appearing in its construction has

a solution.
For d > 2, the scheme is similar. We start with a d-

partite problem L and make t1/d copies of each partition
class. Then there are (t(1/d))d = t di�erent ways of
selecting one copy from each class, and therefore we can
compose together t instances following the same scheme.

As a speci�c example, let us consider Π =
Vertex Cover in graphs, where we have d = 2. We
demonstrate that the lower bound for this problem can
be proved elegantly if we make the not completely ob-
vious choice of selecting L to be Multicolored Bi-

clique:

Input: A bipartite graph B on the vertex set U ∪̇W ,
an integer k, and partitions U = (U1, . . . , Uk) and
W = (W1, . . . ,Wk).

Decide: Does B contain a biclique Kk,k that has one
vertex from each Ua and Wa (1 ≤ a ≤ k)?

This is a problem on bipartite graphs and NP-complete
as we prove in Appendix B.

Theorem 2.1 ([DvM10]).Vertex Cover does not
have kernels of size O(k2−ε) unless coNP ⊆ NP/poly.

Proof. We apply Lemma 2.1 where we set
L = Multicolored Biclique. Given an instance
(B1, . . . , Bt) for OR(L), we can assume that every
instance Bi has the same number k of groups in the
partitions and every group in every instance Bi has the
same size n: by simple padding, we can achieve this
property in a way that increases the size of the OR(L)
instance by at most a polynomial factor. Furthermore,
we can assume that

√
t is an integer. In the following,

we refer to the t instances of Multicolored Biclique

in the OR(L) instance as B(i,j) for 1 ≤ i, j ≤
√
t; let

U(i,j) and W(i,j) be the two bipartite classes of B(i,j).
First, we modify each instance B(i,j) in such a way

that U(i,j) andW(i,j) become complete k-partite graphs:
if two vertices U(i,j) or two vertices in W(i,j) are in
di�erent groups, then we make them adjacent. It is
clear that there is a 2k-clique in the new graph B′(i,j) if
and only if there is a correctly partitionedKk,k in B(i,j).

We construct a graph G by introducing 2
√
t sets

U1, . . . , U
√
t, W 1, . . . , W

√
t of kn vertices each. For

every 1 ≤ i ≤ j ≤
√
t, we copy the graph B′(i,j) to

the vertex set U i ∪ W j by mapping U(i,j) to U i and
W(i,j) to W j . Note that U(i,j) and W(i,j) induces the
same complete k-partite graph in B′(i,j) for every i and j,

thus this copying can be done in such a way that G[U i]
receives the same set of edges when copying B′(i,j) for

any j (and similarly for G[W j ]). Therefore, G[U i∪W j ]
is isomorphic to B′(i,j) for every 1 ≤ i, j ≤

√
t.

We claim that G has a 2k-clique if and only if
at least one B′(i,j) has a 2k-clique (and therefore at

least one B(i,j) has a correctly partitioned Kk,k). The
reverse direction is clear, as B′(i,j) is a subgraph of G by
construction. For the forward direction, observe that
G has no edge between U i and U i

′
, and between W j

and W j′ for any i 6= i′ or j 6= j′. Therefore, the 2k-
clique of G is fully contained in G[U i ∪W j ] for some
1 ≤ i, j ≤

√
t. As G[U i ∪W j ] is isomorphic to B′(i,j),

this means that B′(i,j) also has a 2k-clique.
Let N = 2

√
t · kn be the number of vertices in G.

Note that N = t1/2 · poly(s), where s is the maximum
bitlength of the t instances in the OR(L) instance. The
graph G has a 2k-clique if and only if its complement
G has a vertex cover of size N − 2k. Thus OR(L)
can be reduced to an instance of Vertex Cover with
parameter at most t1/2 · poly(s), as required. �

In Appendix C, we transfer the above ideas to the vertex
cover problem for d-uniform hypergraphs.

3 Kernelization of the Set Matching Problem

The d-Set Matching problem is to �nd a maximum
collection of hyperedges in a d-uniform hypergraph such
that any two hyperedges are disjoint. For d = 2, this is
the maximum matching problem and polynomial-time
solvable. The restriction of this problem to d-partite
hypergraphs is the d-dimensional matching problem and
NP-hard [Kar72] for d ≥ 3.

We use Lemma 2.1 to prove that the kernel size
in Theorem 1.1 is asymptotically optimal under the
hypothesis coNP 6⊆ NP/poly. For the reduction,
we use gadgets with few vertices that coordinate the
availability of groups of vertices. For example, we may



have two sets U1, U2 of vertices and our gadget makes
sure that in every perfect packing of the graph one set
is fully covered by the gadget while the other group
has to be covered by hyperedges of the graph external
to the gadget. Ultimately, this enables us to choose
between di�erent instances in the OR-problem. The
precise formulation of the gadget is as follows.

Lemma 3.1. Let d ≥ 3, m ≥ 1, and s ≥ 1 be
integers. In time polynomial in d,m, s, we can compute
a d-uniform hypergraph S with O(dsm) vertices and
pairwise disjoint sets U1(S), . . . , Um(S) ⊂ V (S) of size s
each, such that the following conditions hold.

(i) (Completeness) For each i, S − Ui has a perfect
matching.

(ii) (Soundness) If S is a subgraph of some G and the
vertices of S − (U1 ∪ · · · ∪ Um) are only contained
in edges of S, then every perfect matching of G
contains a perfect matching of S − Ui for some i.

(iii) The underlying graph of S (the graph obtained by
replacing the d-hyperedges of S by d-cliques) does
not contain a clique of size d + 1 and it contains⋃
i Ui as an independent set.

In addition to the completeness and the soundness
properties that make the gadget work the way we want,
we also have a structural property (iii), which we need
later when we transfer our results toKd-matching. We
defer the proof of Lemma 3.1 to the end of this section
and use it now to prove the following.

Lemma 3.2. For any integer d ≥ 3, there is a
≤pm-reduction from OR(d-Set Matching) to d-Set
Matching that maps t-tuples of instances of bitlength
s each to instances on t1/d · poly(s) vertices whose un-
derlying graph does not contain a clique of size d+ 1.

Proof. Let G1, . . . , Gt be instances of d-Set Match-

ing, i.e., d-uniform hypergraphs of size s each. Finding
perfect matchings in d-partite d-uniform hypergraphs is
NP-hard for d ≥ 3, so we can assume w.l.o.g. that the
Gi's are d-partite and each part of the partition contains
exactly s/d vertices. The goal is to �nd out whether
some Gi contains a perfect matching. We reduce this
question to an instance G on few vertices.

The vertex set of G consists of d · t1/d groups of
n/d vertices each, i.e., V (G) =

⋃
a,b Va,b for a ∈ [d] and

b ∈ [t1/d]. Then we can write the input graphs as Gb
using an index vector b = (b1, . . . , bd) ∈ [t1/d]d. For
each graph Gb we add edges to G in the following way:
We identify the vertex set of Gb with V1,b1 ∪̇ . . . ∪̇ Vd,bd

,
and we let G contain all the edges of Gb. Since each
Gb is d-partite, the same is true for G at this stage

of the construction. Now we modify G such that each
perfect matching of G only ever uses edges originating
from at most one graph Gb. For this it su�ces to
add a gadget for every a ∈ [d] that blocks all but
exactly one group Va,b in every perfect matching. For
each a ∈ [d], we add a copy Sa of S(Va,1, . . . , Va,m)
from Lemma 3.1 to G, where m = t1/d. Clearly,
|V (G)| ≤ O(st1/d). Furthermore, the underlying graph
of G does not contain a clique of size d+ 1 as the graph
restricted to

⋃
a,b Va,b is d-partite and the gadgets do not

contain cliques of size d+ 1 in their underlying graph.
Now we verify the correctness of the reduction. If

some Gb has a perfect matching then the completeness
property of Sa ensures that Sa − Va,ba has a perfect
matching for all a ∈ [d]. Together with the perfect
matching of Gb this gives a perfect matching of G. For
the soundness, assume M is a perfect matching of G.
Then each Sa is guaranteed to have a ba such that
M contains a perfect matching of Sa − Va,ba

. Since
Va,ba is an independent set in Sa, M uses only edges of
Gb to cover the Va,ba . In particular, Gb has a perfect
matching. �

Theorem 1.2, our kernel lower bound for d-Set Match-

ing, now follows immediately by combining the above
with Lemma 2.1.

3.1 Proof of Lemma 3.1. We use cycles as building
blocks in the gadget constructions. A loose cycle of
length ` in a d-uniform hypergraph is a sequence C =
v1, e1, v2, e2, . . . , v`, e` with the property that ei∩ei+1 =
{vi+1} and ei∩ej = ∅ if i 6∈ {j−1, j, j+1}. The indices
are always understood modulo `. The vertices v1, . . . , v`
are the connection vertices, whereas all other vertices
are free vertices of the cycle. Our �rst lemma, which
allows us to coordinate two sets of vertices.

Lemma 3.3. Let d ≥ 3 and s ≥ 1 be integers. Let C =
v1, e1, v2, e2, . . . , v2s, e2s be a loose cycle of d-hyperedges
as depicted in Figure 1 for s = 3. We de�ne U1(C) =⋃
i even ei \ {vi, vi+1} and U2(C) =

⋃
i odd ei \ {vi, vi+1}.

Then

(i) (Completeness) C − U1 and C − U2 have a perfect
matching.

(ii) (Soundness) If C is a subgraph of some G and the
vertices of C−(U1∪U2) are only contained in edges
of C, then every perfect matching of G contains a
perfect matching of C − Ui for some i.

Proof. For the completeness, {e2i+1} forms a perfect
matching of C −U1 and {e2i} forms a perfect matching
of C − U2. For the soundness, the only way to cover
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Figure 1: Left: An even cycle gadget with d = 3, s = 3,
U1 = {1, 3, 5}, and U2 = {2, 4, 6}. Black vertices are free
vertices, and gray vertices are connection vertices that
are not supposed to be adjacent to any other vertex of
the outside graph. Right: Pictorial abbreviation of the
graph on the left. By Lemma 3.3, any perfect matching
blocks exactly the vertices in one of the halves using
edges of the gadget.

a vertex vi of C is to pick one of its two incident
hyperedges. Since C is an even cycle, the two ways
of doing this for all such vertices in a consistent way are
as in the completeness step. �

We use the above gadget with two choices to construct
the gadget in Lemma 3.1, which forces perfect match-
ings to choose properly between m sets of vertices.

Proof (of Lemma 3.1). We construct a coordination
gadget S as depicted in Figure 2 as follows:

1. We start with s disjoint odd cycles: loose cycles
C1, . . . , Cs of length 2m + 1 each. We denote the
vertices in these cycles with ci,j and the edges with
Ci,j , i.e.,

Ci = ci,1, Ci,1, ci,2, Ci,2, . . . , ci,2m+1, Ci,2m+1.

Let C =
⋃
i,j Ci,j \{ci,j , ci,j+1} be the set of all free

vertices in these cycles.

2. We de�ne Uj(S) = {c1,2j , . . . , cs,2j} for all j ∈ [m].

3. We add 2m + 1 disjoint even cycles: loose cycles
F1, . . . , F2m+1 of length 2s as in Lemma 3.3. We
denote the vertices in these cycles with fj,i and the
edges with Fj,i, i.e.,

Fj = fj,1, Fj,1, fj,2, Fj,2, . . . , fj,2s, Fj,2s.

We identify
⋃
j U1(Fj) and C in such a way that

(3.1)
Fj,2i \ {fj,2i, fj,2i+1} = Ci,j \ {ci,j , ci,j+1} .

Let F =
⋃
j,i Fj,i \{fj,i, fj,i+1} be the set of all free

vertices in the even cycles.

C1

C2

Cs
A11

A21

A31

A12

A22

A32

A13

A23

A33

F1

F3

F4F2

F5

Figure 2: A coordination gadget as in Lemma 3.1 for
d = 3, s = 3 and m = 2. All vertices are drawn, and
all edges of the odd cycles Ci. The boxes for the Fj
represent even cycle gadgets from Figure 1. All edges
between the Ak,` and F4 are drawn, but all other edges
incident to the Ak,` are omitted. They attach to the
other Fj 's in the same fashion.

4. For j ∈ [2m + 1], enumerate the vertices
vj,1, . . . , vj,(d−2)s of U2(Fj) = V (Fj) ∩ F \ C ar-
bitrarily. For each k ∈ [(d − 2)s] and ` ∈ [m + 1],
add a set Ak,` of |Ak,`| = d − 1 fresh vertices and
add the �saturation� hyperedges Ak,` ∪ {vj,k} to S
for all choices of j ∈ [2m+ 1].

This �nishes the construction of S. First we show (iii).
For this we consider the underlying graph and assume
for contradiction that T is a clique of size d+ 1. By the
way S was constructed, and in particular by (3.1), each
hyperedge of S intersects at most one set of free vertices
that belongs to some cycle edge, so any two vertices from
distinct sets of free vertices must be non-adjacent in the
underlying hypergraph. To reach a contradiction, we
distinguish two cases.

Case 1: T contains a vertex v ∈ Ak,` for some k, `.
Since v's only neighbors are the d − 2 other vertices of
Ak,` and the vertices vj,k, T contains vj,k and vj′,k for
j 6= j′. However, these vertices are not adjacent since
they belong to di�erent even cycles.

Case 2: T contains only vertices of the cycles. Then
T must contain a connection vertex v of one of the cycles
since any free vertex is adjacent to at most d− 3 other
free vertices. The vertex v is adjacent to exactly 2d− 2
vertices, and so T contains a free vertex w in the edge
before v and w′ in the edge after v in the respective
cycle. By the above, w and w′ are not adjacent.

This shows that the underlying graph does not



contain a (d+1)-clique. For the second part, we observe
that

⋃
i∈[m] Ui is the set of connection vertices at even

positions of the odd cycles, so they are pairwise non-
adjacent.

For the completeness, we construct a perfect match-
ing of S − Uj0(S) for each j0 ∈ [m]. We de�ne the set
of indices
(3.2)

J =
{

2j0 + 2j
∣∣∣ j = 0, . . . ,m

}
.

We use the completeness of the even cycle gadgets and
take a perfect matching of Fj that covers U1(Fj) for
all j ∈ J , and one that covers U2(Fj) for the m other
choices j ∈ [2m + 1] \ J . This is consistent since the
even cycles are disjoint. In each odd cycle Ci, we pick
the edges Ci,j into the matching for j ∈ [2m+1]\J . This
is consistent because these edges do not contain a vertex
of Uj0(S) or of U1(Fj) for j ∈ J , and we never take two
consecutive edges. Furthermore, we have covered all
vertices of C−Uj0(S). Indeed, the only vertices not yet
covered are the U2(Fj) = {vj,1, . . . , vj,(d−2)s} for j ∈ J
and the vertices of the Ak,`. For each k ∈ [(d − 2)s]
and j ∈ J , we cover the vertex vj,k using a saturation
edge with some Ak,`. This is possible and covers all Ak,`
since each k has exactly |J | = m + 1 disjoint groups of
Ak,`. Now all vertices of S−Uj0 are covered by a perfect
matching.

For the soundness, the claim is that any perfect
matching of G has some j0 such that Uj0 is not covered
in the matching by edges of S, whereas all other vertices
of S are. Let M be a perfect matching of G. The
soundness of the even cycle gadgets guarantees that
exactly one of U1(Fj) and U2(Fj) are covered with edges
of Fj . Let J be the set of indices j for which U1(Fj)
and not U2(Fj) is covered by the edges of Fj . The only
way that M can cover the vertices U2(Fj) for j ∈ J
is by using |U2(Fj)| = (d − 2)s edges with the Ak,`'s.
Since there are only m+ 1 such edges available for any
given k, we have |J | = m + 1. The only way that M
can cover the free vertices of Ci,j for j ∈ [2m + 1] \ J
is by picking Ci,j into M . Since M does not contain
consecutive edges of Ci and J contains m+ 1 elements
of [2m+ 1], this means that J must be of the form (3.2)
for some j0. Hence Uj(S) for j 6= j0 is covered in M by
edges of the odd cycles and no vertex of Uj0 is covered
in M by edges of S. �

4 Kernel Lower Bounds for Graph Matching
Problems

For a graph H, the H-matching problem is to �nd a
maximal number of vertex-disjoint copies ofH in a given
graph G. This problem is NP-complete whenever H
contains a connected component with more than two

vertices [KH78] and is in P otherwise.

4.1 Clique Packing. We prove Theorem 1.3, that
Kd-Matching for d ≥ 4 does not have kernels of
size O(kd−1−ε) unless coNP ⊆ NP/poly. For this,
we devise a parameter-preserving reduction from the
problem of �nding a perfect matching in a (d − 1)-
uniform hypergraph whose underlying graph does not
contain a d-clique.

Lemma 4.1. Let d ≥ 4 be an integer. There is a
≤pm-reduction from (d− 1)-Set Matching in (d− 1)-
uniform hypergraphs whose underlying graph does not
contain a clique of size d to Kd-Matching that does
not change the parameter k.

Proof. Let G be a (d − 1)-uniform hypergraph on n
vertices without d-clique in its underlying graph. For
each edge e of G, we add a new vertex ve and transform
e ∪ {ve} into a d-clique in G′. We claim that G has
a matching of size k := n/(d − 1) if and only if G′

has a Kd-matching of size k. The completeness is clear
since any given matching of G can be turned into a
Kd-matching of G′ by taking the respective d-clique
for every (d − 1)-hyperedge. For the soundness, let G′

contain a Kd-matching of size k. Note that any d-clique
of G′ uses exactly one vertex ve since the underlying
graph of G does not contain any d-cliques and since no
two ve's are adjacent. Thus every d-clique of G′ is of
the form e ∪ {ve}, which gives rise to a matching of G
of size k. �

This combined with Lemma 2.1 and Lemma 3.2 implies
Theorem 1.3

4.2 General Graph Matching Problems. We
prove Theorem 1.4, that H-factor does not have ker-
nels of size O(k2−ε) unless coNP ⊆ NP/poly, whenever
H is a connected graph with at least three vertices. In
particular, this implies the missing case d = 3 of Kd-

Matching.
We use the coordination gadget of Lemma 3.1 in a

reduction from a suitable OR-problem toH-Matching.
To do so, we translate the coordination gadget for
Perfect d-Set Matching to H-factor, which we
achieve by replacing hyperedges with the following
hyperedge-gadgets of [KH78].

Lemma 4.2. Let H be a connected graph on d ≥ 3
vertices. There is a graph e = e(v1, . . . , vd) that contains
{v1, . . . , vd} as an independent set such that, for all
S ⊆ {v1, . . . , vd}, the graph e − S has an H-factor if
and only if |S| = 0 or |S| = d.



Figure 3: Hyperedge gadgets for di�erent H-matching
problems. The outermost, black vertices are the vertices
of the simulated hyperedge and the gray vertices are
not supposed to be adjacent to any other vertex of
the graph. Left: Triangle matching. Middle: 3-
Path matching. Right: The general case; each circle
represents a copy of H.

Proof. Let v be a vertex of H. We construct e as in
Figure 3. We start with one central copy of H. For
each vertex u ∈ [d] = V (H), we create a new copy Hu

of H and denote its copy of v by vu. Finally, we add
an edge between u ∈ H and w ∈ (Hu − vu) if vuw is an
edge of Hu.

For the claim, assume that 0 < |S| < d. Then
|V (e − S)| is not an integer multiple of d = |V (H)|
and there can be no H-factor in e − S. For the other
direction, assume that |S| = 0. Then the subgraphs Hu

for u ∈ [d] and H are d + 1 pairwise disjoint copies of
H in e and form an H-factor of e. In the case |S| = d,
we observe that the d subgraphs (Hu − vu) ∪ {u} form
an H-factor of e− S = e− {v1, . . . , vd}. �

For the proof of the H-Packing kernel lower
bounds, we need the Packing Lemma.

Lemma 4.3 (Packing Lemma [DvM10]). For any
integers p ≥ d ≥ 2 and t > 0 there exists a p-partite
d-uniform hypergraph P on O

(
p · max(p, t1/d+o(1))

)
vertices such that

(i) the hyperedges of P partition into t cliques
K1, . . . ,Kt on p vertices each, and

(ii) P contains no cliques on p vertices other than
the Ki's.

Furthermore, for any �xed d, the hypergraph P and the
Ki's can be constructed in time polynomial in p and t.

The chromatic number χ(H) is the minimum number
of colors required in a proper vertex-coloring of H. The

proof of [KH78] shows that H-Factor is NP-complete
even in case we are looking for an H-factor in χ(H)-
partite graphs. We are going to make use of that in the
following reduction.

Lemma 4.4. There is a ≤pm-reduction from
OR(H-Factor) to H-Factor that maps t-tuples
of instances of size s each to instances that have at

most
√
t
1+o(1) · poly(s) vertices.

Proof. Let p = χ(H) be the chromatic number of H.
For an instance G1, . . . , Gt of OR(H-Factor), we can
assume w.l.o.g. that the Gi are p-partite graphs with n
vertices in each part. We construct a graph G that has
an H-factor if and only if some Gi has an H-factor.
For this, we invoke the Packing Lemma, Lemma 4.3,
with d = 2, and we obtain a p-partite graph P that
contains t cliques K1, . . . ,Kt on p vertices each. We
identify the vertex set of Gi with V (Ki)× [n] injectively
in such a way that vertices in the same color class have
the same �rst coordinate. We de�ne an intermediate
p-partite graph G′ on the vertex set V (P ) × [n] as
G′ = G1 ∪ · · · ∪ Gt. To obtain G from G′, we add p

coordination gadgets of Lemma 3.1 with m =
√
t
1+o(1)

and d = p. For each color class C ⊂ V (G′), we add a
coordination gadget where the Ui ⊂ C are those vertices
that project to the same vertex in P . Finally, we replace
each p-hyperedge by the gadget in Lemma 4.2, which
�nishes the construction of G.

For the completeness of the reduction, assume Gi
has an H-factor M . To construct an H-factor of G,
we start by using M to cover the vertices V (Gi) in G.
The completeness of the coordination gadgets guaran-
tees that we �nd a perfect matching in the d-uniform
hypergraph G′ − V (Gi) that uses only hyperedges of
the coordination gadgets. By Lemma 4.2, this gives rise
to an H-factor of G.

For the soundness, assume we have an H-factor M
of G. Lemma 4.2 guarantees that the edge gadgets can
be seen as p-hyperedges in the intermediate graph G′.
Soundness of the coordination gadgets guarantees that
M leaves exactly one group free per part. Now let H ′

be a copy of H that is contained in G but not in any
of the gadgets. Since H ′ has chromatic number p, H ′

intersects all p parts and has an edge between any two
distinct parts. By construction of G, this implies that
the projection of H onto P is a clique. By the packing
lemma, this clique is one of the Ki's. Therefore, each
H ′ of the H-factorM that is not in one of the gadgets is
contained in Gi, which implies that Gi has an H-factor.

The claim follows since G is a graph on√
t
1+o(1)

poly(s) vertices that has an H-factor if and
only if some Gi has an H-factor. �



Now Lemma 2.1 immediately implies Theorem 1.4, our
kernel lower bounds for H-Factor.

5 Kernels for Graph Packing Problems

The sun�ower kernelization in Theorem 1.1 immediately
transfers to H-Matching for any �xed graph H and
yields kernels with O(kd) edges. For every graph H,
Moser [Mos09] shows that H-matching has kernels
with O(kd−1) vertices where d = |V (H)|, but this gives
only the weaker bound O(k2d−2) on the number of
edges. Here we show that for some speci�c H, we can
obtain kernels that are better than the O(kd) bound
implied by Theorem 1.1. As a very simple example,
we show this �rst for K1,d-Matching, the problem of
packing vertex-disjoint stars with d leaves.

Observation 5.1. K1,d-Matching has kernels with
O(k2) edges.

Proof. Let (G, k) be an instance of K1,d-Matching. If
G has a vertex v of degree at least dk + 1, let e be
an edge incident to v. We claim that we can safely
remove e. If G − e has a K1,d-matching of size k, then
this also holds for G. For the other direction, let M be
a K1,d-matching of size k in G. IfM does not contain e,
it is also a matching of G− e. Otherwise M contains e.
Let M ′ be obtained from M by removing the star that
contains e. Now v is not contained in M ′. Since M ′

covers at most d(k−1) vertices, at least d+1 neighbors
of v are not contained in M ′. Even if we remove e, we
can therefore augment M ′ with a vertex-disjoint star
that is centered at v and has d leaves. This yields a star
matching of size k in G− e.

For the kernelization, we repeatedly delete edges
incident to high-degree vertices. Then every vertex
has degree at most dk. Now we greedily compute a
maximal star matching M and answer 'yes' if M has
size k. Otherwise, we claim that the graph has most
O(k2) edges: Since M covers at most dk vertices, the
degree bound implies that at most (dk)2 edges are
incident to M . The vertices of G outside of M have at
most d− 1 neighbors outside of M because they would
otherwise have been added to M . Thus there are at
most (d − 1) · (dk)2 edges not incident to M . Thus G
has at most d3 · k2 edges. �

By Theorem 1.4, it is unlikely that star matching
problems have kernels with O(k2−ε) edges, so the above
kernels are likely to be asymptotically optimal.

5.1 Packing Paths of Length 3. Let P` be the
simple path with ` edges. As P2 is the same as
K1,2, the problem P2-Matching is already covered by
Observation 5.1, thus we have a O(k2) upper bound

and a matching O(k2−ε) lower bound for this problem.
For P3-Matching, the situation is less clear. Using a
similar strategy as in the proof of Observation 5.1, it is
easy to reduce the maximum degree to O(k2) and then
argue that the kernels have O(k3) edges. Surprisingly,
the maximum degree can be further reduced to O(k1.5)
using much more complicated combinatorial arguments.
This gives rise to kernels of size O(k2.5) without a tight
lower bound.

Theorem 5.1. P3-Matching has kernels with O(k2.5)
edges.

We prove Theorem 5.1 by showing that the degree of
every vertex can be reduced to ∆ ≤ O(k1.5). Once we
have an instance G with maximum degree ∆, we can
obtain a kernel of size O(∆ · k) with fairly standard
arguments as follows. First, we greedily compute a
maximal P3-matching. If we �nd at least k paths, then
we are done. Otherwise let S be the at most 4k vertices
in the paths. As every vertex has degree at most ∆,
there are at most 4k∆ edges incident to S. Now let
us count the number of edges in G \ S. The graph
G \ S does not contain paths of length 3, so every
connected component of G \ S is either a triangle or
a star. Therefore, the average degree is at most 2 in
G \ S. If a component of G \ S is not adjacent to S, it
can be safely removed without changing the solution. If
a component of G \ S has a vertex v with at least two
neighbors in G \ S that have degree one in G, then we
keep only one of them. Since every solution uses at most
one of them, they are interchangeable. After doing this,
every component of G \ S has at most two vertices not
adjacent to S in G. This means that a constant fraction
of the vertices in G \S is adjacent to S. As there are at
most 4∆k edges incident to S, this means that there are
at most O(∆k) vertices in G \ S. Taking into account
that the average degree is at most two in G\S, we have
that there are O(∆·k) edges in G\S. This yields kernels
with O(k2.5) edges. It remains to argue how to reduce
the maximum degree to ∆.

Degree reduction. Let G be a graph that con-
tains a vertex v with more than ∆ neighbors. In the
following, we call any P3-matching of size k a solution.
Our kernelization procedure will �nd an edge e incident
to v that can be safely removed, so that G has a solution
if and only G \ e has a solution. The most basic such
reduction is as follows.

Lemma 5.1. If there there is a matching a1b1, . . . ,
anbn of size n ≥ 4k + 2 in G \ v such that every ai
is a neighbor of v, then any single edge e incident to v
can be safely removed.

Proof. Suppose that there is a solution containing a
path going through e. The paths in the solution cover 4k



vertices, thus without loss of generality, we can assume
that a1, b1, a2, b2 are not used. We replace the path
containing e with the path b1a1va2 to obtain a solution
of G \ e. �

Let us greedily �nd a maximal matching a1b1, . . . , anbn
in G\v with the requirement that every ai is a neighbor
of v. If n ≥ 4k + 2, we can safely remove an arbitrary
edge incident to v by Lemma 5.1 and then proceed
inductively. Otherwise, let M = {a1, b1, . . . , an, bn} be
the set of at most 8k+2 vertices that are covered by this
matching. Let X := N(v) \M . Now every neighbor y
of a vertex x ∈ X is in M ∪ {v} since the matching M
could otherwise have been extended by the edge xy. In
particular, X induces an independent set. It holds that
|X| ≥ 100k since otherwise the degree of v is smaller
than ∆.

The following technical de�nition is crucial in our
kernelization algorithm.

De�nition 5.1. Let u be a vertex of M and let Xu =
N(u) ∩X be the neighborhood of u in X.

We call u good if every set S ⊆ M satis�es the
following property: If there is a matching between S and
Xu of size |Xu| − 1, then S has more than 4k neighbors
in X.

Note that it is not obvious how to decide in poly-
nomial time whether a vertex is good. Therefore,
Lemma 5.2 below does not directly give us a polynomial-
time reduction rule. We will invoke it only in situations
where we can prove that all the required vertices are
good.

Lemma 5.2. If x ∈ X has only good neighbors in M ,
then the edge vx can be safely removed.

Proof. We argue that if there is a solution then there is
also a solution that does not use vx. If vx is used as
the �rst or the third edge of a path, the high degree of
v makes sure that there is a vertex y not used by the
solution, and we can replace vx by vy. Now consider a
solution that contains a path P = avxu using vx as its
middle edge; by assumption, u ∈M is good.

By de�nition, the set Xu contains all vertices x′

of X that are common neighbors of u and v. Hence,
if some vertex x′ ∈ Xu \ x is not used by the solution,
then we can replace P by avx′u. Now assume that every
x′ ∈ Xu \ x is part of some path. None of these paths
contain v. If x′ is the endpoint of a path, then the mate
of x′ is its unique neighbor in the path; if x′ is in the
middle of a path, then the mate of x′ is the endpoint
that is adjacent to x′ in the path. Recall that every
neighbor of x′ ∈ X is in M ∪ {v}, so the mate of any x′

is contained in M . The vertices in Xu \ x have distinct

mates even if two vertices of Xu \ x are on the same
path. This gives rise to a matching between Xu \ x and
the set S ⊆ M of all mates of vertices in Xu \ x. Since
this matching has size |Xu| − 1 and u is good, S has at
least 4k+1 neighbors in X. Thus, some neighbor y ∈ X
of S is not used by the solution.

Let x′ ∈ Xu \ x be a vertex whose mate w ∈ S
is adjacent to a vertex y ∈ X that is not used by
the solution. Since w is the mate of x′, the edge wx′

occurs in a path Q of the solution. We distinguish
two cases. If x′ is an endpoint of Q, then we replace
the paths P = avxu and Q = x′wcd by the two new
paths avx′u and ywcd. If x′ is not an endpoint of Q,
then we replace P = avxu and Q = wx′cd by ux′cd
and avyw. These are paths since x′ is a common
neighbor of v and u, and y is a common neighbor of v
and w. In all cases we found solutions that do not
use vx, so vx can be safely removed. �

Lemma 5.3. There is a polynomial-time algorithm
that, given a vertex v of degree larger than ∆, �nds a
vertex x ∈ X that has only good neighbors in M .

Proof. We maintain a setM ′ ⊆M of vertices satisfying
the invariant that all vertices in M ′ are good. Initially
we set M ′ = ∅. We repeat a procedure that either
outputs x as required or adds a new good vertex to M ′.
If some x ∈ X does not have neighbors in M \M ′, then
by the invariant all neighbors of x inM are good and we
can output x. Otherwise, withM \M ′ = {m1, . . . ,mt},
there exists a partition X1, . . . , Xt of X such that every
vertex of Xi is adjacent to mi. Some of the Xi can be
empty.

We construct a bipartite graphH that is a subgraph
of the bipartite graph between X and M . Initially, H
has the vertex set X ∪M and no edges. We preserve
the invariant that every vertex of X has degree at most
one in H.

For every 1 ≤ i ≤ t with |Xi| > 1, we add edges
to H in the following way. For every edge xy of G
with x ∈ Xi and y ∈ M , let the weight of xy be the
degree degH(y) of y in H. In this weighted graph G,
we now compute a matching between Xi and M that
has cardinality exactly |Xi| − 1 and weight at most 4k.
This can be done in polynomial time using standard
algorithms. If there is such a matching, we add all edges
of the matching to H and continue with the next i. This
preserves the invariant that every vertex ofX has degree
at most one in H since the Xi are disjoint. If there is no
such matching, then we claim that mi is good. Assume
for contradiction that there is a matching of cardinality
|Xmi | − 1 between Xmi = N(mi) ∩ X and a subset
S ⊆ M that has at most 4k neighbors in X. As H
is a subgraph of G, it follows that S has at most 4k



neighbors in H. This implies that
∑
y∈S degH(y) ≤ 4k

since every vertex of X has degree at most one in H,
so the sum of the degrees of vertices in S is exactly the
size of the neighborhood of S in H. This contradicts
with the fact that we did not �nd a suitable matching
of weight at most 4k. Thusmi is good and can be added
to M ′.

We show that unless |X| = O(k1.5), the above
process �nds a good vertex in M . Suppose that the
process terminates without �nding a good vertex. Let
N be the number of paths of length two in the �nal
graph H we obtained. As the degree of every vertex of
X is at most one in H, every path of length two is of
the form abc with a ∈ Xi, b ∈M , and c ∈ Xj for some
1 ≤ i, j ≤ t. Furthermore, we have i 6= j: the edges
incident to Xi form a matching in H. For some i, let us
count the number of paths with a ∈ Xi and c ∈ Xj for
j < i. Consider a vertex a ∈ Xi that is not isolated in
H; it has a unique neighbor b in the graph H. Consider
the graph H ′ at the step of the algorithm before �nding
the matching incident to Xi, and let d be the degree
of b in H ′. Then it is clear that H contains exactly
d paths of length two connecting a to a vertex of Xj

with j < i: the vertex b has exactly d neighbors in
X1∪· · ·∪Xi−1. Thus if Si is the set of vertices that X

i

is matched to, then the total number of paths between
Xi and

⋃i−1
j=1X

j is exactly the total degree of Si in H
′,

which is at most 4k by the selection of the matching.
Thus the total number N of paths can be bounded by
t · 4k ≤ (8k + 2) · 4k = O(k2).

On the other hand, the number of paths of length
two containing m ∈M as their middle vertex is exactly(

degH(m)
2

)
≥ degH(m)2/4− 1.

Note that
∑
m∈M degH(m) ≥ |X| − |M |: in every

nonemptyXi, there is exactly one vertex that is isolated
in H, and every other vertex has degree one. Thus the
total number of paths is exactly∑

m∈M

(
degH(m)

2

)
≥ 1

4

∑
m∈M

degH(m)2 − |M |

≥ 1
4|M |

(∑
m∈M

degH(m)

)2

− |M |

≥ 1
4|M |

(|X| − |M |)2 − |M | = Ω(|X|2/k)

where we used the relationship between arithmetic and
quadratic mean in the second inequality, and the facts
|M | ≤ 8k + 2, |X| > 100k in the last step. Putting
together N = O(k2) and N = Ω(|X|2/k), we get
|X| = O(k1.5).

Thus, we choose ∆ = C · k1.5 for some large
enough constant C > 0 so that the above procedure
is guaranteed to �nd a vertex x ∈ X that contains only
good neighbors in M . �
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A Sun�ower Kernelization for Set Matching

We sketch a modern proof of Theorem 1.1, that d-Set
Matching has kernels with O(kd) hyperedges.

Proof (Sketch). A sun�ower with p petals is a set of
p hyperedges whose pairwise intersections are equal.
By the sun�ower lemma, any d-uniform hypergraph G
with more than d! · rd edges has a sun�ower with r + 1
petals [ER60]. We set r = dk and observe that, in any
sun�ower with r+1 petals, we can arbitrarily choose an
edge e of the sun�ower and remove it from the graph.
To see this, assume we have a matching M of G with
k edges. If M does not contain e, then M is still
a matching of size k in G − e. On the other hand,
if M contains e, there must be a petal that does not
intersect M since we have dk+ 1 petals but M involves
only dk vertices. Thus we can replace e in the matching
by the edge that corresponds to that petal, and we
obtain a matching of G′ that consists of k hyperedges.
This establishes the completeness of the reduction. The
soundness is clear since any matching ofG′ is a matching
of G. �

B Multicolored Biclique

Lemma B.1. Multicolored Biclique is NP-
complete.

Proof. Let graph G and integer k be an instance of
Clique. Let {vi | 1 ≤ i ≤ n} be the vertex set
of G. We construct a biparite graph B on vertex set
{ui,j , wi,j | 1 ≤ i ≤ k, 1 ≤ j ≤ n}. We make vertices
ui,j and vi′,j′ adjacent if and only if

• either i = i′ and j = j′ or

• i 6= i′ and vertices vj and vj′ are adjacent.

Consider the partitions U = U1 ∪ · · · ∪Uk and W =
W1 ∪ · · · ∪Wk, where Ui = {ui,j | 1 ≤ j ≤ n} and Wi =
{wi,j | 1 ≤ j ≤ n}. We claim that B contains a biclique
Kn,n respecting these partitions if and only ifG contains
a k-clique. It is easy to see that if {va1 , . . . , vak

} is a
clique in G, then {u1,a1 , . . . , uk,ak

, w1,a1 , . . . , wk,ak
} is a

biclique of the required form in B. On the other hand,
if {u1,a1 , . . . , uk,ak

, w1,b1 , . . . , wk,bk
} is such a biclique,

then ai = bi for every 1 ≤ i ≤ k; otherwise ui,ai
and

wi,bi are not adjacent. It follows that {va1 , . . . , vak
} is

a clique in G: if vai and vai′ are not adjacent in G
(including the possibility that ai = ai′), then ui,ai

and
wi′,bi′ = wi′,ai′ are not adjacent in B. �

C Lower Bounds for Vertex Cover in d-uniform
Hypergraphs

We present an elementary reduction from OR(3-Sat) to
d-Vertex Cover, i.e., the vertex cover problem in d-
uniform hypergraphs. The d-partiteness �avor is crucial
in the reduction, but it is not necessary to explicitly
spell out the d-partite problem L like we did with
Multicolored Biclique before.

Theorem C.1 ([DvM10]). Let d ≥ 2 be an integer.
Then d-Vertex Cover does not have kernels of size
O(kd−ε) unless coNP ⊆ NP/poly.

Proof. Let ϕ1, . . . , ϕt be t instances of 3-Sat, each of
size s. Without loss of generality, assume that the
set of variables occurring in the formulas is a subset
of [s]. Let P be the consistency graph on partial
assignments that assign exactly three variables of [s].
More precisely, the vertex set of P is the set of functions
σ : S → {0, 1} for sets S ∈

(
[s]
3

)
, and two partial

assignment σ, σ′ ∈ V (P ) are adjacent in P if and
only if σ and σ′ are consistent, i.e., they agree on the
intersection of their domains. Now the cliques of size

(
s
3

)
in P are exactly the cliques that are obtained from full
assignments [s] → {0, 1} by restriction to their three-
variable sub-assignments. Furthermore, P has no clique
of size larger than

(
s
3

)
.

We construct a hypergraph G that has a complete
d-uniform sub-hypergraph on some number k of vertices
if and only if some ϕi is satis�able. We use a suitable
bijection between [t] and [t1/d]d, and we write the ϕi's
as ϕb1,...,bd

for (b1, . . . , bd) ∈ [t1/d]d. The vertex set of
G consists of d · t1/d groups of vertices Va,b for a ∈ [d]
and b ∈ [t1/d]. We consider each set V1,b as a copy of
the vertex set of P , and for a > 1, we let |Va,b| = 1 for
all b. A subset e of d elements of V (G) is a hyperedge
in G if and only if the following properties hold:

1. each a ∈ [d] has at most one b = ba ∈ [t1/d] for
which e ∩ Va,b 6= ∅,

2. e ∩ V1,b1 corresponds to a clique in P , and

3. if e ∩ Va,ba
6= ∅ for all a, then the (unique) partial

assignment σ ∈ e ∩ V1 does not set any clause of
ϕb1,...,bd

to false.

Edges with |e ∩ V1,b1 | > 1 play the role of checking
the consistency of partial assignments, and edges with
|e ∩ Va,ba

| = 1 for all a select an instance ϕb and check
whether that instance is satis�able.

We set k =
(
s
3

)
+ d− 1. For the completeness of the

reduction, let σ : [s]→ {0, 1} be a satisfying assignment
of ϕb1,...,bd

. Let C be the set of all three-variable sub-
assignments of σ in the set V1.b1 , and we also add the



d−1 vertices of V2,b2 ∪· · ·∪Vd,bd
to C. We claim that C

induces a clique in G. Let e be a d-element subset of C,
we show that it is a hyperedge in G since it satis�es the
three conditions above. Clearly, e ⊆ C is fully contained
in V1,b1 ∪· · ·∪Vd,bd

and satis�es the �rst condition. The
second condition is satis�ed since e∩V1,b1 contains only
sub-assignments of the full assignment σ. The third
condition holds since σ is a satisfying assignment and
therefore none of its sub-assignments sets any clause to
false.

For the soundness, let C be a clique of size k in G.
By the �rst property, C intersects at most one set Va,ba

for all a. Also, the intersection C∩V1,b1 induces a clique
in G and therefore corresponds to a clique of P . By the
properties of P , this intersection can have size at most(
s
3

)
, and the only other vertices C can contain are the

d−1 vertices of V2,b2 ∪· · ·∪Vd,bd
. Thus, we indeed have

|C ∩ V1,b1 | =
(
s
3

)
and |C ∩ V2,b2 | = · · · = |C ∩ Vd,bd

| = 1.
The properties of P imply that the �rst intersection
corresponds to some full assignment σ : [s] → {0, 1}.
By the third property, no three-variable sub-assignment
sets any clause of ϕb1,...,bd

to false, so σ satis�es the
formula.

Thus, (G, k) ∈ d-Clique if and only if
(ϕ1, . . . , ϕt) ∈ OR(3-Sat). Since G and k are
computable in time polynomial in the bitlength of
(ϕ1, . . . , ϕt) and |V (G)| ≤ t1/d · poly(s), we have es-
tablished the ≤pm-reductions that are required to apply
Lemma 2.1. �
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